
www.F
irs

tR
an

ke
r.c

om

G1-Uppsats

Webbprogrammerare

Matching in MySQL
A comparison between REGEXP and LIKE

Author: Emil Carlsson

Supervisor: Morgan Ericsson

Semester: Spring 2012

Course code: 1DV40E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-i-

Abstract
When needing to search for data in multiple datasets there is a risk that not all da-

tasets are of the same type. Some might be in XML-format; others might use a re-

lational database. This could frighten developers from using two separate datasets

to search for the data in, because of the fact that crafting different search methods

for different datasets can be time consuming.

One option that is greatly overlooked is the usage of regular expressions. If a

search expression is created it can be used in a majority of database engines as a

“WHERE” statement and also in other form of data sources such as XML.

This option is however, at best, poorly documented and few tests have been made

in how it performs against traditional search methods in databases such as

“LIKE”.

Multiple experiments comparing “LIKE” and “REGEXP” in MySQL have been

performed for this paper. The results of these experiments show that the possible

overhead by using regular expressions can be motivated when considering the gain

of only using one search phrase over several data sources.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-ii-

Abstrakt
När behovet att söka over flertalet typer av datakällor finns det alltid en risk att

inte alla datakällor är av samma typ. Några kan vara i XML-format; andra kan vara

i form av en relationsdatabas. Detta kan avskräcka utvecklare ifrån att använda två

oberoende datakällor för att söka efter data, detta för att det kan vara väldigt

tidskrävande att utveckla två olika vis att skapa sökmetoderna.

Ett alternativ som ofta är förbisett är att använda sig av reguljära uttryck. Om ett

sökuttryck är skapat i reguljära uttryck så kan det användas i en majoritet av data-

basmotorerna på marknaden som ett ”WHERE” påstående, men det kan även an-

vändas i andra typer av datakällor så som XML.

Detta alternativ är allt som ofta dåligt dokumenterat och väldigt få tester har ut-

förts på prestandan i jämförelse med ”LIKE”.

Som grund för denna uppsats har flertalet experiment utförs där ”LIKE” och

”REGEXP” jämförs i en MySQL databas. Försöken visar på att den eventuella

försämringen i prestanda kan betala sig vid användande av multipla datatyper.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-iii-

Acknowledgements
I would like to thank my supervisor Dr. Morgan Ericsson for helping me with this

paper and for the interesting discussions about potential data and challenging me

to go beyond my starting point with this paper.

I would also like to thank lecturer Daniel Toll for letting me evolve and indulge in

regular expressions during his course about PHP.

Elin Nilsson, Klas Lundin and Eric Johansson for reading the first pre-draft and

helping me understand that I needed to explain, to me obvious, things more thor-

oughly.

Also a big thanks to my classmates Ella Källman and Stefan Sahlin to have spurred

me when I was ready to drop out.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-iv-

Table of content

Abstract __ i

Acknowledgements __ iii

Table of content ___ iv

Introduction __ 1

Background __ 2

Regular expressions __ 2

Different dialects __ 2

Regular expressions in MySQL _______________________________________ 4

LIKE ___ 5

Method ___ 7

Method introduction ___ 7

Hardware __ 7

Server __ 7

Software ___ 8

Dataset ___ 8

Debris __ 8

Experiments __ 9

Calibrating experiments ___ 9

Actual words ___ 9

Random strings ___ 9

Common two letter words ___ 9

Result __ 12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-v-

Calibrating tests __ 12

Actual words __ 12

Random strings __ 14

Common two letter words __ 15

Using LIKE ___ 15

Using REGEXP with OR __ 16

Using REGEXP with regular expression separator _____________________ 17

Using REGEXP with full words and regular expression separator __________ 18

Potential error factors __ 20

Conclusion __ 21

Sources ___ 23

Appendix ___ 24

Data logs ___ 24

SQL data dumps ___ 24

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-1-

Introduction
When searching in MySQL databases containing large strings there can be a prob-

lem to match particular words or strings. Traditionally the statement LIKE is used

to filter the results. This is a very straightforward method that has a limited

amount of wildcards1 and also a limited way of creating the matches. Regular ex-

pressions on the other hand have a more complex usage of wildcards and can be

constructed to create a very precise match. This complexity also gives the regular

expressions an agility that makes it possible to craft expressions that also can give a

general match.

The regular expressions are more agile and can be made to create search terms that

could be used in both database queries and also in most programming languages to

search in for example XML files, text files and other type of data that is based on

strings. Using regular expression in a database engine to search with could there-

fore make it possible to search multiple data storage methods with a single expres-

sion that doesn’t have to be custom made for each data storage type.

The use of Regular Expressions in databases is fairly untested. A guess on why this

is could be that most developers either use them after they have fetched data or

they find it too complicated to use when creating queries. It could also be the fact

that few people know of the possibility to use regular expressions in queries.

The questions I would like to raise in this paper are:

1. Would using regular expressions be more efficient in execution time com-

pared to the LIKE method?

2. Would using regular expressions be more efficient in finding tuples when

performing a free word search than the LIKE method?

1 Here used in the context of something to represent zero or more characters without hav-

ing to write them out or specify them.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-2-

Background

Regular expressions

Regular expressions are a convenient way of matching pattern in strings. It dates

back to the early 1940’s. It was first introduced by two neurophysiologists [1]. But

it was later adapted by mathematicians who developed the basic notation further.

Ken Thompson published an article [2] in 1968 where he mentions a regular ex-

pression compiler. This compiler produced IBM 7094 object code from regular

expressions as source language. It was the beginning of qed, that later became ed2.

This was the first attempt to make regular expressions wide spread among users.

Today, almost all computer languages implement some kind of regular expression

engine.

Different dialects

There are three dialects within regular expressions, traditional NFA3, NFA POSIX

and DFA4. At first glance we see some notable differences. One of them is back-

tracking. This means that the regular expression engine keep track of certain

points of interest in the text where a match can differ. Another big difference is

what dictates how the match is made. While DFA is text dictated the NFA is ex-

pression dictated. That makes the backtracking functionality unneeded in the DFA

engines.

Suppose the expression “m(rs|r|s)”5 is executed against the sentence “My dear

mrs Astor”. The traditional NFA engine will let the expression dictate how the

comparison is made. It will first look for an “m” in the text. The first letter is an

“M” so it would start there. After the “M” a point is saved to go back to since we

2 A UNIX text editor.

3 Nondeterministic Finite Automaton

4 Deterministic Finite Automaton

5 Matches mr, ms and mrs.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-3-

have three different options. After the “M” it would then first try to match the “r”,

if that is unsuccessful it would match the “s” and final the “rs”, without having to

rematch the “m” in the beginning for each attempt. Since there is no match here it

will carry on trying to match the “m”. It will find another “m” at the ninth charac-

ter and it will redo the procedure to get a match at “mrs” and then return a match.

The DFA however is text dictated. This would mean that it can match all three

different matches at the same time. This would mean that it will try to match

“mr”, “ms” and “mrs” simultaneously when it hit an “m” in the text. This would,

at a first glance, make it a slower matcher than the traditional NFA. But since it

doesn’t do matches multiple times as with “mr” and “mrs” where the match “mr”

might lead to a “mrs” the DFA have excluded the match of “ms” and it doesn’t

have to rematch the “r” in “mrs”. So in the end, this makes it the fastest matcher

of them all.

The NFA POSIX works similar to the traditional NFA. This dialect will however

always strive to get the longest possible match. This will mean that it will try to

match all possible outcomes every time, even when it encounters a match. This

makes the NFA POSIX the slowest matcher of them all. It does on the other hand

comply with the POSIX standard [3].

Another difference between the traditional NFA, NFA POSIX and the DFA is the

functionality. With the traditional NFA you can use something called none captur-

ing parenthesis. When using a parenthesis in regular expressions the match in that

parenthesis is stored as a variable to be called in later. This is mostly used when

performing replacements or when a certain block of text need to be stored sepa-

rately. For example if one would like to store all names after the title mr, ms or

mrs, the expression “.*m(rs|r|s)\.?\s(\S+)\.?”6 could be used. In a DFA or an

NFA POSIX engine, the name would be stored as the second variable. But in a

traditional NFA the expression could be changed into “.*m(?:r|s|rs)

6 Matches something previous to mr, ms or mrs, then an optional ., after that a whitespace

and then something that is not a whitespace at least once and after that an optional . added

for the capturing in a variable.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-4-

\.?\s(\S+)\.?”7 and nothing but the name would be stored as a variable. This leave

room for optimization, i.e. in PHPs PCRE8 the use of non-capturing parentheses

can be up to 150 times more efficient than by not using them [4].

In the traditional NFA you have an option of using lazy quantifiers. These can be

used when matching with a * in your expression to ensure that you match up to

the first occurrence of a condition after instead of to the last. If the previous

“.*m(rs|r|s) \.?\s(\S+)\.?” would be changed to “.*?m(rs|r|s) \.?\s(\S+)\.?” it

would match to the first point where a mr, mrs or ms is found in case there are

multiple sentences.

Another difference worth mentioning is the lookahead and the lookbehind that

can be found in the traditional NFA. To do that we add “(?=expression)” in front of

our expression. This would make it look like this:

(?=Dear).*m(rs|r|s)\.?\s(\S+)\.?. Now for this expression to match there must

be a “Dear” previous to the main part of the expression. The lookbehind work in

the same way, but look for something behind the main part of the expression to

match. The lookbehind should also be placed in front of the main part and it

would look like this: (?<=expression). As you can see there is a question mark (?)

right after the left parenthesis ((). This makes it not to be captured in as variable.

The expression used in this explanation is fairly overcomplicated. Since the only

difference between “mr” and “mrs” is the “s” at the end a more efficient way of

crafting this expression would be “m(rs?|s)”. In this expression the “s” is optional

after the “r”.

Regular expressions in MySQL
Regular expressions in MySQL were probably introduced in version 4. There is a

lack of documentation stating exactly when. But support forums have questions

7 The ?: combination tell the regular expression engine the match within the parenthesis

does not have to be stored as a variable.

8 Perl Compatible Regular Expression

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-5-

asked at 2006, and the documentation of the older versions (1-4) are merged on

the official MySQL website. MySQL uses Henry Spencer’s regex(7) implementa-

tion of regular expressions [5]. This is a DFA engine that complies with the

POSIX standards.

MySQL have documented Regular Expressions as a way of replacing text in re-

sults. But there is a possibility to use them when doing a SELECT query. In that

case they would be a substitute for the LIKE command to filter results to ensure

that the results returned contains, or do not contain, a particular combination of

characters. In these experiments the REGEXP command was used to perform

SELECT queries and comparing them with the LIKE command.

LIKE

Like is a SQL9 statement that is almost universal in all dialects of SQL. It is used to

filter out search results in a SELECT query. When a database would be queried

with “SELECT * FROM foo.bar;” it would return all tuples found in the table bar

from the database foo. This might be too many tuples to be manageable. In the

case of this report it would return over 200 000 tuples.

To limit the amount of tuples a LIKE-statement can be added to the query. For

example “SELECT * FROM foo.bar WHERE content LIKE ‘Joffrey’;“. This que-

ry however would only return tuples where the column named content is the text

“Joffrey”. So, it would be the same as “SELECT * FROM foo.bar WHERE con-

tent = ‘Joffrey’;”.

With MySQL there are two kinds of wildcards. The percent character (%) that rep-

resent zero or more characters, and the underscore character (_) that represent ex-

actly one character. With these two you can use LIKE to filter the results a bit

more. With the previous example we could use “SELECT * FROM foo.bar

WHERE content LIKE ‘%Joffrey%’;”. This would match all tuples where content

contains the text “Joffrey“ and is surrounded by zero or more characters.

9 Structured Query Language

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-6-

With these two wildcards a search term could be created that is a bit more com-

plex. Consider this usage of wildcards “J_ffrey”. This would match both Jeffrey

and Joffrey. There are however a limited usage of these wildcards and they are not

near the complexity of how you can use regular expressions when it come to alter-

nation of letters and amount of alternations to be made. The term “J%ffrey”

would match ‘Just about ffrey’ as well as ‘Jeoffrey’, ‘Joffrey’ and ‘Jeffrey’.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-7-

Method

Method introduction

All experiments were conducted with the same base format. A query was con-

structed. Then a connection to the database was established. To prevent overhead

from the program query execution the query was executed and later a timestamp

was created using the current time. After this was done the response time and all

search times except for the first response was received. After all matches were

read, a second timestamp was created. Then a comparison between the two

timestamps was made and the difference was established as the response time.

This method makes it easier to link a time to a request. Since the sheer amount of

queries executed against the database would make it very time consuming to read

log files generated by MySQL. It would also have been impossible to monitor

MySQL workbench during the entire execution period.

All queries were also executed manually to assure that the measurements were sim-

ilar to the automatic tests.

Hardware

Server

The server was a virtual machine that used VM ware vSphere 5. The hardware was

configured with two Intel Xeon X5680 processors running at 3.33 GHz as top

performance. It had 4 GB DDR3 (18x4GH Dual rank RDIMMs) 800MHz rams

using 1333MHz DIMMs shared on 3 memory channels. This powered a Windows

Server 2008 R2 Enterprise with service pack 1 that was the host of a MySQL

v5.5.22 database engine.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-8-

Software

Dataset

The dataset consist of 252 759 rows containing the body e-mail conversations.

This dataset was selected because of the imparities of the strings it contains and al-

so the size of the strings to be searched in. This is to improve the hit rate of ran-

dom keywords.

The dataset is a scaled down version of the Enron10 dataset. The manipulation

consisted in removing all information that would not be used. The information

used was e-mail body and the ID of the e-mail.

Debris

Debris11 is a program written in C# using .NET 4. The main function is to search

in databases with the help of keywords. It was used and modified for seven types

of experiments to see the difference between REGEXP and LIKE statements

when querying.

The main part of the program consists of a class library and is independent of a

user interface. In this experiment the class library was used and a simple console

GUI was created to give some insight in how far the program had come along in

its executions.

10 Can be found at http://www.isi.edu/~adibi/Enron/Enron.htm

11 Stem from the sound of DB, database, and RE, Regular Expression.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-9-

Experiments

Calibrating experiments

A fully randomized query was executed a random amount of times using both

LIKE and REGEXP to see whether or not there would be a difference between

the individual queries. Out of these every 250th execution was stored to get more

precise information about that loop. The experiment was executed until the re-

sponse time could be assured that there were no large offsets in response time.

This was made by comparing each time to see if they were similar.

The experiment also gave a hint of how the response times could differ and still be

within a normal time span.

Actual words

The list of search words is statically increased by one for each run. The list is iden-

tical except for the word added. This means that the hit rate can only be increased

and never decreased. This was performed until the list reaches 15 words in length.

Each query is executed five times to get a margin for time differences. The words

chosen are in English. But they are not guaranteed to be found in the dataset.

Random strings

In this experiment the word list was created by words that have a low or no hit

rate in the dataset. The words consisted of a combination or random alphanumeric

characters to ensure that a match would be highly improbable. Each query was ex-

ecuted five times and the maximum length of the search array was 15 words.

Common two letter words

Searching for the most common prepositions found in the text. In these cases

however regular expressions were used in a more complex way. The preposition

used was:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-10-

● is

● as

● it

● at

● in

● an

● if

● of

● on

In the LIKE statement the query looked like this:

SELECT * FROM enron.bigstrings WHERE content LIKE ‘%is%’

OR content LIKE ‘%as%’ OR content LIKE ‘%it%’ OR content

LIKE ‘%at%’ OR content LIKE ‘%in%’ OR content LIKE

‘%an%’ OR content LIKE ‘%if%’ OR content LIKE ‘%of%’ OR

content LIKE ‘%on%’;

With regular expressions the query looked like this:

SELECT * FROM enron.bigstrings WHERE content REGEXP

‘[ai][st]’ OR content REGEXP ‘[aio]n’ OR content REGEXP

‘[io]f’;

A second version of the regular expressions query was constructed to test if there

was a difference between separating the expressions and to use the built in regular

expression or separator. That expression looked like this:

SELECT * FROM enron.bigstrings WHERE content REGEXP

'[ai][st]|[aio]n|[io]f'

There was also a control experiment performed with regular expressions where the

query string was designed like this:

SELECT * FROM enron.bigstrings WHERE content REGEXP

‘is|as|it|at|in|an|if|of|on’;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-11-

The purpose of this control is to see if there is a difference in how you design the

expression and if there is a difference it how the database execution time of the

different expressions.

In these experiments no word boundary was used. This means that a match can be

made with the “is” in “island” and “isotope” and not only where “is” can be found

as a separate word. Each type of query was executed 250 times to get a result

where you can reduce the occurrence of temporary spikes.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-12-

Result

Calibrating tests

When executing 2000 queries with the LIKE expression and 2000 queries with

REGEXP with searching for the words: phone, Europe, sleep, food, ketchup,

thin, Facebook, away, and re. No large offset in response time was found. With

LIKE the largest difference between the individual query found was 0.25 seconds.

In the REGEXP case the largest offset was 3.02 seconds.

Actual words

When using a query to ensure a match the difference in the time it took to get a

full response from the server differs heavily between the different statements.

With one word the LIKE statements highest response time was 2.3 seconds

whereas the highest response on the REGEXP statement was 14.1 seconds.

(graph 1).

Graph 1 Difference between LIKE and REGEXP.

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

sp
o

n
se

 t
im

e
 i

n
 s

e
co

n
d

s

Number of words

Automated actual words

LIKE

RegExp

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-13-

It should be noted that the increase in execution time for the LIKE statement had

a large percentage increase between one and two key words (graph 2). The re-

sponse time went up from 2.3 seconds to a highest response of 8.4 seconds, this is

an increment of 365% in response time, and after this point the increase was al-

most linear.

Graph 2 Highest increase of LIKE.

An increase of the response time of this magnitude never occurs; the highest in-

crease in percent is 260%. This occurs when the keywords are increased from one

(14.1 seconds) to two (36.8seconds) keywords. The REXEXP (graph 3) however

is not linear in the increment in this experiment. So there are other breaking points

where the increment is over 150%. One to be noted is between three and four

keywords where the difference is 189%.

0

5

10

15

20

25

1 2 3 4 5

R
e

sp
o

n
se

 t
im

e
 i

n
 s

e
co

n
d

s

Number of words

LIKE

LIKE

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-14-

Graph 3 Largest increase of REGEXP. X: Word count.

Random strings

These tests proved not to be a mismatch since there were hits on randomized let-

ter combinations. The first match occurred with the combination “Ty”, later also

the word “Cup” was introduced by the random string generator. There were also

other combinations of words that resulted in a match.

With no match of the strings the response time in both cases were 0.0 seconds.

Since I have measured response time where I exclude the first matching sequence

there have to be a match for a reading to occur.

However in the case of both LIKE and REGEXP with random words the general

response time was higher compared to the array of words used. For example the

response time of 121 matching tuples had a response time of 19.7 seconds with

LIKE and 112.2 seconds with REGEXP compared to the 19.2 seconds for LIKE

and 121.4 seconds with REGEXP when the hit count was 8211 matching tuples.

In this experiment the amount of words were larger than in the previous experi-

ments it is more visible where the response time starts to level out. But in the case

0

20

40

60

80

100

120

140

1 2 3 4 5

R
e

sp
o

n
se

 t
im

e
 i

n
 s

e
co

n
d

s

Number of words

REGEXP

REGEXP

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-15-

of REGEXP there is a clear increment of the response time again that is not visi-

ble in the LIKE experiments (graph 4).

Graph 4 Comparison of response time with LIKE and REGEXP with random strings.

Common two letter words

When performing tests with the common two letter words found in the dataset the

results were less differentiated than with the previous tests. Out of the four types

of experiments made here only one had a clear difference from the other in re-

sponse time.

Using LIKE

When using the first kind of query where the individual words are separated with

an “OR” and the LIKE statement is used there are two major spikes in response

time (graph 5). There is a large spike at 1.6 seconds and one at 3.0 seconds, the

majority of the response times are situated in between these spikes. There are

some times that are extremely high though. The highest response time was regis-

tered at 17.9 seconds. The span of which the queries response time can be found

0

200

400

600

800

1000

1200

1400

1600

1800

2000
R

e
sp

o
n

se
 t

im
e

 i
n

 s
e

co
n

d
s

Number of words

LIKE

REGEXP

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-16-

lies between 1.5 seconds and 17.9 seconds. The average response time was 3.3 se-

conds. The LIKE expression also had the widest range in its time span.

Graph 5 Spread of response time of the common two letter words using LIKE.

Using REGEXP with OR

In this experiment regular expressions were used in a more complex way but with

the SQL separator “OR” between different REGEXP statements (graph 6). Here

there were three notable spikes. One of them at 2 seconds, the second spike at 2.1

seconds, and the third spike at 2.7 seconds. In difference to the LIKE statement

there was not a containment of the majority in between two spikes. The span of

the lowest spike at two seconds and the largest spike at 2.7 seconds are less than

the span of the LIKE statement. But the majority of all hits are within a similar

timespan of 1.4 seconds. In general the time span is smaller going from 1.9 se-

conds to 13.4 seconds compared to the LIKE query. The average response time

was 3.7 seconds in this experiment.

0

5

10

15

20

25

30

35

40

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 7.8 8 8.3 12.9 13.1 17.9

Q
u

e
ri

e
s

Response time in seconds

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-17-

Graph 6 Spread of response time of the common two letter words using REGEXP and the SQL OR
statement.

Using REGEXP with regular expression separator

Once again there are clear spikes in the response time, with 56 response times at 2

seconds and 49 at 2.8 seconds. But as with the query using the SQL “OR” separa-

tor there is no large cluster of response times in between these spikes. The general

dispersement of all response times is fairly even. This experiment had the shortest

time span of responses that was situated between 1.9 seconds and 12.9 seconds.

The average response time was 3.4 seconds (graph 7).

0

5

10

15

20

25

30

35

40

45

50

1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 7.7 7.9 8.1 8.3 8.6 12.913.4

Q
u

e
ri

e
s

Response time in seconds

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-18-

Graph 7 Spread of response times with common two letter words using REGEXP and using the
regular expression or separator.

Using REGEXP with full words and regular expression separator

When using REGEXP with full words and separating them with the regular ex-

pression separator bar (|) there is a clear cluster. This is situated between 2.8 se-

conds and 3.4 seconds. There are a high representation of 3.2 seconds and 3.3 se-

conds. The fastest time was higher than with the other experiments of 2.5 seconds

but the highest measured time was more like the other REGEXP queries than

with the LIKE query of 13.7 seconds (graph 8).

0

10

20

30

40

50

60

1
.9 2

2
.1

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.9 3

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

7
.8

7
.9 8

8
.1

8
.4

1
2

.8
1

2
.9

Q
u

e
ri

e
s

Response time in seconds

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-19-

Graph 8 Spread of response times with common two letter words using REGEXP with full words
and the regular expression or separator.

0

10

20

30

40

50

60

2
.5

2
.6

2
.7

2
.8

2
.9 3

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9

7
.8

8
.2

8
.3

8
.4

8
.5

8
.6

8
.8 9

1
3

.3

1
3

.7

Q
u

e
ri

e
s

Response time in seconds

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-20-

Potential error factors
Since there are few earlier experiments made with a similar topic as this I have

made a few errors that I noted at the end of the ten week period I had to conclude

this paper in.

Since these experiments were performed on a virtual server, the overall workload

on the host is unknown. Some of the times might have been influenced by heavy

usage of that host computer. This could very well explain why there is in some

cases an extreme peak that does not seem to fit into the other response times.

The way I chose to time my results was not optimal when it came to measure time

when no tuples could be found. Then the response time was 0.0 seconds. The

method to measure time did however work when matching tuples were found.

Sadly I did not realize this until after more than 75% of the experiment time had

passed and the experiments could not be remade with this error fix.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-21-

Conclusion
When using regular expressions to perform searches in a MySQL database the

most efficient ones were those that were more optimized expressions. When the

POSIX representations, i.e. [[.space.]], are used the LIKE statement is clearly more

efficient than REGEXP. The experiments performed by me did not use POSIX

representations on the LIKE version of the same search term. The POSIX repre-

sentations evidently created a longer response time. This could depend on either

that POSIX representations in general might be more time consuming to convert

or that MySQL have an inefficient way of interpreting them.

When using a regular expression without POSIX representations, the tests are in-

conclusive. It is hard to see which of REGEXP or LIKE is more efficient. Both

contain some peaks that are about the same in response time, but both have a ma-

jority of response times below 3.5 seconds. Considering the amount of tuples re-

turned, 250 135, in the experiments not using POSIX that could be viewed as a

fairly fast response time.

However, if an implementation would be made via automation of code, it would

be easier for the programmer to simply use the input of a user and not change the

white spaces to the correct POSIX equivalent counterparts. But in an implementa-

tion in this way the LIKE statement would probably be easier to use to automati-

cally compose search terms.

When using the regular expression bar (|) separator the search terms are easier to

read for a human when used to separate complete words. This however seem to

increase the response time quite much. The response time was increased with al-

most a full second.

Since automatically comparing words to create an expression that is efficient with

the REGEXP statement would be a fairly complex algorithm and the execution

time of performing an operation like this is unknown to me at this point. It would

be very interesting to create an algorithm and try using this with search terms and

compare it with LIKE statements.

Why the spikes in execution time occur is unknown to me. They seem to be at a

very random rate and completely dependent on how the processor work at that

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-22-

time, and since the experiments were performed on a virtual machine the payload

at that time might have been higher on the entire server. It is also probably influ-

enced by how much of the cache memory is used on the server etc. This would be

interesting to see the performance on a server that is better configured to be used

as a MySQL server by someone who has more knowledge and experience in con-

figuring these than me.

To conclude: With a correctly formed regular expression where the expression is

designed to be optimal there is no visible difference between LIKE and

REGEXP. Also POSIX representations should be avoided to increase the re-

sponse time.

When the readability of the search term in the query is needed the REGEXP

statement is to be preferred with the regular expression separator.

It would be interesting to recreate these experiments without using POSIX repre-

sentations. It would also be highly interesting to try and create an algorithm that

would be able to transform search keywords into an optimized regular expression.

I would also like to see how different database engines would perform compared

to each other. It would also be interesting to see how i.e. MySQL would perform if

the regular expression engine was exchanged to a traditional NFA engine.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-23-

Sources

[1] J. Friedl, "A Casual Stroll Across the Regex Landscape," in Mastering

Regular Expressions, Sebastpool, O'Reilly Media, 2006, p. 85.

[2] K. Thompson, "Programming Techniques: Regular expression search

algorithm," Communications of the ACM, vol. 11, no. 6, pp. 419-422, 1968.

[3] The Open Group, "Posix Certified," 17 May 2006. [Online]. Available:

http://get.posixcertified.ieee.org/docs/POSIX_Certification_Guide.html.

[Accessed 8 May 2012].

[4] J. E. F. Friedl, "Understanding Benchmarks in This Chapter," in Mastering

Regular Expressions, Sebastopol, O'Reilly Media, 2006, p. 249.

[5] "MySQL :: MySQL 5.1 Reference Manual :: 12.5.2 Regular Expressions,"

Oracle, [Online]. Available:

http://dev.mysql.com/doc/refman/5.1/en/regexp.html. [Accessed 21

May 2012].

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Emil Carlsson

-24-

Appendix

Data logs

D1:1 - Full log and graphs of automated incremented strings with real words.

http://upload.b-zeal.net/paper/d1.1.graphs_full_log_automated_strings.xlsx

D1:2 - Full log and graphs over randomized strings.

http://upload.b-zeal.net/paper/d1.2.graphs_full_log_random_strings.xlsx

D1:3 - Partial logs (first 250 runs) and graphs of common two letter words exper-

iments.

http://upload.b-zeal.net/paper/d1.3.graphs_partial_log_common_words.xlsx

L1:1 - Full log of all individual queries unedited.

http://upload.b-zeal.net/paper/l1.1.full_log_individual.xls

L1:2 - Unedited log of keyword searches with automated calculations.

http://upload.b-zeal.net/paper/l1.2.log_comparison_increasing_keyword_list.xls

SQL data dumps

SD1:1 - Full dump of dataset.

http://upload.b-zeal.net/paper/SD1.1.full_dataset_dump

SD1:2 - Full dump of all logs.

http://upload.b-zeal.net/paper/SD1.2.full_log_dump.sql

Source code

Debris

http://upload.b-zeal.net/paper/ConsoleGUIDebris.rar

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

351 95 Växjö / 391 82 Kalmar
Tel 0772-28 80 00

dfm@lnu.se

Lnu.se

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

