
www.F
irs

tR
an

ke
r.c

om

Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Nowcasting using Microblog Data

Examensarbete utfört i Reglerteknik
vid Tekniska högskolan vid Linköpings universitet

av

Christian Andersson Naesseth

LiTH-ISY-EX-ET--12/0398--SE

Linköping 2012

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Nowcasting using Microblog Data

Examensarbete utfört i Reglerteknik
vid Tekniska högskolan vid Linköpings universitet

av

Christian Andersson Naesseth

LiTH-ISY-EX-ET--12/0398--SE

Handledare: Fredrik Lindsten
isy, Linköpings universitet

Examinator: Thomas Schön
isy, Linköpings universitet

Linköping, 18 september 2012

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Avdelning, Institution
Division, Department

Automatic Control
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2012-09-18

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://www.ep.liu.se

ISBN

—

ISRN

LiTH-ISY-EX-ET--12/0398--SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Nowcasting med mikrobloggdata

Nowcasting using Microblog Data

Författare
Author

Christian Andersson Naesseth

Sammanfattning
Abstract

The explosion of information and user generated content made publicly available through
the internet has made it possible to develop new ways of inferring interesting phenomena
automatically. Some interesting examples are the spread of a contagious disease, earth quake
occurrences, rainfall rates, box office results, stock market fluctuations and many many more.
To this end a mathematical framework, based on theory from machine learning, has been em-
ployed to show how frequencies of relevant keywords in user generated content can estimate
daily rainfall rates of different regions in Sweden using microblog data.

Microblog data are collected using a microblog crawler. Properties of the data and data
collection methods are both discussed extensively. In this thesis three different model types
are studied for regression, linear and nonlinear parametric models as well as a nonparametric
Gaussian process model. Using cross-validation and optimization the relevant parameters of
each model are estimated and the model is evaluated on independent test data. All three
models show promising results for nowcasting rainfall rates.

Nyckelord
Keywords twitter, statistical learning, machine learning, gaussian process, nowcasting, social media

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Abstract

The explosion of information and user generated content made publicly available
through the internet has made it possible to develop new ways of inferring inter-
esting phenomena automatically. Some interesting examples are the spread of
a contagious disease, earth quake occurrences, rainfall rates, box office results,
stock market fluctuations and many many more. To this end a mathematical
framework, based on theory from machine learning, has been employed to show
how frequencies of relevant keywords in user generated content can estimate
daily rainfall rates of different regions in Sweden using microblog data.

Microblog data are collected using a microblog crawler. Properties of the data
and data collection methods are both discussed extensively. In this thesis three
different model types are studied for regression, linear and nonlinear paramet-
ric models as well as a nonparametric Gaussian process model. Using cross-
validation and optimization the relevant parameters of each model are estimated
and the model is evaluated on independent test data. All three models show
promising results for nowcasting rainfall rates.
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1
Introduction

The boom in social media on the Internet has made it easy to collect and analyze
large amounts of data generated by the public. This information is generallly
unstructured and some processing needs to be done to infer any real world mea-
surable quantities in a consistent way. This thesis explores some possibilities and
opportunities in using unstructured textual information from the microblogging
service Twitter1 for inferring occurrences and magnitude of events and phenom-
ena. By using theory and methods from statistical learning a measurement model
usable in a Bayesian filtering context, i.e. on the form

yi = h(xi) + εi , (1.1)

is inferred. Here yi is a subset of all tweets in a region, xi is the real world
quantity to be estimated and εi is a disturbance or error term.

Nowcasting, most commonly used in finance, is a term that makes it clear that
inference is performed on a current magnitude M (E) of an event E. As a case
study, a measurement model for inferring regional daily precipitation in a few
cities in Sweden is derived where actual tweets and rainfall levels are used.

1.1 Motivation

User generated content on the internet can contain a lot of information which can
be used for data mining. Especially interesting, from a data mining perspective,
are real world measures that are either difficult to estimate or whose estimates are
delayed in some sence. One example where estimates are usually delayed and dif-
ficult to estimate are reports on influenza-like illnesses (ili). Studies have shown

1http://www.twitter.com/

1
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2 1 Introduction

that early detection and early interventions can effectively contain an emerging
epedemic, see e.g. Ferguson et al. [2005] and Longini Jr. et al. [2005]. This means
detection and estimation of alarming changes in ili rates can be of paramount
importance.

This thesis will focus on a method for identifying a measurement model from
a subset of tweets that can be used in a Bayesian filtering context. For more
information on Bayesian filtering see for example Gustafsson [2010].

The Bayesian approach for filtering and estimation is widely used in many ap-
plications today. It offers many powerful methods for estimating and inferring
values given a state-space model, or a more general probabilistic model. This
thesis focuses on building the measurement model as this is the equation that
pertains to the use of Twitter. It can also be extended with a dynamic model for
prediction purposes. However, this is beyond the scope of this thesis.

1.2 Related Work

In recent years, inference based on unstructured textual information from social
networks, search engines and microblogging have emerged as a popular research
area. The work has been focused on exploiting user generated web content to
make various kinds of inference. One example of inference based on information
contained in tweets can be found in Bollen and Mao [2011], Bollen et al. [2010],
where prediction of the stock market is performed. Another interesting exam-
ple is detection of earth quakes in Japan, see Sakaki et al. [2010], viewing each
seperate person as a type of sensor and using classification theory as a detection
algorithm. Lansdall-Welfare et al. [2012] use data mining methods to analyze
correlations between the recession and public mood in the UK.

A big part of the research is concentrated on inferring ili rates based on content
from the social web or search engines. An early example using search engine data
is Ginsberg et al. [2009]. As was mentioned in Section 1.1, estimating ili rates is
difficult with conventional means. Since it is a very important measure to keep
track of it would be interesting to use other means to achieve a better up to date
estimate. A few examples using social network information are Achrekar et al.
[2012], Achrekar et al. [2011], Chen et al. [2010], Chew and Eysenbach [2010]
and Lampos and Cristianini [2011]. The last one, Nowcasting Events from the
Social Web with Statistical Learning by Lampos and Cristianini [2011], requires
special mention as it not only uses Twitter to predict ili rates, but also infers
daily rainfall rate which is the case study of this thesis. The model considered
in Lampos and Cristianini [2011] is a linear parametric regression model. In this
thesis both similar models and nonlinear and nonparametric alternatives will be
considered. Differences between the linear models in this thesis and Lampos and
Cristianini [2011] lie in model selection, validation and data collection methods.
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1.3 Microblogging 3

1.3 Microblogging

Microblogging is a broadcast medium very similar to regular blogging. In compar-
ison to traditional blogging, microblogging is usually smaller in both aggregate
and actual file or message size. Microblogs let their users exchange small micro-
posts, elements of content, containing short sentences, images or links to other
content. The range of topics discussed in the microposts can vary widely. It might
range from simple statements of how a person feels, to complex discussions on
politics or current news.

Twitter is one of the biggest microblogging services to date with more than 500
million users2. Twitter is the microblogging service used for the case study in
this thesis, microposts are therefore hereafter referred to as tweets. Tweets sent
by one person to another that are forwarded or just tweeted again by a third
person are called retweets.

Other examples of microblogging services are Tumblr 3, Plurk 4 and Sina Weibo
5.

1.4 Problem Formulation

It is assumed that daily rainfall (or ili) rate can be inferred from frequencies of
relevant keywords contained in tweets, with retweets filtered out, in a certain
region on that day. The problem is then to identify the mathematical model de-
scribing the relationship between the keyword input frequencies and the output
rainfall rate. It is further assumed that the model (function) is invariant to the
region.

1.5 Thesis Outline

The first four chapters of this thesis are dedicated to an introduction of the topic
and background theory for the case study. Results and discussions are presented
in chapters five and six. The outline is summarized below,

Chapter 2 provides theory on parametric regression, both linear and nonlinear.
The purpose is to give a short overview of the theory used in this thesis.

Chapter 3 focuses on nonparametric regression. Specifically the theory for ma-
chine learning with Gaussian Processes is reviewed.

Chapter 4 presents an overview of methods for model selection, validation and
assessment.

2http://www.mediabistro.com/alltwitter/500-million-registered-users_b18842, (August 4th,
2012)

3https://www.tumblr.com/
4http://www.plurk.com/
5http://www.weibo.com/
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4 1 Introduction

Chapter 5 describes how data was collected and of the results obtained when
applying theory to the case study.

Chapter 6 compares the different results, discusses the data used and improve-
ments that can be made. It also contains a section on future work.

Chapter 2 and 3 both contain modelling sections, which describe the actual math-
ematical models used for inference in this thesis.

www.FirstRanker.com www.FirstRanker.com
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2
Parametric Regression

This chapter concerns regression theory based on a parametric approach. Para-
metric regression assumes a model where prediction can be made based on a
finite set of learned parameters. These parameters are estimated in a training
phase based on a training data set of inputs and outputs,D = {(yi , xi)|i = 1, . . . , N }.
This means prediction can be made based on new inputs and the parameters
without the need to save any of the data used in the training phase. The non-
parametric approach, explained more in Chapter 3, on the other hand uses the
training data as well as inferred parameters to predict values based on new in-
puts.

The first type of models discussed will be models linear in the parameters, which
are a very important class of models in statistical learning. Let yi be a random
variable that is observed. The linear model can then be expressed in the form:

yi = β0 + β1xi,1 + β2xi,2 + . . . + βp−1xi,p−1 + εi , i = 1, . . . , N , (2.1)

where xi,j are the known input variables, εi is the error and βj are the parameters
to be estimated. An observation to be made is that the model need not be linear
in the input variables, these can come from different sources:

• quantitative measurements

• general transformations of inputs, such as log, square-root, etc.

• basis expansions or interactions between variables, for example, xi,2 = x2
i,1,

xi,3 = xi,1xi,2

• many other forms linear in the parameters β

5
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6 2 Parametric Regression

A simple example is a resistor with a controllable current and measurable voltage,
see Example 2.1, where the resistance and measurement noise is to be estimated.

2.1 Example
Ohm’s law states that the current through a conductor is proportional to the

potential difference across the conductor. In mathematical terms:

U = RI (2.2)

This can be expressed as a linear model on the form

yi = β0 + β1xi,1 + εi , (2.3)

where yi = U , xi,1 = I , εi is zero-mean measurement noise and β0, β1 are the
parameters to be estimated. β0 in this case is usually called an intercept and
can estimate a constant term present in the system, for example the mean of the
measurement noise. The main goal is to estimate β1 which corresponds to the
resistance, R in Ohm’s law, of the resistor.

Ways of estimating the parameters in these kinds of models are discussed in Sec-
tion 2.1. The second part of this chapter, Section 2.2, concerns a special case of
the general nonlinear parametric model

yi = f (xi,1, . . . , xi,p−1, β0, . . . , βp−1) + εi . (2.4)

The special case of the above general nonlinear parametric model considered is
commonly referred to as a neural network. The last part, Section 2.3, discusses
the actual models used for inference in this thesis.

2.1 Least Squares

One of the most common ways to estimate the parameters in (2.1) is by minimiz-
ing the residual sum of squares (rss) with respect to all the parameters. With
batch form notation, i.e.

y =


y1
y2
...
yN

 , X =


x1,0 · · · x1,p−1
...

. . .
...

xN,0 · · · xN,p−1

 , β =


β0
β1
...

βp−1

 , ε =


ε1
ε2
...
εN

 ,
where xi,0 = 1, the estimate of β is

β̂ = argmin
β

RSS(β). (2.5)

www.FirstRanker.com www.FirstRanker.com
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2.1 Least Squares 7

RSS (β) is given by

RSS(β) =
N∑
i=1

(yi − xTi β)2 = (y − Xβ)T (y − Xβ). (2.6)

Differentiating this with respect to β gives

∂RSS(β)
∂β

= −2XT (y − Xβ), (2.7a)

∂2
RSS(β)
∂β2 = 2XTX. (2.7b)

Provided that X has full rank the unique solution is obtained by setting (2.7a)
equal to zero, and solving for β, which gives

β̂ =
(
XTX

)−1
XT y. (2.8)

This is the Least Squares Estimate (lse) of β. In the case that X does not have full
rank one can still obtain a solution using a generalized inverse, see Seber and Lee
[2003, p. 38].

2.1.1 Properties of the Least Squares Estimate

Assuming that the errors are zero-mean, i.e. that E[εi] = 0, and that X has full
rank the following relation holds

E[β̂] =
(
XTX

)−1
XT E[y] =

(
XTX

)−1
XTXβ = β. (2.9)

Hence, the lse is an unbiased estimate of the parameters. Also assuming that the
errors are uncorrelated, Cov(εi , εj ) = 0, and have the same variance , Var(εi) = σ2,
the variance of the estimate is given by

Var(β̂) = σ2
(
XTX

)−1
. (2.10)

An unbiased estimate of the variance is given, see [Hastie et al., 2009, p. 47], by

σ̂2 =
1

N − p − 1
(y − Xβ̂)T (y − Xβ̂). (2.11)

N is the total number of data points and p is related to the model order, see (2.1).
It can also be shown that the lse has minimum variance among all linear and

www.FirstRanker.com www.FirstRanker.com
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8 2 Parametric Regression

unbiased estimates of β. This is called the Gauss-Markov Theorem, see Hastie
et al. [2009, p. 51].

2.1.2 Shrinkage Methods

Shrinkage methods, defined by (2.12), are in machine learning literature com-
monly referred to as regularization methods. Roughly speaking, they are a way
of controlling overfitting to get a model that generalizes better. One way of de-
scribing all shrinkage methods very elegantly in one equation is

β̃ = argmin
β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+ λ
p∑
j=1

|βj |q
 (2.12)

with q ≥ 0 and λ being a parameter that controls the amount of shrinkage. The
cases q = 1 and q = 2 give the well known Least Absolute Shrinkage and Selection
Operator (lasso) and Ridge Regression (rr), respectively. Given q ≥ 1, a convex
optimization problem is obtained. In the ridge regression case, following the
reasoning in Section 2.1, the closed form solution can be found to be

β̂
rr

=
(
XTX + λI

)−1
XT y. (2.13)

2.2 Neural Networks

In this section the following model is studied

aj (xi) =
p−1∑
k=1

w
(1)
jk xi,k + w(1)

j0 , (2.14a)

zj (xi) = h
(
aj (xi)

)
, (2.14b)

a(xi) =
M∑
j=1

w
(2)
j zj (xi) + w(2)

0 , (2.14c)

yi(xi ,w) = σ (a) + εi . (2.14d)

This is the general expression for a neural network (nn) model with one target
variable. The aj are referred to as activations, these are then nonlinearly trans-
formed via the activation function h( · ) into the hidden units zj . The variable a is
known as output activation. This is transformed by yet another activation func-
tion σ ( · ) which gives the final output yi . For regression problems σ ( · ) is usually
set to the identity function, which gives yi = a. This model formulation will be
used for the case study in this thesis. Hence, the output is a nonlinear function

www.FirstRanker.com www.FirstRanker.com
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2.2 Neural Networks 9

in the parameters w(1)
jk and the inputs. The parameters w(1)

jk and w
(2)
j are often

referred to as weights. The nn can easily be represented in a network diagram
as can be seen in Figure 5.9, where parameters are applied along the arrows. Ad-

ditional input features x0 = z0 = 1 are added to capture the bias parameters w(1)
j0

and w(2)
0 .

Figure 2.1: Neural network diagram.

This gives a compact notation for yi on the form

yi(xi ,w) =
M∑
j=0

w
(2)
j h


p−1∑
k=0

w
(1)
jk xi,k

 + εi . (2.15)

The activation function h( · ) is usually set to either the logistic sigmoid or the
hyperbolic tangent function [Bishop, 2006, pg. 227]. In this thesis the logistic
sigmoid function, h(x) = (1 + e−x)−1, will be used.

2.2.1 Learning a Neural Network

To train the network and estimate the parameters in a regression problem, the
RSS is used. With w denoting the complete set of weights

w = (w(1)
00 , . . . , w

(1)
Mp−1, w

(2)
0 , . . . , w

(2)
M )T

with a total of (M + 1)(p + 1) parameters, the error function becomes
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10 2 Parametric Regression

RSS(w) =
N∑
i=1

yi − M∑
j=0

w
(2)
j h


p−1∑
k=0

w
(1)
jk xi,k




2

(2.16)

Finding the w that minizes (2.16), or the loss function described in Section 2.2.2,
is a nonconvex optimization problem which means that it is often impossible
to find an analytical solution. Usually it is not necessary, nor possible, to find
the global optima to (2.18) and iterative numerical procedures must be used. A
general equation for an iterative numerical optimization solver is

w(τ+1) = w(τ) + ∆w(τ), (2.17)

which is initialized with w(0) and the update of the weights at each iteration step,
τ , is denoted ∆w(τ). Different algorithms have different ways of selecting this
update. Iteration is performed until convergence or until a satisfactory value has
been found [Bishop, 2006].

2.2.2 Regularization and Neural Networks

Typically the global minima of (2.16) is not the best solution as this will often re-
sult in an overfit to the training data points [Hastie et al., 2009, pg. 398]. It is also
very difficult to know whether the global optima has been reached. To alleviate
the problem of overfit to training data a regularization method called weight de-
cay is performed. The new problem formulation follows the same principles and
is on the same form as (2.12). The loss function, denoted by L, to be minimized
thus becomes

L(w, λ) =
N∑
i=1

yi − M∑
j=0

w
(2)
j h


p−1∑
k=0

w
(1)
jk xi,k




2

+ λ
M∑
j=0

|wj |q +
p−1∑
k=0

|wjk |q
 (2.18)

Where λ and q ≥ 0 are tuning parameters that controls the amount of shrinkage
imposed on the parameters w.

2.3 Modelling

For the purpose of model estimation xi = (xi,1, . . . , xi,p−1)T will be a vector with
the frequencies of keywords for a time instance i. The set of candidate keywords
are denoted K = {kl} , l ∈ {1, . . . |K |}, where |K | is the size of set K . The retrieved

tweets for time instance i in region r are denoted T
(r)
i =

{
tj
}
, j ∈

{
1, . . . , |T (r)

i |
}
.

The indicator function 1tj (kl) indicates whether a keyword kl is contained in a
tweet tj or not, i.e.
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2.3 Modelling 11

1tj (kl) =
{

1 if kl ∈ tj
0 otherwise.

(2.19)

This gives the frequencies ω of the keywords in a region r:

ω(kl , T
(r)
i ) =

1

|T (r)
i |

|T (r)
i |∑
j=1

1tj (kl) . (2.20)

Inputs x(r)
i , part of the set X = R

|K |, are given by:

x(r)
i =

(
ω(k1, T

(r)
i ), . . . , ω(k|K |, T

(r)
i )

)T
(2.21)

Target (output) variables, i.e. the daily rainfall rates, are denoted by y(r)
i . The

model (function f ) estimated in this thesis, for region r with noise ε(r)
i , is then

formulated as:

y
(r)
i = f (r)(x(r)

i ) + ε(r)
i . (2.22)

The assumption, regarding a region invariant property of the function, men-
tioned in Section 1.4 means that the model estimated is the same for each region.
Because of this the superscript (r) will be supressed in this thesis. This gives the
general model

yi = f (xi) + εi . (2.23)

2.3.1 Linear Model

The specific linear model employed in this thesis is on the form

yi =
(
β0, . . . , β |K |(|K |+3)

2

) (
1, ω(k1, Ti), . . . , ω(k|K |, Ti), ω

2(k1, Ti), . . . , ω
2(k|K |, Ti),

ω(k1, Ti)ω(k2, Ti), ω(k1, Ti)ω(k3, Ti), . . . , ω(k|K |, Ti)ω(k|K |−1, Ti)
)T

+ εi

=βxi + εi . (2.24)

This means that not only the direct keyword frequencies but also the second de-
gree terms are considered as inputs to get a more general model.
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12 2 Parametric Regression

2.3.2 Nonlinear Model

The nonlinear model, with inputs

xi =
(
1, ω(k1, Ti), . . . , ω(k|K |, Ti)

)T
, (2.25)

considered is exactly the one given in (2.14). It is repeated here in compact form
with additive Gaussian noise:

yi =
M∑
j=0

w
(2)
j h

 |K |∑
k=0

w
(1)
jk xi,k

 + εi , εi ∼ N (0, σ2) (2.26)
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3
Nonparametric Regression using

Gaussian Processes

This chapter explains nonparametric regression theory using Gaussian processes.
In Chapter 2 a parametric approach to statistical learning was employed. The
nonparametric approach assumes that the function structure is unknown and
should also be learned from information contained in the training data set, D =
{(xi , yi) | i = 1, . . . , N }. Whencombining the nonparametric approach and the
theory of Gaussian Processes, the function is modelled as a stochastic process.
Roughly speaking this can be seen as an extension of probability distributions to
functions. This part of the thesis will consider inference directly in a function
space.

Section 3.1 first explains what a Gaussian Process (gp) is. Section 3.2 moves on to
explain how inference in a function space works. Decision theory, in Section 3.3,
briefly explains how point estimation is performed based on the model of the
function. Section 3.4 gives some examples of commonly used covariance func-
tions and Section 3.5 gives an example of the calculations involved in gp infer-
ence. The last section, Section 3.6, concludes this chapter with a few comments
regarding the actual model used for the case study.

3.1 Gaussian Processes

To describe distributions over functions the Gaussian process is introduced:

3.1 Definition. A Gaussian process is a collection of random variables, for which
any linear functional applied to it is normally distributed.

Following the notation and reasoning by Rasmussen and Williams [2006], a gp
can be described completely by its mean function, m(x), and its covariance func-

13
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14 3 Nonparametric Regression using Gaussian Processes

tion, k(x, x′). These are, for a real process f (x), defined as

m(x) = E[f (x)], (3.1a)

k(x, x′) = E[(f (x) −m(x))(f (x′) −m(x′))]. (3.1b)

This means that the Gaussian process can be written in the following way

f (x) ∼ GP (m(x), k(x, x′)) . (3.2)

Often, especially in the areas of control and communication theory, Gaussian
processes are defined over time. In this thesis the index set will be the set of
possible inputs, X , as defined in Section 2.3. Figure 3.1 shows an example of
three functions drawn at random from a zero-mean gp prior.

Figure 3.1: Samples from a zero-mean Gaussian Process prior.

3.2 Inference

To make inference in function space one first needs to make assumptions on
which types of functions to consider. Here the following form is assumed:

yi = f (xi) + εi , where f (x) ∼ GP (0, k(x, x′)) , (3.3)

where f (x) is a zero-mean gp and ε is zero-mean measurement noise with covari-
ance σ2. This problem formulation may look very similar to the ones employed
in Chapter 2. Now, however, the function f is modelled as a gp and the structure
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3.3 Decision Theory 15

and shape is learnt from training data. Modelling the function space as a zero-
mean process is not as much of a restriction as might be expected. This because
the posterior distribution does not necessarily have to be zero-mean.

For notational convenience X and y collects all training data, input and output,
in a matrix and vector respectively. K(X, X) is the N × N covariance matrix de-
fined by applying the covariance function k(x, x′) element wise to the inputs in
X. A star, ∗, denotes inputs and predictions for independent test data. K(X, X∗)
analogously to K(X, X) is, if there are M test data points, an N ×M covariance
matrix.

Assuming additive indepedent identically distributed Gaussian noise, the prior
on the observations y becomes

E[y] = 0, (3.4a)

cov(y) = K(X, X) + σ2I. (3.4b)

The prediction for novel inputs, x∗, with notation f∗ = f(x∗), is given as in Ras-
mussen and Williams [2006] by

f∗|X, y, X∗ ∼ N
(
f̄∗, cov(f̄∗)

)
, where (3.5a)

f̄∗ = K(X∗, X)
(
K(X, X) + σ2I

)−1
y, (3.5b)

cov(f̄∗) = K(X∗, X∗) − K(X∗, X)
(
K(X, X) + σ2I

)−1
K(X, X∗). (3.5c)

3.3 Decision Theory

Decision theory concerns making point estimation based on distributions. Up un-
til now, only distributions over functions have been considered. In practical appli-
cations, however, sooner or later it is necessary to make a decision based on this
distribution. This usually means a point-like prediction of y∗, with knowledge of
x∗, is needed which is optimal in some sense. A loss function, L(ytrue, ypred), is em-
ployed that specifies the penalty incurred when predicting ypred when the actual
value is ytrue. The most common loss functions are |ytrue−ypred| and (ytrue−ypred)2,
i.e. absolute deviation and squared loss. The true output, ytrue, is generally not
known and so the expected loss or risk

RL(ypred|x∗) =
∫
L(y∗, ypred)p(y∗|x∗, X, y)dy∗, (3.6)

with respect to ypred is usually minimized. This is then the optimal point estimate
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16 3 Nonparametric Regression using Gaussian Processes

of y

yopt|x∗ = argmin
ypred

RL(ypred|x∗) (3.7)

The optimal point estimate for the model structure assumed in Section 3.2 with
squared error loss function is the expected value of the conditional predictive
distribution, i.e. (3.5b).

3.4 Covariance Functions

An important part in the learning of Gaussian processes is designing the covari-
ance function, k(x, x′). The important part is not only picking an appropriate
function to capture the relevant structure of the underlying function to be esti-
mated, but also estimating the relevant hyperparameters, i.e. the parameters of
the function. The first part is briefly discussed here, for a more complete treat-
ment see Rasmussen and Williams [2006], and the second part is explained in
Section 4.3.

For k(x, x′) to be a valid covariance function it must be positive semidefinite. In
this thesis only stationary and isotropic covariance funtions will be considered. A
stationary covariance function is a function of only x − x′ . The isotropic attribute
further restricts the covariance function to be a function of r = ‖x − x′‖. Another
common name used instead of covariance function is a kernel. This term is more
general than a covariance function, but under a few conditions it can be seen
as equivalent to the covariance function, [Rasmussen and Williams, 2006, pg.
80]. Hence, the two expressions kernel and covariance function will be used
interchangeably in the rest of the thesis.

3.4.1 Common Kernels

In this section a few examples of commonly used kernels are mentioned. The
ones considered in this section are all isotropic and have one or more hyperpa-
rameters. Estimation of these hyperparameters will be discussed in Section 4.3.

Constant Kernel

The constant covariance function consists of a positive constant

kConst. = m2, (3.8)

where m is referred to as magnitude.
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3.4 Covariance Functions 17

Squared Exponential Kernel

The squared exponential (se) covariance function has the form

kse(r) = exp
(
− r

2

2l2

)
, (3.9)

where the hyperparameter is the characteristic length-scale l. This covariance
function is infinitely differentiable resulting in a very smooth regressor, i.e. esti-
mated function.

Rational Quadratic Kernel

The rational quadratic (rq) is given by

krq(r) =
(
1 +

r2

2αl2

)−α
. (3.10)

The hyperparameters of this kernel are α, l > 0. This covariance function can
also be seen as an infinite sum (scale mixture) of se kernels with different char-
acteristic length-scales. If α → inf the rq kernel approaches the se covariance
function with characteristic length-scale l [Rasmussen and Williams, 2006, sec.
4.2.1].

3.4.2 Combining Kernels

To make new kernels from old kernels there are a few attributes that are useful.
Here they are stated as a theorem:

3.2 Theorem. Composite Kernels

1. The sum of two kernels is a kernel.

2. The product of two kernels is a kernel.

Proof: Let f1(x), f2(x) be two independent zero-mean stochastic processes

1. Consider f (x) = f1(x) + f2(x). Then cov(f (x), f (x′)) = k(x, x′) = E[f1(x)f1(x′)]
+E[f2(x)f2(x′)] − E[f1(x)]E[f2(x′)] − E[f1(x′)]E[f2(x)] = k1(x, x′) + k2(x, x′).

2. Consider f (x) = f1(x)f2(x). Then cov(f (x), f (x′)) = k(x, x′) =
E[f1(x)f2(x)f1(x′)f2(x′)] = E[f1(x)f1(x′)]E[f2(x)f2(x′)] = k1(x, x′)k2(x, x′).

This means that several covariance functions can be combined for a better regres-
sion result, i.e. to capture potentially more complex structures from the data.
However, with additional complexity, the risk of overfit to the training data is
larger. This will be discussed further in Chapter 4.
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18 3 Nonparametric Regression using Gaussian Processes

3.5 GP Inference Example

As all the basic theory to perform inference in function space has now been ex-
plained, an example will illustrate these principles for greater clarity.

3.3 Example
Assuming the true function, force of drag of an object through a fluid, is given by
(3.11)

f (x) =
1
2
CdρAx

2, (3.11)

where Cd is drag coefficient, ρ is the density of the fluid, A is reference area and
x is speed of object relative to fluid. For simplicity all constants, i.e. Cd , ρ and
A, are set to 1. Generating some data from this model with added zero-mean
Gaussian noise, with variance σ2 = 0.01, results in the plot seen in Figure 3.2.
The inputs, x, are 20 points evenly spaced on the interval [0, 1].

Figure 3.2: Noisy data, y = f (x) + ε.

Assuming f ∼ GP (0, k(x, x′)) where the kernel is a combination of the se and con-
stant kernel types. Characteristic length-scale is 1

4 and the magnitude is 1. Ob-
serve that these two hyperparameters and noise variance are generally not known
and must be learned from training data as well. However, learning of hyperpa-
rameters will be covered in Chapter 4. Performing inference and evaluating the
model on independent data, x∗ = (0 0.11 0.22 . . . 1)T , gives the plot in Figure 3.3.
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3.6 Modelling 19

Figure 3.3: gp inference with se kernel.

The training data is denoted by + and the real function by a dash-dotted line.
Inferred prediction mean is denoted by a continuous line and its ±2 standard
deviation (corresponding to a 95% confidence interval) by the grey area. Another
illustrating example can be found in [Rasmussen and Williams, 2006, pg. 15]
where the impact of data on the posterior covariance is clearly displayed.

3.6 Modelling

The inputs, xi , are formed as in (2.25) in Section 2.3. The output, yi , is the daily
rainfall rate (in mm). In mathematical terms

yi = f (xi) + εi , where f (x) ∼ GP (0, k(x, x′)) and εi ∼ N (0, σ2). (3.12)

This means the function is modelled as a GP and the errors, ε, as a Gaussian
zero-mean random variable. The covariance function, k(x, x′), is modelled by a
combination of kernels. The ones considered in this thesis are:

k(x, x′) = m2 exp
(
−‖x − x′‖2

2l2

)
, (3.13a)
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20 3 Nonparametric Regression using Gaussian Processes

k(x, x′) = m2
(
1 +
‖x − x′‖2

2αl2

)−α
. (3.13b)

Measurement noise is modelled as independent, normal distributed, white noise
with covariance σ2. Model (3.13a) and (3.13b) has in total, including the noise
covariance, 3 and 4 hyperparameters respectively. These are examples of se and
rq kernels combined with the constant kernel.
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4
Model Validation, Selection and

Assessment

This chapter concerns theory regarding model validation, selection and assess-
ment. In the best case scenario, with ample amount of data available, the data
is usually split into three independent parts, one for training, one for validation
and one to test the model, see Figure 4.1. The training and validation sets con-
tain N data points in total and the test setM data points. Model validation can be
seen as the process of assigning a measure of fit, from the trained model, on the
validation data set. Model selection is the process of selecting the, in some sence,
best model using training and validtion data. Model assessment then analyzes
how this model performs on independent test data. However, data is usually
scarce and therefore other methods need to be used. One very common method,
that will be used in this thesis, is called cross-validation and is described in Sec-
tion 4.1. The problem of model assessment is then explained in Section 4.2 and
comments and extension to the Bayesian case and Gaussian Processes is then dis-
cussed in Section 4.3.

Figure 4.1: Data split illustration for model selection, validation and assess-
ment.

4.1 Cross-validation

K-fold cross-validation is the process of taking all data in the training and valida-
tion set and split it into K roughly equal parts, see Figure 4.2 for K = 10.

21
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22 4 Model Validation, Selection and Assessment

Figure 4.2: Data split illustration for 10-fold cross-validation.

Training is performed on all the parts except the k-th, for k = 1, . . . ,K. The loss
function, or the prediction error, is then evaluated on the k-th data set and we av-
erage over the data. Mathematically, denoting the estimated function with tuning
parameter α by f̂ −k(x, α) and the loss function by L, the cross-validation estimate
of the prediction error becomes

CV(f̂ , α) =
1
N

N∑
i=1

L
(
yi , f̂

−κ(i)(xi , α)
)
, (4.1)

where κ : {1, . . . , N } 7→ {1, ..., K} is an indexing function that indicates which of
the K parts an observation yi belongs to. For a more detailed explanation see
[Hastie et al., 2009, pg. 242]. The tuning parameter α̂ that minimizes CV(f̂ , α)
is selected, giving the final model f (x, α̂). All data in the training and validation
set is then used to fit this model.

4.2 Model Assessment

Model assessment is performed on independent test data. It is interesting to find
out how well the estimated model, found by cross-validation, generalizes. This
is done by calculating, or estimating, the root mean square error (rmse). An
estimate is given by:

RMSE =

√√√
1
M

N+M∑
i=N+1

(
yi − f̂ (xi)

)2
, (4.2)

i.e. averaging the squared-error loss function over the test data set and taking the
square root of the result.

4.3 Gaussian Processes

Gaussian Processes gives a predictive distribution for novel inputs, see (3.5). To
get a point estimation usable for validation and assessment of the model, the
theory discussed in Section 3.3 is employed.

The hyperparameters in the gpmodel are measurement noise covariance σ2 and
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4.3 Gaussian Processes 23

the parameters that define the covariance function of the gp, k(x, x′). These are
estimated by performing CV and selecting the parameters that give the minimum
value of the CV prediction error estimate (4.1). For assessment, all training data,
optimal hyperparameters estimated by CV and the novel inputs are used to form
a point prediction

f̂ (xi ,hyp) = K(xi , X)
(
K(X, X) + σ2I

)−1
y. (4.3)

Based on this point prediction, the RMSE is estimated in the same way as for the
parametric regression methods.
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5
Experiments and Results

This chapter presents the results, when nowcasting rainfall rates, obtained using
theory from Chapters 2 through 4 and data collected from Twitter. Section 5.1
first explains how the data was collected, stored and retrieved for regression pur-
poses. Section 5.2 then continues by describing the specific results obtained for
each type of regression.

5.1 Data Collection

Millions of tweets have been collected using Twitter’s Search API for the purposes
of the case study in this thesis. The ground truth data has been obtained from
the National Climate Data Center’s (NCDC) online database1. The ground truth
data for rainfall rate, originally given in inches, was converted to millimeters
(mm). Tweets where collected by exploiting JSON feeds returned by executing a
query2 to the Twitter Search API. The returned information was parsed using a
PHP script and subsequently stored and indexed in a MySQL database.

Cities used in this case study where Göteborg, Malmö, Linköping, Norrköping
and Helsingborg. Data was collected for the time interval June 6, 2012 to July
28, 2012. This means the total amount of data points used for cv and assessment
was N + M = (#regions) · (#days) = 5 · 53 = 265.

1http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD&countryabbv=
&georegionabbv= , (August 2, 2012)

2For a region defined by a point with latitude X, longitude Y, radius R km and
the 300 most recent tweets defined by setting tweets per page (rpp) to 100 and
performing the following query 3 times with page set to 1, 2 and 3 (PAGENR):
http://search.twitter.com/search.json?rpp=100&geocode=X,Y,Rkm&page=PAGENR

25
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26 5 Experiments and Results

5.1.1 Tweet Storage

The tweets collected where stored in a MySQL database. For each tweet, the
features shown in Table 5.1 was stored. If a tweet was not geotagged, i.e. no
information on latitude and longitude was available, the user defined location
(udl) was saved instead.

MySQL column Explanation
id The unique ID of the tweet
created_at Time of creation in the form YYYY-MM-DD HH:MM:SS
from_user Username of the tweeting person
from_user_id ID of the tweeting person
text Tweet content, maximum 140 characters
location User defined location
geo Longitude and latitude where the tweet was made
to_user_id ID of the recipient user if applicable
iso_language_code ISO 639 defined language codes

Table 5.1: Definition of information stored in the MySQL database.

The PHP crawler written for the purpose of this thesis work is given in Appendix
A.1. The longitude, latitude and radii where picked to catch as many tweets from
Sweden as possible. Over 150,000 tweets per day where collected. Out of these,
only about 30,000 corresponded to the five regions used for inference.

5.1.2 Information Retrieval

Ground truth data was readily available for five of Sweden’s major cities. These
where Göteborg, Malmö, Linköping, Norrköping and Helsingborg. Regarding
forming the input keyword frequencies it was decided to filter the data by user
defined location, as several of the cities in the ground truth data only had a few
hundred tweets with geotag each day. The assumption made here is that most
people tweet from the same area as their udl, usually a city. The keywords used
can be seen in the Glossary below. These where picked manually by considering
words relevant to rain.

MySQL database queries used to form inputs for the algorithms can be seen in
Appendix A.2. These are based on the formal mathematical expression formu-
lated in Section 2.3.

5.2 Results

The results are displayed and discussed in the same order as the theory in Chap-
ters 2 and 3. First, the linear parametric model (Section 5.2.1) is displayed and
discussed, then the nonlinear parametric (Section 5.2.2). The final part is spent
on interpreting and discussing the nonparametric regression, i.e. the gp (Section
5.2.3). The data was divided into a training and validation (cv) set of N = 5 · 42 =
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5.2 Results 27

Glossary
Swedish English

regn rain
regnar raining
ösregn pouring rain

blöt wet
moln cloud

paraply umbrella
skur shower
åska thunder

210 data points, and a test set with M = 5 · 11 = 55 data points. The data used for
cv consists of real data from June 6, 2012 to July 17, 2012 and data used for as-
sessment of data from July 18, 2012 to July 28, 2012. The training and validation
set was randomly split into 10 seperate subsets which was used for 10-fold cv,
see Chapter 4, to select an optimal value of the hyperparameters. The function
was then relearned with these hyperparameters and all training data. The final
estimated model was then assessed on the test data set. Each section displays this
result with six plots, one for each city and one of the total result with all test data
concatenated into one data set.

5.2.1 Linear Model

In this section the results for linear regression, based on the model described
in Section 2.3.1, will be displayed and discussed. Shrinkage methods were em-
ployed for a better regression and generalization result as the lse was found to
perform rather poorly. First results from rr are displayed then results obtained
by the lassomethod.

Ridge Regression

Figure 5.1 displays the estimated error, using cv, as a function of the hyperparam-
eter λ. Figure 5.2 displays the model assessed on all available test data. Figure
5.3, shows estimated model applied to independent test data, July 18 to July 28,
2012 , for each city respectively.

As can be seen in the plots, the predictor does a decent job of following the actual
test data output. The total rmse of 2.64 mm and the plots seem to confirm that
there is a correlation that can be used to estimate the rainfall rate. The estimated
optimal parameters β̂rr are given in Table 5.2, with the left hand side being the
keyword corresponding to the individual parameters.

The optimal regularization parameter, for rr, selected by cv was approximately
λ = 0.3 · 10−3. rr usually shrinks all parameters, whereas lasso decreases pa-
rameters to zero. This can be clearly seen when comparing Tables 5.2 and 5.3.
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28 5 Experiments and Results

Figure 5.1: Ridge regression cross-validation result for hyperparameter λ

Figure 5.2: Total ridge regression result on test data. RMSE: 2.64 mm
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5.2 Results 29

(a) Göteborg - RMSE: 3.06 mm (b) Malmö - RMSE: 2.51 mm

(c) Linköping - RMSE: 2.29 mm (d) Norrköping - RMSE: 1.78 mm

(e) Helsingborg - RMSE: 3.26 mm

Figure 5.3: Ridge regression results on independent test data.
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30 5 Experiments and Results

Table 5.2: Parameter estimation results for rr.
Parameter Value Parameter Value

intercept (β0) 1.2686 regn 604.38
regnar 281.6766 ösregn 40.9886

blöt 137.6109 moln -34.4233
paraply 76.8176 skur -1.2751

åska 18.5910 regn2 5.0786
regnar2 1.0978 ösregn2 -0.0155

blöt2 0.3931 moln2 0.1107
paraply2 0.1079 skur2 -0.0188

åska2 0.1895 regn · regnar 2.6487
regnar · ösregn 0.2098 ösregn · blöt 0.0603

blöt · moln 0.1390 moln · paraply -0.0377
paraply · skur -0.0028 skur · åska -0.0313
ösregn · regn 0.1365 blöt · regnar .4933
moln · ösregn 0.0654 paraply · blöt 0.0223
skur · moln -0.0228 åska · paraply -0.0047
blöt · regn 0.9208 moln · regnar 0.0709

paraply · ösregn 0.0371 skur · blöt 0.0272
åska · moln 0.3566 moln · regn -0.3009

paraply · regnar 0.1356 skur · ösregn -0.0023
åska · blöt 0.1004 paraply · regn 0.3752

skur · regnar -0.0321 åska · ösregn 0.0485
skur · regn 0.0523 åska · regnar 0.0424
åska · regn -0.6342
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5.2 Results 31

Figure 5.4: lasso cross-validation result for hyperparameter λ

Figure 5.5: Total lasso result on test data. RMSE: 2.24 mm
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32 5 Experiments and Results

LASSO

Figure 5.4 shows cv estimated error as a function of λ for lasso. The optimal
value for lambda in this instance was found to be approximately 1.12 leading to
most of the parameters to be set to zero. The next figure, Figure 5.5, displays
estimated model evaluated on the test set with a total rmse of 2.24 mm, an im-
provement over rr. However, this result is most likely due to the amount of
zeros in the test data set output. As such the measure favours models that gener-
ally outputs a lower estimate. This is discussed further in Chapter 6. The model
evaluated on test data for each city individually can be seen in Figure 5.6.

In Table 5.3, the estimated, non-zero, parameter values are shown. Only two
parameters have survived the aggressive regularization.

Parameter Value
regn 424
blöt2 10447

Table 5.3: Parameter estimation results for lasso.

Generally the linear regressions seem to do a decent job of catching the overall
shapes of the data. There are, however, some discrepancies worth mentioning.
Figures 5.3a and 5.6a show very high predicted value for July 28, 2012. Another,
albeit slightly less serious, one is Norrköping July 20, 2012. After some study
of the actual data it seems the input frequencies of keywords where rather high
given that there was no rain that day. Further discussion on the impact of the
data can be found in Chapter 6.

5.2.2 Nonlinear Model

The nonlinear parametric model used is defined in Section 2.3.2 and (2.14). Reg-
ularization was again applied for a better generalization result. With q = 1 fixed
there were two hyperparameters to estimate using cv. A plot with estimated er-
ror as a function of the two hyperparameters, M (number of hidden units) and λ
(regularization parameter), is shown in Figure 5.7. This is followed by Figure 5.8
which displays the total result of the neural network applied to the novel test
data set. Lastly the results for each individual city is shown in Figure 5.9.

Regarding the rmse there is a slight improvement over rr, but the regression
using lasso generalizes best in this case. Also worth pointing out is that the
nn for Norrköping actually contains a negative inferred value. Knowing the non-
negative properties of rainfall rate, for applications, the actual prediction would
have to be amended to max(0, f̂ ).

5.2.3 Nonparametric Model

The nonparametric models used for prediction of daily rainfall rates are the two
defined in Section 3.6, i.e. two zero-mean gp with se and rq kernels respectively.
The first set of figures show the results using the se kernel. Figure 5.10 displays
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5.2 Results 33

(a) Göteborg - RMSE: 1.86 mm (b) Malmö - RMSE: 2.73 mm

(c) Linköping - RMSE: 1.09 mm (d) Norrköping - RMSE: 0.59 mm

(e) Helsingborg - RMSE: 3.56 mm

Figure 5.6: lasso results on independent test data.
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34 5 Experiments and Results

Figure 5.7: Neural network cross-validation result for hyperparameters λ
and M.

Figure 5.8: Total neural network result on test data. RMSE: 2.44 mm
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5.2 Results 35

(a) Göteborg - RMSE: 2.89 mm (b) Malmö - RMSE: 2.26 mm

(c) Linköping - RMSE: 2.31 mm (d) Norrköping - RMSE: 1.15 mm

(e) Helsingborg - RMSE: 3.12 mm

Figure 5.9: Neural network results on independent test data.
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36 5 Experiments and Results

Figure 5.10: gp, se cov. function, cross-validation result for hyperparame-
ters m (magnitude), l (char. length-scale) and σ (noise).

a slice, since it is a function of 3 variables, of the cv. It is a linear grayscale map
where darker (black) shades correspond to lower values and brighter (white) cor-
respond to higher values. The slice is made with hyperparameters corresponding
to the minimal value of the estimated error according to cv. Figure 5.11 shows
the total results on test data. Figure 5.12 contains the five plots with the gpmodel
assessed for each city independently.

The second model concerns inference using the rq covariance function. As this
problem formulation contains four hyperparameters it is difficult to illustrate cv
estimation of the error in a plot as functions of the parameters. The optimal val-
ues for the hyperparameters was as before taken to correspond to the parameters
minimizing cv over a 4D-grid. Figure 5.13 depicts the result from evaluating the
gp model on all independent test data, Figure 5.14 shows the same model and
data but divided up by city. From an rmse point of view, the results seem to be
on par with both the nn and gp with se covariance function. Worth pointing
out is that no negative inferred value is present in the se model. However, the
discrepancies in the Göteborg July 28, 2012 and Norrköping July 20, 2012 test
data are still there.

5.2.4 Summary

To summarize the results obtained in these experiments Table 5.4 shows the es-
timated rmse for each model. rmse are displayed for each city independently
and also the total. Minimum values for each column are in boldface and the
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5.2 Results 37

Figure 5.11: Total gp, se cov. function, result on test data. RMSE: 2.51 mm

corresponding model in the last row.

Model Göteborg Malmö Linköping Norrköping Helsingborg Total
rr 3.06 mm 2.51 mm 2.29 mm 1.78 mm 3.26 mm 2.64 mm
lasso 1.86 mm 2.73 mm 1.09 mm 0.59 mm 3.56 mm 2.24 mm
nn 2.89 mm 2.26 mm 2.31 mm 1.15 mm 3.12 mm 2.44 mm
gp (se) 3.39 mm 2.42 mm 2.26 mm 1.36 mm 2.68 mm 2.51 mm
gp (rq) 3.21 mm 2.20 mm 2.28 mm 1.23 mm 3.14 mm 2.52 mm

Min. lasso gp (rq) lasso lasso gp (se) lasso

Table 5.4: Total and regional rmse results for each model used.
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38 5 Experiments and Results

(a) Göteborg - RMSE: 3.39 mm (b) Malmö - RMSE: 2.42 mm

(c) Linköping - RMSE: 2.26 mm (d) Norrköping - RMSE: 1.36 mm

(e) Helsingborg - RMSE: 2.68 mm

Figure 5.12: Gaussian process, se cov. function, results on independent test
data.
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5.2 Results 39

Figure 5.13: Total gp, rq cov. function, result on test data. RMSE: 2.52 mm
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40 5 Experiments and Results

(a) Göteborg - RMSE: 3.21 mm (b) Malmö - RMSE: 2.20 mm

(c) Linköping - RMSE: 2.28 mm (d) Norrköping - RMSE: 1.23 mm

(e) Helsingborg - RMSE: 3.14 mm

Figure 5.14: Gaussian process, rq cov. function, results on independent test
data.
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6
Concluding Remarks

In this chapter the results obtained in the thesis will be summarized, compared
and discussed. Section 6.1 summarizes and compares the results obtained in
Chapter 5. Section 6.2 discusses the data used and the method of data collec-
tion. Section 6.3 briefly mentions future work and potential improvements to the
results obtained in this thesis.

6.1 Conclusions

According to Section 5.2 the overall best result, in terms of rmse, was given by
regression using lasso with rmse = 2.24 mm. rmse for all models evaluated on
independent test data can be seen in Table 6.1. The rmse for the constant zero-
prediction and mean of the training outputs, y, are also shown for comparison.

Model rmse
rr 2.64 mm
lasso 2.24 mm
nn 2.44 mm

gp (se cov.) 2.51 mm
gp (rq cov.) 2.52 mm

0 2.58 mm
mean(y) 3.04 mm

Table 6.1: rmse for the various models evaluated on test data.

However, using this measure for assessment does not give the full picture. The
rmse, in this case, greatly favours a model that generally estimates a lower rain-

41
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42 6 Concluding remarks

fall rate. This as the test data and rainfall rate in general, contain a lot of zeros.
This can also be seen in the rmse result for the constant zero- and mean predic-
tion. Constant zero-prediction actually gives a lower rmse than rr. rmse results
for the other models indicate that there is value in using information contained
in microblog data for inference. However, the lasso model does a fairly poor
job of estimating rainfall rate on days which have seen a lot of rain. The nonlin-
ear and nonparametric models, especially the gp, does seem to do a better job
in this sense from looking at the plots of estimated rainfall rates in Section 5.2.
Regarding the discrepancies in the test data from Göteborg on July 28, 2012 and
Norrköping July 20, 2012, it is most likely due to the fairly noisy data and per-
haps a data misalignment, discussed further in Section 6.2. Just by looking at the
shapes of the plots, for nowcasting the rainfall rate, the rr, nn and gp seem to
give very similar results. It is only the lasso that stands out which is explained
by the aggressive regularization.

Given that the quality of collected data is far from perfect, the different regression
methods and results still seem to indicate that there is information contained
within the tweets that can be used for inference of everyday measures like rainfall
rates or more interesting ILI rates.

6.2 Data Properties

Good data should be a paramount consideration in statistical learning and regres-
sion. This section will briefly discuss the shortcomings of the data used in this
thesis and ways of how these can be remedied with respect to the effect they will
have on the inference result.

The first vital assumption made is that user defined location (udl) is also the
current position of the person sending the tweet. This is of course not always
true, and in general might not be true at all. Filtering by the geotag (longitude
and latitude) can remidy this problem. However, this means that the subset of
tweets are limited to about 5% of the total amount of tweets collected. Going one
step further, a classification algorithm can be applied to tweets found by filtering
by udl. Using this way to find relevant tweets and joining this information with
geotagged tweets can significantly improve regression results. The basic idea
would be to consider each user as a kind of sensor as in Sakaki et al. [2010]. For
this case the classification algorithm, a 1 − 0 regression, would assign each tweet
as relevant (1) and irrelevant (0).

Another problem is potential data misalignment. The ground truth rainfall rate
data was a measurement of the total rainfall amount each day based on Coordi-
nated Universal Time (utc, 0000Z - 2359Z) 1. However, the data used for regres-
sion was based on Swedish time zone, Central European Summer Time (cest),
which is utc +02:00. This means rainfall occuring at, for example, July 28, 2012
01:00 utc will be considered as a part of the rainfall rate on the 28th of July, but

1http://www7.ncdc.noaa.gov/CDO/GSOD_DESC.txt, (August 17th, 2012)
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6.3 Future Work 43

tweets discussing this until 02:00 utc will affect the July 27, 2012 inputs. This
was not as big of a problem as the amount of tweets sent during this time frame
was comparatively few. This can be partly avoided by performing more complex
and time consuming queries to the MySQL database. However, one problem
will still remain. That is the amount of tweets collected during late night and
early morning. Tweets collected between 02:00 and 05:00 cest constitutes less
than 5% of the total number collected each day, even though this time interval
accounts for 12.5% of the day. It is questionable if these observations are sta-
tistically significant and if they can represent the rainfall rate during this time
frame. This needs further investigation. One remedy to this problem is collect-
ing ground truth rainfall data only for the daytime time interval.

The last input data problem discussed will be the assumption that a tweet with
a certain keyword is relevant for inference. As an illustrating example the small
discrepancy in the prediction of rainfall rate in Norrköping on July 20, 2012 will
be used, see Section 5.2. Table 6.2 contains the actual tweets found by filtering
by the regn (rain) keyword.

Nr. Tweet text
1 bara hoppas vi får bra väder, inte för varmt och inget regn tack
2 Regn, hagel och solsken. Sol är ju alltid sol, liksom.

http://t.co/93fWG1LC
3 Regn, so what??? http://t.co/7RxbLsCx
4 Första semesterdagen. 23-34 grader varmt sol. Regn i 10 minuter. Helt

ok.
5 1-1 i halvtid påRosvalla. Dagoberto pangade in kvitteringen snyggt

framklackad av Marcinho... Och nu blev det regn och åska.
6 @telenaten Inget regn?

Table 6.2: Tweet text for keyword regn (rain) in Norrköping July 20, 2012.

A total of 6 tweets contained the keyword regn (rain) on this day. Out of these
6, number 1 and 6 are most likely not relevant. This as the first one discusses
hopes for how the weather will turn out and the last one is from a conversation
where the user asks "No rain?". Tweet number 5 might also be irrelevant as it
contains references to a football game played in Rosvalla, Nyköping which is
far away from Norrköping. This would mean that potentially 50% of all tweets
might be irrelevant and so can cause the irregularity in this test data. However,
this problem is more difficult to handle as it might require some additional pre-
processing in the form of classification or natural language processing.

6.3 Future Work

This thesis has illustrated how information can be gleaned from unstructured
user generated content from social networks. Further work will focus on now-
casting ILI rates and the information retrieval process, refining the data used
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44 6 Concluding remarks

for regression as explained in Section 6.2. With better data, a more complex
model might be necessary. Selection of keywords could also include possibly neg-
atively correlated keywords as well as more nonlinear base functions like the log-
arithm and exponential function. It might also be interesting to take a completely
Bayesian approach to model selection instead of the cv that is performed in this
thesis. This would require, because of the high dimensionality of the problem, ap-
proximate methods like Markov Chain Monte Carlo (mcmc) methods. Another
interesting approach would be to model the information contained in microposts
using probabilistic topic models. For an introduction to, and review of topic mod-
els see [Blei, 2012]. Because of the strengths of the gp regression results, another
interesting possibility would be to investigate sparse gp as described in Fox and
Dunson [2012].

Because of the inherent properties of rainfall rate, discussed in Section 6.1, it
would be interesting to try other methods that are more application specific.
A first alternative would be alternate loss functions, for example the L1 norm.
Thresholding could be another interesting addition to the models. Thresholding
in this sense would be that when a model estimates below a certain value, that
could be learned using cv, a zero is output as prediction. This would also solve
the problem of negative predictions from the models very elegantly.

In summary, topics for future work are:

ili rates Static model estimation of ili rates using unstructured textual data
from microblogging and other online social media.

Keywords Investigate keywords selction and potentially negatively correlated
keywords.

Base functions Nonlinear base functions like the log function could potentiall
improve nowcasting results.

Refine data Filter and pre-process the regression data, see Section 6.2.

Bayesian inference mcmcmethods for model selection and validation.

Topic models A different approach to model the data using probabilistic topic
models.

Sparse gp Using sparse gp regression.

Alternate loss functions Use the L1 norm for training.

Thresholding Prediction estimates under a certain value are set to zero.
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A.1 PHP Script

This section contains the PHP script, Tweets crawler, written for the purpose of
this thesis. Note that each city is queried for the 300 latest tweets at least once an
hour, and Stockholm as many times as 18 times an hour.

<?php
$sthlm = "59.310768,18.061523,30km"; //Stockholm

$gbg = "57.663035,11.953125,25km"; //Goteborg

$malmo = "55.595419,13.287964,25km"; //Malmo

$uppsala = "59.864815,17.639923,20km"; //Uppsala
$vasteras = "59.616380,16.546783,15km"; //Vasteras
$orebro = "59.278511,15.222931,30km"; //Orebro
$linkoping = "58.406748,15.611572,15km"; //Linkoping
$helsingborg = "56.044048,12.700882,15km"; //Helsingborg
$jonkoping = "57.776348,14.162750,40km"; //Jonkoping

$nkpg = "58.590446,16.174622,15km"; //Norrkoping
$lund = "55.595419,13.287964,25km"; //Malmo
$umea = "63.826134,20.272522,50km"; //Umea
$gavle = "60.676542,17.142792,25km"; //Gavle
$boras = "57.714418,12.947388,10km"; //Boras
$eskilstuna = "59.373791,16.512451,15km"; //Eskilstuna
$sodertalje = "59.193516,17.626877,15km"; //Sodertalje

45
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46 A Code

$karlstad = "59.383234,13.506317,50km"; //Karlstad
$vaxjo = "56.877123,14.809570,50km"; //Vaxjo
$halmstad = "56.670189,12.860870,30km"; //Halmstad
$sundsvall = "62.389733,17.303467,50km"; //Sundsvall
$lulea = "65.586288,22.167664,50km"; //Lulea

$cities = array($gbg , $sthlm , $malmo , $uppsala ,
$sthlm , $gbg ,$vasteras ,$orebro ,$sthlm ,$linkoping
,$gbg ,$sthlm ,$malmo ,$helsingborg ,$sthlm ,$gbg ,
$jonkoping ,$nkpg ,$sthlm ,$lund ,$gbg ,$sthlm ,$malmo
,$umea ,$sthlm ,$gbg ,$gavle ,$boras ,$sthlm ,

$eskilstuna ,$gbg ,$sthlm ,$malmo ,$uppsala ,$sthlm ,
$gbg ,$vasteras ,$orebro ,$sthlm ,$linkoping ,$gbg ,
$sthlm ,$malmo ,$helsingborg ,$sthlm ,$gbg ,$jonkoping
,$sodertalje ,$sthlm ,$karlstad ,$gbg ,$sthlm ,$malmo
,$vaxjo ,$sthlm ,$gbg ,$halmstad ,$sundsvall ,$sthlm

,$lulea );
while (1){
for ($k = 0; $k <= 59; $k++){
$count = 0;
$current_time = microtime(true);

for ($i = 1; $i <= 10; $i++){
$request = ’http://search.twitter.com/search.json?rpp

=100&geocode="’ . $cities[$k] . ’"&page=’ . $i;
$response = file_get_contents($request);
$jsonobj = json_decode($response);

if($jsonobj != null){
$con = mysql_connect(’localhost’, ’DATABASE’, ’

PASSWORD’);
if (!$con){

die(’Could not connect: ’ . mysql_error());
}
foreach($jsonobj->results as $item){
$id = $item->id;
$created_at = $item->created_at;
$created_at = strtotime($created_at);
$mysqldate = date(’Y-m-d H:i:s’,$created_at);
$from_user = mysql_real_escape_string($item->

from_user);
$from_user_id = $item->from_user_id;
$text = mysql_real_escape_string($item->text);
$geo = $item->geo;
if (isset($geo)){
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A.2 MySQL Queries 47

$geom = $geo->coordinates[0] . ’,’ . $geo->
coordinates[1];

$locm = "";
} else {

$geom = "";
$locm = mysql_real_escape_string($item->location)

;
}
$to_user_id = $item->to_user_id;
if($to_user_id==""){ $to_user_id = 0; }

mysql_select_db("tweets2", $con);

mysql_query("SET NAMES ’utf8’") or die(mysql_error
());

mysql_query("SET CHARACTER SET ’utf8’") or die(
mysql_error());

$query = mysql_real_escape_string($query);
$query = "INSERT INTO tweets_1 VALUES ($id,’

$mysqldate’,’$from_user’,$from_user_id,’$text’,’
$locm’,’$geom’,$to_user_id) ON DUPLICATE KEY
UPDATE id = id";

$result = mysql_query($query);
if (!$result){

$message = ’Invalid query: ’ . mysql_error() . "\
n";

$message .= ’Whole query: ’ . $query;
die($message);

}
}

}
mysql_close($con);

}
var_dump(time_sleep_until($current_time + 60));

}
}
?>

A.2 MySQL Queries

The MySQL queries performed for Göteborg to form input frequencies are shown
below. Inputs are formed in the same way for all the other regions, just switch
region-specific words.

/* Goteborg */
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/* KW: REGN */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at) , COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%regn%’
AND TEXT
RLIKE ’[[:<:]]regn[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: REGNAR */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%regnar%’
AND TEXT
RLIKE ’[[:<:]]regnar[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: OSREGN */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’ö%sregn%’
AND TEXT
RLIKE ’ö[[:<:]]sregn[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);
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INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: BLOT */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%öblt%’
AND TEXT
RLIKE ’[[:<:]]öblt[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: MOLN */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%moln%’
AND TEXT
RLIKE ’[[:<:]]moln[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: PARAPLY */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
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WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%paraply%’
AND TEXT
RLIKE ’[[:<:]]paraply[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: SKUR */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’%skur%’
AND TEXT
RLIKE ’[[:<:]]skur[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;

/* KW: ASKA */
TRUNCATE data;

INSERT INTO data SELECT DATE(created_at), COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT LIKE ’å%ska%’
AND TEXT
RLIKE ’å[[:<:]]ska[[:>:]]’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at);

INSERT IGNORE INTO data SELECT *,0 FROM date;

SELECT id,’,’,count FROM data INTO OUTFILE ’FILEPATH’;
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/* KW: TOT */
SELECT DATE(created_at) ,’,’,COUNT(*)
FROM tweets
WHERE location LIKE ’%ögteborg%’
AND TEXT NOT LIKE ’RT%’
GROUP BY DATE(created_at) INTO OUTFILE ’FILEPATH’;
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