
www.F
irs

tR
an

ke
r.c

om

Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Introducing Mock framework for Unit Test in a

modeling environment

by

Joakim Braaf

LIU-IDA/LITH-EX-G--14/004--SE

 2014-03-10

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköping University

Department of Computer and Information Science

Final Thesis

Introducing Mock framework for Unit Test in

a modeling environment

by

Joakim Braaf

LIU-IDA/LITH-EX-G--14/004--SE

2014-03-10

Supervisor: Kristian Sandahl

Examiner: Kristian Sandhahl

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page iii — #5

Abstract

Testing is an important part in the software development process. Unit tests
aim to test individual units in isolation. These units may have dependencies
to their surroundings that make the units hard to test in isolation without
also testing the surrounding units. A technique to help isolate these units is
to replace the surrounding units with mock objects. This work investigates
how a C++ mock framework can be integrated into a modeling environ-
ment’s unit test framework. Several mock frameworks are evaluated, and a
proof of concept is created to show that integration is possible. Additionally,
ideas for how to use mocks in a model environment are presented.

iii

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page iv — #6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page v — #7

Acknowledgements

I would like to start by saying thanks to Pontus Sandberg and Johan Wibeck
for giving me the opportunity to do this thesis at Ericsson. It has been both
a fun and educational experience.

Many thanks to Bjerker Andersson and my supervisor Johan Westling.
Both of you have been of great help and it is fun to work with people who are
really interested in the subject and comes with their own ideas and input.
I would also like to say thanks to my supervisor at the university, Kristian
Sandahl. Even if I have not been asking many questions during the work
it self, you have provided valuable feedback while I have been writing this
report.

Thanks is also in order to the personal at Ericsson who have been both
friendly and helpful, and shown interest in my work. Doing a work becomes
much more fun when others around you show interest.

Last but not least I would like to say thanks to my opponent Kristina
Ferm for providing valuable feedback on my work.

v

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page vi — #8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page vii — #9

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Limitations . 2
1.4 Methodology . 2

2 Theory framework 3
2.1 Modeling environment . 3
2.2 Software testing . 3

2.2.1 Stubs . 3
2.2.2 Mock objects . 4

3 Framework comparison 6
3.1 Google Mock . 6
3.2 Turtle . 7
3.3 Hippo Mock . 8
3.4 Comparison . 8

3.4.1 Integration with other test environments 9
3.4.2 Documentation . 9
3.4.3 Verbosity . 9
3.4.4 Features . 10

3.5 Conclusion . 10

4 Integration 11
4.1 Objectives . 11
4.2 Proof of concept . 11

4.2.1 Verdict . 13
4.3 Mock utility . 13

5 Mock usage 14
5.1 When to use mocks . 14
5.2 Workflow . 15
5.3 Dependency injection . 15

5.3.1 Hi-pref dependency injection 16

vii

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page viii — #10

CONTENTS CONTENTS

5.3.2 Beautiful dependency injection 17
5.3.3 Curiously recurring template pattern 18
5.3.4 Code generation . 18

6 Closing 19
6.1 Discussion and future work 19
6.2 Conclusions . 20

References 22

viii

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 1 — #11

Chapter 1

Introduction

1.1 Background

Testing is an important part in the software development process to help
catch bugs and find errors when the code gets refactored. In test-driven de-
velopment tests are also used as a way to design and help form the software.

One way of testing software is to test individual parts (units) in isolation,
this is called unit testing. Unit tests aim to test the individual parts of the
software and ensure that the unit is working properly.

Usually units have dependencies to its surroundings which makes the
unit hard to isolate for a unit test. A technique to help isolate units is
to replace the surrounding dependencies with mock objects. Even if the
concept of mock objects is more than ten years old, it has become a more
and more popular technique in software testing [1].

1.2 Purpose

At Ericsson LTE RBS, significant parts of the software is developed using a
modeling environment where C++ code is generated from models. The unit
test environment for the models currently lack a mock object framework.

The goal of this work is to learn about existing third party mocking
frameworks and analyze how they work. Based on this, integrate a mocking
framework, analyze and suggest how mocks can be used with the unit test
environment.

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 2 — #12

1.3. LIMITATIONS CHAPTER 1. INTRODUCTION

1.3 Limitations

The focus of this work will be on mocking of class model elements. Other
elements such as capsules contain more internal parts and are considered
more complex, and the time frame is limited which does not give enough
time to look further into more complex elements.

Additionally, because of the limited time frame, the investigation and
comparison of C++ mock frameworks will be limited in depth and only
focus on a few key requirements. A comparison of mock frameworks is a
whole thesis on its own.

1.4 Methodology

To learn about different C++ mock frameworks the official documentation
which can be found on the homepage for each framework will be used as a
base and first hand source for information. Using the official documentation
as a primary source provides first hand information from the developers and
also shows how they intended the library to be used. Third party tutorials
and web articles or blogs may be using another style than the intended one.
Using third party web pages may on the other hand provide information
which is not available in the official documentation e.g solutions to more
uncommon pitfalls not covered in the documentation.

The literature study of mock objects will consist of paper and on-line
articles about their usage, and experience from using mock objects. Today
many hobby and professional developers choose to use the web to publish
their findings and solutions to problems. Because of this much information
can be found on-line. Information learned from this study can then help
form a suggestion of how mocks can be used and how they are best used in
tests.

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 3 — #13

Chapter 2

Theory framework

2.1 Modeling environment

In a modeling environment the architecture of the software is designed and
modeled using Unified Modeling Language (UML). This gives the developer
a visual representation of different parts of the software and allows the de-
veloper to design the software at a higher level of abstraction, removing the
need to mentally visualize how code interacts.

These models that can represent classes, state machines and other con-
structs are then used to generate source code for a specified language e.g
C++ or Java.

2.2 Software testing

Software testing is an important part of software development. Extreme
programming focus a lot on testing [2]. in particular testing of individual
units which is called unit testing, A unit can be a function or an entire class,
the definition of how large a unit may be varies.

The goal of unit tests is to test individual units in isolation to give an
indication that the unit is working as intended, and also help verify that
the units keeps working as intended later in the development when the code
may have been refactored. When multiple units are tested together it is
called integration testing.

2.2.1 Stubs

Usually in unit tests the unit has dependencies to surrounding units which
are outside of the scope of the test. This may require the surrounding units
to be set in a particular state to perform the test. The units may be slow
or complex (e.g a database object) which increases the runtime for the test.

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 4 — #14

2.2. SOFTWARE TESTING CHAPTER 2. THEORY FRAMEWORK

To solve this problem the dependencies can be replaced using a technique
called stubs. Stubs are objects that behaves (in the eye of the code calling
the stub) like the object it replaces but uses predetermined results to calls
[3] [4]. The use of stubs allows easier set up of scenarios that that may be
hard to set up with the real object. An example scenario is simulating the
loss of a database connection. A stub would in this case throw an exception
or return the correct error code while the real object requires an actual
connection loss during the test, which can be hard to reproduce during test
execution.

Setting up the surrounding objects can be a tedious task if the object
has states that require multiple state changes before achieving the desired
state, as this requires the test to first go through all these state changes
in the setup phase before running the actual test case. Another similar
technique are fakes [4] which are a replacement but fakes have an actual
implementation that takes a shortcut (e.g in-memory database).

2.2.2 Mock objects

Mock objects are an extension of stubs that allow verification of the unit’s
behavior (e.g verifying that a function is called, or that a set of functions
are called in a certain order) [4] [1].

The concept of mock objects was introduced at the extreme program-
ming conference XP2000 in the paper Endo-Testing: Unit Testing with Mock
Objects by Tim Mackinnon, Steve Freeman and Philip Craig [1].

Since the introduction further studies has been put into the usage of
mock objects. The article Mock Roles, Not Objects [5] follows up on Endo-
Testing: Unit Testing with Mock Objects. In the article mocks are discussed
as a tool to test interaction and relationship between objects and not just a
tool to replace complex objects with a simplified version.

The key to test the interaction and relationship between objects with
mocks is expectations. Expectations are set on the mock before a test case
and verified after the test case has finished.

A concrete example is a function which uses a database object to perform
an operation on a database. The database object requires the user to first
initialize the database object, then call the connect method to connect to
the database before calling the query method to perform the operation.

When the function is tested in a unit test the database object can be
replaced with a mock. The mock can be used to help verify that the function
calls are in the correct order (initialization, connect and then query) using
expectations.

MockFoo mock ;
EXPECT CALL(mock , func t i on ()) . Times (2)

Listing 2.1: Example expectation in Google Mock

4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 5 — #15

2.2. SOFTWARE TESTING CHAPTER 2. THEORY FRAMEWORK

Later if the function is rewritten and the developer forget to call the
initialization function, the mock will catch this while verifying the expecta-
tions and fail the test because the expectations were not met (initialization
function was not called). This allows the developer to find changes in the
usage of the object and correct them before pushing the changes.

5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 6 — #16

Chapter 3

Framework comparison

This chapter is a brief comparison of three C++ mock frameworks.
There are more C++ mock frameworks available. Because some of them

are complete test frameworks which do not support integration, and because
of the limited time frame, Google C++ Mocking Framework, Turtle, and
Hippo Mock where chosen because they were either suggestions in the thesis
description or because they came up regularly during the research phase.
These names often come up when searching for phrases such as ”C++ mock
framework” and ”C++ mock framework comparison” using on-line search
engines.

A mock framework should provide the utilities needed to create and use
mock objects, and the possibility to set expectations to be able to test the
interaction between objects. Actions are important so the mock also can
be used to remove complexity from the test. All frameworks provide this
functionality and more, such as setting limitations on parameters.

3.1 Google Mock

Google C++ Mocking Framework (Google Mock) [6] is as the name suggests,
a C++ mocking framework developed by Google. It is primarily developed
to be used with their C++ test framework (Google Test), but it still supports
integration into other unit test frameworks. How to integrate Google Mock
is well documented, and this is one of Google Mock’s strong points, it has
a well written documentation with a for dummies introduction guide and
a cook book with recipes that covers different topics. The for dummies
introduction describes basic usage of and how to set up the framework.
More topics which are not covered in the introduction are covered in the
cook book (e.g how to mock nonvirtual functions, expecting ordered calls
and more common usage cases).

In the frequently asked questions (FAQ) section, it is documented how
to debug and see why expectations are not met. Additionally there are also

6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 7 — #17

3.2. TURTLE CHAPTER 3. FRAMEWORK COMPARISON

answers to common problems. Out of all three mock frameworks in this
comparison, Google Mock has the most comprehensive documentation of its
features such as how to add custom actions and validation and how you can
work around common problems.

Google mock supports three levels of verbosity which can be set by ei-
ther passing the gmock verbose flag to your test executable or setting ::test-
ing::FLAGS gmock verbose in your test code. The different levels are info,
warning and error, where info is the most verbose level. Information levels
are useful for debugging or learning how the mock behaves. Warning is the
default level, which allows output of warnings such as when a function is
called but no expectations are set. When the error level is set, Google Mock
will only inform if expectations were not met and not print any warnings.

3.2 Turtle

Turtle [7] is a C++ mock object library primarily meant to used with Boost
Test but it also supports integration with other frameworks.

The quality of the documentation is good and well written, but compared
to Google mock’s it does not cover as many topics (e.g how to combine
actions and returning references from mocked calls). However It is open
about the frameworks limitations and suggests workarounds if such exists.

Turtle’s feature set is the same as most mock object frameworks. It
uses a macro to create a mock class (see Listing 3.1 and Listing 3.2). This
is different compared to Google Mock where the user creates a mock by
creating a class which can inherit from the class the user want to mock.

MOCK CLASS(name)
{

. . .
} ;
Listing 3.1: Example of how a mock without inheritance is declared with
Turtle

MOCK BASE CLASS(name , base)
{

. . .
} ;
Listing 3.2: Example of how a mock with inheritance is declared with Turtle

7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 8 — #18

3.3. HIPPO MOCK CHAPTER 3. FRAMEWORK COMPARISON

3.3 Hippo Mock

Hippo Mock [8] was created by two employees at Topic Automatisering. The
goal of Hippo Mock is to create a framework that allows creation of mocks
while writing the test without the need of first declaring the mock classes.
This is done in a way that slightly resembles the factory design pattern [9]
by creating a repository which handles the lifetime of the mock.

MockRepository repo ;
Foo∗ fooMock = repo . InterfaceMock<Foo>() ;

Listing 3.3: Hippo Mock MockRepositry example

This is a different approach compared to Google Mock and Turtle where
you first have to declare the mock class before writing the test.

The documentation for Hippo Mock is quite sparse. The tutorial covers
the creation and how to set expectations and actions of mocks. Instead of
long documentation the tutorial is complemented by example tests.

The feature set is of the same as for Google Mock and Turtle, which
means it supports expectations and actions.

3.4 Comparison

For this comparison the focus will be on the key requirements listed below.
The following four requirements have been chosen to help choose a mock
framework that can be used in this work:

• Supports integration with other test environments
This one is the most important requirement because if you can not use
the framework with other testing environments, it may involve a lot
of hacking to get it to work. Even if the framework excel in all other
areas, it may not be worth doing all the hacking and tweaking to get
it to work.

• Documentation
When familiarizing with a new framework, having a comprehensive
documentation helps you spend less time figuring out how to perform
a certain task and more time on the actual writing of the test. This
can speed up the learning process for users new to the framework or
mocking in general as less time has to be spent looking around for a
solution.

• Verbose output
Having different verbosity levels is helpful because this lets the user
decide how much information should be displayed. When running a
test it may be too much output if the framework tells about everything
that happens. If some condition is not met it is useful to be able to

8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 9 — #19

3.4. COMPARISON CHAPTER 3. FRAMEWORK COMPARISON

pinpoint why. This helps you debug and see if it is the test that needs
to be updated or if the code being tested is not behaving as expected.

• Features
Different frameworks may have the same features but they work a
little differently and one way may be better than the other. This re-
port will focus on three features: expectations, actions and validation.
Expectations is one of the main features of mock. Expectations and
validation can be used to verify behavior of the code being tested. Ac-
tions allow the mock object to do actions. This can be used to perform
a light version of the real objects work to speed up the test.

3.4.1 Integration with other test environments

Both Google Mock and Turtle supports integration into other test environ-
ments even though both are designed to primarily work with a specific test
framework (Google C++ Testing Framework and Boost Test). If Hippo
Mock is intended for a specific framework is not explicitely mentioned in its
documentation. From the tutorial it is possible to come to the conclusion
that it is not intended for a specific unit test environment or framework.

All three frameworks use exceptions to signal if all expectations were
met or if any expectations were not met.

3.4.2 Documentation

Google Mock has a really comprehensive documentation. The documenta-
tion includes a beginners guide and a cookbook with a lot of tips on how to
solve different problems and how to set up the mock to perform a certain
action. Turtle’s documentation is not as comprehensive as Google Mock’s
but it does still include an introduction about how to create a mock object
and set up the mock for a test. The setup includes expectations, actions
and verification of parameters. Hippo Mock has a short tutorial with enough
information to get you started. There is also test code available that works
as examples.

3.4.3 Verbosity

The only framework that offers the option to dynamically set different ver-
bosity levels is Google Mock which has three different levels [10]. Turtle does
allow changes to the verbosity if a custom policy is created [11]. For Hippo
Mock this is not mentioned in the tutorial and there does not seem to be any
indication of this in version 3.1 0x source code (http://www.assembla.com
/spaces/hippomocks/documents/bvmlG4oACr3Oy eJe5afGb/download
/hippomocks.zip).

9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 10 — #20

3.5. CONCLUSION CHAPTER 3. FRAMEWORK COMPARISON

3.4.4 Features

All three frameworks support expectations with the possibility to specify
how many times a function should be called. Actions can either be a simple
return statement or custom functions that perform more complicated cal-
culations, and verification of input parameters. For these three features the
only real visible difference is the syntax.

One feature that may normally be overlooked is the way the mock object
is created. Hippo Mock with its factory like mock object creation can be
useful for a project working with plain text files. This approach does not
require the user to write the mock before writing the test. With the approach
used by Google Mock and Turtle the user has to write the mock definition
at least once, but if the mock definition is saved in a source file it can then
be shared between different test cases.

Google Mock’s approach of creating the mock object is by defining a
C++ class without any macro, like Turtle does. This makes it possible
to represent and generate the mock with a class model in the modeling
environment. Depending on the modeling environment used this may be a
must unless there is support for inclusion of source files.

If a mock is represented with a class model in the modeling environment,
it is possible to create tools using the available application programming
interface (api) to manipulate the model.

3.5 Conclusion

Taking into account what is discussed in the previous section, the choice
of which C++ mock framework to integrate falls on Google Mock. This is
motivated by the comprehensive documentation and because of the way the
mock is defined, allowing the use of the model api to create tools.

10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 11 — #21

Chapter 4

Integration

4.1 Objectives

The goal with the integration is to have Google Mock running with the ex-
isting unit test framework. The mock should be represented in the model
environment as a class element. This is partially because the modeling envi-
ronment currently does not support source files (file artifacts), and because
the model also gives the user a visual representation of the mock. From the
class model element, a C++ class should be generated which can then be
used as a mock with Google Mock in a test case.

If possible, utilities should be created to ease the use of Google Mock
in the Ericsson unit test framework. Moving code that is common between
tests to make it reusable by other tests to reduce boilerplate code.

4.2 Proof of concept

To test that Google Mock works with the current test framework and identify
which components that have to be customized, a proof of concept test was
created. The test consists of a simple class named Foo that internally uses
another class named Bar, which in this test will be replaced with a mock.
To ease the writing of the test, Foo’s constructor takes a pointer to Bar in
its constructor. Alternate dependency injection options will be discussed
later in this report.

Foo has a member function that calls one of Bar’s member functions, this
is to simulate the dependency real code could have. After creating a class
element for Foo and Bar with their respective member functions a new class
element representing the mock was created. Because of a limitation that
does not allow the user to add a member function and not have it generate
any code, the choice was made to create a class without any attached mem-
ber functions and put the code for functions inside the public declaration
field.

11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 12 — #22

4.2. PROOF OF CONCEPT CHAPTER 4. INTEGRATION

class Foo
{
private :

Bar∗ b ;
public :

Foo (Bar∗ b) : b (b) {}
int func ()
{

return b−>o the r func () ;
}

}
Listing 4.1: Example showing the code generated from the Foo class element

After setting up the elements they were transformed into code to verify
that the output from the mock model would be the same as handwritten
code. This method proved to work as expected.

The Google Mock cookbook advices that the compilation can be speeded
up by moving the constructor and destructor declaration into the source file
[12]. It is possible to do this by activating the option for generating a default
constructor and destructor for the mock’s class element.

The next step was to create and run an actual test case. If Google Mock
is used with another test framework than Google test the user is required to
pass parameters to the InitGoogleMock function [13]. The documentation
passes the argc and argv from the main function to InitGoogleMock, be-
cause the test framework’s main function is abstracted away from the user.
The work around to solve the problem is to manually create the arguments
and pass the arguments to InitGoogleMock from the test framework’s ini-
tialization function. The test case created was a minimal test to verify that
Google Mock works and consisted of the following steps:

1. Create an instance of the mock for Bar.

2. Create an instance of Foo passing the mock to the constructor.

3. Set an expectation that Bar’s function that Foo calls internally should
be called once.

4. Call Foo’s function that uses Bar.

After compilation the test was ran and returned a success. This was
the expected result because Foo calls Bar once and the test only makes
one call to this function. For the next run the expectation was set to that
Bar was not to be called at all and this should trigger that the expectation
were not met. This time after compiling and running the test an exception
was thrown indicating that the test failed because Bar’s function was called

12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 13 — #23

4.3. MOCK UTILITY CHAPTER 4. INTEGRATION

when it was expected to not be called. This shows that the Google Mock
works and it is possible to use it in combination with the test framework.

To make the output from Google Mock work with the frameworks output
an event listener had to be created.

4.2.1 Verdict

The proof of concept test case proved successful but there are a few points to
note. Google Mock has to be initialized for every test case and the boilerplate
code needed for this makes it a bit more cumbersome to write a test. Also for
every test case that will use mocks, the transformation configuration (TC)
has to be updated with the include path to Google Mock. If the path to
Google Mock source gets changed, all tests have to be updated individually.
A solution to this is presented in section 4.3.

4.3 Mock utility

To solve the issues with initialization of Google Mock and inclusion path a
separate mock utility was created. By setting up the TC that contains the
inclusion path to Google Mock, tests that use mock can refer to this TC
to get the correct inclusion path. In case the inclusion path changes only
the TC in the mock utility project has to be updated. However, this does
require that any test that uses mock to also import the mock utility.

The boilerplate code needed to initialize Google Code is the same except
that the user may want to change the output level. Because the boilerplate
code is the same a function was created in the mock utility that perform
the initialization and also allows the user to set the output level. Using this
solution reduces the code needed to setup Google Mock to a single line. This
solution also removes the need to include Google Mock in the test case.

13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 14 — #24

Chapter 5

Mock usage

5.1 When to use mocks

Like anything, mocks can be abused and overused if the developer does not
fully understand the interaction with the surrounding objects. The tests
may not properly simulate the real world, resulting in incorrect tests that
do not really test what the developer intended to test.

Overusing mocks may also create problems. The reason for this is that
the design and creation of mocks has a time overhead. As long as the sur-
rounding objects are not complex or slow there is little overhead to including
them in the test. When updating the signature for an object, all mocks for
that object has to be updated.

Jeff Langr writes about this in his article Don’t Mock Me: Design Con-
siderations for Mock Objects [14]. The article mentions five reasons when to
use mock objects in tests, which can be summarized in the following points:

• Test takes too long

• Test does not run consistently

• Simulate something that does not yet exist

• Generate events that are hard to trigger

• Write tests for large dependency chains

Using the five guidelines as good motivations for when an object should
be mocked and having an understanding of the object’s real purpose and
how the object interacts with its surroundings should help create tests that
emulate the real world more accurately.

14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 15 — #25

5.2. WORKFLOW CHAPTER 5. MOCK USAGE

5.2 Workflow

When adding mocks to a test case, the developer should consider what was
said in section 5.1. If a mock can be motivated the developer first has to
create the mock, if no mock already exists. Creating the mock model can be
done with the mock creation plug-in developed to ease to create of mocks.
The plug-in allows to user to right-click on the class element the user want
to create a mock for and choose Create Mock in the LTE menu (Figure 5.1).

Figure 5.1: Mock creation plug-in right-click menu

Next the mock utility has to be imported. Using this utility the devel-
oper can add the TC to get the correct inclusion path and access to the
initialization function. The mock utility initialization function should be
called from the test frameworks initialization function.

The last step is to set up the mock and set expectations and actions.

5.3 Dependency injection

When using mocks the real object has to be replaced with the mock. De-
pendency injection is a design pattern which allows objects to be replaced
at run-time or compile-time. The pattern can be achieved in different ways.
If the code is designed with dependency injection in mind one of the easiest
ways is to allow the object to be set via the constructor.

In C++ this is done by taking a pointer to the base as an argument,

15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 16 — #26

5.3. DEPENDENCY INJECTION CHAPTER 5. MOCK USAGE

then letting the mock derive from the base and then be passed into the
constructor. This does require the function to be virtual which in some
cases is not desired.

class Foo
{
private :

Bar∗ b ;
public :

Foo (Bar∗ b) : b (b) {}
int func ()
{

return b−>o the r func () ;
}

} ;

class MockBar : public Bar
{

// . . .
} ;

MockBar b ;
Foo(&b) ;

Listing 5.1: Demonstration of dependency injection via the constructor

Virtual functions have an overhead when accessed via a pointer to the
base class because the vtable has to be accessed to determine which function
should be called. Accessing the vtable can destroy the cpu cache in the sense
that space has to be made for the vtable and then when the code continues
the main memory has to be accessed again causing a cache miss.

Because C++ is not a managed language like Java, memory management
has to be done manually. This creates a problem when taking a pointer to
the object. If the ownership is transfered to the object, the real object has
to be created on the heap. Otherwise the memory management has to be
elsewhere. This can be a problem in high performance software or software
that has to be run with a minimal memory footprint. Therefor alternate
ways to inject the mock may have to be used.

5.3.1 Hi-pref dependency injection

When virtual functions is not an option one technique to inject mocks is hi-
pref dependency injection [15]. The idea behind this technique is to create
a mock class that does not derive from the base object, but copies the base
objects signature. With Google Mock this is possible and can be done in
the same way as a regular mock is created, except it does not derive from

16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 17 — #27

5.3. DEPENDENCY INJECTION CHAPTER 5. MOCK USAGE

the base object. Templates are then used to inject the mock into the code
at compile-time.

Using this technique has two drawbacks. All functions and objects using
the base objects has to be created or modified to use templates. Templates
are known to sometimes generate long error messages that are hard to read
and understand. This is common to any usage of templates.

The advantages are that virtual functions are not needed and the injec-
tion is done at compile-time. Because the injection is done during compila-
tion there should be no overhead during run-time.

5.3.2 Beautiful dependency injection

Beautiful dependency injection[16] is a technique created to avoid the use
of virtual functions but still allow the object to be testable.

template<class T>
class UsesBase
{
private :

T base ;
public :

UsesBase (T base) : base (base) {}
} ;

class Concrete : public UsesBase<Base∗>
{
private :

Base b ;
public :

Concrete () : UsesBase<Base∗>(& b) {}
} ;

Listing 5.2: Beautiful dependency injection

The idea is to not call delete inside the destructor of the class (UsesBase)
which uses the class the developer wants to replace (Base) (Listing 5.2).
Instead the memory management is moved outside to a derivative of Uses-
Base. This allows the developer to choose how to manage the lifetime of
Base. Note here that the object injected into UsesBase is not a derivative
of Base but a class with the same signature.

Using this method has the same drawbacks and advantages as hi-pref
dependency injection but may be a pattern that fits better into the code as
this method reassembles normal class derivation.

17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 18 — #28

5.3. DEPENDENCY INJECTION CHAPTER 5. MOCK USAGE

5.3.3 Curiously recurring template pattern

Curiously recurring template pattern[17] is a design pattern that resembles
inheritance but uses templates instead. The reader is advised to read about
this pattern in more detail on their own as there are quite a few details. In
short the base class is a template taking the derived as a parameter (Listing
5.3). This allows calls to be made to the derived class without first accessing
the vtable because which function to call is determined at compile-time.

template<class DerivedType>
class Base
{

. . .
} ;

class Derived : public Base<Derived>
{

. . .
} ;

Listing 5.3: Curiously recurring template pattern

One drawback with this pattern is that you cannot store different deriva-
tives using a base pointer. Because using pointers was not an option to start
with, it is not really a drawback that didn’t already exist. Another draw-
back is circular dependencies as the base has to know about the derived
types. This can create problems when a new derived type is created and
the developer forgets to include the derived in the base’s header-file, which
also may create long header-files. One must also keep in mind in what order
objects are created, as base cannot access a function of derived inside the
constructor because derived is initialized after base.

5.3.4 Code generation

Because the code is generated from models, one possible way to inject mocks
into the code could be to do the injection during code generation time. This
could work in a similar way as templates but without the need to create
templated code. Another benefit is that there would be no complicated
compiler template errors. Instead the error should highlight that the injected
object does not have a function with a specific signature.

Though this is only possible if the code generator supports some kind of
code substitution and different profiles, for production the code would be
generated from the real class.

18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 19 — #29

Chapter 6

Closing

6.1 Discussion and future work

In chapter 3, three different C++ mock frameworks were compared. The
goal with the comparison is to give a brief overview of different frameworks
and show what requirements were looked into. When a framework is to
be chosen, one usually looks at how mature the framework is and what
features are available. In this case the framework is going to be used in
a modeling environment, which in this case also adds the requirement of
having the mock represented as a model element. In model environments
which supports source files, this may not be a requirement because it is still
possible to write the mocks once and reuse them in multiple tests.

Because Google Mock uses class inheritance which is not hidden behind
a macro, it was quite easy to see how the mocks could be generated from
model elements. Using Turtle would also be possible but would require a
less optimal solution as the underlying class inheritance is hidden behind a
macro, forcing the code for the model element to be handwritten and not
use the code generator.

Using the proof of concept test case to find what could be improved
in the integration was a good start. It showed that some code would be
common between tests and could be put into a mock utility that works as
glue between the current testing framework and Google Mock. Because a
real test was not modified to use mock there is a possibility that as time
passes, more common operations can be moved into the mock utility.

The same goes for usage of mocks. Hopefully this report, combined with
presentation(s) at Ericsson can be used as a base when starting to learn
how to use mocks and get a feel of how mocks can be put to the best use.
Chapter 5 could work as a good starting point as it covers when to use
mocks (section 5.1) and what that has to be done to use mocks (section
5.2). Writing more detailed how-to documentation for the mock creation
plug-in and mock utility can help ease the process when starting to use

19

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 20 — #30

6.2. CONCLUSIONS CHAPTER 6. CLOSING

mocks. Section 5.3 covers different ways and suggestions of how mocks can
be injected into both existing and future code.

Future work could start with this information and investigate how exist-
ing tests can benefit from mocks and set better guidelines for when to use
mocks, as there may be circumstances that are unique to different projects.
It should also investigate the possibility of using mocks as a tool in the cur-
rent workflow to test code when developing new features that may not exist
yet.

6.2 Conclusions

The goal of this thesis was to learn about third party C++ mock frame-
works and integrate one into the current unit test environment. This thesis
has demonstrated how Google Mock can be integrated into the unit test
environment and what glue had to be added to make both frameworks work
together. Using what has been learned and with the help of other studies in
the area, suggestions of how and when to use mocks have been suggested.

20

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 21 — #31

References

[1] “Mock objects.” http://www.mockobjects.com/, January 2014.

[2] “Test first.” http://www.extremeprogramming.org/rules/

testfirst.html, 02 2014.

[3] D. Thomas and A. Hunt, “Mock objects,” IEEE Software, vol. 19, no. 3,
pp. 22–24, 2002.

[4] M. Fowler, “Mocks aren’t stubs.” http://martinfowler.com/

articles/mocksArentStubs.html, 2007.

[5] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock roles,
not objects,” in 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’04,
pp. 236–246, 24 October 2004 through 28 October 2004 2004.

[6] “Google c++ mocking framework.” http://code.google.com/p/

googlemock/, December 2013.

[7] “Turtle.” http://turtle.sourceforge.net/, December 2013.

[8] “Home — hippo mocks project — assembla.” https://www.assembla.
com/wiki/show/hippomocks, December 2013.

[9] R. J. Erich Gamma, Richard Helm and J. Vlissides, Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[10] “Google c++ mocking framework cookbook.” http://code.

google.com/p/googlemock/wiki/CookBook#Controlling_How_

Much_Information_Google_Mock_Prints, December 2013.

[11] “Turtle.” http://turtle.sourceforge.net/turtle/

customization.html\#turtle.customization.logging, Decem-
ber 2013.

[12] “Google c++ mocking framework cookbook.” http://code.google.

com/p/googlemock/wiki/CookBook#Making_the_Compilation_

Faster, December 2013.

21

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

“report” — 2014/3/10 — 14:09 — page 22 — #32

REFERENCES REFERENCES

[13] “Google c++ mocking framework for dummies.” http:

//code.google.com/p/googlemock/wiki/ForDummies#Using_

Google_Mock_with_Any_Testing_Framework, December 2013.

[14] J. Langr, “Don’t mock me: Design considerations for mock objects,”
Agile Development Conference 2004, 2004.

[15] “Google c++ mocking framework cookbook.” http://code.google.

com/p/googlemock/wiki/CookBook#Mocking_Nonvirtual_Methods,
December 2013.

[16] “Beautiful dependency injection in c++.” http:

//programmaticallyspeaking.blogspot.se/2010/04/

beautiful-dependency-injection-in-c.html, January 2014.

[17] “Curiously recurring template patterns.” http://sites.google.com/

a/gertrudandcope.com/info/Publications/InheritedTemplate.

pdf, January 2014.

22

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –

under en längre tid från publiceringsdatum under förutsättning att inga extra-

ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,

skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för

ickekommersiell forskning och för undervisning. Överföring av upphovsrätten

vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av

dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,

säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ

art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i

den omfattning som god sed kräver vid användning av dokumentet på ovan

beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan

form eller i sådant sammanhang som är kränkande för upphovsmannens litterära

eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se

förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible

replacement - for a considerable time from the date of publication barring

exceptional circumstances.

The online availability of the document implies a permanent permission for

anyone to read, to download, to print out single copies for your own use and to

use it unchanged for any non-commercial research and educational purpose.

Subsequent transfers of copyright cannot revoke this permission. All other uses

of the document are conditional on the consent of the copyright owner. The

publisher has taken technical and administrative measures to assure authenticity,

security and accessibility.

According to intellectual property law the author has the right to be

mentioned when his/her work is accessed as described above and to be protected

against infringement.

For additional information about the Linköping University Electronic Press

and its procedures for publication and for assurance of document integrity,

please refer to its WWW home page: http://www.ep.liu.se/

© Joakim Braaf

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

