
www.F
irs

tR
an

ke
r.c

om

Linked data performance
in different databases

Comparison between SQL and NoSQL da-
tabases

Prestanda med länkad
data i olika databaser
Jämförelse mellan SQL och NoSQL data-
baser

ERICK CHAVEZ AND MANUEL MORAGA

Degree project, in

Computer Engineering,

First level, 15 hp

Supervisor at KTH: Reine Bergström

Examiner: Ibrahim Orhan

TRITA-STH 2014:67

KTH INSTITUTE OF TECHNOLOGY

School of Technology and Health

136 40 Handen, Sweden

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Abstract

Meepo AB was investigating the possibility of developing a social rating

and recommendation service. In a recommendation service, the user rat-

ings are collected in a database, this data is then used in recommendation

algorithms to create individual user recommendations.

The purpose of this study was to find out which demands are put on a

DBMS, database management system, powering a recommendation ser-

vice, what impact the NoSQL databases have on the performance of rec-

ommendation services compared to traditional relational databases, and

which DBMS is most suited for storing the data needed to host a recom-

mendation service.

Five distinct NoSQL and Relational DBMS were examined, from these

three candidates were chosen for a closer comparison.

Following a study of recommendation algorithms and services, a test suite

was created to compare DBMS performance in different areas using a

data set of 100 million ratings.

The results show that MongoDB had the best performance in most use

cases, while Neo4j and MySQL struggled with queries spanning the whole

data set.

This paper however never compared performance for real production

code. To get a better comparison, more research is needed. We recom-

mend new performance tests for MongoDB and Neo4j using implementa-

tions of recommendation algorithms, a larger data set, and more powerful

hardware.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Sammanfattning

Meepo AB undersökte möjligheten att utveckla en social betygs- och re-

kommendationstjänst. I en rekommendationstjänst samlas användarbe-

tyg i en databas, för att sedan användas i en rekommendationsalgoritm

för att skapa individuella rekommendationer till användarna.

Syftet med studien var att ta reda på vilka krav som ställs på ett DBMS,

databassystem, som driver en rekommendationstjänst, vilken inverkan

NoSQL-databaser har på prestandan för rekommendationstjänster jäm-

fört med traditionella relationsdatabaser och vilket DBMS som är mest

lämpat för användning i en rekommendation tjänst.

Fem olika NoSQL- och Relationsdatabaser undersöktes, från dessa valdes

tre kandidater ut för en närmare jämförelse. Efter en studie i rekommen-

dationsalgoritmer och rekommendationstjänster skapades en testsvit för

att jämföra databasernas prestanda i olika områden. Till detta användes

ett dataset med 100 miljoner betyg.

Resultaten visar att MongoDB hade bäst prestanda i flest användnings-

fall, medan Neo4j och MySQL hade problem med sökningar som sträcker

sig över hela datasetet.

I denna uppsats jämförs dock inte prestandan med riktig produktionskod.

För en bättre jämförelse behövs mer forskning. Vi rekommenderar nya

prestandamätningar för MongoDB och Neo4j med implementationer av

rekommendationsalgoritmer, ett större dataset och mer kraftfull hård-

vara.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Table of Contents

1 Introduction .. 9

1.1 Problem description ... 9

1.2 Goals ...10

1.3 Delimitations ...10

2 Theory ... 11

2.1 Recommendation data .. 11

2.2 Recommendation algorithms ... 11

2.2.1 Item to item collaborative filtering... 11

2.2.2 User to user collaborative filtering ... 12

2.2.3 Singular value decomposition ... 12

2.2.4 Rating & recommendation service .. 12

2.2.5 Connected data .. 13

2.3 Database characteristics .. 13

2.3.1 Connected data .. 14

2.3.2 Query speed .. 14

2.3.3 Query speed with connected data ... 15

2.3.4 CRUD support .. 15

2.3.5 Index support .. 15

2.3.6 Query interface ... 15

2.3.7 Schema ... 15

2.3.8 Support ... 15

2.4 NoSQL .. 16

2.4.1 Document stores .. 16

2.4.2 Graph databases ... 19

2.4.3 Wide column stores ... 21

2.5 Relational databases ... 23

2.5.1 MySQL .. 23

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.5.2 NewSQL ... 23

3 Design .. 25

3.1 Evaluation ... 25

3.1.1 Chosen candidates .. 27

3.1.2 Not chosen... 28

3.2 Data Model .. 28

3.2.1 MySQL ... 28

3.2.2 Neo4j .. 29

3.2.3 MongoDB ... 29

3.2.4 Architecture ... 30

3.2.5 Data migration .. 36

4 Results .. 39

4.1 Benchmark framework ... 39

4.2 Database server ... 39

4.2.1 Queries .. 40

5 Discussion .. 53

5.1 Impacts on economic, social and environmentally sustainable

progress .. 55

6 Conclusions.. 57

References .. 59

Appendix .. 61

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

9 | INTRODUCTION

1 Introduction

1.1 Problem description
Traditionally, most data has been stored in relational databases. Today,

Relational Database Management Systems, or RDBMS, are the de facto

standard of the industry. Most problems have been solved using a rela-

tional structure, without taking heed of what the data consists of and how

it is used. Meepo AB wanted to develop a new rating and recommenda-

tion service, which would give users different recommendations depend-

ing on how they rated particular media. With the recent rise of NoSQL

databases they wanted to know what impact a NoSQL solution would

have on the performance of the database needed to drive a social recom-

mendation service.

The database management system, or DBMS, is a crucial component of a

recommendation service. The DBMS needs to scale with a growing user

base, and allow changing the data model as the user base grows and the

demands on the DBMS change.

This project investigated which database performs best in this particular

use case, how NoSQL databases perform compared to traditional rela-

tional databases and which type of database is most suited for storing the

data needed to host a recommendation service.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

10 | INTRODUCTION

1.2 Goals
The goals consisted mainly of three parts, a case study, developing a test-

ing skeleton and a comparative performance study.

1. A case study in which different characteristics of NoSQL and SQL

databases are examined and compared. Also examine the use

case of Meepo AB in more detail, together with the algorithms

and queries needed for implementing a rating and recommenda-

tion service.

2. Developing a testing skeleton to use for the quantitative analysis.

Use loose coupling between application layers to facilitate the re-

placement of the database layer implementation.

3. Quantitative analysis of the candidate DBMS using the testing

skeleton, comparing the results to the characteristics from the

case study.

1.3 Delimitations
This project was carried out for the purposes of Meepo AB. Thus, the par-

ticular use case of the company limited the scope of the study. All possible

candidate databases were not examined due to time constraints, instead 3

main candidates were chosen for the comparison itself. There was no

implementation of a rating and recommendation service available at the

time, which meant that the queries being benchmarked are not real que-

ries used in production. A real user recommendation service would run a

recommendation algorithm. The actual queries needed to drive such an

algorithm depend on the algorithm itself.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

11 | THEORY

2 Theory

The first part of comparing different implementations of database man-

agement systems and their performance for use in recommendation ser-

vices include a study of recommendation services and algorithms, fol-

lowed by a study of NoSQL and SQL DBMS.

2.1 Recommendation data
Recommendation services are becoming increasingly popular, as they can

lead to increased sales, by recommending new products to customers [1].

One of the first companies to implement a recommendation system is

Amazon, which gives customers feedback on similar items in their store

front. Streaming services such as Netflix also offer a recommendation

service, to allow its customers to find new movies and television shows

they want to watch, thereby increasing the value and usefulness of the

service. The lessons learnt from the Netflix prize, a contest for bettering

the collaborative filtering algorithm of Netflix [2], can be used to under-

stand how such a service could be implemented.

2.2 Recommendation algorithms
Recommendation algorithms can be implemented in several different

ways. Most algorithms have both benefits and drawbacks, particularly in

how they cope with sparse data sets.

2.2.1 Item to item collaborative filtering

Item based collaborative filtering algorithms are based on calculating the

similarity between two items. This similarity is calculated by comparing

the items a user has a relationship to with other items in the data set. This

similarity score is computed for each combination of item pair. When

giving recommendations, this pair is looked up according to certain crite-

ria e.g. recommending movies similar to one a user has just rated can be

implemented by returning 5 movies with the highest similarity score. The

similarity score itself can be calculated using different algorithms. Cosine-

based similarity, Pearson correlation based in similarity and adjusted

cosine similarity are some of the algorithms used for this calculation [3].

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

12 | THEORY

2.2.2 User to user collaborative filtering

User to user based collaborative filtering work in similar ways to the item

based filters [3]. Here instead of calculating the similarity pairs of items,

similarities are calculated for particular users. The similarity score is then

used to find neighbors, which are users that have relationships to similar

items, in this case, users that have rated similar movies. Users are then

recommended movies that their neighbors like.

2.2.3 Singular value decomposition

Singular value decomposition or SVD is a form of matrix factorization as

shown in equation (1), where M is a real or complex matrix of size m

times n factorized into three matrices U, ∑ and V. The matrix ∑ is the one

used in recommendation algorithms as it is a diagonal matrix of the size

m times n containing the singular values of the matrix M. It can be used

in recommendation algorithms by providing this decomposed matrix of

user/movie pairs with an average recommendation value for each pair.

This has been proven to give more accurate recommendations than col-

laborative filtering algorithms with dense data sets according to Sarwar et

al [4].

𝑈𝑀 = 𝑈𝛴𝑉∗ (1)

2.2.4 Rating & recommendation service

The Netflix prize [2] contest data consisted of the following: user, movie,

date of grade, grade. The user and movie were integer ids, while the date

of grade and grade were integer values.

A social rating and recommendation service for media will thus contain at

the least the following entities:

 Users

 Ratings

 Media (Movies)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

13 | THEORY

The users can rate different media, e.g. movies. Which are saved in a

DBMS. Depending on the movies a user has rated and the rating score,

the user should get recommendations for other similar movies. The rec-

ommendation themselves are powered through a recommendation en-

gine, running a recommendation algorithm to determine which media to

recommend, this algorithm and engine however are outside the scope of

this study.

As the comparison has to be made without any algorithm, the focus is

instead on the data itself, and the ability of different DBMS to query and

traverse this data.

2.2.5 Connected data

The recommendation data is by design connected, and can be modelled as

a graph as seen in figure 1.

Each user can rate many movies, and each movie can have many ratings.

There is therefore a one to many relationship between movies and rat-

ings, and between users and ratings.

To implement basic recommendations, the DBMS needs to connect this

data by following the graph. Starting from a certain user, the users ratings

are retrieved. Through the relationship between the ratings and the mov-

ies they are a rating of, other ratings of the same movie are retrieved.

From these ratings, the users that have made the ratings are retrieved.

Using this list of similar users, or neighbors, all the movies they have

rated are retrieved. These can be aggregated, sorted and the most popular

returned as recommendations.

Other queries found in most recommendation algorithms include calcula-

tions of a movies average rating, and other average scores taking into

account appropriate constants.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

14 | THEORY

2.3 Database characteristics
Different databases have different capabilities, benefits and drawbacks.

In choosing the correct database a specific set of characteristics thought

necessary for implementing a rating and recommendation service were

examined: how the database handles connected data, query speed with

connected data, high availability, CRUD support, Index support, Query

interface, schema and support.

2.3.1 Connected data

The data of a rating and recommendation service is by design connected.

The different media is connected to ratings which are in turn connect to

the user that created the rating. For a flexible model, it should be possible

to add more connections between data: authors, actors, labels, friends

and followers are just an example of other kinds of data that could be

added in the future. Adding new kinds of data and new connections with

it should be as trivial as possible.

2.3.2 Query speed

The speed of trivial queries is important for a web application. If the

speed of trivial queries takes too long, this will have significant impact on

latency of the client applications.

Figure 1: The image shows how the data is connected.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

15 | THEORY

2.3.3 Query speed with connected data

Queries of connected data usually take longer than trivial queries. In tra-

ditional RDBMS they are made through joins, which can have a signifi-

cant impact on performance. On other platforms, joins are not even pos-

sible, and the connectedness of data has to be handled explicitly in the

application code.

2.3.4 CRUD support

Support for basic create, read, update and delete operations. Some data-

base systems do not implement all CRUD operations, like Update, which

means they have to be implemented in the application code.

2.3.5 Index support

Indexes can speed up queries by indexing entity fields that are often

searched for. This often has a significant impact on performance.

2.3.6 Query interface

The query interface of the DBMS. As NoSQL DBMS do not use SQL for

their queries, this means that developers need to learn a new query lan-

guage to interact with the database. Some interfaces are more usable than

others, and expose more commands and queries to the developer.

2.3.7 Schema

RDBMS traditionally use a schema with constraints that data has to con-

form to. Many NoSQL databases are instead schema-less and have no

constraints on the data being entered into the database. This leaves the

managing of constraints to the application which has both benefits and

drawbacks.

2.3.8 Support

When developing a commercial application which will be used in produc-

tion, support can be important when choosing a DBMS. Quality support,

and the possibility of getting help when problems arise can even be a pre-

requisite for some companies.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

16 | THEORY

2.4 NoSQL
Traditionally relational database systems have been used for persistence,

and have become the de-facto industry standard. With the rise of web

applications however, the volume of data, together with new require-

ments on availability and scalability was something traditional RDBMS

could not cope with [5]. To meet this new demand, the NoSQL movement

was born. NoSQL is a broad term, which encompasses several distinct

kinds of database systems that have just one thing in common: they have

left the relational model of tables and instead use different solutions for

managing persistence in order to scale. NoSQL systems are designed to

scale, and often do not adhere strictly to the ACID model of consistency to

achieve this. The different kinds of NoSQL data models all have their

strengths and weaknesses which have to be taken into account when

choosing the appropriate tool for a certain task. Document Stores, Graph

Databases and Wide Column stores were evaluated, and their suitability

for modelling the data of a rating and recommendation service have been

compared to the traditional Relational model.

2.4.1 Document stores

Document stores are a subset of NoSQL where data is saved as collections

of documents instead of tables as in relational databases. A document

database has no structured data, the data and all related data is grouped

together and saved as a single collection with documents inside. This

allows the document database to perform better when it comes to distrib-

uting information on several servers. Some document databases save data

as JSON or as BSON.

JSON (JavaScript Object Notation) is an open standard for transmitting

data objects as human readable text inspired by JavaScript objects. JSON

objects contain a set of fields of name and value to represent data.

BSON (Binary JSON) is binary-encoded JSON, the difference is that

BSON has more features for converting other languages to BSON and

more type formats to use.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

17 | THEORY

MongoDB

MongoDB is a c++ open-source project and one of the most popular doc-

ument-oriented databases according to DB-Engines [6]. It is designed for

use with distributed data and with large amounts of data, Big Data.

Documents are saved as BSON. The merging of JSON and binary-

encoded format makes it more lightweight, flexible and makes it possible

to match documents to queries.

The documents themselves consist of fields and values, separated by

commas.

MongoDB features

Index

There are two index properties in MongoDB. Unique indexes, which cre-

ate indexes only for the field if their values are not duplicated within the

other values in the index list. Spare Indexes only index documents which

contain the field that is being indexed, if the index field is empty then no

index will be created for that document.

MongoDB documents by default always index the id field. Fields can also

be indexed either as single fields, or as parts of a compound index. Com-

pound indexes are made up of several fields which can only be queried

together. Querying only one field of a compound index is not possible.

There are also multikey indexes for arrays inside a document, geospatial

indexes for 2 dimensional map coordinates and beta text indexes for

searching strings. Hashed indexes are used in hashed shard keys for par-

titioning and distributing data on a shared cluster.

High Availability

MongoDB implements a replication process, where the data is duplicated

in several database servers, data sets. The data sets have two types of

priority, the primary data set that works with all write operations and the

secondary data set. There are two secondary data sets that read changes

from the primary data set, if the primary data set goes down then one of

the secondary ones take the rank of primary, this operation makes the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

18 | THEORY

data more available when errors occur and gives time for the broken pri-

mary data set to be fixed manually.

Sharding

The Sharding feature is crucial for how MongoDB manages large amounts

of data, the incoming data is split by value onto other database servers

and all this partition is made automatically by the auto sharding function.

For example if the database server is dividing the data by alphabetical

order and MongoDB is searching for some document with the N value, it

only has to read from the database that contains the N-P values.

MapReduce

MapReduce is a process for aggregating the results from large amounts of

data and was first introduced and explained by Google [7]. The mapRe-

duce implementation tears down problems into smaller parts and aggre-

gates the data. The first method, map() converts an amount of data with a

key value to a key/value list for easy accessing in multiple clusters. The

second function is reduce(), it takes the new key/value list, reduces it and

puts the result in a collection. The MongoDB implementation of mapRe-

duce has one more attached function, the finalize() function which makes

it possible to make some final calculations on the result. The mapReduce

function can return the result or make changes in the database.

Strengths

MongoDB is a great database for multiple applications, especially for

object oriented applications. The greatest strength of MongoDB is the

ability to handle large amounts of data. It was created for the new era of

applications that require scalability, a flexible data model for agile devel-

opment and to easily manage big data. The variety of indexes helps with

optimizations of the aggregation speed for individual use cases. There a

many commands that are similar to the SQL concepts and make it easy

for new developers to adapt to MongoDB. MapReduce is not the only

framework for doing advanced queries, there is also the Aggregation

framework, a more easy way to do advanced queries. It is based on a

pipes connection model, where the data can be managed in different

steps.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

19 | THEORY

Weaknesses

The weaknesses are side effects from the strengths of MongoDB.

The main weakness that is obvious from a relational database perspective

is the collection restriction.

It is not supported to do joins so it is not possible to read from multiple

collections at once.

It is very easy to save duplicated data in different collections if the data

model design is implemented badly. This is a common problem in many

databases but because MongoDB is more flexible with its data, anything

can be put into documents. To prevent the input of malformed data, con-

straints and validation logic needs to be applied at the application level.

Because of the collection restriction and MongoDBs flexible data struc-

ture, it makes it more difficult to design a good data model for relational

applications. Developers have created some model design patterns for

relational use cases, which helps in some ways, but it is still hard to de-

sign data models for relational applications in MongoDB.

2.4.2 Graph databases

Graph databases are not new, but build upon graph theory used in math-

ematics. Many problems can be solved with graphs, particularly those

that consist of networks, roads or other problems that can be modelled

with a graph with many connections between its different nodes. Graph

databases use this to build systems tailored to the graph model, and are in

theory more suited for data containing many connections. Unlike rela-

tional database systems, graph database systems do not need any inter-

mediary connections like intermediary many-to-many tables often used

in RDBMS [8]. The relationships between nodes are instead stored direct-

ly as a physical property of the node itself. Graph database systems have

gained an increased popularity with the rise of social media platforms,

and are today used by market leading companies such as Facebook and

Twitter [8]. There are currently two leading data models used in Graph

databases, the property graph model and the resource description

Framework. The property graph model is a shared model defined by the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

20 | THEORY

Tinkerpop Blueprints framework [9]. It defines the graph as an object

that contains vertices and edges. Both vertices and edges are elements

which can have a set of properties stored as key/value-pairs. Vertices are

objects that have incoming and outgoing edges, while Edges are objects

with a tail and head vertex.

Neo4j

Neo4j is the most popular graph database today according to DB-Engines

[10] and has been in use since 2007. It was chosen because of its relative

maturity compared to other graph databases, while also being licensed

under an open source license. It is written in Java and uses the property

graph model. It stores its data in nodes connected by typed relationships.

Values are known as properties and can be stored on both the nodes and

the relationships themselves. Neo4j can be run as a server with a REST

API or embedded into another application. It supports ACID transac-

tions, indexes and distribution across multiple machines.

Features

Index

Neo4j supports indexes as traditional RDBMS do. Any property in the

property graph can be indexed which leads to increased lookup perfor-

mance. Indexes do however only speed-up the lookup of the initial

startup nodes, they do not affect the speed at which the graph is trav-

ersed, as nodes are linked by relationships and not by IDs.

High Availability

High availability is supported under the Neo4j enterprise edition. It ena-

bles fault-tolerance through master-slave replication. It also provides

horizontal scaling to make it possible for a system to handle more load

than a single database instance would.

Optional schema

In Neo4j the schema is optional. This means that it can be used without

any schema as other NoSQL database systems, or a schema can be im-

plemented to gain the benefits of having one. This means that a service

can be developed without any schema, which can then be added on later

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

21 | THEORY

in the development stage when the data model becomes more firm and

different constraints can ease the use of the database.

Graph Algorithms

Through the graph algorithms component, Neo4j adds support for the

following common graph algorithms: find shortest paths (using Dijkstra

and A*), find simple paths, and find all simple paths. Dijkstra’s algorithm

is a common algorithm for finding single source shortest path trees [11].

The A* search algorithm is a heuristic extension to Dijkstra’s algorithm

[12]. Shortest path algorithms can be used in routing to find the shortest

paths between network routers, locations on a map or friend connections

in a social network.

Strengths

Neo4j is best suited for managing highly connected data [13]. Data that is

highly connected, with different relationships between many different

kinds of entities that can be modelled as nodes will be easy to traverse

and query. Data that is self-contained without many relationships be-

tween entities is less suited for the Property Graph model.

2.4.3 Wide column stores

Wide Column store are NoSQL databases that mainly build on columns

instead of rows as in relational databases. It is common to use wide col-

umn store databases as a Key/Value store. Among the wide column stores

are Cassandra, HBase and Accumulo.

HBase

HBase is an open source column-oriented database written in Java, de-

veloped by Apache and based on BigTable, a high-performance database

developed by Google and first described in a 2006 white paper [14]. The

structure of HBase consists of tables, where each table contains column-

families (groups of columns). The tables have a primary column with

primary keys for selecting and gathering data. Queries are not supported

as in other NoSQL databases. HBase runs on top of HDFS, the Hadoop

Distributed System.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

22 | THEORY

HBase and other parts of HBase like MapReduce, ZooKeeper and HDFS

are developed by the Apache foundation using information gathered from

the BigTable white papers published by Google.

HBase features

HBase is a high available database that can handle a large amount of data

as it is implemented with Apaches ZooKeeper and runs on top of HDFS.

HDFS

HDFS is a distributed File System designed to handle large amounts of

data, it uses File Blocks for storing data in multiple servers. A block can

contain 64 MB or 128 MB.

HDFS has nodes (servers) inside a rack, many racks are grouped together

and are called cluster. The data can be duplicated into blocks and distrib-

uted on several servers (nodes) inside a cluster.

Zookeeper

ZooKeeper is an open source server which helps coordinate distributed

processes. Some common problems that zookeeper solves are race condi-

tions, deadlocks, partial failures and coordination between many servers.

This makes it possible for HBase to have numerous instances that are

distributed on many servers.

Strengths

HBase is a powerful database when it comes to handling and retrieving

huge amounts of data.

HBase has a flexible data structure, columns can be added whenever it is

wished. Apache ZooKeeper and HDFS make HBase a very scalable and

high-available database. ZooKeeper can manage the distribution on sev-

eral clusters and HDFS is good at manage distributed data.

Weaknesses

The way data is retrieved is very limited. Only two commands are used to

manage data: GET and PUT. GET is used to retrieve data and PUT is used

to update or store data. The Data Model has to be designed before deploy-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

23 | THEORY

ing an HBase database as it is not possible to change the structure of the

columns after deployment.

2.5 Relational databases
Relational databases are currently the most popular and common DBMS.

The main problem of this study was to investigate the performance of the

new NoSQL database systems compared to these traditional Relational

databases, making them an integral part of this investigation.

2.5.1 MySQL

MySQL is one of the most popular and widely used Relational DBMS on

the market according to DB-Engines [8]. Because of it being released

under an open source license it was chosen as the candidate for relational

databases for this comparison. Because of its popularity, most developers

today have used it at some point which makes finding people that know

MySQL easy. MySQL was used as the standard against which the perfor-

mance of the other database systems were compared.

2.5.2 NewSQL

NewSQL is a term given to Relational DBMS using the new technologies

first introduced in the NoSQL-systems. Traditional Relational DBMS

lacked support for usage in distributed systems which NoSQL solved by

abandoning the relational model for simpler architectures. The term was

first used after the release of Google’s spanner whitepaper [15].

Some RDBMS do provide support for sharding data, ex MySQL, however

there are no functions for easy handling of the different hosts in this dis-

tributed infrastructure.

NuoDB

NewSQL being a relatively new term, it does not have the same adoption

as the somewhat more mature NoSQL databases. One of the most popular

NewSQL database systems is NuoDB, which comes on the 47th place of

the most popular relational systems on DB-engines [8]. It is designed

from the beginning to offer a distributed database capable of cloud de-

ployment while also exposing an SQL interface and the functionality ex-

pected from a traditional RDBMS, such as full ACID compatibility.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

24 |

Three-tiered architecture

NuoDB is built on a three-tiered architecture: an administrative tier, a

transactional tier (consisting of Transaction Engines) and a storage tier

(consisting of Storage Managers). Traditionally, RDBMS have a tight

coupling between the transaction and storage tier, bundling them togeth-

er. According to the developers of NuoDB, decoupling these two tiers

gives NuoDB increased scalability as the storage and transactional tiers

can be scaled individually. The transactional and storage tiers communi-

cate independently through peer-to-peer messaging.

Multi-version concurrency control

To handle consistency without blocking new reads through locks and

deadlock detection, which can be detrimental to performance in a distrib-

uted system, NuoDB uses multi-version concurrency control. In this sys-

tem all data is versioned, which means that the same data can be accessed

independently on different hosts, and the version control system is used

to resolve any conflicts that could emerge.

High availability

High availability is achieved by adding additional Transaction Engines

and Storage Managers. NuoDB can scale-out to cover several separate

data centers, making the same distributed database available across sev-

eral geographic locations.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

25 | DESIGN

3 Design

Following the study of recommendation algorithms, recommendation

services and DBMS, the different databases where evaluated. From these

three candidates were chosen for the performance test. The data models

for the three DBMS were designed, and a test application was developed

in Java to test the performance of the three DBMS.

3.1 Evaluation
A comparison was made between the different DBMS according to their

characteristics for connected data, query speed with connected data, high

availability, CRUD support, Index support, Query interface, schema and

support. These characteristics were summarized in table 1.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

26 | DESIGN

MySQL Neo4j MongoDB HBase NuoDB

Database
Type

Relational Graph Document
Wide Col-
umn Store

Relational

Connect-
ed data

Foreign key +
joins

Graph model

Id:s (as
foreign keys)

+ buckets.
Joins at

application
level

Row keys as
links in

"edge" col-
umn family.

Joins at
application

level

Foreign
keys + join

Query
speed

(connect-
ed data)

Slower with
increased data
size (exponen-
tial decrease

of perfor-
mance)

Linear de-
crease in

performance
with in-

creased data
size

Fast in same
collection.
No queries

between
collections

Fast queries.
No built-in
queries for
connected

data

Slower with
increased
data size

High
availabil-

ity

No, only with
MySQL cluster

In commer-
cial version.
Master-slave
replication

Sharding +
Master-slave
replication

Zookeeper ,
Master-slave
replication

In com-
mercial
version.

Horizontal
scaling

CRUD
opera-
tions

Yes Yes Yes
get/put/dele

te
Yes

Index
support

Primary and
secondary

index

Index on any
attribute for

labelled
node

Index on any
attribute.
support for
advanced
indexes

Primary
index

Primary
and sec-
ondary
index

Schema yes optional no no yes

Query
interface

SQL
Native Java,

Gremlin,
Cypher

JavaScript JRuby SQL

Support

Community
support OR
vendor sup-

port for com-
mercial edi-

tion

Community
support for
community,

personal,
startups OR
vendor sup-

port for
enterprise

edition

Community
support OR
vendor sup-

port for
commercial

edition

Community
support OR
Enterprise

support
through
Horton-
works or
Cloudera

Community
support OR

vendor
support for

proffes-
sional edi-

tion

Table 1: Comparison between the databases in the study. The green field describes a

desire property, yellow fields are cons but acceptable and red fields are cons.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

27 | DESIGN

3.1.1 Chosen candidates

MySQL

MySQL was chosen from the start as the DBMS to which the others would

be compared. The relational model is a good fit for connected data, which

it supports through using foreign keys. Queries for connected data can be

made through join operations.

Neo4j

Neo4j has excellent support for highly connected data. The property

graph model is a good fit for data which can be modelled as a graph. Data

can be linked in many ways. Any node of any type can be linked to anoth-

er using a new relationship. It is more flexible than other databases as

new data models can be implemented alongside old ones, by drawing

other kinds of relationships between nodes and assigning new labels.

It has less support for high availability compared to the other DBMS,

however this was not deemed as important as good support for connected

data. Commercial support is available, and it provides indexes for speed-

ing up lookups.

MongoDB

MongoDB supports highly connected data within a collection. It is not

enough when data needs to be connected with or without a direct relation

with each other. To achieve this in MongoDB, a good data model design

and some logic in the application level must be implemented. But there

are some downsides depending on the design pattern. The write perfor-

mance can be high and the read performance can be really bad or vice

versa. However the ability of MongoDB to handle large amounts of data,

the flexibility of the data model and the fast access to data through differ-

ent sorts of indexes are impressive features. The most important ad-

vantage of MongoDB is the flexibility to change the data model as desired

for future development changes, if the important queries change then the

data structure has to adapt to the queries and it is easily done by the shell

that runs on JavaScript.

In conclusion MongoDB can be a great alternative to Neo4J and MySQL.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

28 | DESIGN

3.1.2 Not chosen

HBase

HBase is best suited for big data. Its scales well for very large amounts of

data. This study is not aimed at measuring performance for data distrib-

uted between several servers, too large to fit on a single machine. This

means that HBase loses its biggest strength. HBase itself does not provide

means for querying connected data, all this logic has to be handled in the

application layer, which was another reason for not including HBase in

the performance tests.

However, there is also an option of using HBase as a persistence layer of

an in-memory graph database like Titan. As Titan also uses Neo4j’s prop-

erty graph model, this can be a solution for data too big for Neo4j.

NuoDB

NuoDB has good support for highly connected data, being built on a rela-

tional model like MySQL. However the main difference between the two

is NuoDB’s abilities to scale. Running NuoDB on a single host would mit-

igate its strengths, making it less than ideal for this particular use case. It

shares the ability of MySQL to query connected data through joins, and

will probably behave in a similar manner to MySQL when it comes to

query speed. It was therefore not chosen for this particular scenario.

3.2 Data model

3.2.1 MySQL

The data model of the MySQL implementation in practice followed the

format of the Netflix dataset. Three tables were created: a movie table

containing a “MOVIE_ID”, “TITLE”, and “YEAR”. A “RATING” table

containing a “RATING_ID”, “SCORE”, DATE, USER_ID and MOVIE_ID.

The USER table contained only the USER_ID.

The user table and the rating table have a One-To-Many relationship,

meaning that a user can have several ratings and for that reason a user id

can be related to multiple rows in the rating table, the movie and the rat-

ing table also have a one-to-many relationship.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

29 | DESIGN

3.2.2 Neo4j

The data model of Neo4j followed the initial graph model described in

chapter 2. The objects in this graph: users, movies and ratings became

nodes in Neo4j. The relationship between these nodes were represented

as rated and “has_rating” relationships respectively.

One gotcha of Neo4j is that the internal node IDs, which are used for

looking up nodes are garbage collected. New nodes can therefore receive

the IDs of old deleted nodes. This can be solved by using an indexed

property set by the application as an ID instead, but means more metada-

ta will be needed. Another solution is to use the internal node ID for

lookups, and then use an application ID stored as a node property to

make sure that the retrieved node is the same. This later method was

used, to avoid the overhead of having duplicate indexed IDs.

3.2.3 MongoDB

MongoDBs data model has to be made depending on how the queries are

constructed, which means that the information one is looking for has to

be stored in a single collection. In this case all ratings are grouped by

users and are saved in a “user_rating” collection, this sort of aggrupation

is called ‘bucket’ and means that the relational data of an object is saved

as an array in the main object/user so that relational queries can be

made. This was necessary as it is not possible to make queries outside of a

collection. Other objects are saved as common MongoDB documents con-

taining only regular fields. All users are saved in a “user” collection and

the movies in a “movie” collection. Compound indexes were created on

movie titles and score together. Common indexes were created on rating

score, movie title and reference ids. Implementation in Spring Data

For the performance tests, a service was written in Java to communicate

with the databases. Spring Data was chosen as a tool, as it provided simi-

lar kinds of object relational mapping that exist for traditional RDBMS

for both MongoDB and Neo4j. To help with making the coupling between

the core business layer and the persistence layer a loose coupling, a hex-

agonal architecture was chosen instead of a traditional 3-layer architec-

ture.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

30 | DESIGN

3.2.4 Architecture

The hexagonal architecture (or lifesaver architecture) consists of a core

layer containing the business logic in the middle, with an integration lay-

er containing implementations of external communications outside of

this central layer. The core layer communicates with this outside layers

through events. This solution is introduced to prevent the usage of busi-

ness layer code in the outside layer dealing with particular implementa-

tions. In this particular use case, it meant that the persistence layer con-

taining the different database implementations did not have any

knowledge of the core business layer. At the same time, the core business

layer did not have any knowledge of the implementation of the data per-

sistence layer, which meant that the same core layer could be reused in-

dependently of which database was being tested. With this model, only

the persistence layer implementation changed with the database.

The plain old java objects, POJOs for the user, rating and movie classes

all had their id stored as strings. In this way, the database implementa-

tions could use any object best suited to represent the database id, while

the resulting object passed to the core layer would always contain a string

id, independently of the database being used.

Spring Data JPA

To connect the benchmarking application to MySQL, Spring Data JPA

was used. Repositories were created for the simple CRUD operations with

the user, rating and movie tables. In Spring Data, this is easily handled

through creating a Repository Interface, containing the different methods

that will be used to access the repository. The implementation is then

produced by Spring Data.

For the more advanced queries of connected data, custom implementa-

tions of these repositories were written. In Spring Data, this is done by

creating a new Interface describing the new methods. These methods are

then implemented in a repository implementation.

The objects were mapped with JPA annotations to handle the mapping of

Java objects to database tables.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

31 | DESIGN

Queries

Two queries were written to test the performance of connected data. The

first one queries the database for similar users, in this case it means users

that have rated the same movies as the user id that is supplied to

the query.

The second query is an extended version of the first one. Here, the answer

from the first query is joined with the rating table again, to find which

movies that these similar users have rated and the user has not. The mov-

ies are grouped and sorted by count.

Figure 2: Find similar users

Figure 3: Shows movies rated by similar users grouped by

movie count.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

32 | DESIGN

Spring data neo4j

As with the JPA implementation, the Neo4j implementation in Spring

Data Neo4j contained Spring Data repositories for handling simple CRUD

operations. Again, for the advanced queries, these Repositories were ex-

tended with Implementations of new services for more advanced queries.

The domain objects mapping the Neo4j nodes to Java objects were anno-

tated using Neo4j annotations. These were quite similar to the Neo4j

domain objects, the main difference was that the id field in the Neo4j

implementation represents the internal neo4j node id. As previously not-

ed when discussing the data model, an appId was needed to guarantee

that retrieved nodes were the same ones that had been previously persist-

ed. The two id and appId fields were then used together to identify a par-

ticular node. When communicating with the core layer, these two fields

were passed in as a single string id.

Neo4j has several alternatives for querying the database. The queries

were written in Cypher as it assembles SQL the most. The database itself

was run as an embedded database, as this should give the best perfor-

mance [13]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

33 | DESIGN

Queries

In Cypher, queries are made by specifying a starting node. This node can

then be matched to other nodes by describing the relationships between

them, and the nodes they connect to.

The queries that had been written in SQL were translated into Cy-

pher, to get a comparison that was as equal as possible. Writing

these queries was simpler than SQL, and the resulting Cypher que-

ries were shorter.

Similar users:

𝑠𝑡𝑎𝑟𝑡 𝑢 = 𝑛𝑜𝑑𝑒({𝑖𝑑})𝑚𝑎𝑡𝑐ℎ(𝑢) − [: 𝑅𝐴𝑇𝐸𝐷]−>
 (𝑟: 𝑅𝑎𝑡𝑖𝑛𝑔 < − [: 𝐻𝐴𝑆_𝑅𝐴𝑇𝐼𝑁𝐺] − (𝑚: 𝑀𝑜𝑣𝑖𝑒) −
 [: 𝐻𝐴𝑆_𝑅𝐴𝑇𝐼𝑁𝐺] −> (𝑟2: 𝑅𝑎𝑡𝑖𝑛𝑔) < − [𝑅𝐴𝑇𝐸𝐷] −
 (𝑢2: 𝑈𝑠𝑒𝑟) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑢2;

Similar movies:

𝑠𝑡𝑎𝑟𝑡 𝑢 = 𝑛𝑜𝑑𝑒({𝑖𝑑})𝑚𝑎𝑡𝑐ℎ(𝑢:) − [: 𝑅𝐴𝑇𝐸𝐷]
→ (𝑟: 𝑅𝑎𝑡𝑖𝑛𝑔) < −[: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺]
−(𝑚: 𝑀𝑜𝑣𝑖𝑒) − [: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺] →
(𝑟2: 𝑅𝑎𝑡𝑖𝑛𝑔) < −[𝑅𝐴𝑇𝐸𝐷] − (𝑢2: 𝑈𝑠𝑒𝑟)
−[: 𝑅𝐴𝑇𝐸𝐷]−> (𝑟3: 𝑅𝑎𝑡𝑖𝑛𝑔) < −[: 𝐻𝐴𝑆_𝑅𝐴𝑇𝐼𝑁𝐺] −
(𝑚2: 𝑀𝑜𝑣𝑖𝑒) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑚2;

Spring Data MongoDB

MongoDB has an aggregation framework designed for advanced queries

but then again it has its own limitations. The aggregate query have a limit

of 100MB that can be passed through its pipes within the query and the

results can’t be bigger than 16MB. However in the newer version releas-

es, from 2.6 and newer, the result/data can be held on disk which re-

moves these limitations.

Spring Data helps a lot with advanced queries and object mapping, how-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

34 | DESIGN

ever it does not support everything in the MongoDB aggregation frame-

work. The option to aggregate a query using disk storage is still not sup-

ported. Therefore Spring Data was only used for implementing CRUD

repositories, as for the advanced queries the native Java Driver from

MongoDB was the only option.

Queries

As in Neo4j, similar queries has been created in MongoDB to achieve the

same result. In Java the MongoDB aggregation queries are noticeably

longer than similar queries in Neo4j.

Figure 4: Native query for finding all movies by id from a user

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

35 | DESIGN

Figure 5: Native query for finding all the similar movies by id from a user

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

36 | DESIGN

3.2.5 Data migration

Netflix Data

The Netflix dataset contains the database data as comma separated val-

ues, CSV text files. The text is formatted as tables with rows of values

where every value is separated with a comma (,):

Ratings: There are 177771 ratings files were each file contains all ratings

for a single movie. The first line of a rating file contains the id of the mov-

ie followed by a colon (:). Each rating line contains the user id, the score

with a scale from 1 to 5 and the date in the format YYYY:MM:DD.

Movies: There is a “movie_titles” file that contains every movie with its

title, year of release and movie id.

Other files: There are more text files explaining how the data looks like

and the quantity of users, movies and ratings, the ratings range and other

instructions.

The Netflix dataset was extracted from a relational database therefore it

was easiest to migrate the dataset to a MySQL database and then migrate

the data from MySQL to the other the databases in the appropriate for-

mat.

MySQL

The Netflix dataset was imported to MySQL with a script written in the

Ruby programming language.

A user text file from the Netflix dataset did not exist yet the user table was

created with only a user id column. The user id was extracted from the

rating table with a query only asking for all distinct user ids from the rat-

ing table.

Neo4j

The test data was imported into Neo4j using the Neo4j Batch Importer.

As it accepts text files with tab separated values, these were exported

from the MySQL tables.

Relationships and nodes are imported in separate files, the nodes them-

selves can be linked either by their node id or indexed value. Linking

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

37 | DESIGN

nodes using indexed values led to memory errors when linking the RAT-

ED relationship between Users and Ratings. The internal node IDs were

used instead, as these are assigned in order of insertion, the MOVIE_ID

and RATING_ID from the MySQL database were used with an offset to

connect the nodes with the HAS_RATING relationship. The users howev-

er, do not contain sorted IDs as the USER_ID are just values in the RAT-

ING table. To import these, a new USER table was created in the MySQL

database containing all distinct USER_ID values. To this table a separate

column with auto incremented IDs was added. Next, an update query

added a new column to the RATING table, referencing the new ordered

ID of the USER_ID table. The RATED relationship could then be export-

ed from the RATING table, and after adding an offset to match the node

IDs of the User node, they were imported into the Neo4j.

MongoDB

MySQL can export data as CSV files from its queries. This was helpful for

creating CSV files with the desired data format which could later then be

migrated to both MongoDB and Neo4j.

MongoDB has a simple import command function for migrating text files,

sadly it does not support importing arrays or other advanced objects into

MongoDB. JavaScript is used in the MongoDB command shell, as it was

the easiest way to manipulate the data, all data was imported to Mon-

goDB from MySQL through CSV files as simple documents without ar-

rays. Then the data was reorganized using the command shell. Buckets

were created for each user containing all ratings made by that user.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

38 | DESIGN

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

39 | RESULTS

4 Results

Using the test application developed for the DBMS

4.1 Benchmark framework
The benchmarks were run using caliper, a tool originally developed by

Google for microbenchmarks. The benefits of using caliper instead of

simply measuring start and end times using System.nanoTime() is that it

helps with several things that are important in benchmarking Java Code.

Benchmarks can be performed in a more controlled, standardized way. By

tracking all options sent to the JVM, differences between test setups can

be identified to avoid benchmarking with different options. It also simpli-

fies the warm up needed to make sure that the JIT compiler has already

performed most optimizations, to avoid the overhead of JIT compilation

during benchmarks. Each test is run 9 times, following the warm-up

phase. In the warm-up phase, the test runs for 5 minutes and all results

measured during this phase are discarded. The mean value of the test

results is then returned.

4.2 Database server
The benchmarks were run on VMware server virtual machine instances.

Each virtual machine test server had the following specifications.

Server properties

 Total Physical Memory 8178592 KB

CPU Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz x 2

Java vm Oracle Corporation

Java runtime version 1.8.0-b132

OS. Ubuntu 12.04 LTS amd64

Linux Kernel 3.2.0-61-generic

Table 2: properties of the benchmark server

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

40 | RESULTS

4.2.1 Queries

Seven different queries were benchmarked, to test the performance of the

DBMS. Some queries are more simple retrieval queries, while other que-

ries are more complicated queries, needing more computing power and

longer execution times. Table 3 shows seven queries with difficulty and

criteria. The difficulty color indicates how difficult and challenging every

query is based on the criteria of the result. Green color are supposed to

give a faster result than the other difficulty colors, the orange color are

queries with demands on the result and the red are queries that are sup-

posed to take a high amount of computer resources .

Difficulty Queries Criteria

QUERY 1 Find ratings by user id Sorted by date

QUERY 2 Find movies rated by user Sorted by score

QUERY 3 Count movie ratings none

QUERY 4
Find movies that have most reviews

with the highest score

Sorted by total ratings

(limit 100)

QUERY 5

Find the most popular movies from

all the other users who also have

rated the same movie as the main

user

Collect only rated

movies equal and

greater than score 4,

then sorted by quanti-

ty (Limit 100)

QUERY 6 Find Movie by id None

QUERY 7
Calculate the average of a movie

score None

Table 3: The seven benchmarked queries

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

41 | RESULTS

Query 1 (Find ratings from a user)

The purpose of query 1 is to test the query speed when retrieving all the

ratings done by a user. The result is only the list of ratings ordered by

ascending date.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 ∗ 𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔 𝑊𝐻𝐸𝑅𝐸

𝑈𝑆𝐸𝑅_𝐼𝐷 = (𝑖𝑑) 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝐷𝐴𝑇𝐸;

To achieve the result MySQL only reads from an indexed field USER_ID

on the table rating. The result only extracts the ids of the user and movie.

Neo4j behavior

𝑆𝑇𝐴𝑅𝑇 𝑛 = 𝑛𝑜𝑑𝑒({𝑛𝑜𝑑𝑒𝐼𝑑})𝑊𝐻𝐸𝑅𝐸 𝑛. 𝑎𝑝𝑝𝐼𝑑 =

{𝑎𝑝𝑝𝐼𝑑}𝑀𝐴𝑇𝐶𝐻 (𝑛) − [: 𝑅𝐴𝑇𝐸𝐷] → (𝑟: 𝑅𝑎𝑡𝑖𝑛𝑔)

𝑅𝐸𝑇𝑈𝑅𝑁 𝑟 𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 𝑟. 𝑑𝑎𝑡𝑒 𝐷𝐸𝑆𝐶

MongoDB behavior

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([{$𝑚𝑎𝑡𝑐ℎ: {"𝑈𝑆𝐸𝑅_𝐼𝐷": (𝑖𝑑)}},

{$𝑢𝑛𝑤𝑖𝑛𝑑:$ratings}, {$𝑠𝑜𝑟𝑡: {ratings.DATE: −1}},

 {$𝑔𝑟𝑜𝑢𝑝: {"_𝑖𝑑": "$𝑈𝑆𝐸𝑅_𝐼𝐷", "𝑟𝑎𝑡𝑖𝑛𝑔𝑠": {$𝑝𝑢𝑠ℎ: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠" }}}],

{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

MongoDB Aggregate query searches the user by id within the user_rating

collection, it splits the ratings to individual ratings, sorts them by date

and then it recreates the array, the returned new array is sorted by date.

This time the result did not return the rating list with its movie a user as

Neo4j did, only ids were retrieved for user and movie. The query time

would be longer if every movie and user were extracted from the database

and returned with each rating.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

42 | RESULTS

Result: MongoDB got the best result but the result only returned ids, date

and score, while Neo4j also retrieved the movies title and the year.

Query 1 MySQL MongoDB Neo4j

Result 5.61 ms 4.00 ms 6.59 ms

Table 4: Result of query 1.

Query 2 (Find rated movies from a user)

The result contains all the rated movies from a user, sorted by de-

scending score. This query tests the performance of connecting a

user to its rated movies.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷 , 𝑚. 𝑇𝐼𝑇𝐿𝐸, 𝑚. 𝑌𝐸𝐴𝑅
𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔 𝑟 𝐼𝑁𝑁𝐸𝑅 𝐽𝑂𝐼𝑁 𝑚𝑜𝑣𝑖𝑒 𝑎𝑠 𝑚
𝑂𝑁 𝑚. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷 = 𝑟. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷

𝑊𝐻𝐸𝑅𝐸 𝑟. 𝑈𝑆𝐸𝑅𝐼𝐷 = (𝑖𝑑)
𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑆𝐶𝑂𝑅𝐸 𝐷𝐸𝑆𝐶;

To retrieve the result in MySQL, two tables need to be joined, the

rating and movie table. From this the movie information is extract-

ed in descending order.

Neo4j behavior

𝑠𝑡𝑎𝑟𝑡 𝑢 = 𝑛𝑜𝑑𝑒({𝑛𝑜𝑑𝑒𝐼𝑑})
𝑤ℎ𝑒𝑟𝑒 𝑢. 𝑎𝑝𝑝𝐼𝑑 = {𝑎𝑝𝑝𝐼𝑑}𝑚𝑎𝑡𝑐ℎ (𝑢)
−[: 𝑅𝐴𝑇𝐸𝐷] → (𝑟)
< −[: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺] − (𝑚)
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑚 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑟. 𝑟𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑠𝑐

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

43 | RESULTS

MongoDB behavior
Query part 1:

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([
{$𝑚𝑎𝑡𝑐ℎ: {“𝑈𝑆𝐸𝑅𝐼𝐷”: 6}},
{$𝑢𝑛𝑤𝑖𝑛𝑑:$ratings},
{$𝑠𝑜𝑟𝑡: {ratings.SCORE: −1}},

{$𝑔𝑟𝑜𝑢𝑝: {_id:$USER_ID,ratings: {$𝑝𝑢𝑠ℎ:$ratings}}} ,

{$𝑝𝑟𝑜𝑗𝑒𝑐𝑡: {"_𝑖𝑑": 0, "𝑀𝑂𝑉𝐼𝐸_𝐼𝐷":
"$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷"}}],
{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

Query part 2:

𝑑𝑏. 𝑚𝑜𝑣𝑖𝑒. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([

{$𝑚𝑎𝑡𝑐ℎ: {"_𝑖𝑑": {$𝑖𝑛: (𝑙𝑖𝑠𝑡𝑂𝑓𝑚𝑜𝑣𝑖𝑒𝐼𝑑𝑠)} } }],
 {𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

The query part 1 and the query 2 are similar to each other, the difference

is that the query 2 only returns the movies ids from the database.

Query part 2 takes an array of ids and returns all the movies with their

titles, Year and id.

Result: This time every database returned the same amount of data and

the database with best result is Mysql.

QUERY 2 MySQL MongoDB Neo4j

Result 4.71 ms 7.20 ms 6.04 ms

Table 5: Result of query 2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

44 | RESULTS

Query 3 (Find all users that rated a movie id)

The result is the total of users that rated a movie and the purpose of

this query is to test the ability to count fields.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇(𝑈𝑆𝐸𝑅𝐼𝐷)
𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔
𝑊𝐻𝐸𝑅𝐸 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷 = (𝑖𝑑);

MySQL has a COUNT function and it is simple to use.

Neo4j behavior

𝑆𝑇𝐴𝑅𝑇 𝑛 = 𝑛𝑜𝑑𝑒({𝑛𝑜𝑑𝑒𝐼𝑑})

𝑊𝐻𝐸𝑅𝐸 𝑛. 𝑎𝑝𝑝𝐼𝑑 = {𝑎𝑝𝑝𝐼𝑑}

𝑀𝐴𝑇𝐶𝐻 (𝑛) − [𝑟: 𝐻𝐴𝑆_𝑅𝐴𝑇𝐼𝑁𝐺] − () 𝑅𝐸𝑇𝑈𝑅𝑁 𝑐𝑜𝑢𝑛𝑡(𝑟);

MongoDB behavior

𝑄𝑢𝑒𝑟𝑦: 𝑑𝑏. 𝑢𝑠𝑒𝑟𝑟𝑎𝑡𝑖𝑛𝑔𝑠.

𝑓𝑖𝑛𝑑({"𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷" ∶ (𝑖𝑑)}).
𝑐𝑜𝑢𝑛𝑡()

Here the Aggregate framework wasn’t needed, it was only neces-

sary to make a common find query and call the count function.

Result: MongoDB got the best time and returned the same result as

the other databases.

QUERY 3 MySQL MongoDB Neo4j

Result 3.07 ms 0.59 ms 0.99 ms

Table 6: Result of query 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

45 | RESULTS

Query 4 (Find movies that have most reviews with the highest

score)

This query was chosen due to its difficulty and the big amounts of

data handled when calculating the most popular movies.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷, 𝑚. 𝑇𝐼𝑇𝐿𝐸, 𝑚. 𝑌𝐸𝐴𝑅,

(𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇(∗)𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔 𝑟2

𝑊𝐻𝐸𝑅𝐸 𝑟2. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷 = 𝑟. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷)𝐴𝑆 𝑐𝑜𝑢𝑛𝑡

𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔 𝐴𝑆 𝑟 𝐼𝑁𝑁𝐸𝑅

𝐽𝑂𝐼𝑁 𝑚𝑜𝑣𝑖𝑒 𝑎𝑠 𝑚 𝑂𝑁 𝑟. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷 = 𝑚. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷

𝑊𝐻𝐸𝑅𝐸 𝑟. 𝑆𝐶𝑂𝑅𝐸 = 5 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑟. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷

𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑐𝑜𝑢𝑛𝑡 𝐷𝐸𝑆𝐶;

Each movie is counted in order of appearance, and joined with the

movie table to get the movie properties. The result is sorted by

count.

Neo4j behavior

𝑀𝐴𝑇𝐶𝐻(𝑚: 𝑀𝑜𝑣𝑖𝑒) − [: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺]

→ (𝑟: 𝑅𝑎𝑡𝑖𝑛𝑔)𝑤ℎ𝑒𝑟𝑒 𝑟. 𝑟𝑎𝑡𝑖𝑛𝑔 = 5 𝑤𝑖𝑡ℎ 𝑚, 𝑐𝑜𝑢𝑛𝑡(𝑟)𝐴𝑆 𝑐

𝑅𝐸𝑇𝑈𝑅𝑁 𝑚, 𝑐

𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑐 𝐷𝐸𝑆𝐶 𝐿𝐼𝑀𝐼𝑇 1000;

MongoDB behavior

Query part 1:

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([
{$𝑚𝑎𝑡𝑐ℎ: {USER_ID: 6}},

 {$𝑢𝑛𝑤𝑖𝑛𝑑:$ratings},

{$𝑚𝑎𝑡𝑐ℎ: {ratings.SCORE: {$gte: (4)}}} ,

{$𝑝𝑟𝑜𝑗𝑒𝑐𝑡: {𝑀𝑂𝑉𝐼𝐸_𝐼𝐷: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷"}}],
{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

46 | RESULTS

Query part 2:

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([
{$𝑚𝑎𝑡𝑐ℎ: {“𝑈𝑆𝐸𝑅_𝐼𝐷”: {$𝑛𝑖𝑛: [(6)]}, ”𝑟𝑎𝑡𝑖𝑛𝑔𝑠”:
{$𝑒𝑙𝑒𝑚𝑀𝑎𝑡𝑐ℎ: {"𝑀𝑂𝑉𝐼𝐸_𝐼𝐷":
{$𝑖𝑛: (𝑚𝑜𝑣𝑖𝑒𝑅𝑒𝑓𝐴𝑟𝑟𝑎𝑦)}, "𝑆𝐶𝑂𝑅𝐸": {$𝑔𝑡𝑒: 4}}}}}, {$𝑢𝑛𝑤𝑖𝑛𝑑: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠"},

 {$𝑚𝑎𝑡𝑐ℎ: {ratings.MOVIE_ID: {$𝑛𝑖𝑛 ∶

𝑚𝑜𝑣𝑖𝑒𝑅𝑒𝑓𝐴𝑟𝑟𝑎𝑦}}} ,

{$𝑔𝑟𝑜𝑢𝑝: {_𝑖𝑑: {𝑀𝑂𝑉𝐼𝐸: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷"},
 𝑀𝑂𝑉𝐼𝐸𝐶𝑂𝑈𝑁𝑇: {$𝑠𝑢𝑚: 1}, 𝑇𝑂𝑇𝐴𝐿𝑆𝐶𝑂𝑅𝐸:
{$𝑠𝑢𝑚: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑆𝐶𝑂𝑅𝐸"}}},

{$𝑠𝑜𝑟𝑡: {MOVIE_COUNT: −1, TOTAL_SCORE: −1}},

{$𝑙𝑖𝑚𝑖𝑡: 1000}], {𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

Query part 3:

𝑑𝑏. 𝑚𝑜𝑣𝑖𝑒. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([

{$𝑚𝑎𝑡𝑐ℎ: {"_𝑖𝑑": {$𝑖𝑛: (𝑙𝑖𝑠𝑡𝑂𝑓𝑚𝑜𝑣𝑖𝑒𝐼𝑑𝑠)} } }],
{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

It requires 3 operations to gain the same result of objects in Mon-

goDB, the first part of the query is to return all the main users mov-

ies ids. The second Query part 2 retrieved a list of top hundred

movies ids within all the other users that have rated high on the

main users movies. The last operation extracted the movie infor-

mation from the list gained from query part 2.

Result: MySQL and Neo4j did not complete the task. The MySQL

query process was shutdown after 10 hours, while Neo4j crashed as

it ran out of memory. MongoDB finished the query in 4 minutes

and it made it thanks to the ability to write the data to disk while

using the aggregation query.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

47 | RESULTS

Query 4 MySQL MongoDB Neo4j

Result
Does not com-

plete

241255 ms (4.0

min.)
Does not complete

Table 7: Result of query 4.

Query 5 (Find the most popular movies from all the other users who

also have rated the same movies as the main user)

The result is a list of movies that were collected from all the other

users that have also rated the same movies as the main user and it is

limited by 100 movies. This query test the ability to connect a large

amount of entities and aggregating them.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 𝐶𝑂𝑈𝑁𝑇(𝑇. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷), 𝑇. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷
𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔 𝐹 𝐼𝑁𝑁𝐸𝑅 𝐽𝑂𝐼𝑁 𝑟𝑎𝑡𝑖𝑛𝑔
𝑂𝑁 𝐹. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷 = 𝑆. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷𝐼𝑁𝑁𝐸𝑅
𝐽𝑂𝐼𝑁 𝑟𝑎𝑡𝑖𝑛𝑔 𝑇 𝑂𝑁 𝑆. 𝑈𝑆𝐸𝑅𝐼𝐷 = 𝑇. 𝑈𝑆𝐸𝑅𝐼𝐷
𝑊𝐻𝐸𝑅𝐸 𝐹. 𝑈𝑆𝐸𝑅𝐼𝐷 = (𝑖𝑑)𝐴𝑁𝐷 𝑆. 𝑈𝑆𝐸𝑅𝐼𝐷 <> (𝑖𝑑)
𝐴𝑁𝐷 𝑇. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷 <> 𝐹. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷
𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑇. 𝑀𝑂𝑉𝐼𝐸𝐼𝐷
𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝐶𝑂𝑈𝑁𝑇(𝑇. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷) 𝐷𝐸𝑆𝐶;

Neo4j behavior

𝑆𝑇𝐴𝑅𝑇 𝑢 = 𝑛𝑜𝑑𝑒({𝑢𝑠𝑒𝑟𝐼𝑑})𝑊𝐻𝐸𝑅𝐸 𝑢. 𝑎𝑝𝑝𝐼𝑑 =
{𝑎𝑝𝑝𝐼𝑑}𝑀𝐴𝑇𝐶𝐻 (𝑢) − [: 𝑅𝐴𝑇𝐸𝐷] → (𝑟) <
−[: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺] − (𝑚: 𝑀𝑜𝑣𝑖𝑒) − [: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺] →
 (𝑟2: 𝑅𝑎𝑡𝑖𝑛𝑔) < −[𝑅𝐴𝑇𝐸𝐷] − (𝑢2: 𝑈𝑠𝑒𝑟) − [: 𝑅𝐴𝑇𝐸𝐷] →
(𝑟3) < −[: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺] −
(𝑚2: 𝑀𝑜𝑣𝑖𝑒)𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡(𝑚2), 𝑚2
𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑐𝑜𝑢𝑛𝑡(𝑚2) 𝐷𝐸𝑆𝐶 𝐿𝐼𝑀𝐼𝑇 100;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

48 | RESULTS

MongoDB behavior

Query part 1:

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([
{$𝑚𝑎𝑡𝑐ℎ: {"𝑈𝑆𝐸𝑅_𝐼𝐷": (𝑖𝑑)}},

{$𝑢𝑛𝑤𝑖𝑛𝑑:$ratings}, {$𝑚𝑎𝑡𝑐ℎ: {ratings.SCORE: {$gte: 4}}} ,

 {$𝑝𝑟𝑜𝑗𝑒𝑐𝑡: {𝑀𝑂𝑉𝐼𝐸_𝐼𝐷: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷"}}],
 {𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

Query part 2:

𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([
{$𝑚𝑎𝑡𝑐ℎ: {“𝑈𝑆𝐸𝑅_𝐼𝐷”: {$𝑛𝑖𝑛: [(𝑖𝑑)]},
 “𝑟𝑎𝑡𝑖𝑛𝑔𝑠”: {$𝑒𝑙𝑒𝑚𝑀𝑎𝑡𝑐ℎ: {“𝑀𝑂𝑉𝐼𝐸_𝐼𝐷”:
{$𝑖𝑛: 𝑚𝑜𝑣𝑖𝑒𝑅𝑒𝑓𝐴𝑟𝑟𝑎𝑦}, "𝑆𝐶𝑂𝑅𝐸": {$𝑔𝑡𝑒: (4)}}}}}, {$𝑢𝑛𝑤𝑖𝑛𝑑: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠"}, {$𝑚𝑎𝑡𝑐ℎ: {"𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷":

{$𝑛𝑖𝑛: 𝑚𝑜𝑣𝑖𝑒𝑅𝑒𝑓𝐴𝑟𝑟𝑎𝑦}}}, {$𝑔𝑟𝑜𝑢𝑝: {_𝑖𝑑: {𝑀𝑂𝑉𝐼𝐸: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷"},
 𝑀𝑂𝑉𝐼𝑒𝑠𝑢𝑚: {$𝑠𝑢𝑚: 1}, 𝑇𝑂𝑇𝐴𝐿

𝑆𝐶𝑂𝑅𝐸
:

{$𝑠𝑢𝑚: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑆𝐶𝑂𝑅𝐸"}}},
{$𝑠𝑜𝑟𝑡: {MOVIE_COUNT: −1, TOTAL_SCORE: −1}},

{$𝑙𝑖𝑚𝑖𝑡: 1000}], {𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

Query part 3:

𝑑𝑏. 𝑚𝑜𝑣𝑖𝑒. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([

{$𝑚𝑎𝑡𝑐ℎ: {"_𝑖𝑑": {$𝑖𝑛: (𝑙𝑖𝑠𝑡𝑂𝑓𝑚𝑜𝑣𝑖𝑒𝐼𝑑𝑠)} } }],
{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

In MongoDB a three query operation is needed to achieve the re-

sult, the first operation, returns a list of movies ids from the users

rating-bucket. In the second query, the top hundred movies are cal-

culated and returned a list of movies ids. The third part collects all

the Movie information from the list of movies ids.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

49 | RESULTS

Result: With Query 4 and 5 the only DBMS that returns a result is

MongoDB with an aggregate query. MongoDB returns the result

after 4 minutes. As Neo4j can’t load the data into RAM, it crashes.

MySQL did complete the query after running for 10 hours.

Query 5 MySQL MongoDB Neo4j

Result
Does not com-

plete
241140 ms (4.01 min.) Does not complete

Table 8: result of query 5

Query 6 (Find Movie by id)

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 ∗ 𝐹𝑅𝑂𝑀 𝑚𝑜𝑣𝑖𝑒 𝑊𝐻𝐸𝑅𝐸 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷 = (𝑖𝑑);

Neo4j behavior

𝑆𝑇𝐴𝑅𝑇 𝑛 = 𝑛𝑜𝑑𝑒({𝑛𝑜𝑑𝑒𝐼𝑑})
𝑊𝐻𝐸𝑅𝐸 𝑛. 𝑎𝑝𝑝𝐼𝑑 = {𝑎𝑝𝑝𝐼𝑑} 𝑅𝐸𝑇𝑈𝑅𝑁 𝑛;

MongoDB behavior

𝑑𝑏. 𝑚𝑜𝑣𝑖𝑒. 𝑓𝑖𝑛𝑑({"_𝑖𝑑": (𝑖𝑑)})

Result: Neo4j was the fastest. Neo4j time twice as fast as Mon-

goDB, while MySQL was the slowest.

Query 6 MySQL MongoDB Neo4j

Result 1.98 ms 0.24 ms 0.12 ms

Table 9: Result time of query 6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

50 | RESULTS

Query 7 (Calculate the average movie score)

Query 7 is a query sometimes used in recommendation algorithms,

this query tests the ability to calculate the average result of entity

properties.

MySQL behavior

𝑆𝐸𝐿𝐸𝐶𝑇 𝑎𝑣𝑔 (𝑀𝑂𝑉𝐼𝐸_𝐼𝐷)
𝐹𝑅𝑂𝑀 𝑟𝑎𝑡𝑖𝑛𝑔
𝑊𝐻𝐸𝑅𝐸 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷 = (𝑖𝑑);

MySQL has a simple average function, avg().

Neo4j behavior

𝑆𝑇𝐴𝑅𝑇 𝑛 = 𝑛𝑜𝑑𝑒({𝑛𝑜𝑑𝑒𝐼𝑑})𝑊𝐻𝐸𝑅𝐸 𝑛. 𝑎𝑝𝑝𝐼𝑑
= {𝑎𝑝𝑝𝐼𝑑}𝑀𝐴𝑇𝐶𝐻 (𝑛) − [: 𝐻𝐴𝑆𝑅𝐴𝑇𝐼𝑁𝐺]
−> (𝑟: 𝑅𝑎𝑡𝑖𝑛𝑔) 𝑅𝐸𝑇𝑈𝑅𝑁 𝑎𝑣𝑔(𝑟. 𝑟𝑎𝑡𝑖𝑛𝑔)

MongoDB behavior

𝑄𝑢𝑒𝑟𝑦: 𝑑𝑏. 𝑢𝑠𝑒𝑟_𝑟𝑎𝑡𝑖𝑛𝑔. 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([

{$𝑚𝑎𝑡𝑐ℎ: {ratings.MOVIE_ID: 1}},
{$𝑢𝑛𝑤𝑖𝑛𝑑:$ratings},
{$𝑚𝑎𝑡𝑐ℎ: {ratings.MOVIE_ID: 1}},

{$𝑔𝑟𝑜𝑢𝑝: {"_𝑖𝑑": "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑀𝑂𝑉𝐼𝐸_𝐼𝐷", "𝑟𝑎𝑡𝑖𝑛𝑔𝑠":
 {$𝑎𝑣𝑔: "$𝑟𝑎𝑡𝑖𝑛𝑔𝑠. 𝑆𝐶𝑂𝑅𝐸"}}}],
{𝑎𝑙𝑙𝑜𝑤𝐷𝑖𝑠𝑘𝑈𝑠𝑒: 𝑡𝑟𝑢𝑒})

MongoDB have an average method, however as the ratings are

implemented as user buckets, the aggregate query needs to collect

all user buckets that include the movie id. It then splits them into

separate ratings and removes the unwanted ratings of other movies.

The average score of the movie is then calculated.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

51 | RESULTS

Results: Neo4j had the best result. MongoDB result was slow due

to the unwound array it had to do when it only wanted to extract all

the ratings of a movie. MySQL did only a simple average query but

got sixteen times slower time than Neo4j.

Query 7 MySQL MongoDB Neo4j

Result 31.61 ms 562.12 ms 1.82 ms

Table 10: Result time of query 7

Result summary

Table 11 shows the compiled results from all queries.

MySQL MongoDB Neo4j

Result(Query 1) 5.61 ms 4.00 ms 6.59 ms

Result(Query 2) 4.71 ms 7.20 ms 6.04 ms

Result(Query 3) 3.07 ms 0.59 ms 0.99 ms

Result(Query 4)
Does not com-

plete
241255 ms (4.0

min.)
Does not com-

plete

Result(Query 5)
Does not com-

plete
241140 ms (4.01

min.)
Does not com-

plete

Result(Query 6) 1.98 ms 0.24 ms 0.12 ms

Result(Query 7) 31.61 ms 562.12 ms 1.82 ms

Table 11: The result of all the queries.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

52 | RESULTS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

53 | DISCUSSION

5 Discussion

The performance results show that MongoDB had the best performance

in most categories compared to MySQL and Neo4j. However it is im-

portant to remember that the queries being tested are not real recom-

mendation algorithms used in production. The queries are mostly small

queries that are sometimes used in recommendation algorithms. To get a

more accurate comparison of the DBMS the databases would have to be

compared using one or more implementations of a real recommendation

algorithm. This was however outside the scope of this study.

MongoDB struggles when the data being queried lies in different collec-

tions. However, a well implemented data model using buckets for con-

nected data that needs to be retrieved often resulted in better perfor-

mance than both Neo4j and MySQL. Through the usage of functions like

the aggregate framework or MapReduce, together with the aggregation of

connected data into buckets, Mongo can handle large amounts of data

well. Both Query 4 and 5, which Neo4j and MySQL didn’t complete, were

completed by Neo4j in 4 minutes. The retrieval of individual nodes is very

fast and Mongo therefore performed best overall compared to the other

DBMS. The absence of schema means that the data model could be

changed easily. This was shown when importing data from the MySQL

tables. The data was imported as is, and later refactored into the desired

data model. The query interface is more advanced than the other DBMS

as it implements functions like MapReduce. MapReduce was not used for

any queries in the performance tests, but could prove to be an efficient

way of implementing a recommendation algorithm that handles big data

sets.

Neo4j is shown to have really bad performance with queries that handle

large amounts of data. As a queries must fit into one transaction, those

that are too large will result in out of memory errors. If a query has to

traverse the whole graph, or calculate values that depend on traversing

the whole graph (e.g. traversing all ratings, or all users) too many nodes

will be loaded into the DBMS and an out of memory exception will occur.

Unlike RDBMS it is not possible to limit the search by table row number,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

54 | DISCUSSION

which means that performing a big query in small iterations is much

harder. This could be achieved through the usage of additional labels or

indexed ids set by the application. According to the neo technology hard-

ware sizing calculator, the recommended hardware for running neo4j

with the Netflix dataset are at least 4 CPU cores and around 23G of RAM.

However this was not available at the time. The performance of Neo4j

could change dramatically if the RAM recommendations were followed,

as large queries containing big parts of the graph would then fit into

memory. The performance when accessing limited parts of the graph

however was good. In Query 7: Calculating the average rating for a movie,

Neo4j outperformed both MongoDB and MySQL. Still, this shows that

Neo4j is not suited for queries spanning the whole data set. When all

nodes have to be visited, a document structure is more efficient than a

graph.

The flexible schema of Neo4j proved valuable when developing the testing

skeleton. Labels and new relationships can be used to implement new

data models or speed up queries that are performed often. The Cypher

query language turned out to be simpler to use for more complex queries

than SQL.

MySQL had decent performance for most queries being benchmarked.

However it struggles with big joins. Neither Query 4 nor 5 did complete,

even after several hours, while the same queries in MongoDB took 4

minutes. MySQL did complete the same queries with smaller data sets,

but struggled with the testing data set of 100 million ratings. This shows

that joining big tables is not effective. MySQL is not flexible when it

comes to the data model. Running Alter Table statements to change the

data model is much more time intensive than data model changes are in

Neo4j and MongoDB. Advanced queries consisting of several joined ta-

bles are complicated to write, and prone to errors. In this area, MySQL

was deemed much harder to use than the other DBMS. However, given

the popularity of SQL databases, finding developers that know SQL is

much easier.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

55 | DISCUSSION

5.1 Impacts on economic, social and environmentally
sustainable progress

If sustainable economic progress is defined as increased profitability,

then recommendation services do have a positive impact on the number

of sales and therefore profits. This work has therefore contributed to

more efficient use of resources. It is however not possible to draw any

conclusions on the environmental impact of this work.

With access to personal user data, services have a great responsibility in

maintaining this data private. Any data collected should be done so at the

discretion of the user, and used only according to the terms accepted by

the user. This can however sometimes conflict with the interests of the

research community.

During the Netflix Prize contest, Netflix made parts of their user data

available to the contestants. This data had been scrambled, to avoid the

identification of individual users and their private recommendation data.

However some researchers showed that it was possible to retrieve the

original user data. Following this, Netflix was sued by 4 users. A follow up

contest was cancelled because Netflix could not guarantee that this ex-

posal of user data would not happen again. If data from a recommenda-

tion service will be used for research purposes, the user has to be in-

formed of this from the start. Great care has to be taken into obfuscating

the data to make it less probable that a user can be connected to his or

hers personal data.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

56 | DISCUSSION

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

57 | CONCLUSIONS

6 Conclusions

In this work a case study was performed to examine the different charac-

teristics of NoSQL and SQL databases, together with the use case of

Meepo AB and algorithms and queries needed to implement a recom-

mendation service. A testing skeleton was developed for a quantitative

analysis between the DBMS. It used the hexagonal architecture to make

the coupling between application layers loose. A quantitative analysis was

performed, where performance tests were run to compare the DBMS. The

results were then discussed and compared to the different criteria set

during the case study.

The performance tests show that MongoDB seems like the best choice for

this particular use case, using this particular data set and hardware con-

figuration.

Neo4j suffers from not being able to load the whole graph into RAM,

while MySQL performs average but seems to have problems with larger

data sets. However, this shows that graph databases such as Neo4j are not

the optimal choice for queries that need to access the whole database. It

also showed that NoSQL databases have several advantages compared to

traditional SQL databases. This work has shown that compared to both

MySQL and Neo4j, MongoDB seems like a better choice for storing data

needed to host a recommendation service.

However it is difficult to say what impact this would have on a real pro-

duction environment. For this, more research is needed. It would be de-

sirable to perform new performance tests using real recommendation

algorithms, more RAM to allow Neo4j to load the whole graph into

memory and bigger data sets to see how the DBMS would handle scaling

to several servers.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

58 | CONCLUSIONS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

59 | REFERENCES

References

[1] P.-Y. a. W. S.-y. Chen, "Does Collaborative Filtering Technology

Impact Sales? Empirical Evidence from Amazon.Com" Social Science

Research Network, 2007.

[2] J. B. a. S. Lanning, "The Netflix Prize," KDD Cup and Workshop,

2007.

[3] G. K. J. K. a. J. R. Badrul Sarwar, " Item-based collaborative filtering

recommendation algorithms.," WWW10, 2001, Hong Kong.

[4] B. M. S. a. G. K. a. J. A. K. a. J. T. Riedl, "Application of

Dimensionality Reduction in Recommender System -- A Case

Study," WebKDD-2000 Workshop, 2000, Minneapolis.

[5] G. Burd, "SYSADMIN NoSQL," 2011.

[6] DB-Engines, "DB-Engines Ranking of Document Storage," May

2014. [Online]. Available: http://db-

engines.com/en/ranking/document+store. [Accessed 13 06 2014].

[7] S. G. Jeffrey Dean, "MapReduce: Simplified Data Processing on

Large Clusters," OSDI'04: Sixth Symposium on Operating System

Design and Implementation, 2004.

[8] DB-Engies, "DB-Engines Ranking of Relational DBMS," DB-Engies,

05 2014. [Online]. Available: http://db-

engines.com/en/ranking/relational+dbms. [Accessed 23 05 2014].

[9] M. A. Rodriguez, "Property Graph Model," 13 Jun 2012. [Online].

Available: https://github.com/tinkerpop/blueprints/wiki/Property-

Graph-Model. [Accessed 27 05 2014].

[10] DB-Engines, "DB-Engines Ranking of Graph DBMS," 05 2014.

[Online]. Available: http://db-

engines.com/en/ranking/graph+dbms. [Accessed 23 05 2014].

[11] E. W. Dijkstra, "A note on two problems in connexion with graphs,"

Numerische Mathematik, vol. I, no. 1, pp. 269-271, 1959.

[12] P. N. N. R. B. Hart, "A Formal Basis for the Heuristic Determination

of Minimum Cost Paths," Systems Science and Cybernetics, vol. IV,

no. 2, 1968.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

60 | REFERENCES

[13] F. H. a. R. Peinl, "Performance of graph query languages:

comparison of cypher, gremlin and native access in Neo4j" In

Proceedings of the Joint EDBT/ICDT 2013 Workshops, no. EDBT

13, 2013, Genoa,.

[14] J. D. S. G. W. C. H. D. A. W. M. B. T. C. A. F. a. R. E. G. Fay Chang,

"Bigtable: A Distributed Storage System for Structured Data,"

OSDI'06: Seventh Symposium on Operating System Design and

Implementation,, 2006.

[15] J. D. M. E. A. F. C. F. J. F. S. G. A. G. C. H. P. H. W. H. S. K. E. K. H.

L. A. L. S. M. D. James C. Corbett, "Spanner: Google's Globally-

Distributed Database," OSDI'12: Tenth Symposium on Operating

System Design and Implementation, 2012.

[16] J. W. a. E. E. Ian Robinsson, Graph Databases, O´Reilly Media,

2013.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

61 | APPENDIX

Appendix

Figure5: User document in MongoDB

Figure 4: data model of user_rating(MongoDB, bucket)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

62 | APPENDIX

Figure 6: Movie odocument (MongDB)

Figure7: ER-Diagram of the database in MySQL

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

