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Introduction: 

 The purpose of this project is to create a custom bike computer for the Cal Poly Human Powered 

Vehicle team, which designs and implements Human Powered Vehicles (HPV). HPV’s are “aerodynamic, 

highly engineered vehicles that may be for use on land, in the water or the air.”[22] The main focus of 

the club is to create HPV’s for the Human Powered Vehicle Challenge (HPVC) events put on by the ASME 

(founded as the American Society of Mechanical Engineers) every year. This project provides the HPV 

team with a computing device that is useful for their competitions. The basic functionalities of the 

device include collecting data during a race, showing this data to the user during a race, and enabling 

the user to analyze data after a race. 

 There are two main aspects of this project: the data collection and the data presentation. The 

data collection is done by using an Arduino Uno microcontroller and attached sensors and modules. A 

GPS module collects location data, a temperature sensor collects temperature data, and reed switches 

collect wheel and gear rotational data. This data is sent to an Android smartphone or tablet via 

Bluetooth communication. The information gathered from the Arduino is then displayed on the screen 

of the Android device (data presentation), including speed, temperature, distance traveled, lap time, 

and cadence. The Android device contains a custom-designed user-friendly application. The purpose of 

this application is to store and display data for different users by using a user-profile design. Different 

rider’s profile information will be stored and accessed via external storage on the Android device 

(usually an SD card). Profiles will contain a name, a temperature in degrees Fahrenheit (for use with an 

external fan attached to the Arduino), and a picture. 

There are two main modes of the application after profile creation/selection: race mode and 

street mode. In Race Mode, the user is prompted to enter wheel size and lap distance in order to 

calculate speed and lap count. Once the user presses the start button, the Android device begins 

communicating with the Arduino Uno. While the Arduino Uno is sending data to the Android device 

during a race, this data is being stored in a CSV file on external storage under the current rider’s profile. 
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Also, if the recorded temperature exceeds the rider’s specified temperature in their profile, the Android 

device sends the Arduino Uno a command to turn on an external fan for temperature control inside the 

fairing. After a race, a rider can attach the Android device to a laptop or PC and open the CSV files in a 

spreadsheet document program such as Microsoft Excel. This enables the rider to access data after a 

race so they can view trends and perform calculations. In Street Mode, the rider’s position will be shown 

on a map using Google Maps. Street mode will also show the current and max speed of the rider. This 

mode does not communicate with the Arduino Uno since the information presented doesn’t need to be 

as accurate as race mode. This mode also does not save data in a CSV file for later inspection and uses 

carrier data in order to access the Google Maps database. 

In summary, this project provides the Cal Poly HPV team with a computational device that will 

benefit the team and possibly pave a way to more custom computer solutions to mechanical problems. 
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Figure 1: High level flow 

diagram of the App UI 

System Description & Implementation: 

In this next section we will discuss our software implementation. This section will be broken up 

into the following parts: “High Level UI”, “Selecting Program Functionality”, and “Flow of Software.” 

“Flow of Software” will be split into multiple sections, each section explaining a separate activity in the 

app and the programming techniques used to create that screens functionality. There is also an 

additional section describing the Arduino software implementation. 

High Level UI 

After consulting our client we decided that our Android App’s UI had to allow the user to create 

a new profile and also select from a list of already created profiles. Allowing the user to select one of 

these options warranted creating a main screen to allow them to do just that. Once a profile has been 

created/selected the next screen needed to show their profile with options to change their current 

settings and move on to the main part of the App. Because our client needed to use the device in an 

environment that limited phone data capabilities we needed not only a data driven Google Maps 

interface but also an offline version of maps. Using this knowledge we decided that the last two screens 

our app would allow the user to go to would be accessed from the profile screen and allow the user to 

select a “Race” mode (no data, offline maps) or a “Street” mode (data, Google Maps). The high-level UI 

flow diagram can be seen below in Figure 1.  
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Activity Overviews: 

Once a high level flow diagram was created the next step was to figure out what functions 

needed to be performed in each screen depicted in the diagram. We concluded that the “Main Screen” 

needed to allow users to select either “Create” or “Select” a profile. The user also needed to be able to 

access a help screen which would display basic information on how to use the App. 

 In the “Select Profile” screen the user is able to select from a list of profiles. Each entry in the 

list includes the name of the profile and a profile image. The user also has the capability of deleting 

entries in the profile list.  

While in the “Create Profile” screen, the user needs to enter a unique name for their profile and 

a temperature for the fan feature of our device. The user also has the option to take a picture that will 

be displayed with their profile or choose a picture that already exists in their phone’s photo gallery. The 

user also has the choice not to take a picture and stick with the default profile picture. Once a profile has 

been selected/created the “Profile Screen” displays the users profile name and picture. This screen 

allows the user to change the settings they chose when they created their profile. From the profile 

screen the user has the choice of selecting race mode or street mode.  

“Race Mode” displays the offline map, current temperature, number of laps, speed, start and 

stop buttons with a timer, and draws the current location and past locations on the map. This mode 

connects to the Arduino via Bluetooth and writes the collected data to a CSV file so the riders could 

export the data to Excel.  

Lastly, the “Street Mode” displays Google Maps at the location of the user while also displaying 

the current speed, max speed, and draws the route the user has taken when in “Street Mode”. 
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Figure 2: Programming Logic 

of Main Screen, Select Profile 

Screen, and Create a Profile 

Screen 

Flow of Software: 

The following section describes in detail the features of the previous section.  

The programming logic flow when moving from the main screen to either “Select Profile” or 

“Create a Profile” can be seen below in Figure 2. 
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Figure 3: The Android 

Application Main Screen 

 

Main Screen: 

When the user launches the Android Application they will be presented with the main screen of 

the app. While at the main screen the user has the option to select the help button in the top right hand 

corner, select the “Create Profile” button, or select the “Select Profile” button. An image of the main 

screen can be seen below in Figure 3. 

 

 

 

Create Profile: 

When the “Create Profile” button is pressed the Android activity is created and we begin the 

create profile branch of Figure 2. The user is then presented with a screen containing two text entry 

locations, a default image view, and three buttons (archive, camera, and save). A screenshot of this 

screen is shown in Figure 4 on the following page.  

When the user clicks a text entry field the default Android keyboard pops up and allows the user 

to enter information. The user also has the option of taking a picture for their profile. Pressing the 

button with an image of a camera will launch the default Android camera App, allowing the user to take 
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Figure 4: Create Profile Screen 

in the Android Application 

a picture. Pressing the button with an image of a folder allows the user to select an image from their 

phone gallery as their profile picture. Once the information in the text fields is entered and the user  

 

 

 

has chosen a picture the user shall press the “save” button. When the save button is pressed, the code 

searches through our apps save directory. This directory is located in your phone’s internal memory, the 

/HPV (Human Powered Vehicle) directory. If the search through the directory finds that the name the 

user entered for their profile already exists the app writes a message to the screen prompting the user 

to change the name. If the profile name is available then the app checks to make sure the temperature 

the user entered is between 0 and 125 degrees Fahrenheit. If this is not the case, the app prompts the 

user to change the temperature. Lastly, the code checks to see if an image was taken/chosen. If 

everything passes these checks the code then creates a new directory within the /HPV directory. This 

directory’s name becomes whatever the user entered for their profile name. An example of a user’s 

directory structure would be sdcard0/HPV/Bob, with Bob being the users profile name. The app code 

then writes the profile image to the user’s directory and creates a “.csv” file containing the profile name 

and temperature setting.  
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Figure 5: Select Profile Screen 

in the Android Application 

Once all of this has been done, the code passes the user name and temperature to the “Profile 

View” (as shown in Figure 2) through the programming technique called Android Shared Preferences. 

 

Select Profile: 

When the “Select Profile” button is pressed the Android activity is created and we begin the 

“Select Profile” branch in Figure 2. The user is then presented with a screen containing a list of all the 

profiles in the app. The program loads the information needed to populate the list from the user’s 

phone memory in the app’s directory (“/HPV”). Using basic Java file I/O the program loops through the 

directories and stores the name and corresponding bitmap image in an ArrayList of custom profile 

objects.  

Once the ArrayList is populated the program creates a separate entry in the list for each profile. 

Each entry contains the user’s profile image to the far left of the screen and the users profile name in 

the center of the screen. In order to accomplish these tasks the program uses Android base adapters 

and custom XML files. An example image of the “Select Profile” screen can be seen below in Figure 5.  
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Figure 6: Deleting a Profile 

From this screen the user has two options: Press and hold a name to delete the profile or tap a 

profile to load it. When the user decides to delete a profile they are prompted with a confirmation 

message making sure they want to delete their profile. If they choose yes then the program removes the 

entry from the list and deletes the user’s data on the phone. An example image of the select and hold to 

delete can be seen below in Figure 6. When the user decides to choose a profile to load they tap the 

user and the program will pass the user’s data to the “Profile View”. 

 

 

Profile View: 

The program flow diagram for the profile view can be seen in the next two pages in Figure 9. 

While the user is at the profile view screen they are presented with their profile image to the left, their 

name at the top of the screen, and four buttons. An image of this screen can be seen in Figure 7 on the 

next page. The user has the option of changing their profile picture by pressing the button “Change 

Picture”.  If the user wishes to change their profile name and/or temperature threshold they can press 

the settings button in the top right hand corner of the screen. An image of this option can be seen in 

Figure 8 on the next page. Lastly, the user can choose to enter the “Street” or “Race” mode. If the user 

chooses the race mode they will be prompted with a prompt similar to the change settings prompt 

asking for their bike’s wheel diameter in inches and the distance of the race track in miles. Pressing 
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Figure 7: Profile Screen in the 

Android Application 

Figure 8: Edit Profile Settings 

either of these two buttons will take the user to their respective Android Application activities as shown 

in Figure 9. 
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Figure 9: Profile View Program 

Flow Diagram 
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Figure 10: Street Mode with Max 

Speed and Current Speed shown 

Street Mode: 

The software flow diagram for the “Street Mode” can be seen on the next page in Figure 11. 

Street Mode uses the built in Android Google Maps API to display where the user currently is on a map. 

When the user enters this mode the program checks to make sure the GPS is turned on and prompts the 

user if it is not turned on. If GPS is turned on, the phone finds their location and centers the map on the 

location. The street mode screen displays the user’s max speed they have attained and their current 

speed. It also checks with the GPS every 1.5 seconds to see if the user’s position has changed. If the 

current position has changed then Google maps draws a line between those coordinates and the last 

recorded coordinates. An image of this screen can be seen below in Figure 10. 
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Figure 11: Street Mode 

Program Flow Diagram 
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Race Activity: 

The Race Activity is the main focus of our project: bringing together the Arduino and Android to 

create a data collecting system. The process for starting the Race Activity begins when the user presses 

the “Race” button on the Profile Activity screen. This triggers a prompt to the user asking for a wheel 

size in inches and a lap distance in miles. If the user presses cancel, the Race Activity will not load and 

the user presses accept, the Race Activity will load. 

When the Race Activity first loads it initializes variables, text labels, and the MapView object and 

also gets the current date and time in order to name the CSV file. It reads the race data and directory 

data from the settings that were passed in to the Race Activity from the Profile Activity. A new CSV file is 

created in the directory specified by the passed-in settings, with the title ”RACE<date>@<time>”. The 

file’s name contains the date and time so it is easy for the rider to know what race the file is associated 

with. 

After initialization of data, the Race Activity attempts to connect to the Bluetooth module and 

begins listening for data. It first starts by creating a “BluetoothAdapter” object and checking to see if 

Bluetooth is enabled on the phone. If it is not, the Race Activity automatically enables it without the 

user’s consent and pairs with the “linvor” device. This is the default name of the Bluetooth module we 

are using. After enabling Bluetooth on the phone and choosing “linvor” as the Bluetooth device, the 

Race Activity attempts to connect to the device. The Race Activity makes a socket to connect to the 

default Bluetooth UUID, “00001101-0000-1000-8000-00805f9b34fb,” and attempts to connect to it. If 

this connection fails, an exception is thrown and the Race Activity attempts to connect three more 

times. If the Race Activity attempts to connect to the Bluetooth module a total of four times, the Race 

Activity quits, goes back to the Profile Activity, and displays a message to the user suggesting to pair to 

the correct device or turn the Arduino device on. If, however, a successful connection is made, input and 

output streams are created so data can be transmitted and received to and from the Bluetooth module. 
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After a successful connection the Race Activity starts a new thread that is used for listening to Bluetooth 

data. 

At this point, nothing else happens with the Activity until the user presses the “Start” button on 

the screen. The “Start” button performs three main events: It starts the on-screen timer, tells the 

Arduino to start sending data, and finally tells the newly created thread that the Race Activity is ready to 

listen to data. If the stop button is pressed the on-screen timer stops, the Arduino is ordered to stop 

sending data and the input stream and file are closed. 

While listening for data, the Race Activity uses the Java I/O “readFully()” method. This method 

blocks until a specified number of bytes are read into a buffer, 20 in our case for five four-byte floats.  

We decided to use this function because it is much easier than polling for the data. The data bytes are 

ordered as follows:  0-3 represent the time of a wheel rotation in milliseconds as a float,  4-7 represent 

the GPS longitude as a float, 8-11 represent the GPS latitude as a float, 12-15 represent the temperature 

in degrees Fahrenheit as a float, and lastly bytes 16-19 represent the time of a gear rotation as a float.  

After this buffer is filled, the data parsing begins. When parsing the data, the byte order was important 

to consider. They were copied in in Little Endian order, meaning that the least significant byte was read 

first. If they were read in using Big Endian, the data would be wrong. 

After the bytes are read in and correctly placed in their corresponding variables, calculations for 

wheel speed, distance traveled, and number of laps completed are performed. In order to calculate the 

distance traveled, the Haversine formula was used. The Haversine formula is one of the most important 

navigational formulas, giving great-circle distances between two points on a sphere from their 

longitudes and latitudes [21]. Each time the distance is calculated it is added to the overall distance 

which is displayed on the screen. When reading the GPS data the float values were changed to doubles 

in order to keep the high accuracy precision that is needed when handling GPS coordinates. The total 

distance is also used to calculate the number of laps that have been completed. The time the wheel to 
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rotate and the wheel circumference are used to calculate wheel speed in miles per hour and the time to 

rotate the gear is used to calculate the cadence in rotations per second. After all necessary information 

has been collected and computed it is displayed on the screen and saved to the CSV file. The software 

flow chart for the Race Activity can be seen below in Figure 12. 

 

Figure 12: Software Flow Diagram for the Race Activity 
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Arduino Uno Software:  

Separate from the Android application is the Arduino software. The Arduino acts mainly as a 

data collecting/forwarding device but serves other functions as well. Essentially, the Arduino collects 

data from the attached modules/sensors and sends this data to the Android device via Bluetooth. It also 

controls an attached fan that powers on when the temperature reaches a certain threshold. A detailed 

software flow diagram is displayed below. 

The program begins by powering on the device. The program initializes the Software Serial pins 

used by the GPS and Bluetooth modules and also initializes external interrupts that will be fired 

whenever the reed switches are switched. After initialization, the program waits for a “transmit begin” 

signal to be received from the Android device. Once this signal is received, the program begins collecting 

and sending data approximately once every second. The GPS module’s coordinates and the DS18B20’s 

temperature data are read, along with the number of times the wheel and gear turned during that time 

frame. All of this data is packaged into a 20-byte packet as described in the “Race Activity” section 

above. The least significant byte is put in first, making the order Little Endian. This ordering was 

important to consider in the Race Activity since reading the bytes in the incorrect order can lead to bad 

data. 

While the program is idling during the second that it’s not sending data, it waits for signals to 

arrive from the Android device. The three main signals the Arduino checks for are: fan on, fan off, and 

transmit off, which are all self-explanatory. If the “transmit-off” signal is received, the Arduino turns off 

the fan and goes back to the “check for received signal” state until it needs to send data again or the 

Arduino is turned off. 

Throughout the lifetime of the “transmit” state in the Arduino software, reed switches fire 

external interrupts that are handled by the Arduino. The time in between external interrupts is used to 

measure the wheel speed. Before transmitting the speed data the Arduino checks to see if the wheel 

speed has been updated recently. If it has not been updated for a specified amount of time, the Arduino 
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assumes the vehicle is stationary and sends zero as the wheel speed. A software flow diagram of the 

Arduino program can be seen below in Figure 13. 

 

Figure 13: Software Flow Diagram for the Arduino Uno 

 

 

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

www.F
irs

tR
an

ke
r.c

om

21 
 

Hardware Implementation: 

Parts Design Decisions: 

 In order to collect data to be transmitted to the Android device, we integrated an Arduino Uno 

with an LS20031 GPS module, DS18B20 one-wire temperature sensor, JY-MCU Bluetooth module, and 

two reed switches. In addition to these parts, a 5V relay was used to power and control a 5V DC 

50x50x10mm fan and an external battery pack with 4 AA batteries was used for powering the Arduino. 

 We chose the Arduino Uno microcontroller was because of its ease of programming, 5V output 

voltage, and ease of integration with other parts. The Arduino’s language is simple to learn and easy to 

use, especially with the Arduino programming environment. It is C++ and C based, so many C++ and C 

programs can be written for use with the Arduino in combination with the built-in Arduino functions and 

macros. Along with the ease of programming, many parts have libraries and tutorials written for use 

with the Arduino family of microcontrollers. This makes it much easier on the programmer since libraries 

do not have to be written from scratch and parts can be integrated easily. These aspects make the 

Arduino a great microcontroller family for both beginners and experts to use to control their projects.  

 Of the many GPS modules to choose from we picked the LS20031 for its 1-2 meter accuracy and 

5 Hz update frequency [9]. In any kind of racing situation, accuracy and speed are needed in order to get 

the best and most up-to-date data. This GPS module is also compatible with the TinyGPS library which 

was used in the project.  

For the DS18B20 temperature sensor the accuracy and update frequency of reading 

temperature aren’t as crucial as with position data. Because of this, we chose a standard temperature 

sensor that was easily integrated into microcontroller environments. It is compatible with the OneWire 

library.  

For reading rotational speeds of objects, magnetic sensors are standard, namely reed switches 

and Hall Effect sensors. However, the two sensors are functionally different. When in contact with a 

magnetic field, a reed switch physically connects two pieces of metal together so current flows through 
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the circuit, acting like a physical switch would. On the other hand, when a Hall Effect sensor comes into 

contact with a magnetic field the output voltage increases or decreases. Because of the mechanical 

nature of reed switches they have much faster switch times. For this high-speed, high-accuracy 

environment we felt that a reed switch would be preferable to a Hall Effect sensor. 

 There are many different Bluetooth modules available on the market for use with 

microcontrollers. We chose the JY-MCU Bluetooth module because of its low cost, easy integration, and 

short signal range, which is about 10 meters. The JY-MCU was the quarter of the cost of similarly 

functioning Bluetooth modules such as the Bluetooth Mate Silver. The JY-MCU has a lack of 

documentation, however, so the low cost of the module comes with a price. The JY-MCU functioned 

easily in the project despite this lack of documentation. 

 We used a 5V relay and 5V DC 50x50x10mm fan in order to provide cooling to the rider. The 5V 

power for the fan was a good match for the 5V output voltage of the Arduino pins. However, the 

Arduino Uno digital pins don’t provide enough power or current for the fan to run, but the 5V power 

output on the Arduino Uno does. A 5V relay helps accomplish this, which enables the fan to be hooked 

up to power and be controlled at the same time. 

 Finally, we used a 4 AA battery pack to power the Arduino Uno. Originally, a 9V battery was used 

to power the Arduino. When testing it with our device, however, we realized it did not provide nearly 

enough power and current for the 5V relay to switch. After some research, we decided that 4 AA 

batteries would best power the Arduino. Although 4 AA batteries provide 6V, which is less voltage than 

the 9V, they provide much more power and current. Also, the battery pack that holds the AA batteries 

has an on/off switch whereas the 9V battery had no such power control. This was better for our design 

since it is much easier to flip a switch than unplug a battery pack every time the Arduino needs to be 

powered down. 
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Black Box Diagram/ Schematic Description: 

 A black box diagram for our setup can be seen in the Figure 14 below. Input devices include the 

temperature sensor, reed switches, GPS module, battery pack, and Bluetooth module. Output devices 

include the 5V relay, DC fan, and Bluetooth module. 

 

 

Figure 14: Black Box Diagram 

 A more detailed setup can be seen in the schematic on the next page in Figure 15, showing pin 

connections, power connections, and any other hardware not displayed in the black box diagram. 

 Most pin assignments were arbitrary, save for the reed switches. The Arduino Uno’s external 

interrupt inputs are assigned to pins 3 and 2, so this is where the reed switches were connected since 

external interrupts are preferable to polling in high accuracy environments. Also attached to pins 2 and 

3 are two 10kΩ pull-down resistors. This ensures that when the reed switches are not completing a 

circuit, pins 2 and 3 read a low value and don’t mistakenly trigger an interrupt. The reed switches are 
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connected to the Arduino’s 5V output voltage to ensure that 5 volts are given to pins 2 and 3 when the 

switch is triggered. 

 

Figure 15: Arduino Uno and Components Schematic 

Pin 4 reads the TX output from the GPS module and pin 5 is reserved for GPS RX input. However, 

since we are only reading input from the GPS module and not giving it commands via its RX pin, we are 

not using pin 5. The GPS module operates on 3.3V , so the power pin is connected to the Arduino Uno’s 

3.3V output [8]. The TX output of the GPS module is based off of 3.3V as well, however since this is 

considered a high voltage in an Arduino Uno input pin no external circuitry is needed. The Arduino’s 

internal SoftwareSerial library was used with this module, so the hardware serial pins 0 and 1 were not 

needed for communication. 

 Pin 6 reads the TX output from the Bluetooth module and pin 7 outputs commands to the RX 

input. The Bluetooth module’s power input is connected to the 5V output on the Arduino. Since the 

module operates on 5V, no extra circuitry was needed to interface it with the Arduino Uno. Like the GPS 
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module, the Bluetooth module uses the Arduino’s SoftwareSerial library and thus was not connected to 

the hardware serial pins 0 and 1. 

 Pin 10 is connected to the one-wire pin of the DS18B20 temperature sensor. In order for the 

signal from the temperature sensor to be properly read, a 4.7KΩ pull-up resistor is connected between 

the one-wire pin and the power input pin of the temperature sensor [2]. Since the temperature sensor 

operates at 5V, the power input pin is connected to the 5V output rail of the Arduino Uno. 

 The 5V relay has five connections, four of which are used. The top left pins, one connected to 

pin 12 of the Arduino Uno and the other connected to ground, are used for inducing a coil in the relay. 

Once enough current is flowing through the coil, the switch in the relay is triggered, letting current flow 

from the top right pin of the relay to the right-most pin on the bottom left of the relay. Pin 12 of the 

Arduino serves as the triggering mechanism for the relay. When the output of pin 12 is high, the relay’s 

switch completes the circuit. The top right pin of the relay is connected to the Arduino Uno’s 5V output 

voltage rail, and lets that voltage and current carry over to the right-most bottom left pin where the 

fan’s power input is attached. Simply connecting the fan’s power input to one of the Arduino Uno’s 

digital pins would not work since the digital pins output around 40-70 mA of current where the fan 

needs 200 mA. This is why the relay is needed. The relay ensures that the high current coming from the 

Arduino Uno’s 5V output rail can power the fan while still being able to control the fan’s power. 

 All components’ ground pins are connected to the common Arduino Uno ground. 

 

Project Enclosure Implementation: 

 Much thought was put into the final design of our project. Since the HPV team will have a 

different bike every year the components need to be compact and easily attached to the Arduino Uno, 

and the Arduino Uno needs to be easily placed somewhere on the bike. For our final project enclosure 
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we made sure as many components as possible could be housed within the same enclosure as the 

Arduino Uno. 

 Firstly, we chose to create our own custom shield for the Arduino Uno. With this, we were able 

to connect the relay and the reed switch’s pull-down resistors to the Arduino without the need to create 

our own external circuit board for the relay and without the need to externally connect the resistors. 

This makes it much easier for the HPV team (and us) to connect the fan and the reed switches since less 

assembly is required. We also soldered male headers onto the shield so we could use female jumpers to 

connect the devices. The female jumpers we used also have a tight grip on headers and other jumpers 

connected to them, so there was no worry about any wires being dislocated. 

Secondly, we chose to attach the Arduino Uno plus custom shield to an aluminum project box. 

The aluminum project box is sturdy but also easily drilled into. We drilled three holes on the bottom of 

the box lined up with the the Arduino Uno’s and custom shield’s three main screw holes. We were able 

to fasten the Arduino Uno down into the box using 3/4 inch #4 screws and appropriately sized nuts on 

the bottom of the box. Another hole we drilled in the box is lined up with the external power input to 

the Arduino Uno.  This is so the battery pack can be inserted into the Arduino easily without having to 

open up the box every time the Arduino needs to be powered on or off. 

Thirdly, we created our own pin array so all of the necessary parts can be externally attached. 

We used a female header array soldered to short wires that were then connected to female jumpers 

within the box. The female jumpers held a firm grip on the wires, so there was no worry about the wires 

being dislocated. A slot barely big enough to hold the pin array was drilled into the box so the pin array 

could be accessed externally. Finally, J. B. Weld was used on the pin array to ensure that it stays 

attached to the box. Photos of the final enclosure can be seen on the next page in Figures 16 and 17. 
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Figure 16: The Inside of the final enclosure, featuring the custom made Arduino Uno 
shield, battery pack with power switch, and the female header pin array. 

 

 

Figure 17: The outside of the final enclosure, featuring the plug for the battery pack 
and the female header pin array attached to the enclosure with J.B. Weld. 

 
For the temperature sensor we created a small custom circuit board to ensure that the pull-up 

resistor was properly connected. 
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Software Tools:  

 For Arduino programming: Arduino 1.0.5 for Windows  

o Note: The SoftwareSerial.h library file must be edited. The #define on line 42 

“_SS_MAX_RX_BUFF” must be changed from the value 64 to 128. This ensures that the 

RX buffer is large enough to store the data retrieved from the GPS module. If this is not 

included the GPS values will be read as “nan” or “ovf.” 

 For Android programming: Android ADT Bundle for Windows, which includes: 

o Eclipse + ADT plugin 

o Android SDK Tools 

o Android Platform-tools 

o Android Google Play Services 

o The latest Android platform 

o The latest Android system image for the emulator 

 For creating schematics: ExpressSCH version 7.0.2 for Windows 7 

 For creating software flow diagrams: Creately WebApp 

 

Testing: 

 
This project received ongoing, incremental testing throughout the development of both the 

Arduino device and the Android Application. Each component interfaced with the Arduino was 

individually tested before being used with the others. The components were gradually joined together, 

testing their combined functionalities together. Finally, all of the components were tested in a single 

application before using them as intended. For example, the GPS and temperature sensor were tested 

on their own and then brought together to display both module’s data in the Arduino’s serial terminal. 

Similar testing was done with the Android application. Testing was done on each new feature as it was 
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added to ensure proper functionality. For instance, when the feature of changing a profile name was 

added it was extensively tested to ensure that no bugs were hidden in the code. 

There are always going to be bugs and mistakes found when testing. For our project, a big 

feature we had to test was displaying the correct wheel speed on the screen. Originally the Arduino 

code used the number of rotations per second to measure wheel speed rather than the amount of time 

in between rotations. This proved to be extremely inaccurate, only showing intervals of speeds rather 

than gradually increasing and decreasing speeds. After seeing this inaccurate behavior, the code was 

changed to measure the time in between rotations. This implementation was tested and proved to be a 

much better solution, matching almost exactly what a commercial reed switch displayed on an external 

computer. Another big feature that was fixed thanks to testing was external battery power. Originally a 

9V battery was used to power the device. However, after some connectionless testing, we realized that 

a 9V battery did not give the Arduino Uno enough power to power the 5V relay. We instead used 4 AA 

batteries which provided enough voltage and power to ensure the functionality of the device. Without 

these and other tests, our project would have had many problems later on. 

 

Related Works and Sources: 

Senior Project vs Market Products: 

There are many products in today’s market that accomplish similar goals to our project. One 

such product on the market, currently priced at $249.95, is the Garmin Edge 500 Wireless Bike 

Computer [19]. Basic functionalities include capturing speed, time, distance, heart rate, and power. This 

data can then be pulled from the device via USB cable and viewed on a computer. The Garmin Edge 500 

comes with a black and white LCD screen, optimal for viewing text and simple graphs. Our bike 

computer is similar in the fact that it records data for later use that can be accessed on an outside 

computer. Another product similar to the Garmin Edge 500 is the improved Garmin Edge 810 Bike 
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Computer [20]. In addition to the same capabilities as the Garmin Edge 500, it includes live GPS tracking, 

instant uploading of data, ride sharing capabilities, social network sharing, and weather updates. 

However, these capabilities come at a price: The Garmin Edge 810 is twice the price at $499.95. Our bike 

computer is similar to the Garmin Edge 810 in the fact that it includes live GPS tracking. However, the 

one feature that both Garmin bike computers lack is the separation of users. When data is recorded and 

stored, it is done for a certain user. The Garmin bike computers are for personal use whereas our 

application is for team use. Also, the Garmin bike computers record data that is relevant to weight loss 

whereas we record data that is relevant for the HPV team’s race and their team performance. Our bike 

computer is a custom solution to a problem that bike computer companies have solved for personal use 

but not team use. 

 

Related Works: 

 
Matt Bell’s Blog, Android and Arduino Bluetooth Communication: This project, created by Matt Bell and 

explained on his blog on January 2nd, 2012, involves creating a messaging application between an 

Android device and an Arduino Uno using a Silver Bluetooth Mate. The Arduino Uno uses the serial 

terminal in the Arduino software in order to send typed out messages to be displayed on the Android 

device. The serial terminal is also used to display the messages the Android device sends the Arduino. 

Matt Bell provides the pin connections, Arduino code, and Android Java code to run this project. This 

project was extremely helpful in first establishing a connection between the Arduino and the Android 

device. It provided the basic Arduino and Android code necessary to communicate via Bluetooth. This 

code was modified to fit the purpose of our project [7]. 

 
 
Androino!, instructables post by user metanurb: This project, created by user metanurb on instructables 

on March 10, 2012, involves an Arduino Uno communicating with an Android device using Bluetooth. 
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The Arduino Uno reads a value from an attached sensor and sends the data over to the Android device 

via Bluetooth. The Android device then displays this data on the screen. Metanurb used a Python script 

on the Android device in order to communicate with the Arduino Uno. This involved installing SL4A, 

which enables Python to be run on an Android device. Even though the project used a Python script 

instead of an Android application, it was helpful in the fact that it gave us a way to test communication 

between the Arduino and Android device[1]. 

 
 

Open Source Software:   

Osmdroid Version 3.0.9: Provides tools/views to interact with OpenSTreetMap-Data. The 

OpenStreetMapView is an almost full/free replacement for Android’s MapView class. It also enables the 

use of offline maps with custom tiles or the MOBAC program. In our application, it is used in Race mode 

to show the rider’s position on an offline map. The offline map is obtained using MOBAC [14] 

 
 
MOBAC Version 1.9.12: Short for “Mobile Atlas Creator.” It is an open source (GPL) program which 

creates offline atlases for GPS handhelds and cell phone applications. MOBAC can use a large number of 

different online maps such as OpenStreetMap and other online map providers. In our application it is 

used in conjunction with Osmdroid to display offline maps to the rider [13]. 

 

TinyGPS Version 11: TinyGPS is designed to provide NMEA GPS functionality for Arduino users such as 

position, date, time, altitude, speed, and course. The library keeps resource consumption low by 

avoiding floating point dependencies and ignoring all but a few key GPS fields. In our application, 

TinyGPS is used to obtain the longitude and latitude readings from the attached GPS module, which are 

then passed to the Android device [15]. 
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OneWire Version 2.1: OneWire lets you access 1-wire devices made by Maxim/Dallas, such as 

temperature sensors and ibutton secure memory. In our application, the library is used to read values 

from the DS18B20 temperature sensor, which are passed to the Android device [16]. 

 
 
StopWatch Class by Corey Goldberg, 2005: Creates an object that can be used like a stopwatch for 

wrapping blocks of code in timers. In our application, this class is used in Race mode to show the rider 

the current elapsed time of the race. It is also used when writing the data to the CSV file for a specific 

race [17]. 

 
 
Google Maps Android API: Allows you to access Google Maps on an Android device. Uses a map 

fragment to display the map and allows you to use all of the gestures that come with the native Google 

Map App [18]. 

 
 

Sources: 

[1] Androino!, instructables post by user metanurb: 

http://www.instructables.com/id/Androino-Talk-with-an-Arduino-from-your-Android-d/ 

[2] bildr.blog One Wire Digital Temperature Sensor Arduino Tutorial: 

http://bildr.org/2011/07/ds18b20-arduino/ 

[3] Dr. David Janzen’s Android App Course v3: 

https://sites.google.com/site/androidappcoursev3/home 

[4] Jimmanz ListView using BaseAdapter: 

http://jimmanz.blogspot.com/2012/06/example-for-listview-using-baseadapter.html 

[5] Lars Vogel Android ListView - Tutorial: 

http://www.vogella.com/articles/AndroidListView/article.html 
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[6] Lars Vogel Android Camera API - Tutorial: 

http://www.vogella.com/articles/AndroidCamera/article.html 

[7] Matt Bell’s Blog, Android and Arduino Bluetooth Communication: 

http://bellcode.wordpress.com/2012/01/02/android-and-arduino-bluetooth-communication/ 

[8] Sparkfun LS20031 GPS Assembly Guide: 

https://www.sparkfun.com/tutorials/176 

[9] 66 Channel LS20031 GPS 5Hz Receiver Datasheet: 

https://www.sparkfun.com/datasheets/GPS/Modules/LS20030~3_datasheet_v1.2.pdf 

[10] DS18B20 One Wire Digital Temperature Sensor Datasheet: 

http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf 

[11] JY-MCU Bluetooth Module Datasheet: 

No datasheet could be found for this module. However, it is very similar to the Bluetooth Mate Silver, so 

the datasheet for the Bluetooth Mate Silver is provided instead. Functionality of the device was tested 

from source [1]. 

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/Bluetooth/Bluetooth-RN-42-DS.pdf 

[12] Reed Switch Datasheet: 

https://www.sparkfun.com/datasheets/Components/Buttons/MDSR-4.pdf 

[13] MOBAC Main Webpage: 

http://mobac.sourceforge.net/ 

[14] OSMDroid Documentation: 

https://code.google.com/p/osmdroid/ 

[15] TinyGPS Version 11 Documentation: 

https://www.google.com/url?sa=f&rct=j&url=http://arduiniana.org/libraries/tinygps/&q=&esrc=s&ei=a

_ekUcC6DsTTiwLOzoH4Bw&usg=AFQjCNFRZ6qPNxMA3OfIXNkoVizKgucgGQ 
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[16] OneWire Version 2.1 Documentation: 

http://www.pjrc.com/teensy/td_libs_OneWire.html 

[17] Java StopWatch Class Code and Docmuentation: 

http://goldb.org/stopwatchjava.html 

[18] Google Maps API Documentation: 

https://developers.google.com/maps/documentation/android/ 

[19] Garmin Edge 500 Wireless Bike Computer Product Information: 

http://www.rei.com/product/807089/garmin-edge-500-wireless-bike-computer 

[20] Garmin Edge 810 GPS Bike Computer Product Information: 

http://www.rei.com/product/855697/garmin-edge-810-gps-bike-computer 

[21] Haversine Formula Wikipedia Page: 

http://en.wikipedia.org/wiki/Haversine_formula 

[22] Cal Poly Human Powered Vehicle Website 

hpv.calpoly.edu 

Conclusion:  

  We learned much from our senior project experience, especially about learning on your own 

and integrating two different engineering disciplines (mechanical and computer engineering). We 

learned how to make Android applications on our own with only the help of online resources and also 

different ways of measuring mechanical data with electronic sensors. This project was great experience 

for working in industry since many companies require engineers from different disciplines and 

backgrounds to work together. Another aspect of our project that we particularly enjoy is the fact that it 

will be in constant use by a team. Our project has a practical use and environment and will benefit the 

users 
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 Our senior project was not without its difficulties, however. One of the greatest difficulties was 

creating an Android application from scratch with no prior experience. We had to rely on our own 

research skills and the information presented in numerous tutorials. Instead of having a vast background 

in Android programming we only worked off of bits and pieces we learned from tutorials along the way. 

This was a challenge, mostly because there were many simple solutions to problems we didn’t know of 

because we hadn’t encountered them or they weren’t explained to us beforehand. Self-learning can be 

incredibly fun and rewarding, but it’s not without its frustrations. Another difficulty we encountered was 

Bluetooth communication between the Android device and Arduino Uno. The JY-MCU Bluetooth module 

lacked in documentation, so many online tutorials were for other similar Bluetooth modules. Initial 

testing of the device proved difficult because the module never worked quite like the tutorials 

described. However, after much persistence we got the Bluetooth module working and all was well.  

 Finally, there is some future work that can be done on the project. Firstly, a more compact 

enclosure for the Arduino Uno and shield can be constructed so it is easier to place on the HPV. 

Secondly, the application could use some polish from a graphics design major specializing in app 

development. Finally, additional sensors/modules could be attached to the Arduino Uno for recording 

more statistics such as heart rate and calories burned. 

 Overall, we had a great experience with our senior project and feel that it has better shaped us 

as engineers. Learning on your own and working with other engineering disciplines is a lot of what 

working in industry is about, and we’ve done just that. We will take what we’ve learned from this 

experience and become even better engineers in the future. 
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Analysis of Senior Project Design 

Summary of Functional Requirements: The project combines an Arduino Uno microcontroller and 

Android smart phone to make a computer system for the HPV team. The main functionality of the 

project is to collect data about the bike and present it to a rider via an Android application. The Arduino 

Uno uses an integrated GPS module, temperature sensor, and reed switches in order to collect data to 

be transmitted to the Android device via a Bluetooth module. The Android application takes this data 

and displays it to the user on the screen showing wheel speed, location on a map, distance traveled, 

temperature, and cadence. The application saves this data to a CSV file for later viewing. The application 

also features a user-profile system so each rider can have their own racing data saved to their own 

profile.  

 

Primary Constraints: The main challenges of this project consisted of choosing inexpensive parts that 

suited our needs along with integrating communications between an Arduino Uno and an Android 

device. Many personal bike computers exist in the market but our implementation was unique to the 

Human Powered Vehicle team. Creating a cheap device was difficult considering our project required 

that an external GPS be used in order to gather information from outside the fairing of the bike, and GPS 

modules can be fairly expensive. Since timing and accuracy were primary factors in our project, choosing 

the right GPS that had fast data collection and a small error window took time and careful consideration. 

 

Economic: 

Original estimated cost of component parts: $120  

 

Actual final cost of component parts: $148.72 for all materials purchased, including materials not used in 

the final implementation of the project. 
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Additional equipment cost: Equipment used in the development of our project include: A Windows PC 

with the ability to use the different programming tools listed in our report, a soldering iron, solder, 

various machining tools for cutting into aluminum. Also, an Arduino Uno and Android smart phone were 

not purchased since we already owned them. 

 

Original estimated development time: Two quarters, not counting school breaks for design and 

implementation 

 

Actual development time:  Two quarters, not counting school breaks. 

 

Environmental: The environmental impact of our project is similar to consumer electronics. The two 

main factors are production (soldering, wire scraps, plastic and metal manufacturing, etc.) and energy 

consumption (our device requires four AA batteries). 

 

Manufacturability: 

The metal encasing used to hold the Arduino device was bought pre-shaped and of default size. This 

solution, although inexpensive, creates an end product that is larger than it needs to be. The enclosure 

could be smaller and would allow for easier storage when using. The default metal enclosure also 

required holes to be drilled in order to allow access to the device. 

 

Sustainability: 

Issues for maintained use: Because the device will be used on bikes the constant motion and vibrations 

could loosen connections within the device. The use of the device in racing human powered vehicles 
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could also potentially break components if the device is incorrectly placed within the fairing and 

multiple ground impacts occur. These impacts could occur when the bike falls over at high speeds. 

   

Project impact of sustainable resources: The project uses many electronic components and circuit 

boards which would need to be replaced when components failed. The project also requires the user 

have an Android smart phone in order to use the project App.  

 

Upgrades for the design: Primary upgrades for this design might be to fabricate a custom shield for the 

project. The project enclosure could also be upgraded to better fit the device. 

 

Ethical: The only ethical concern with the project is the possible use of the device in racing 

environments when such devices are not permitted. 

 

Health and Safety: Main safety concerns arise when using the actual product in a racing or casual riding 

environment due to the fact that the device requires the user to look at a phone for information. This 

could be potentially unsafe if the user does not take necessary precautions when using the device while 

riding. 

 

Social and Political: Although the creation of this device was for a senior project as well as an HPV 

competition, potential social issues can arise concerning fairness of the competition. Since the Cal Poly 

HPV team is using a device that could potentially help them improve designs and personal fitness while 

other teams aren’t, this can be seen as an unfair advantage.  
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Development: During the development and analysis of the project we learned how to program in Java 

for Android devices. Although we knew how to program in Java we had never applied this to 

programming for Android devices. We learned how to program an Android application with the Android 

Development Tools (ADT) bundle for the Eclipse IDE.  We also learned how to communicate with 

Bluetooth devices using Java and the Adruino programming language. Lastly, we learned how use the 

machining tools used to cut our devices metal enclosure.  
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