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Abstract

To improve the control of a steel casting process ABB has de-
veloped an Electro Magnetic Brake (EMBR). This product is
designed to improve steel quality, i.e. reduce non-metallic inclu-
sions and blisters as well as risk of surface cracks. There is a
demand of increasing the steel quality and in order to optimize
the steel casting, simulations and experiments play an impor-
tant role in achieving this. An advanced CFD simulation model
has been created to carry out this task.

The validation of the simulation model is performed on a
water model that has been built for this purpose. This water
model also makes experiments possible. One step to the simu-
lation model is to measure the velocity and motion pattern of
the seeding particles and the air bubbles in the water model to
see if it corresponds to the simulation results.

Since the water is transparent, seeding particles have been
added to the liquid in order to observe the motion of the water.
They have the same density as water. Hence the particles will
follow the flow accurately. The motions of the air bubbles that
are added into the water model need also to be observed since
they influence the flow pattern.

An algorithm - ”Transparent motions” - is thoroughly in-
spected and implemented. ”Transparent motions” was originally
designed to post process x-ray images. However in this thesis,
it is investigated whether the algorithm might be applicable to
the water model and the image sequences containing seeding
particles and air bubbles that are going to be used for motion
estimation.

The result show satisfying results for image sequences of par-
ticles only, however with a camera with a faster sampling inter-
val, these results would improve. For image sequences with both
bubbles and particles no results have been achieved.
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Chapter 1

Introduction

There are different methods of casting steel. The most com-
monly used technique in steel production is Continuous Cast-
ing. In recent years the demand for higher quality and larger
quantities of steel has increased. This is what gives the Contin-
uous Casting method an advantage compared to other existing
methods, due to the fact that it is faster. Continuous Casting
processes are the most efficient ways to solidify large volumes of
metal.

1.1 Continuous Casting

Continuous casting is distinguished from other solidification pro-
cesses by its steady state nature, relative to an outside observer
in a laboratory frame of reference. The molten metal solidi-
fies against the mold walls while it is simultaneously withdrawn
from the bottom of the mold at a rate which maintains the
solid/liquid interface at a constant position with time [1].

In the continuous casting process, pictured in figure 1.1, mol-
ten steel flows from a ladle, through a tundish into the mold. It
should be protected from exposure to air by a slag cover over
each vessel and by ceramic nozzles between vessels. Argon gas is
added to prevent clogging. Once in the mold, the molten steel
freezes against the water-cooled copper mold walls to form a
solid shell. This shell contains the liquid as the shell is with-
drawn continuously from the bottom of the mold.

1
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Figure 1.1: Continuous Casting process
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1.2 Electro Magnetic Brakes

To improve the control of the steel casting process ABB has
developed an Electro Magnetic Brake (EMBR). This product
is designed to improve steel quality, i.e. reduce non-metallic
inclusions and blisters as well as risk of surface cracks. EMBR
brakes the flow of steel, which helps to remove impurities and
prevents mold powder from being dragged down into the mold
see figure 1.2.

Figure 1.2: EMBR

To achieve high steel quality, it is important to use the cor-
rect braking power [8].

In order to optimize the steel casting in such a way that
it will produce steel of as high quality as possible, it is crucial
to perform simulations and experiments. Therefore, a simula-
tion model software based on advanced Computational Fluid
Dynamics (CFD) has been created. The half scale water model
has been developed in order to be able to validate the simulation
model and also to be able to perform experiments. The water

3
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model consists of the parts in figure 1.2 and argon is substituted
by air and the steel with water. When validating the model
ABB wants to obtain similar flow topology and velocity vectors
in the simulation as in measured velocities in the water model,
both for the liquid and air bubbles.

1.3 Motion Estimation

1.3.1 Motion

Naturally one relates motion with changes in position. In im-
age processing motion might also be associated with changes.
That is variation in one image to another in an image sequence.
Differences from one image to another in image processing are
change of gray values. However a change of gray values does not
necessarily say that there is any motion present. An example
of this is an image sequence showing a room and a door. When
the door is closed one illumination is present while in another
image where the door is open a new illumination takes place
which results in change of gray values. Nevertheless no motion
is present. This observation results in that motion might result
in spatial gray value changes, but it might also be due to the fact
that the illumination has been altered [7]. In image processing it
is possible to measure changes in pixel values over time, however
this is only an indirect connection to movement. Even if some-
thing is moving it is not always possible to measure it. There
is no simple way of measuring movement in images, but the op-
tical flow method, described below, provides a way that might
be good enough after some approximations and assumptions are
made.

1.3.2 Optical Flow in general

Motion estimation can sometimes be challenging and there are
numerous methods available. However, in the following section
one method of approach - Optical Flow - will be described. Op-
tical Flow has a chance of solving the motion estimation problem
because of the fact that there are constant illumination in the
scene and that the objects in a neighborhood move in a similar
way.

4
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When analyzing a series of images over time - a sequence
of images - containing moving objects, it is possible to retrieve
useful information as a result of the movement of the objects
from image to image.

An example of this is an image sequence of a bicycle rider
cycling on the street. With the help of optical flow it is possible
to calculate the motion of the bicyclist. Another area of appli-
cation is that by determining the motions it is also achievable
to separate the background from the foreground.

The function optical flow is able to estimate the number of
objects there are in the scene, the direction they are moving,
how fast they are moving, and the type of motion.

Using the optical flow technique, one two dimensional vector
u(x, y) is computed for each pixel in the image sequence. The
vector describes the direction and how fast the content in that
pixel is moving [4].

1.3.3 Transparent Motions

The algorithm - Transparent Motions - is an unexplored way to
estimate multiple motions in two phase flows [9]. It was origi-
nally designed for post processing x-ray images. It is based on an
Optical Flow algorithm. It estimates two motions in every pixel.
Hence, this method has a good chance of estimating motion in
the water model.

1.4 Purpose

The goal of this report is to describe the algorithm ”Transparent
motions” in detail and investigate whether it is possible to use it
for the purpose of measuring motion of particles and bubbles in a
water model developed by ABB Corporate Research. Hopefully,
this report will show that this algorithm is useful in such a way
that it provides reliable vector maps for the bubbles and particles
separately.

1.4.1 Problem description

One way of estimating multiple motions is to segment the two
phases and estimate the motions separately. Here, the term two

5
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phase flow refers to a system containing gas and liquid - air and
water.

This is not possible with the equipment available today. This
includes one high speed camera and one video camera. The
solution to this problem is to find a method that does not require
segmentation of the two phases. Hence, ”Transparent motions”
is investigated. The theory behind transparent motions needs
to be inspected thoroughly in order to be able to implement an
algorithm. The image sequences that are going to be used for
motion estimation will contain seeding particles and air bubbles.

1.5 Tasks

This section describes the tasks that are carried out in the thesis.

1. The first task is to collect background information in or-
der to understand the steel casting process and the water
model.

2. The largest part of the thesis is to understand the theory
behind ”Transparent motions”.

3. Implement the method.

4. Test the method using visual means.

1.6 Thesis Outline

• The Background chapter offers an introduction to the wa-
ter model, the Particle Image Velocimetry system and the
camera.

• The third chapter - Transparent Motions provides a thor-
ough walk through of the article of which the thesis is
based on.

• The fourth chapter shows the estimation results.

• The fifth chapter provides a discussion.

6
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Chapter 2

Background

2.1 The Particle Image Velocimetry

System

The Particle Image Velocimetry system (PIV) is provided from
Dantec Dynamics. It is specifically set up to provide instan-
taneous velocity vector measurements in a cross-section of the
mold (see figure 2.1 for velocity vector map). This system is an
alternate method to estimate motions. However in this thesis it
is used for the purpose of image acquisition only.

2.1.1 Principles

”In PIV, the velocity vectors are derived from sub sections of
the target area of the particle seeded flow by measuring the
movement of particles between two light pulses.

The flow is illuminated in the target area with a light sheet
shown in figure 2.2. The camera lens images the target area
onto the CCD array of a digital camera. The CCD is able to
capture each light pulse in separate image frames.

Once a sequence of two light pulses is recorded, the images
are divided into small subsections called interrogation areas.
The interrogation areas from each image frame, I1 and I2, are
cross correlated with each other, pixel by pixel.”

”A velocity vector map over the whole target area is obtained
by repeating the cross correlation for each interrogation area
over the two image frames captured by the CCD camera” [6].

7
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Figure 2.1: An example of a velocity vector map.

2.1.2 The Camera

The available camera is part of the PIV system from Dantech
Dynamics. It is supported in the FlowMap software which is
used for post processing the images. This is how Dantec Dy-
namics describes the camera.

”The cross-correlation cameras supported in the FlowMap
PIV system use high-performance progressive-scan-interline CCD
chips. Such chips includes 1018 x 1008 light-sensitive cells and
an equal number of storage cells. These are shown schematically
below in figure 2.3. The latter are not exposed to light. The first
laser pulse is timed to expose the first frame, which is transferred
from the light sensitive cells to the storage cells immediately af-
ter the laser pulse. The second laser pulse is then fired to expose
the second frame. The storage cells now contain the first camera
frame of the pair with information about the initial positions of
seeding particles. The light sensitive cells contain the second
camera frame. These two frames are then transferred sequen-
tially to the camera outputs for acquisition and cross correlation
processing by the FlowMap PIV Processor.”

This camera can produce images with an interval of 37ms
at most, which means less than 30 images per second. The

8
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Figure 2.2: Overview of the principles of the PIV system.

Figure 2.3: Schematic illustration of light-sensitive pixels and
storage cell layout of cross correlation PIV cameras.

9
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Figure 2.4: An image of particles acquired by the PIV system.

resolution of the images is 1018x1008 pixels (see figure 2.4 for
an example of an image).

2.2 The Water Model

ABB is developing Electromagnetic Brakes (EMBR). The cen-
tral reason of developing this product is to ensure that the qual-
ity of the steel in the casting process will be as high as possible.
To improve the product even more an on-line control system,
EM Control, is being developed as well. It controls the sur-
face flow rate and reduces flow and jet oscillations. The water
model is used for carrying out experiments and for validating a
simulation model of a steel casting process.

The water model looks like figure 2.5. The smaller white dots
are seeding particles and the larger ones are air bubbles. The
bubbles are representing the argon gas which is used to reduce
clogging in the pipe and lift impurities to the surface in a real
process.

10
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Figure 2.5: With seeding particles and bubbles

2.2.1 Motion estimation in the water model

One step to the simulation model is to measure the velocity and
motion pattern of the seeding particles and the air bubbles in
the water model to see if it corresponds to the simulation results.
Seeding particles are added to the water in order to observe the
motion of the transparent water. They have a size of 50µm, and
have the same density as water. Hence they will follow the flow
of the water accurately. The other motion that is interesting is
the air bubbles. They influence the flow pattern of the water.
Hence, it is necessary to perform motion estimation of particles
with the air bubbles present. The motion estimation is achieved
by taking multiple images of the flow of the water. With the help
of the laser, a thin sheet is lit up. A camera is synchronized with
the laser and acquires one image each time the laser is turned on.
This results in image sequences showing the particles and the
bubbles. The particles have moved from one image to another.
The change of gray values indicates that there is motion present
since the particles have constant illumination. These images
are then used in ”Transparent motions” in order to be able to
determine the velocities.

11
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Chapter 3

Transparent Motions

The following chapter describes the algorithm ”Transparent Mo-
tions” in the article [9]. It is a framework for estimating multiple
motions that does not require segmentation of the two phases.

It is based on the thought that the images are composed
of two layers. In our case with two motions, the images have
two layers. One layer consists of the particles that represent the
water flow and the other layer contains the air bubbles. The
outcome from this technique is that you obtain a pair of vectors
from every pixel in the image. The drawback with this routine
is that it does not give any information about which layer the
motion belongs to. However, it might be possible to estimate
which layer a velocity belongs to by assuming that the velocities
should not vary too much in a neighborhood.

This method uses optical flow to detect the motions. The
optical flow is defined as the flow of gray values at the image
plane, which we can observe. Optical flow and motions field are
equal if the object brightness does not change. For notational
clarity it is shown in figure 3.1 that the origin is in the upper left
corner. Throughout this report x is used to describe the rows
and y the columns in the image. These coordinates are always
discrete integers. The first image occurs when t = 0 and the
following at t = 1 to t = N, where N is the number of images in
the sequence.

3.1 Optical flow

The optical flow is derived from the following equation.

12
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Figure 3.1: Coordinate system. t = [frames] y = [pixels] x =
[pixels].

vxfx + vyfy + ft = 0 (3.1)

This equation is based on the assumptions that the object
brightness does not change, and that the neighboring pixels
move in a similar way. Where does this equation come from
and how could it be true?

The Optical Flow can be illustrated in the following way.
If any point is considered in the first image and if it is moved

Figure 3.2: Visualization of Optical Flow

13
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a certain distance in the next image, vxt in the x-direction and
vyt in the y-direction, the following equation is acquired,

f(x0, y0, t0) = f(x0 + vxτ, y0 + vyτ, t0 + τ) (3.2)

where f is an intensity function and x0, y0, t0, are the coor-
dinates of the pixel that is being moved. This is illustrated in
figure 3.2. Eq.(3.2) says that if the point is moved a certain
distance with a constant velocity, this point will maintain its
intensity. Both sides in Eq.(3.2) is differentiated with respect to
τ , the left hand side becomes zero and the right hand side an
expression of partial derivatives Eq.(3.3). These are calculated
by using the chain rule.

0 =
∂f

∂x

∂x

∂τ
+

∂f

∂y

∂y

∂τ
+

∂f

∂t

∂t

∂τ
(3.3)

∂x

∂τ
= vx,

∂y

∂τ
= vy,

∂t

∂τ
= 1 (3.4)

0 =
∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂t
(3.5)

Normally these partial derivatives,∂f
∂x

, ∂f
∂y

, and ∂f
∂t

are written
in a shorter form, as fx, fy, and ft. The intensity derivatives
in the x-, y- and t-directions are simply measures of how fast
the intensities in the image are changing. And if the notation
mentioned above is used it is possible to see that Eq.(3.5) is the
same as the constant brightness constraint Eq.(3.1). vx and vy

are the optical flow components in the x- and y-directions. By
rewriting Eq.(3.3) it is possible to see that this is a plane with
a normal vector.

[fxfyft] · [vxvy1] = 0 (3.6)

The intensity derivatives are estimated, and the velocities
are unknown and should be determined. With one equation
and two unknowns, this is an under determined system. The
velocity vector is a normal vector to the plane that contains
the intensity derivatives. This is due to the fact that the dot
product between the derivatives and the velocities are zero. The
problem with this is to find this vector.

The main task is to estimate the velocity vector in each pixel.
Looking at Eq(3.6) it is possible to say that in order to extract

14
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useful information from the image, it is necessary to observe how
the neighboring pixels behave. The plane of intensity derivatives
represent the neighboring pixels.

3.2 Single Motion Estimation

Single motion estimation will follow the schematic illustration in
figure 3.3 and use the box called mixed motion coefficients as the
last step. However, for single motion estimation the coefficients
will not be mixed. In fact, the motion coefficients will contain
the estimated velocities. The last three steps are introduced in
section 3.3. The following section will describe the procedure of
estimating one motion.

3.2.1 The Derivative Operator for one mo-

tion

The derivative operator shows in what way the images need to be
differentiated. The differentiation is performed with the deriva-
tive operator and a Gaussian function. This is then filtrated
with the images. From this result it is possible to say something
about the motion.

The derivative operator looks like this:

α(v) = vx
∂

∂x
+ vy

∂

∂y
+

∂

∂t
(3.7)

This operator will differentiate a function in all directions in the
case with one motion. v is a vector that contains the velocities
in the x- and y-directions, vx and vy. The derivative operator
weights the derivatives with the velocity components and thus
it depends on v. Using the derivative operator on the image
generates,

α(v)f = 0 (3.8)

This is true for one motion.
The next step is to use the derivative operator.

From the definition of α in Eq.(3.7) it is possible to rewrite
Eq.(3.1) as Eq.(3.8). The velocities vx and vy are unknowns
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Figure 3.3: Schematic view of Transparent motions. Each box
represents a step in the algorithm.
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and need to be determined. The velocities are put in a vector
in order to be able to handle the derivatives separately. This
vector comes from the constant brightness constraint and is more
obvious when looking at the rewritten constraint in Eq(3.6).

V =




v1x

v1y

1


 (3.9)

3.2.2 The smoothing function

The smoothing function is a way to differentiate the images us-
ing a filter. This is shown in the equations below. If Eq.(3.2)
is assumed to be true it follows that Eq.(3.10) is true (see Ap-
pendix A.6 for proof) and that g ∗ f complies with the constant
brightness constraint in Eq.(3.11) under the assumption that the
velocity is relatively constant in a neighborhood of the same size
as the function g.

(g ∗ f)(x0, y0, t0) = (g ∗ f)(x0 + vxτ, y0 + vyτ, t0 + τ) (3.10)

vx(g ∗ f)x + vy(g ∗ f)y + (g ∗ f)t = 0 (3.11)

The equation below shows that applying the derivative oper-
ator on the images convolved with the smoothing function is the
equivalent of applying the derivative operator on the smoothing
function and then convolving this result with the images (see
Appendix A.5 for proof).

α(v)(g ∗ f) = α(v)(g) ∗ f (3.12)

In order to estimate the velocity components vx and vy ac-
cording to Eq.(3.1), gradients from f are needed. Since f is a
signal that has been sampled it is only possible to approximately
calculate the gradients. One way to approximate the gradients
is to use Eq.(3.12) that says that gradients from (g ∗ f) can be
obtained by convoluting gradients of g with f , which is simple
to implement if g is chosen as a Gaussian function since gradi-
ents of g becomes filters with a satisfying size if sigma is chosen
accordingly. With the aid of a smoothing filter, irrelevant de-
tails are reduced in the images. It can reduce details that are
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small with respect to the size of the filter mask. An example of
a smoothing function, is a Gaussian function

g(x, y, t) = e

(
− 1

2
x2

σ2
x
− 1

2
y2

σ2
y
− 1

2
t2

σ2
t

)
(3.13)

but any function that is local in both the spatial- and the tem-
poral domains will do.

The smoothing function is then differentiated using the deriva-
tive operator. The Gaussian function provides a way to soften
the images by reducing the noise.

Three derivatives are obtained. The Gaussian function helps
to observe the neighboring pixels. Pixels close to the pixel of
concern will be weighted with a high value. Pixels further away
will be of less importance.

∂

∂x
g(x, y, t) (3.14)

∂

∂y
g(x, y, t)

∂

∂t
g(x, y, t)

This filters are separable here since g is chosen as a Gaussian
function, which allows filtration of the images with the deriva-
tives separately. The filters are convolved with the images, and
by rewriting α(v1)g ∗ f = 0 as,

LV = 0 (3.15)

it is possible to observe that the motions in V are handled sepa-
rately. V comes from Eq.(3.9), and L is a row vector and consists
of the filter convolved with the images:

L =

(
∂

∂x
g(x, y, t),

∂

∂y
g(x, y, t),

∂

∂t
g(x, y, t)

)
∗ f (3.16)

3.2.3 The Structure Tensor

A structure tensor can describe the structure or the orientation
of a signal. It is obtained by estimating the gradient, usually by
using a Gaussian derivative filter, and then by calculating the
outer product in every pixel of the gradient vector by itself. This
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means that one structure tensor is obtained from every pixel in
the image [5].

Eq.(3.15) is always possible to solve, but it has no unique
solution. It is necessary to look in the surroundings in order
to estimate V uniquely. A minimization of the left hand side
Eq.(3.15) solves this problem. Eq.(3.17) describes ε which in-
volves the left-hand side of Eq.(3.15) and thus it is dependent
on V . If LV = 0 or if it is small then |ε| = 0 if it is assumed
that the velocity is constant. The objective is to find the V that
minimizes ε. Hence, a least square minimization is used. ω is a
convolution kernel, which may be, for example Gaussian.

ε =
∫

ω(x, y, t)(L(x, y, t)V )2dxdydt (3.17)

In order to solve the minimization of ε, a constraint is needed
because of the fact that the solution V = 0 is not wanted. What
type of solution that is desired needs to be specified. The con-
straint is chosen in such a way that it will make the implemen-
tation as simple as possible in practice. The desired type of
solution and thus the constraint is to find V that has the norm
one: |V | = 1. The gradient of ε, which is a function of the ele-
ments in V , is proportional to the gradient of the constraint for
those V that minimizes ε at the same time as they comply with
the constraint:

∫
L(x, y, t)TL(x, y, t)V ω(x, y, t)dxdydt = λV (3.18)

This method is a commonly used technique for finding the
minimum points or maximum points of multi-variable functions
under some constraints. Supposing that the motion vectors are
locally constant, V is taken out of the integral.

J =
∫

L(x, y, t)TL(x, y, t)ω(x, y, t)dxdydt (3.19)

JV = λV (3.20)

J is a structure tensor. A structure tensor describes the structure
and orientation in the images. According to Eq.(3.20) the V
that minimizes ε and complies with the constraint should be an
eigenvector to J. It is possible to show that V needs to be chosen
as an eigenvector with the smallest eigenvalue to generate the
smallest ε.
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3.2.4 Vectors from minors

”A minor Mij is the reduced determinant of a determinant ex-
pansion that is formed by omitting the i-th row and j-th column
of a matrix. So, for example, the minor of the above matrix in
figure 3.4 is given by figure 3.5 ” [3].

Figure 3.4: A matrix

The minors provide a useful way to extract the vector con-
taining the motions from the tensor. Looking at Eq.(3.20) it is
possible to rewrite this as Eq.(3.21).


 J11 J12 J13

J21 J22 J23

J31 J32 J33




 vx

vy

1


=


 0

0
0


 (3.21)

J11vx + J12vy + J13 = 0 (3.22)

J21vx + J22vy + J23 = 0

J31vx + J32vy + J33 = 0

The rows are linearly dependent if Eq.(3.21) is true and thus

det(J) = 0 (3.23)

One way of calculating the determinant is by using the mi-
nors of the matrix.

Figure 3.5: The minor
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
 J11 J12 J13

J21 J22 J23

J31 J32 J33


 (3.24)

det(J) =




J11M11 + J12M12 + J13M13 = 0
J21M21 + J22M22 + J23M23 = 0
J31M31 + J32M32 + J33M33 = 0




It is obvious that if this is compared to Eq.(3.23), the minor
vectors and the velocity vector are parallel and thus propor-
tional.

V =




vx

vy

1


 ∝




M11

M12

M13


 ∝




M21

M22

M23


 ∝




M31

M32

M33


 (3.25)

Another way of writing this is

Vi = (Mi3,−Mi2, Mi1) (3.26)

if and only if the nullity(J) has the dimension one. However, the
minor vectors may be of different lengths and hence, weighting
is needed.

It is possible to calculate J and the object is to find V that
is the eigenvector of J and that has the smallest eigenvalue. If
it is assumed that the value of the smallest eigenvalue is approx-
imately zero, V can be estimated because of the fact that it is
proportional to minor-vectors that have been described. These
are calculated from J and the remaining part is to weight them
in some way into the vector V . This weighting is described in
the next section.
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3.2.5 Finding the velocities

It would be enough to estimate the vector with the largest norm.
However if the vectors are weighted instead, a more reliable re-
sult would be obtained. The weighting of these vectors is per-
formed with the aid of a weighting factor according to [9]:

βi =
M1i

M2
11 + M2

12 + M2
13

(3.27)

This weighting factor gives the most weight to the vector
with the largest norm. It is used in the following way:

V T = β1V
T
1 + β2V

T
2 + β3V

T
3 (3.28)

V contains the calculated velocities:

V ∝

 vx

vy

1


 (3.29)

To sum up single motion estimation one can say that after
some assumptions has been made, it is possible to estimate the
velocity from the structure tensor J and V1, V 2, and V3, weight
them into V and normalize. The normalization scales the vector
in Eq.(3.28) in such a way that the third component gets the
value = 1.

3.3 Two motions

The following section will describe the procedure of estimating
two motions.

3.3.1 The Derivative Operator for two mo-

tions

In the case with two motions, the intensity function f is com-
posed of two layers, f = f1 +f2, which generally moves with two
different velocities - (v1x, v1y) and (v2x, v2y). Looking at Eq.(3.1)
and extending that for two motions results in

f(x0, y0, t0) = f1(x0+v1xτ, x0+v1yτ, t+τ)+f2(x0+v2xτ, x0+v2yτ, t+τ)
(3.30)
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The next step is to use the derivative operator on two motions.
Two motions mean, according to Eq.(3.31) and Eq.(3.32), two
derivative operators.

α(v1) = v1x
∂

∂x
+ v1y

∂

∂y
+

∂

∂t
(3.31)

α(v2) = v2x
∂

∂x
+ v2y

∂

∂y
+

∂

∂t
(3.32)

Expanding these terms generates

α(v1)α(v2) = (3.33)

=

(
v1x

∂

∂x
+ v1y

∂

∂y
+

∂

∂t

)(
v2x

∂

∂x
+ v2y

∂

∂y
+

∂

∂t

)

In Eq.(A.4) it is possible to see that second derivatives ap-
pear.
Using the derivative operator on the image generates, for two
motions.

α(v1)f1 = 0, α(v2)f2 = 0 (3.34)

The operators are commutative (see Appendix A.4 ). Due
to this fact, the equation above can be rewritten:

α(v1)α(v2)f = 0 (3.35)

By expanding Eq.( 3.35) it is possible to see that it is zero. Since
the operators are commutative it is possible to switch the order
of the derivative operators and by some calculation it becomes
zero.

α(v1)α(v2)f = α(v1)α(v2)(f1 + f2) (3.36)

= α(v2)α(v1)f1 + α(v1)α(v2)f2

= α(v2)0 + α(v1)0

= 0

Applying the derivative operator to an image generates:

v1xv2xfxx + v1yv2yfyy + (v1xv2y + v1yv2x)fxy +

(v1x + v2x)fxt + (v1y + v2y)fyt + ftt = 0 (3.37)
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Say that the mixed motion coefficients that contain different
combinations of the two motions are named:

a = v1xv2x, b = v1yv2y, c = v1xv2y + v1yv2x, (3.38)

d = v1x + v2x, e = v1y + v2y

And then replace them in Eq.(3.37) to get

afxx + bfyy + cfxy + dfxt + efyt + ftt = 0 (3.39)

This is the equivalent of Eq.(3.1), in the case with two mo-
tions. This represents a normal vector and a hyper plane. A
hyper plane is a planar surface in high dimensional space and
thus hard to visualize. The coefficients a, b, c, d and e are un-
knowns. The coefficients are put in a vector in order to be able
to handle the derivatives separately.

V =




a
b
c
d
e
1




(3.40)

3.3.2 The smoothing function

The smoothing function has the same purpose as for single mo-
tion estimation in section 3.2.2 - to differentiate the images using
a filter. Hence, the smoothing function in Eq.(3.13) is differen-
tiated according to Eq.(3.39), but without the mixed motion
coefficients.

α(v1)α(v2)g (3.41)

Six derivatives are obtained.

∂2

∂x2
g(x, y, t) (3.42)

∂2

∂y2
g(x, y, t)

∂2

∂x∂y
g(x, y, t)

24

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

∂2

∂x∂t
g(x, y, t)

∂2

∂y∂t
g(x, y, t)

∂2

∂t2
g(x, y, t)

This filter is separable (see section 3.2.2). The filters are
convolved with the images, and by rewriting α(v1)α(v2)g∗f = 0
as,

LV = 0 (3.43)

it is possible to observe that the mixed motion coefficients are
handled separately. V comes from Eq.(3.40), and L consists of
the filter convolved with the images:

L = (gxx, gyy, gxy, gxt, gyt, gtt) ∗ f (3.44)

3.3.3 The Structure Tensor

ε (Eq 3.45) needs to be minimized in the same manner as in the
case with one motion:

ε =
∫

ω(x, y, t)(L(x, y, t)V )2dxdydt (3.45)

ε is as small as possible when its derivatives are zero. Fol-
lowing the same procedure using minimization and a constraint
as in section 3.2.3 generates:

∫
L(x, y, t)TL(x, y, t)V ω(x, y, t)dxdydt = λV (3.46)

Supposing that the motion vectors are locally constant, V is
taken out of the integral.

J =
∫

L(x, y, t)TL(x, y, t)ω(x, y, t)dxdydt (3.47)

JV = λV (3.48)

J is a structure tensor. Six vectors are then calculated from the
structure tensor with the help of its minors.
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3.3.4 Vectors from minors

The structure tensor for two motions looks like this




J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66




It corresponds to Eq.(3.24) in the single motion case. Fol-
lowing the same discussion as in section 3.2.4 and extending
Eq.(3.26) to the case with two motions V is retrieved from the
minors matrix:

V T
i = (Mi6,−Mi5, Mi4,−Mi3, Mi2,−Mi1) (3.50)

V is retrieved if and only if the nullity(J) has the dimension
one and consists of mixed motions. These vectors Vi consist of
mixed motion coefficients.

3.3.5 Finding the velocities

So far V has been found by solving an eigenvalue problem which
in turn has been solved by the ”vectors from minors”-method.
This V is now depending on the velocity components that need
to be estimated -(v1x, v1y) and (v2x, v2y). In this chapter, the
velocity components will be found given the elements in V .

The weighting of these vectors is performed in the same man-
ner as in section 3.2.5 with the aid of a weighting factor

βi =
M1i

M2
11 + M2

12 + M2
13 + M2

14 + M2
15 + M2

16

(3.51)

This weighting factor is used in the following way:

V T = β1V
T
1 + β2V

T
2 + β3V

T
3 + β4V

T
4 + β5V

T
5 + β6V

T
6

(3.52)
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If a second degree polynom Q

Q = Z2 − A1Z + A0 (3.53)

that has the roots:

v1x + jv1y (3.54)

v2x + jv2y

is defined, it follows that the coefficients in Q which comes
from Eq.(3.40)

A0 = a − b + jc (3.55)

A1 = d + je

will be given by simple expressions of the elements in V
(which are possible to estimate) according to:

Z2 − (v1x + v2x − j(v1y + v2y))Z + v1xv2x − v1yv2y + (3.56)

j(v1xv2y + v1yv2x) =

= Z2 − (d − je)Z + a − b + jc

3.4 Confidence measures

A number of assumptions are made in this framework. It is im-
portant to quantify these assumptions. Thus, confidence mea-
sures provide a useful way to analyze this.

If no motion is present in the image, no further calculations
are needed. One way of seeing if there are motion in the image,
is to observe the derivatives in the x- and y-directions. If the
sum of the lengths of the gradients is zero, no motion is present.

H = |fx| + |fy| = 0 (3.57)

Another confidence measure involves looking at the eigenval-
ues of the structure tensor. Eq.(3.21) is true if and only if the
nullity(J) is one (see Appendix A.3). This means that J needs
to have one eigenvalue equal to zero. One way of checking this
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is to use a definition of the determinant that says that to ob-
tain the determinant one can multiply all eigenvalues. J has the
dimension n × n.

K = det(J) = λ1λ2...λn = 0 (3.58)

If there is one eigenvalue equal to zero, this determinant will
also be zero. However, there’s also a possibility that there are
more than one eigenvalue that is equal to zero. And if this is
the case, the calculations are not reliable. To check this it is
possible to use the following equation:

S =
λ1λ2...λn

λ1

+
λ1λ2...λn

λ2

+ ... +
λ1λ2...λn

λn

(3.59)

One value is skipped in each step. If this equation is zero
there are more than one eigenvalue equal to zero.

In practice, Eq.(3.58) is rarely exactly zero. To work around
this it is possible to say that K needs to be as small as possible,
and S need to be larger than K. To be able to compare these
two confidence measures they need to be normalized.

K1/n << S1/(n−1) (3.60)

The determination of how these numbers scale to each other
might be different in different applications. The trial and error
method is applied in this thesis.
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Chapter 4

Estimation results on
water model images

4.1 Image acquisition details

The images are acquired under the best conditions possible. The
first image sequence is acquired with particles only, and then
bubbles are added. The images are sub-sampled one time and
thereby reducing the motion. The simulation results will only
show simulations of particles since no satisfying result of both
bubbles and particles have been achieved.

4.2 A walk through of the algorithm

This chapter describes the implementation of the algorithm which
is implemented in Matlab.

1. The algorithm reads a sequence of approximately 20 im-
ages and transforms them into images with decimal pixel
values (see Appendix B.1). The format of the images may
be of any image format available in Matlab.

The images are cropped in order to be able to determine
the area of interest (see Appendix B.2), and then sub-
sampled with the function subSample (see Appendix B.1).
The sub-sampling reduces the image by half in each di-
rection and is done by filtering the image sequence with a
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Gaussian filter kernel retrieved from the function fspecial
and then by resizing it with the Matlab function resize
with the bilinear option. The filtering is an anti-aliasing
procedure which reduces the alias distortion in the result-
ing image. The sub-sampling reduces the pixel motion by
half in each direction. All images are added into one image
in order to visualize in what way the seeding particles and
bubbles move. This image will show the motion pattern of
the object in the sequence if the time between the frames
is short enough. It is also sub sampled for the purpose of
having the total image and the vector map of the same
size.

2. The main algorithm filters the images with a differentiated
Gaussian filter kernel (Gaussian is optional, any noise re-
ducing filter will do) in order to get the first order par-
tial derivatives (see Appendix B.5). The differentiated
Gaussian filter kernel is made by differentiating a Gaus-
sian function and then making it discrete by sampling it
into a vector (see Appendix B.4). The σ in Eq(3.13) is the
same in all directions. By some testing σx = σy = σt = 1
seemed like a good choice due to the fact that the particles
are so small. However, this value may vary with area of
application.
This is followed by filtering the first order partial deriva-
tives by the same filter kernel as above in order to get the
second order derivatives.

3. The structure tensor for one motion is then calculated ac-
cording to Eq.(3.47) by convoluting the outer product be-
tween the first order partial derivatives by itself and a filter
kernel, which is Gaussian in this case (see Appendix B.7
).

4. The minors matrix of the structure tensor may then be
calculated from the definition in section 3.2.4. When all
this is done it is possible to get the confidence measures
for every pixel in the image.

5. The first confidence - K - computes the determinant ac-
cording to Eq.(3.58) of the structure tensor. The second
one - H - computes the trace of the structure tensor, which
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means adding the derivatives in the x- and y-direction.
The third - S - adds the products of all possible combina-
tions of eigenvalues where one eigenvalue is removed from
each product, consistent with Eq.(3.59).

6. The subsequent loop (see Appendix B.6) begins with check-
ing if H is larger than ε (see Appendix B.9 for a detailed
description of epsilon and the confidence measures). If it
is not, no motion is present.
If there is motion present K is compared to S to see if
it is smaller. When the second confidence measure is
smaller, the vector containing the mixed motion coeffi-
cients is calculated from the minors according to Eq.(3.3.5)
and Eq.(3.3.5).

7. The first two elements in this vector contain the velocities
in the x- and y-directions. They are transformed into a
complex value in line with Eq.(3.55) and put in the current
coordinates of the first motion field matrix.
If K is in fact larger than S, the same procedure as above is
repeated with the exception that the second order partial
derivatives are used and that the roots of Eq.(3.56) need
to be calculated from the coefficients of the mixed motion
vector.
The first root is the first complex velocity and the second
root is the second complex velocity: These are saved in
the first and second motion field matrices.

8. With this loop finished one will end up with two motion
field matrices with the same size as the images minus two
times the size of the derivative filter since the derivatives
are not correct there. The velocities are plotted with the
help of the Matlab function Quiver and with all added
images as background.

4.2.1 Confidence measures

Tuning of the confidence measure is of great importance in order
to achieve satisfying results. The first confidence measure checks
if there are any motion present. This is done by checking if the
sum of the derivatives in the x- and y-directions is zero. In
practice however, it is rarely exactly zero. Therefore ε ( see
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Appendix B.6 ) is used to set a value where one can say that
sums lower than this indicates that there are no motion present.
The second confidence measure - K - looks at the possibility
that one eigenvalue might be zero (see Appendix 3.4 for details),
and the third - S - investigates whether there might be more
than one eigenvalue equal to zero. For this to be applicable in
practice, one can say that K needs to be smaller than S. The
question is how much smaller? In order to be able to compare
the values of K and S they need to be normalized in some way.
This is achieved by taking the n-th root of K and S, where n
is the number of factors. C1 and C2 are simply values that are
multiplied by S in order to say how much smaller K needs to be
than S. It is by no means clear how to determine the value of C1

and C2. Here, the algorithm is run through a few times in order
to see what values that might be acceptable. This is achieved by
making the images binary and investigating if K is smaller than
S only where the objects are. If so, the chosen value of C1 is
kept. However, there has been no success in finding a reasonable
value for C2. The algorithm takes about 20 minutes to run on an
ordinary PC. The confidence measures used in the simulations
below are the following:

ε = 1

C1 = 1

C2 = 1

4.3 Estimation results

Estimation results are presented in the following figures. Two
images are shown from each selected session. The first two im-
ages, figure 4.1 and figure 4.2 are images from a synthetic se-
quence. The first image of the two shows a white square moving
right and a texture moving downward, and the second image is
the resulting vector map. The yellow lines are arrows pointing
downwards, and the magenta arrows are pointing to the right.
This shows that the algorithm works for two motions.
This is followed by image sequences of particles and bubbles.
The first image of the two is all original images added together
and the second image shows the resulting vector map. These
images shows one motion due to the fact that the bubbles are
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Frame #6

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4.1: A synthetic image

moving too fast. The next sequence, figure 4.3 and figure 4.4
shows a satisfying result. One can observe the motion pattern in
figure 4.3 and see that the resulting vector map corresponds to
that pattern. It seems to be true to the real flow pattern. The
pair of figures 4.5 and 4.6 and the last pair of figures 4.7 and 4.8
are also successful due to the same facts as above. One failed
session is shown in figures 4.9 and 4.10. There are no obvious
flow pattern in figure 4.9. The resulting vectormap is not very
reliable.

4.4 Conclusions

The results show that with a very slow speed - slower than 0.1
m/s (the average speed is approximately 0.3m/s ) - it is possible
to get results of how the particles are moving. In fact, the ac-
curacy of the resulting vector maps seems to be very high since
they follow the real flow pattern of the liquid. The results of the
images with both particles and bubbles show no motion. Since
the algorithm works for two phase synthetic images, and one
phase slowly moving particles on real images, it is likely that
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Figure 4.2: Resulting vector map from the synthetic sequence
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Figure 4.3: Image from water model of particles only
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Figure 4.4: Resulting vector map from water model images of
particles only
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Figure 4.5: Added images of particles with the bubbles filtered
out
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Figure 4.6: Resulting vector map of particles with the bubbles
filtered out
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Figure 4.7: Added images of particles with the bubbles filtered
out

36

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Frame #1

20 40 60 80 100 120

20

40

60

80

100

120

Figure 4.8: Resulting vector map of particles with the bubbles
filtered out
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Figure 4.9: Added images of particles with the bubbles filtered
out
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Figure 4.10: Resulting vector map of particles with the bubbles
filtered out

the velocity of the faster moving bubbles could be estimated if
it was possible to sample faster with the camera. That would
allow for faster casting speed and thus give more flexibility in
choosing casting speed.

The qualities of the images are decided visually. The original
images that are added together gives an indication of what the
resulting vector map should look like. As a result of the fact
that the flow is not measurable it is difficult to say that each
image acquisition session has the same conditions as the next.
However it seems as though the quality of the image sequences
is quite consistent. Looking at the estimation results for one
motion only, three out of four sessions gave a very good result.

Due to all these simulation results above one can say that
the algorithm gives quite satisfying results for one phase in flows
that are slow.
The overall conclusion is that with the available equipment,
”Transparent motions” is a suitable method for estimating one
phase slowly moving particles in the water model. This algo-
rithm has a good forecast of estimating two phase motions with
new equipment.
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Chapter 5

Discussion

The images that are considered in this thesis have a quite high
resolution of 1018x1008 pixels and the image sequence may con-
sist of up to 30 images. The high resolution is of great impor-
tance because of the small size of the particles and the large
image acquisition area, and the large number of images in the
sequence is needed in order to achieve as accurate motion esti-
mation as possible. This requires quite a bit of memory in the
computer to be able to handle such large image sequences. At
the moment, the water flow needs to be incredibly slow for the
algorithm to work - much slower than 0.1m/s. This is due to
the fact that the particle cannot move very fast on the basis of
the fact that the objects in the image cannot move out of the
window where the differentiation is performed.

The fastest velocities are required to move at most 10 pixels
per frame if the method is going to work. If we have this velocity
it is possible to sub-sample the images one time. More sub
sampling makes the images too blurry to get any reliable result.
This generates images with a slower velocity.

The speed of the water obviously influences the flow pattern.
With a very low speed of the water, it is not representative to
how the steel flows in the steel casting model. With this in
mind the water must have at least a certain speed. The bubbles
also influence the flow pattern. If the bubbles are too few, a
reverse flow appears which is not representative either. This
means that to accomplish consistent results, the algorithm need
to be accurate for measuring bubble and water motion under
representative conditions. A camera with a shorter sampling
interval is needed in order to carry out this task.
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5.1 Limitations of the camera

The limitation of the camera is obviously the image sampling in-
terval capacity. It is able to acquire images with a 37ms interval,
which means less than 30 images per second. With the water
floating with an average speed of 0.3 m/s the average movement
will be approximately 25 pixels long. With this average speed
and the available resolution, the number of frames per second
need to be at least 70, which gives a movement of approximately
10 pixels per frame. It is then possible to sub-sample the image
one time in order to make the speed half as fast.

5.2 Limitations of the algorithm

The algorithm has some limitations in the way of how the deriva-
tive filters work and the size of the structure tensor. The deriva-
tives are calculated in a local neighborhood. This means that the
objects cannot move out of this neighborhood from one frame
to another in order to be able to compute the correct velocity.
Another limitation that may be considered is the fact that there
may be more motions than two present due to the fact that the
water is rarely drained. With this in mind there might be small
objects in the water that contributes to the motion estimation.
The particle motion and the bubble motion are not distinguish-
able from one and other which means that the only way to tell
which motion belongs to which layer is purely visual and based
on guesses.

5.3 Fulfillment of goals

The goals that were setup for this thesis are fulfilled. The theory
of ”Transparent motions” has been investigated, an algorithm
was developed and some testing was performed.
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Appendix A

Theoretical Review

To understand this thesis it might be useful with some theoreti-
cal review. The following sections involve facts that are used in
the report.

A.1 Intensity

Intensity is synonymous with the term gray level. The gray level
of an image is the intensity of a monochrome image. A mono
chromic image is void of color.

A.2 Sub Sampling

Sub sampling is a geometric transformation of the image. When
the image is scaled into a smaller size, the movement in the
images decreases.

The reduction of the image is performed by either replacing
original pixels in a neighborhood by the value of one arbitrarily
chosen pixel in the image, or by interpolation. There are differ-
ent ways to interpolate. The most commonly used are linear,
bilinear and bi cubic interpolation [2].

A.3 Nullity and rank

The Rank of a matrix is defined as the number of eigenvalues
not equal to zero.
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The nullity of a matrix is all eigenvectors that satisfy the equa-
tion

Jx = 0 (A.1)

A.4 Commutative

For the interested reader it is shown below together with Eq.(3.34)
that α(v1)α(v2) is commutative.

α(v2)α(v1) = (A.2)

=

(
v2x

∂

∂x
+ v2y

∂

∂y
+

∂

∂t

)(
v1x

∂

∂x
+ v1y

∂

∂y
+

∂

∂t

)

v2xv1x

(
∂2

∂x2

)
+ v2yv1y

(
∂2

∂y2

)
+ (v2xv1y + v2yv1x)

(
∂2

∂x∂y

)
(A.3)

+(v2x + v1x)

(
∂2

∂x∂t

)
+ (v2y + v1y)

(
∂2

∂y∂t

)
+

(
∂2

∂t2

)

v2xv1xfxx + v2yv1yfyy + (v2xv1y + v2yv1x)fxy + (A.4)

(v2x + v1x)fxt + (v2y + v1y)fyt + ftt

Which is the same as Eq(3.37)

v1xv2xfxx + v1yv2yfyy + (v1xv2y + v1yv2x)fxy + (A.5)

(v1x + v2x)fxt + (v1y + v2y)fyt + ftt

A.5 Proofing Eq.(3.12)

α(v)(g ∗ f) = α(v)
(∫

g(x′, y′, t′)f(x − x′, y − y′, t − t′)dx′dy′dt′
)

(A.6)

α(v) is a derivative operator and in general, it is allowed to
switch the order of differentiation and integration. If this is
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performed on the right hand side of the equation above, the
following is obtained:

=
(∫

α(v)g(x′, y′, t′)f(x − x′, y − y′, t − t′)dx′dy′dt′
)
(A.7)

(α(v)g) ∗ f =
(∫

α(v)g(x′, y′, t′)f(x − x′, y − y′, t − t′)dx′dy′dt′
)

= α(v)(g ∗ f) (A.8)

A.6 Proofing Eq.(3.10)

f(x0, y0, t0) = f(x0 + vxτ, y0 + vyτ, t0 + vtτ)

(g ∗ f)(x0, y0, t0) =
∫

g(λx, λy, λt)f(x0 − λx, y0 − λy, t0 − λt)dλxdλydλt

(g ∗ f)(x0 + vxτ, y0 + vyτ, t0 + vtτ) =
∫

ABdλxdλydλt

A = g(λx, λy, λt)

B = f(x0 + vxτ − λx, y0 + vyτ − λy, t0 + vtτ − λt) = f(x0 − λx, y0 − λy, t0 − λt)

The right hand side of the expression above is obtained by using
the expression on the first row.

∫
ABdλxdλydλt =

∫
g(λx, λy, λt)f(x0 − λx, y0 − λy, t0 − λt)dλxdλydλt

= (g ∗ f)(x0, y0, t0)
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Appendix B

The Code for Transparent
Motions
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=

i
m
C
r
o
p
p
e
d
;

t
o
t
a
l
(
:
,
:
)
=
t
o
t
a
l
(
:
,
:
)
+
g
ra
y
Im
a
g
e;

i
n
d
e
x
e
t
=
i
n
d
e
x
e
t
+
1
;

e
n
d

e
n
d

p
a
c
k

c
l
e
a
r
i
m
a
g
e
i
m
C
r
o
p
p
e
d
;

i
m
a
g
e
S
e
q
u
e
n
c
e
=

s
u
b
S
a
m
p
l
e
(
i
m
a
g
e
S
e
q
u
e
n
c
e)
;

t
o
t
a
l
=

i
m
r
e
s
i
z
e
(
t
o
t
a
l
,
0
.
5
,
’
b
i
l
in
e
ar
’
)
;

%
D
i
s
p
l
a
y
S
e
q
u
e
n
c
e
(
i
m
a
g
e
S
e
q
u
en
c
e
);

%
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
*
*
**
*
**
*
*
**
*
*
**
*
**
*
*
**
*
*
**
*
**
*

[
h
e
i
g
h
t
w
i
d
t
h
d
e
p
t
h
]
=
s
i
z
e
(
i
m
a
g
e
S
e
q
u
e
n
c
e
)
;

e
p
s
i
l
o
n

=
1
;

c
1

=
1
;

%
f
o
r
s
y
n
t
h
e
t
i
c
s
e
q
u
e
n
c
e
,
a

v
a
l
u
e
b
e
t
w
e
e
n
0
a
n
d
1

c
2

=
1
;

%
f
o
r
s
y
n
t
h
e
t
i
c
s
e
q
u
e
n
c
e
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S
t
a
r
t
_
x

=
5
;

%
D
o
n
o
t
c
o
m
p
u
t
e
m
o
t
i
o
n
s
a
t
t
h
e
i
m
a
g
e
b
o
r
d
e
r

E
n
d
_
x

=
w
i
d
t
h
-
5
;

%
a
n
d
t
h
e
f
i
r
s
t
a
n
d
l
a
s
t
f
r
a
m
e
s
,
b
e
c
a
u
s
e

S
t
a
r
t
_
y

=
5
;

%
t
h
e
d
e
r
i
v
a
t
i
v
e
s
a
r
e
n
o
t
c
o
r
r
e
c
t
t
h
e
r
e
!
!
!

E
n
d
_
y

=
h
e
i
g
h
t
-
5
;

S
t
a
r
t
_
t

=
3
;

E
n
d
_
t

=
d
e
p
t
h
-
3
;

[
U
t
o
t
,
V
t
o
t
]
=
T
r
a
n
s
p
a
r
e
n
t
M
o
ti
o
n
(i
m
ag
e
S
eq
u
e
nc
e
,e
p
s
il
o
n
,c
1
,c
2
,
S
t
a
r
t
_
x
,
E
n
d
_
x
,
S
t
a
r
t
_
y
,
E
n
d
_
y
,
.
.
.

S
t
a
r
t
_
t
,
E
n
d
_
t
)
;

D
i
s
p
l
a
y
S
e
q
u
e
n
c
e
(
i
m
a
g
e
S
e
q
u
en
c
e
,U
t
ot
,
V
to
t
)
;

U
t
o
t
a
b
s
=

a
b
s
(
U
t
o
t
)
;

%
V
t
o
t
a
b
s
=
a
b
s
(
V
t
o
t
)
;

f
o
r
t
=

1
:
d
e
p
t
h

f
o
r
i
=

1
:
h
e
i
g
h
t

f
o
r
j
=
1
:
w
i
d
t
h

i
f
a
b
s
(
U
t
o
t
a
b
s
(
i
,
j
,
t
)
)
>
1

U
t
o
t
(
i
,
j
,
t
)
=
0
;

e
n
d

e
n
d

e
n
d

e
n
d
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% %
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
U
U
U
U
UU
U
U
UU
U
UU
U
U
UU
U
U
UU
U
UU
U
U
UU
U
U
UU
U
UU
U
U

a
v
e
r
a
g
e
F
i
l
t
e
r
=

f
s
p
e
c
i
a
l
(
’
a
v
e
r
a
g
e
’
)
;

a
v
e
r
a
g
e
I
m
a
g
e
s
U
t
o
t
=

i
m
f
i
l
t
e
r
(
U
t
o
t
,
a
v
e
r
a
g
e
F
i
l
t
e
r
,
’
c
o
n
v
’
)
;

t
1
=

t
o
c
/
6
0

D
i
s
p
l
a
y
S
e
q
u
e
n
c
e
(
t
o
t
a
l
,
s
um
(
a
ve
r
a
ge
I
ma
g
e
sU
t
o
t,
3
))
;

a
v
e
r
a
g
e
I
m
a
g
e
s
S
m
a
l
l
U
t
o
t
=
i
m
r
e
s
i
z
e
(
a
v
e
r
a
g
e
I
m
a
g
e
s
U
t
ot
,
0
.3
,
’b
i
l
in
e
a
r’
)
;

t
o
t
a
l
=

i
m
r
e
s
i
z
e
(
t
o
t
a
l
,
0
.
3
,
’
b
i
l
in
e
ar
’
)
;

D
i
s
p
l
a
y
S
e
q
u
e
n
c
e
(
t
o
t
a
l
,
s
um
(
a
ve
r
a
ge
I
ma
g
e
sS
m
a
ll
U
to
t
,
3)
)
;

r
e
t
u
r
n

%
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
-

f
u
n
c
t
i
o
n
[
s
u
b
i
m
a
g
e
S
e
q
u
e
n
c
e
]
=
s
u
b
Sa
m
pl
e
(
im
a
g
eS
e
qu
e
n
ce
)

k
e
r
n
e
l
=

f
s
p
e
c
i
a
l
(
’
g
a
u
s
s
i
a
n
’
)
;

s
u
b
i
m
a
g
e
S
e
q
u
e
n
c
e
=

c
o
n
v
n
(
i
m
a
g
e
S
e
q
u
e
n
c
e
,
M
a
k
e_
3
D_
F
i
lt
e
r
(k
e
rn
e
l
(:
,
1
),
k
er
n
e
l(
:
,
2)
,
ke
r
n
el
(
:
,3
)
),
’
s
am
e
’)
;

s
u
b
i
m
a
g
e
S
e
q
u
e
n
c
e
=

i
m
r
e
s
i
z
e
(
i
m
a
g
e
S
e
q
u
e
n
c
e
,
0.
5
,’
b
i
li
n
e
ar
’
);

r
e
t
u
r
n

%
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
-
-
--
-
--
-
-
--
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B
.2

c
ro

p
Im

a
g
e
s

f
u
n
c
t
i
o
n
b
=
c
r
o
p
I
m
a
g
e
s
(
t
h
e
I
m
a
g
e
,
c
r
o
p
_
l
e
f
t
,
c
r
o
p
_
r
i
g
h
t
,
c
r
o
p
_
t
o
p
,
c
r
o
p
_
b
o
t
t
o
m
)

[
r
o
w
c
o
l
d
e
p
t
h
]
=
s
i
z
e
(
t
h
e
I
m
a
g
e
)
;

i
f
d
e
p
t
h
=
=
3

t
h
e
I
m
a
g
e
R
=

t
h
e
I
m
a
g
e
(
c
r
o
p
_
l
e
f
t
:
(
r
o
w-
c
r
op
_
r
ig
h
t)
,
c
r
o
p
_
t
o
p
:
(
c
o
l
-
c
r
o
p
_
b
o
t
to
m
)
,1
)
;

t
h
e
I
m
a
g
e
G
=

t
h
e
I
m
a
g
e
(
c
r
o
p
_
l
e
f
t
:
(
r
o
w-
c
r
op
_
r
ig
h
t)
,
c
r
o
p
_
t
o
p
:
(
c
o
l
-
c
r
o
p
_
b
o
t
to
m
)
,2
)
;

t
h
e
I
m
a
g
e
B
=

t
h
e
I
m
a
g
e
(
c
r
o
p
_
l
e
f
t
:
(
r
o
w-
c
r
op
_
r
ig
h
t)
,
c
r
o
p
_
t
o
p
:
(
c
o
l
-
c
r
o
p
_
b
o
t
to
m
)
,3
)
;

b
(
:
,
:
,
1
)
=
t
h
e
I
m
a
g
e
R
;

b
(
:
,
:
,
2
)
=
t
h
e
I
m
a
g
e
G
;

b
(
:
,
:
,
3
)
=
t
h
e
I
m
a
g
e
B
;

e
l
s
e b

=
t
h
e
I
m
a
g
e
(
c
r
o
p
_
l
e
f
t
:
(
r
o
w
-c
r
op
_
r
ig
h
t
),

c
r
o
p
_
t
o
p
:
(
c
o
l
-
c
r
o
p
_
b
o
t
to
m
)
);

e
n
d

r
e
t
u
r
n

B
.3

T
ra

n
sp

a
re

n
tM

o
ti

o
n
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%
%
T
h
i
s
p
r
o
g
r
a
m
i
s
c
o
r
r
e
s
p
o
n
d
s
h
i
e
r
a
r
c
h
i
c
a
l
a
l
g
o
r
i
t
h
m
p
r
o
p
o
s
e
d
i
n
t
h
e

%
%
p
a
p
e
r
:

%
%

%
%
C
.
M
o
t
a
,
I
.
S
t
u
k
e
,
a
n
d
E
.
B
a
r
t
h
,

%
%
"
A
n
a
l
y
t
i
c
S
o
l
u
t
i
o
n
s
f
o
r
M
u
l
t
i
p
l
e
M
o
t
i
o
n
s
"
,

%
%
I
n
P
r
o
c
e
e
d
i
n
g
s
o
f
t
h
e
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n

I
m
a
g
e
P
r
o
c
e
s
s
i
n
g
,

%
%
p
a
g
e
s
9
1
7
-
9
2
0
,
2
0
0
1
.

f
u
n
c
t
i
o
n
[
U
t
o
t
,
V
t
o
t
]
=
T
r
a
n
s
p
a
r
e
n
tM
o
ti
o
n
(i
m
a
ge
S
eq
u
e
nc
e
,
ep
s
il
o
n
,c
1
,
c2
,
St
a
r
t_
x
,
En
d
_x
,
S
ta
r
t
_y
,
En
d
_
y,
.
..

S
t
a
r
t
_
t
,
E
n
d
_
t
)

d
i
s
p
(
’
<
<
T
r
a
n
s
p
a
r
e
n
t
M
o
t
i
on
s
’
);

[
h
e
i
g
h
t
w
i
d
t
h
d
e
p
t
h
]
=

s
i
z
e
(
i
m
a
g
e
S
e
q
u
e
n
c
e
)
;

%
c
a
l
c
u
l
a
t
e
g
a
u
s
s
i
a
n
d
e
r
i
v
a
t
i
v
e
s
a
n
d
c
o
n
v
e
r
t
i
n
t
o
f
i
l
t
e
r
s

[
g
1
D
i
f
f
1
g
1
D
i
f
f
2
g
1
D
i
f
f
3
]
=
c
a
l
c
G
a
u
s
s
i
a
n
D
e
r
i
v
a
t
i
v
e
F
i
l
te
r
(3
,
3
,3
)
;

%
c
a
l
c
u
l
a
t
e
f
i
r
s
t
a
n
d
s
e
c
o
n
d
o
r
d
e
r
p
a
r
t
i
a
l
d
e
r
i
v
a
t
i
v
e
s

[
L
x
L
y
L
t
]
=
c
a
l
c
u
l
a
t
e
L
(
g
1
D
i
f
f
1
,
g
1
D
i
f
f
2
,
g
1
D
i
f
f
3
,
i
m
a
g
e
S
e
q
u
e
n
c
e
,
1
)
;

[
L
x
x
L
x
y
L
x
t
L
y
y
L
y
t
L
t
t
]
=
c
a
l
c
u
l
a
t
e
L
(
g
1
D
i
f
f
1
,
g
1
D
i
f
f
2
,
g
1
D
i
f
f
3
,
.
.
.

i
m
a
g
e
S
e
q
u
e
n
c
e
,
2
,
.
.
.

L
x
,
L
y
,
L
t
)
;
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%
c
a
l
c
u
l
a
t
e
v
e
l
o
c
i
t
i
e
s

[
U
t
o
t
V
t
o
t
]
=
c
a
l
c
u
l
a
t
e
V
e
l
o
c
i
t
i
e
s
(
L
x
,
L
y
,
L
t
,
.
.
.

L
x
x
,
L
x
y
,
L
x
t
,
L
y
y
,
L
y
t
,
L
t
t
,
.
.
.

e
p
s
i
l
o
n
,
c
1
,
c
2
,
.
.
.

S
t
a
r
t
_
x
,
E
n
d
_
x
,
S
t
a
r
t
_
y
,
En
d
_
y,
S
t
ar
t
_t
,
E
nd
_
t
,

.
.
.

i
m
a
g
e
S
e
q
u
e
n
c
e
)
;

r
e
t
u
r
n

B
.4

c
a
lc

G
a
u
ss

ia
n
D

e
ri

v
a
ti

v
e
F
il
te

r

f
u
n
c
t
i
o
n
[
v
a
r
a
r
g
o
u
t
]
=
.
.
.

c
a
l
c
G
a
u
s
s
i
a
n
D
e
r
i
v
a
t
i
v
e
F
il
t
e
r(
f
i
lt
e
rS
i
z
eX
,
f
i
l
t
e
r
S
i
z
e
Y
,
f
i
l
t
e
r
S
i
z
e
T)

%
c
a
l
c
u
l
a
t
e
s
t
h
e
d
e
r
i
v
a
t
i
v
e
s
o
f

a
g
a
u
s
s
i
a
n
f
u
n
c
t
i
o
n

d
i
s
p
(
’
<
<
c
a
l
c
G
a
u
s
s
i
a
n
D
e
r
i
v
a
t
i
v
e
Fi
l
te
r
’
);

s
y
m
s
x
y

t
;

s
y
m
s
s
i
g
m
a
X
s
i
g
m
a
Y
s
i
g
m
a
T
;

s
i
g
m
a
=

1
;

f
i
l
t
e
r
S
i
z
e
X
=
(
f
i
l
t
e
r
S
i
z
e
X
-
1
)
/
2
;
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f
i
l
t
e
r
S
i
z
e
Y
=
(
f
i
l
t
e
r
S
i
z
e
Y
-
1
)
/
2
;

f
i
l
t
e
r
S
i
z
e
T
=
(
f
i
l
t
e
r
S
i
z
e
T
-
1
)
/
2
;

x
=

-
f
i
l
t
e
r
S
i
z
e
X
:
f
i
l
t
e
r
S
i
z
e
X;

y
(
1
:
3
,
:
)
=
-
f
i
l
t
e
r
S
i
z
e
Y
:
f
i
l
t
e
r
S
i
z
e
Y;

t
(
:
,
:
,
1
:
3
)
=
-
f
i
l
t
e
r
S
i
z
e
T
:
f
i
l
t
e
r
S
i
z
e
T
;

g
1
D
i
f
f
1
=
-
x
.
/
s
i
g
m
a
^
2
.
*
e
x
p
(
-
x
.
^
2
/
(
2*
s
i
gm
a
^
2)
)
;

g
1
D
i
f
f
2
=
-
y
.
/
s
i
g
m
a
^
2
.
*
e
x
p
(
-
y
.
^
2
/
(
2*
s
i
gm
a
^
2)
)
;

g
1
D
i
f
f
3
=
-
t
.
/
s
i
g
m
a
^
2
.
*
e
x
p
(
-
t
.
^
2
/
(
2*
s
i
gm
a
^
2)
)
;

g
1
D
i
f
f
1
=
g
1
D
i
f
f
1
/
s
u
m
(
a
b
s
(g
1
D
if
f
1
))
;

g
1
D
i
f
f
2
=
g
1
D
i
f
f
2
/
s
u
m
(
a
b
s
(g
1
D
if
f
2
))
;

g
1
D
i
f
f
3
=
g
1
D
i
f
f
3
/
s
u
m
(
a
b
s
(g
1
D
if
f
3
))
;

v
a
r
a
r
g
o
u
t
=

{
g
1
D
i
f
f
1
,
g
1
D
i
f
f
2
,
g
1
D
i
f
f
3
}
;

r
e
t
u
r
n

B
.5

c
a
lc

u
la

te
L

f
u
n
c
t
i
o
n
[
v
a
r
a
r
g
o
u
t
]
=
c
a
l
c
u
l
a
t
e
L
(
g
1
D
i
f
f
1
,
g
1
D
i
f
f
2
,
g
1
D
i
f
f
3
,
i
m
G
r
a
y
,
N
o
O
f
M
o
t
i
o
n
s
,
L
x
,
L
y
,
L
t
)
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d
i
s
p
(
’
<
<
c
a
l
c
u
l
a
t
e
L
’
)
;

[
h
e
i
g
h
t
w
i
d
t
h
d
e
p
t
h
]
=

s
i
z
e
(
i
m
G
r
a
y
)
;

i
f
N
o
O
f
M
o
t
i
o
n
s
=
=
1

L
1
1
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
1
2
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
1
3
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
1
1
=
c
o
n
v
n
(
i
m
G
r
a
y
,
g
1
D
i
f
f
1
,
’
s
a
m
e
’
)
;

L
1
2
=
c
o
n
v
n
(
i
m
G
r
a
y
,
g
1
D
i
f
f
2
,
’
s
a
m
e
’
)
;

L
1
3
=
c
o
n
v
n
(
i
m
G
r
a
y
,
g
1
D
i
f
f
3
,
’
s
a
m
e
’
)
;

v
a
r
a
r
g
o
u
t
=
{
L
1
1
,
L
1
2
,
L
1
3
}
;

e
l
s
e L
2
1
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
2
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
3
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
4
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
5
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
6
=
z
e
r
o
s
(
h
e
i
g
h
t
,
w
i
d
t
h
,
d
e
p
t
h
)
;

L
2
1
=
c
o
n
v
n
(
L
x
,
g
1
D
i
f
f
1
,
’
s
a
m
e
’
)
;
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L
2
2
=
c
o
n
v
n
(
L
y
,
g
1
D
i
f
f
1
,
’
s
a
m
e
’
)
;

L
2
3
=
c
o
n
v
n
(
L
t
,
g
1
D
i
f
f
1
,
’
s
a
m
e
’
)
;

L
2
4
=
c
o
n
v
n
(
L
y
,
g
1
D
i
f
f
2
,
’
s
a
m
e
’
)
;

L
2
5
=
c
o
n
v
n
(
L
t
,
g
1
D
i
f
f
2
,
’
s
a
m
e
’
)
;

L
2
6
=
c
o
n
v
n
(
L
t
,
g
1
D
i
f
f
3
,
’
s
a
m
e
’
)
;

v
a
r
a
r
g
o
u
t
=
{
L
2
1
,
L
2
2
,
L
2
3
,
L
2
4
,
L
2
5
,
L
2
6
}
;

e
n
d

r
e
t
u
r
n

B
.6

c
a
lc

u
la

te
V

e
lo

c
it

ie
s

f
u
n
c
t
i
o
n
[
U
t
o
t
V
t
o
t
]
=
c
a
l
c
u
l
a
t
e
V
e
l
o
c
i
t
i
es
(
L
x,

L
y
,
L
t
,
.
.
.

L
x
x
,
L
x
y
,
L
x
t
,
L
y
y
,
L
y
t
,
L
t
t
,
.
.
.

e
p
s
i
l
o
n
,
c
1
,
c
2
,
.
.
.

S
t
a
r
t
_
x
,
E
n
d
_
x
,
S
t
a
r
t
_
y
,
En
d
_
y,
S
t
ar
t
_t
,
E
nd
_
t
,

.
.
.

i
m
a
g
e
S
e
q
u
e
n
c
e
)
;

d
i
s
p
(
’
<
<
c
a
l
c
u
l
a
t
e
V
e
l
o
c
i
ti
e
s
’)
;

J
1
=

z
e
r
o
s
(
3
,
3
)
;

J
2
=

z
e
r
o
s
(
6
,
6
)
;

t
h
e
M
i
n
o
r
s
1
=
z
e
r
o
s
(
3
,
3
)
;

t
h
e
M
i
n
o
r
s
2
=
z
e
r
o
s
(
6
,
6
)
;

56

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

U
t
o
t

=
c
o
m
p
l
e
x
(
z
e
r
o
s
(
s
i
z
e
(
i
m
a
g
e
Se
q
u
en
c
e
))
,
ze
r
o
s(
s
i
ze
(
im
a
g
eS
e
q
ue
n
ce
)
)
);

V
t
o
t

=
U
t
o
t
;

[
h
e
i
g
h
t
w
i
d
t
h
d
e
p
t
h
]
=

s
i
z
e
(
i
m
a
g
e
S
e
q
u
e
n
c
e
)
;

d
i
s
p
(
[
’
f
r
o
m
’
S
t
a
r
t
_
t
’

t
o
’
E
n
d
_
t
]
)
;

[
J
1
t
o
t
J
2
t
o
t
]
=
c
a
l
c
u
l
a
t
e
T
e
n
s
o
r
s
(
L
x
,
L
y
,
L
t
,
L
x
x
,
L
y
y
,
L
x
y
,
L
x
t
,
L
y
t
,
L
t
t
)
;

%
%
M
a
i
n
L
o
o
p

%
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
-
-
--
-
-
--
-
--

%
%
C
o
m
p
u
t
e
s
t
h
e
m
o
t
i
o
n
s
v
e
c
t
o
r
s
f
o
r
a
l
l
p
i
x
e
l
s

%
%

f
o
r
t
=
S
t
a
r
t
_
t
:
E
n
d
_
t
,

t f
o
r
y
=
S
t
a
r
t
_
y
:
E
n
d
_
y
,

f
o
r
x

=
S
t
a
r
t
_
x
:
E
n
d
_
x
,

J
1
=

[
J
1
t
o
t
{
1
,
1
}
(
y
,
x
,
t
)
J
1
t
o
t
{
1
,
2
}
(
y
,
x
,
t
)
J
1
t
o
t
{
1
,
3
}
(
y
,
x
,
t
)
;
.
.
.

J
1
t
o
t
{
2
,
1
}
(
y
,
x
,
t
)
J
1
t
o
t
{
2
,
2
}
(
y
,
x
,
t
)
J
1
t
o
t
{
2
,
3
}
(
y
,
x
,
t
)
;
.
.
.

J
1
t
o
t
{
3
,
1
}
(
y
,
x
,
t
)
J
1
t
o
t
{
3
,
2
}
(
y
,
x
,
t
)
J
1
t
o
t
{
3
,
3
}
(
y
,
x
,
t
)
]
;

[
H
1
K
1

S
1
]
=
c
o
n
f
i
d
e
n
c
e
(
J
1
)
;

i
f
(
H
1
>
e
p
s
i
l
o
n
)
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i
f
(
K
1
^
(
1
/
3
)
<
c
1
*
s
q
r
t
(
S
1
)
)

t
h
e
M
i
n
o
r
s
1
=
m
i
n
o
r
s
M
a
t
r
i
x
1
(
J
1
)
;

V
1
=
[
t
h
e
M
i
n
o
r
s
1
(
1
,
3
)
-
t
h
e
M
i
n
o
r
s
1
(
1
,
2
)
t
h
e
M
i
n
o
r
s
1
(
1
,
1
)
]
;

V
2
=
[
t
h
e
M
i
n
o
r
s
1
(
2
,
3
)
-
t
h
e
M
i
n
o
r
s
1
(
2
,
2
)
t
h
e
M
i
n
o
r
s
1
(
2
,
1
)
]
;

V
3
=
[
t
h
e
M
i
n
o
r
s
1
(
3
,
3
)
-
t
h
e
M
i
n
o
r
s
1
(
3
,
2
)
t
h
e
M
i
n
o
r
s
1
(
3
,
1
)
]
;

d
e
n
o
m
i
n
a
t
o
r
=

t
h
e
M
i
n
o
r
s
1
(
1
,
1
)
^
2
+
t
h
e
M
i
no
r
s
1(
1
,2
)
^
2+
t
h
eM
i
no
r
s
1(
1
,
3)
^
2;

i
f
(
d
e
n
o
m
i
n
a
t
o
r
=
=
0
)

d
e
n
o
m
i
n
a
t
o
r
=
0
.
0
0
1
;

e
n
d

a
l
f
a
1
=

t
h
e
M
i
n
o
r
s
1
(
1
,
1
)
/
d
e
n
o
m
i
na
t
or
;

a
l
f
a
2
=

t
h
e
M
i
n
o
r
s
1
(
1
,
2
)
/
d
e
n
o
m
i
na
t
or
;

a
l
f
a
3
=

t
h
e
M
i
n
o
r
s
1
(
1
,
3
)
/
d
e
n
o
m
i
na
t
or
;

v
=

a
l
f
a
1
*
V
1
+
a
l
f
a
2
*
V
2
+
a
l
f
a
3*
V
3
;

U
t
o
t
(
y
,
x
,
t
)
=
c
o
m
p
l
e
x
(
v
(
1)
,
v
(2
)
)
;

e
l
s
e
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%
%
C
o
m
p
u
t
e
J
2

J
2
=

.
.
.

[
J
2
t
o
t
{
1
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
1
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
1
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
1
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
1
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
1
,
6
}
(
y
,
x
,
t
)
;
.
.

J
2
t
o
t
{
2
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
2
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
2
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
2
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
2
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
2
,
6
}
(
y
,
x
,
t
)
;
.
.
.

J
2
t
o
t
{
3
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
3
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
3
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
3
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
3
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
3
,
6
}
(
y
,
x
,
t
)
;
.
.
.

J
2
t
o
t
{
4
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
4
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
4
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
4
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
4
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
4
,
6
}
(
y
,
x
,
t
)
;
.
.
.

J
2
t
o
t
{
5
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
5
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
5
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
5
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
5
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
5
,
6
}
(
y
,
x
,
t
)
;
.
.
.

J
2
t
o
t
{
6
,
1
}
(
y
,
x
,
t
)
J
2
t
o
t
{
6
,
2
}
(
y
,
x
,
t
)
J
2
t
o
t
{
6
,
3
}
(
y
,
x
,
t
)
J
2
t
o
t
{
6
,
4
}
(
y
,
x
,
t
)
J
2
t
o
t
{
6
,
5
}
(
y
,
x
,
t
)
J
2
t
o
t
{
6
,
6
}
(
y
,
x
,
t
)
]
;

t
h
e
M
i
n
o
r
s
2
=
m
i
n
o
r
s
M
a
t
r
i
x
2
(
J
2
)
;

[
K
2
S
2
]
=

c
o
n
f
i
d
e
n
c
e
(
J
2
)
;

i
f
(
K
2
^
(
1
/
6
)
<
c
2
*
S
2
^
(
1
/
5
)
)

a
l
f
a

=
t
h
e
M
i
n
o
r
s
2
(
1
,
1
:
6
)
’
;

v
=

t
h
e
M
i
n
o
r
s
2
*
a
l
f
a
;

%
%

S
o
l
v
e
t
h
e
c
o
m
p
l
e
x
p
o
l
y
n
o
m
i
a
l

a
=

v
(
6
)
/
v
(
1
)
;

b
=

v
(
5
)
/
v
(
1
)
;

c
=

v
(
4
)
/
v
(
1
)
;

d
=

v
(
3
)
/
v
(
1
)
;
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e
=

v
(
2
)
/
v
(
1
)
;

A
1

=
d
+
j
*
e
;

A
0

=
a
-
b
+
j
*
c
;

x
1

=
1
/
2
*
(
A
1
-
s
q
r
t
(
-
4
*
A
0
+
A
1
^
2
)
);

x
2

=
1
/
2
*
(
A
1
+
s
q
r
t
(
-
4
*
A
0
+
A
1
^
2
)
);

U
t
o
t
(
y
,
x
,
t
)
=
x
1
;

V
t
o
t
(
y
,
x
,
t
)
=
x
2
;

w
a
r
n
i
n
g
o
f
f
l
a
s
t

e
n
d

e
n
d

e
n
d

e
n
d

e
n
d

e
n
d

r
e
t
u
r
n
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B
.7

c
a
lc

u
la

te
T
e
n
so

rs

f
u
n
c
t
i
o
n
[
J
1
t
o
t
J
2
t
o
t
]
=
.
.
.

c
a
l
c
u
l
a
t
e
T
e
n
s
o
r
s
(
L
x
,
L
y
,
L
t
,
L
x
x
,
L
y
y
,
L
x
y
,
L
x
t
,
L
y
t
,
L
t
t
)

%
i
n
t
e
g
r
a
t
i
o
n
f
i
l
t
e
r
f
o
r
t
h
e
t
e
n
s
o
r
s

o
m
e
g
a
=

f
s
p
e
c
i
a
l
(
’
g
a
u
s
s
i
a
n
’
,
[
3
1
]
,
1
)
;

o
m
e
g
a
=

M
a
k
e
_
3
D
_
F
i
l
t
e
r
(
o
m
e
g
a
,
o
m
eg
a
,o
m
e
ga
)
;

%
c
a
l
c
u
l
a
t
e
s
t
r
u
c
t
u
r
e
t
e
n
s
o
r
f
o
r
.
.
.

%
o
n
e
m
o
t
i
o
n
u
s
i
n
g
f
i
r
s
t
d
e
g
r
e
e
p
a
r
t
i
a
l

%
d
e
r
i
v
a
t
i
v
e
s

J
1
t
o
t
=

.
.
.

{
c
o
n
v
n
(
L
x
.
*
L
x
,
o
m
e
g
a
,
’
s
a
me
’
)
,

c
o
n
v
n
(
L
x
.
*
L
y
,
o
m
e
g
a
,
’
s
a
m
e’
)
,
c
o
n
v
n
(
L
x
.
*
L
t
,
o
m
e
g
a
,
’
s
a
m
e
’)
;
.
..

c
o
n
v
n
(
L
y
.
*
L
x
,
o
m
e
g
a
,
’
s
a
m
e’
)
,
c
o
n
v
n
(
L
y
.
*
L
y
,
o
m
e
g
a
,
’
s
a
m
e
’)
,
c
o
n
v
n
(
L
y
.
*
L
t
,
o
m
e
g
a
,
’
s
a
m
e
’
);
.
.
.

c
o
n
v
n
(
L
t
.
*
L
x
,
o
m
e
g
a
,
’
s
a
m
e’
)
,
c
o
n
v
n
(
L
t
.
*
L
y
,
o
m
e
g
a
,
’
s
a
m
e
’)
,
c
o
n
v
n
(
L
t
.
*
L
t
,
o
m
e
g
a
,
’
s
a
m
e
’
)}
;

%
c
a
l
c
u
l
a
t
e
s
t
r
u
c
t
u
r
e
t
e
n
s
o
r
f
o
r
t
w
o
m
o
t
i
o
n
s
u
s
i
n
g
s
e
c
o
n
d
d
e
g
r
e
e
p
a
r
t
i
a
l

%
d
e
r
i
v
a
t
i
v
e
s

% J2
to

t
=

co
nv

n(
L
xx

.*
L
xx

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xx

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xx

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
xx

.*
L
xt

,o
m

eg
a,

’s
am

co
nv

n(
L
xx

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xx

.*
L
tt

,o
m

eg
a,

’s
am

e’
);
...

co
nv

n(
L
xx

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yy

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yy

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
yy

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yy

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yy

.*
L
tt

,o
m

eg
a,

’s
am

e’
);
...
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co
nv

n(
L
xx

.*
L
xy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xy

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xy

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
xy

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xy

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xy

.*
L
tt

,o
m

eg
a,

’s
am

e’
);
...

co
nv

n(
L
xx

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xt

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xt

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
xt

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xt

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
xt

.*
L
tt

,o
m

eg
a,

’s
am

e’
);
...

co
nv

n(
L
xx

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yt

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yt

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
yt

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yt

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
yt

.*
L
tt

,o
m

eg
a,

’s
am

e’
);
...

co
nv

n(
L
xx

.*
L
tt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
tt

.*
L
yy

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
tt

.*
L
xy

,o
m

eg
a,

’s
am

e’
),
...

co
nv

n(
L
tt

.*
L
xt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
tt

.*
L
yt

,o
m

eg
a,

’s
am

e’
),

co
nv

n(
L
tt

.*
L
tt

,o
m

eg
a,

’s
am

e’
);

re
tu

rn

B
.8

M
a
k
e

3
D

F
il
te

r

f
u
n
c
t
i
o
n

f
=
M
a
k
e
_
3
D
_
F
i
l
t
e
r
(
f
1
,
f
2
,
f
3
)

%
%

T
h
i
s

f
u
n
c
t
i
o
n

g
e
n
e
r
a
t
e
s

a
3
D

F
i
l
t
e
r

f
o
r
m

t
h
r
e
e

1
D

f
i
l
t
e
r
s
.

f
o
r

i
=
1
:
l
e
n
g
t
h
(
f
1
)
,

f
o
r

j
=
1
:
l
e
n
g
t
h
(
f
2
)
,

f
o
r

k
=
1
:
l
e
n
g
t
h
(
f
3
)
,

f
(
i
,
j
,
k
)
=
f
1
(
i
)
*
f
2
(
j
)
*
f
3
(
k
)
;

e
n
d

e
n
d

e
n
d
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B
.9

c
o
n
fi
d
e
n
c
e

f
u
n
c
t
i
o
n

[
v
a
r
a
r
g
o
u
t
]
=

c
o
n
f
i
d
e
n
c
e
(
J
)

[
m
,
n
]

=
s
i
z
e
(
J
)
;

K
=
d
e
t
(
J
)
;

i
f

m
=
=

3

H
=
J
(
1
,
1
)
+
J
(
2
,
2
)
;

S
=
(
1
/
(
m
-
1
)
)
*
(
M
i
n
o
r
(
J
,
1
,
1
)
+
M
i
n
o
r
(
J
,
2
,
2
)
+
M
i
n
o
r
(
J
,
3
,
3
)
)
;

v
a
r
a
r
g
o
u
t
=
{
H
,
K
,
S
}
;

e
l
s
e

S
=
(
1
/
(
m
-
1
)
)
*
(
M
i
n
o
r
(
J
,
1
,
1
)
+
M
i
n
o
r
(
J
,
2
,
2
)
+
M
i
n
o
r
(
J
,
3
,
3
)
+
M
i
n
o
r
(
J
,
4
,
4
)
+
M
i
n
o
r
(
J
,
5
,
5
)
+
M
i
n
o
r
(
J
,
6
,
6
)
)
;

v
a
r
a
r
g
o
u
t
=
{
K
,
S
}
;

e
n
d

r
e
t
u
r
n
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B
.1

0
m

in
o
rs

M
a
tr

ix
1

f
u
n
c
t
i
o
n

t
h
e
M
a
t
r
i
x

=
m
i
n
o
r
s
M
a
t
r
i
x
1
(
A
)

%
M
I
N
O
R

%
G
i
v
e
s

s
u
b
m
a
t
r
i
x

a
n
d

m
i
n
o
r
s

o
f

a
n

e
l
e
m
e
n
t

o
f

a
m
a
t
r
i
x
.

%
C
a
l
l
i
n
g

f
o
r
m
a
t
:

m
i
n
o
r
s

o
f

A
.

[
p
,
q
]

=
s
i
z
e
(
A
)
;

m
a
t
r
i
s
e
n

=
z
e
r
o
s
(
p
,
q
)
;

f
o
r

i
p
o
i
n
t

=
1
:
p

f
o
r

j
p
o
i
n
t

=
1
:
q

B
=
A
;

B
(
p
+
1
-
i
p
o
i
n
t
,
:
)
=
[
]
;

B
(
:
,
q
+
1
-
j
p
o
i
n
t
)
=
[
]
;

m
a
t
r
i
s
e
n
(
i
p
o
i
n
t
,
j
p
o
i
n
t
)
=

d
e
t
(
B
)
;
%
(
-
1
)
^
(
i
p
o
i
n
t
+
j
p
o
i
n
t
)
*
*
d
e
t
(
B
)
;

e
n
d

e
n
d

t
h
e
M
a
t
r
i
x

=
m
a
t
r
i
s
e
n
;
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