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Abstract

Web breaks are considered as one of the most significant runnability problems
in a pressroom. This work concerns the analysis of relation between various
parameters (variables) characterizing the paper, printing press, the printing
process and the web break occurrence. A large number of variables, 61 in
total, obtained off-line as well as measured online during the printing process
are used in the investigation. Each paper reel is characterized by a vector x
of 61 components.

Two main approaches are explored. The first one treats the problem as a
data classification task into ”break” and ”non break” classes. The procedures
of classifier training, the selection of relevant input variables and the selection
of hyper-parameters of the classifier are aggregated into one process based on
genetic search. The second approach combines procedures of genetic search
based variable selection and data mapping into a low dimensional space. The
genetic search process results into a variable set providing the best mapping
according to some quality function.

The empirical study was performed using data collected at a pressroom
in Sweden. The total number of data points available for the experiments
was equal to 309. Amongst those, only 37 data points represent the web
break cases. The results of the investigations have shown that the linear
relations between the independent variables and the web break frequency
are not strong.

Three important groups of variables were identified, namely Lab data
(variables characterizing paper properties and measured off-line in a paper
mill lab), Ink registry (variables characterizing operator actions aimed to
adjust ink registry) and Web tension. We found that the most important
variables are: Ink registry Y LS MD (adjustments of yellow ink registry
in machine direction on the lower paper side), Air permeability (character-
izes paper porosity), Paper grammage, Elongation MD, and four variables
characterizing web tension: Moment mean, Min sliding Mean, Web tension
variance, and Web tension mean.

The proposed methods were helpful in finding the variables influencing
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the occurrence of web breaks and can also be used for solving other industrial
problems.
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Chapter 1

Introduction

1.1 Background

The steadily increasing competition forces both printers and paper makers
to increase the efficiency and effectiveness of their equipment. In the print-
ing industry, runnability is considered as being one of the most important
factors affecting printing process productivity. Runnability is defined as a
printing process without any faults, interruptions, and stops. Web breaks,
web instability, register errors and wrinkling are examples for runnability
problems which affect productivity and also the quality of the products, and
cause huge losses [1].

Web breaks are considered as the most significant cause of runnability
problems. Web breaks occur when the total applied load on the web exceeds
the strength of the web. There are two main factors affecting the occurrence
of web breaks: the applied load and the web strength. Both factors vary
randomly around a mean value from time to time. There are different sources
causing the variation in the applied load and the web strength. Out of
roundness of a paper roll, unwind rolls, and unwind stands are examples of
load variation sources. While variation of grammage, formation and furnish
are examples of web strength variation sources [2].

The variation of load values depends on tension set points, while the
strength value variation depends on the material manufacturing process.
These variations can be plotted as probability density functions, as shown
in Fig. 1.1. It was shown that as the data sample size increases, the curves
become more skewed and shifted towards each other. The region pounded
by the overlapped curves implies the possibility of the web break occurrence.
However, neither the strength nor the load can be used alone to assess the
runnability. On the other hand, having low variability, high runnability can

1
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be achieved even at low strength, while a high average strength and high
variance of the strength may lead to low runnability [2].

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

       Load                Strength

P
ro

ba
bi

lit
y

 

 
Applied load
Web strength

Figure 1.1: The variations of load and strength plotted as probability density
functions.

Web breaks entail huge financial losses caused by a production stop, rang-
ing between 10 and 20 minutes. This may result in the disruption of the pro-
duction process due to the necessity of removing the ruined paper, rethreads,
and restarting the machine. This results in financial losses in the form of costs
of the corrupted web, downtime costs, and possible machinery damage [2].
Furthermore, this may result in an unsatisfied customer and, in some cases,
extra penalties due to not delivering on time.

The huge losses and the need to increase the productivity without any
runnabilty problems stimulate a search for the reasons behind web breaks
as well as ways for solving the problem. A substantial body of research
has been done in this field: see for example [1, 3], where the authors aimed
to find the factors affecting runnability and attempted to control them to
prevent web breaks. Actually, web breaks is a difficult problem to solve due
to the rare occurrence of the breaks. It was found that the break rate can be
approximated by the Poisson distribution [4]. Hence, the end points of an
approximate two-sided 100(1−α)% large sample interval for the web breaks
frequency p = Nb/N are:

p +
z2
1−α/2

2N
± z1−α/2√

N

√
p + z2

1−α/2/(4N) (1.1)

where Nb is number of breaks, N is the total number of observations, and
z1−α is the 100(1− α) percentile of the standard normal distribution.

2
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Introduction

To highlight the problem, let us assume that N = 100 and p = 0.01.
Then, from Eq. (1.1), the end points of the 95% confidence interval are 0.0018
and 0.057. This means that only web break frequencies differing more than
31.6 times can be considered as significantly different. Therefore, we need
a huge number of paper rolls for a reasonable statistical analysis. An addi-
tional difficulty stems from the large number of factors, which may trigger
a web break such as too large variations of the paper thickness, formation,
moisture, speed of the printing press, web tension, paper defects, and various
parameters of the printing process. In addition, it is sometimes difficult to
recognize what causes web breaks, since web breaks occasionally happen due
to human faults [3].

1.2 Related work

Different methods and techniques have been used aiming to explain the rea-
sons behind paper web breaks [1, 3, 5, 6]. Most of these methods focus on
finding parameters which have a high correlation with web break occurrences.
There are many parameters which may be responsible for runnability prob-
lems. Some of these parameters are difficult to measure or even inaccessible.
Therefore, some researchers use modeling and simulation to analyze the pa-
per structure, the printing process, and the paper-press interaction, see for
example, Provatas and Uesaka [3]. The authors model the paper structure
and paper-press interaction analytically. The model solves the problem of
inaccessible parameters, predicting values of the process parameters in each
printing process step and observing the interaction between them.

Since statistical analysis gives an indication that there is a relation be-
tween the machine direction (MD) tensile strength and the occurrence of the
web breaks, Hristopulso and Uesaka [5] used basic physical laws to model
the web dynamics. The authors concentrate their work on MD tension vari-
ation in a paper web under the assumption of a constant web speed. This
model aims to explore the relation between the out-of-roundness degree and
web breaks, and to investigate the relation between the tension variation and
web breaks. It was found that the starting-up and shutting down operations
and the extreme roll deformation have a direct effect on the web tension
which causes web breaks.

On the other hand, other researchers based their analysis solely on data
collected during the production process. For example, Parola et al [1] gath-
ered a large amount of data from a printing press and a paper mill and used
data mining techniques to analyze the printing press runnability. The goal
of this work was to identify the causes responsible for the runnability prob-

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Screening web breaks in a pressroom by soft computing

lems in a pressroom. Principal Component Analysis (PCA), Multiple Linear
Regression, and Correlation Analysis are the methods used for data mining.
Data mining increases the ability to monitor the printing process by knowing
the factors affecting the process.

Miyaishi and Shimada [6] developed an artificial neural network (a multi-
layer perceptron) to tackle the web breaks problem on a commercial newsprint
paper machine. The network was trained to predict the occurrence of a web
break. The magnitude of the network weights in the input layer has been
used to reduce the number of the input variables by keeping those related to
the largest input weights. Out of 41 available variables, five variables con-
tributing to paper web breaks were selected. Based on the variables found, a
variety of countermeasures were taken that resulted into the reduced number
of web breaks and reduced fiber losses.

Printing press related factors, unknown factors, paper related factors, and
other factors are the main groups of factors. Fig. 1.2 presents the distribution
of paper web break factors observed in heatset offset presses [7]. As can be
seen from Fig. 1.2, press related factors compose the largest group of factors
trigging paper web breaks. Thus, the optimization of the press operator
actions could be one of the most important measures to reduce the number
of paper web breaks.
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3 Wrinkling
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Figure 1.2: Web break statistics observed in heatset offset presses.

There is a huge variety of parameters which may influence the printing
press and paper related factors trigging a paper web break. Previous studies
have shown that the most important parameters influencing paper web break
factors are: web tension, web strength, slack area in the paper, the out of
roundness degree of a paper reel, and pale spots [8, 5, 9]. The web strength

4
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properties related to web breaks are: MD tensile strength, strain-to-failure,
and the regularity of tensile strength. It is claimed that tensile strength
is the most important factor affecting the web breaks and can be used to
predict breaks, while the tear strength has less effect [8, 10]. However, these
parameters are not so easy to control because the web tension varies from
time to time, especially when a paper roll is changed. Moreover, the web
strength is not constant across the whole web and sometimes the web contains
holes or weaknesses and the paper properties depend on how long the paper
has been stored and the environment around it. Also, different paper mills
produce paper of different quality and standards.

1.3 The aim and novelty of the project

Parameters affecting the printing press related factors causing paper web
breaks may be quite pressroom specific, depending on the printing press and
paper interaction. However, supported by the results available from other
studies, some general conclusions may also be drawn from such pressroom
specific studies. Pressrooms experiencing frequent paper web breaks are valu-
able information sources for such studies. This work is done using data from
such a pressroom.

The project aims at finding the most important parameters causing web
breaks by using soft computing techniques. Two novel approaches to pa-
per web break data analysis are explored. The first one treats the problem
as a task of data classification into “break” and “non break” classes. The
procedures of classifier design and the selection of relevant input variables
(features) are integrated into one process based on genetic search [11]. The
search process results into a set of input variables providing the best clas-
sification performance. The second approach, also based on genetic search,
combines procedures of input variable selection and data mapping into a low
dimensional space. The curvilinear component analysis [12] as well as the
principal component analysis are employed for implementing the mapping.
The genetic search process results in a variable set providing the best map-
ping according to some fitness function. The fitness function used is such that
the disparity between the breaks and non-breaks data is emphasized. The
integration of processes of classification and variable selection or mapping
and variable selection allows finding the most important variables according
to the fitness functions used to assess the classification or mapping results.

5
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Chapter 2

The pressroom and data

2.1 The press room

Today offset printing is the most common printing technology. Offset print-
ing is an indirect lithographic printing technology where ink is transferred
from an ink tray onto a printing plate and then onto the printing surface
via a flexible blanket. Four primary colours: cyan, magenta, yellow, and
black are usually used to create colour printed pictures. There is a separate
printing plate four each colour. The printing and non printing areas are on
the same plane of the printing plates. To distinguish between printing and
non-printing areas, the printing areas are made to be ink-accepting, while
the non printing areas are ink-repellent. There are two main technologies to
achieve ink-repellent areas [13]:

Conventional offset printing technology When using this technology,
a dampening solution is applied to the printing plate by dampen-
ing rollers. The non-printing areas are hydrophilic (water-receptive).
Therefore, the ink is not transferred to these areas, since the damping
solution prevents that. The printing areas are oleophilic, thus unrecep-
tive to water.

Water-less offset printing technology A layer of silicon is used to make
the printing plate ink-repellent. For ink-receptive areas a planed inter-
ruption to the silicon area is used.

Regarding paper feed into a printing press, offset printing can be divided
into two categories [13]:

Sheet-fed offset printing The printing machine is supplied with distinct
pages of paper. This type of printing is used for small and medium size
jobs. The printing process can run at up to 4m/s speed.

7
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Web offset printing In web offset mode the printing press is supplied with
large rolls of paper. The web width can vary to some extent. This type
of printing is used for larger jobs. The printing process can run at up
to 15m/s speed.

There are two types of web offset, the so called [13]:

• Coldset web, where the ink is drying due to absorption and evap-
oration. Coldset is usually used in newspaper printing.

• Heatset web, where hot air dryers are used to dry the ink. Heat-
set is often used in commercial printing, since the paper used in
commercial printing is often less absorbent.

In this project, a four colour (cyan, magenta, yellow, and black) heatset
web offset printing press has been used to collect the data. The press can
run at up to 10m/s speed. The paper roll width can vary between 44 and 96
cm.

2.2 The data

There are two types of data, data obtained before running the printing press,
Off-line data, and data collected during the printing process, On-line data.
The off-line variables are categorized into several groups. Lab data, moisture
content, defects, roll machine data, time from service, speed, tambor position,
washing, and others are the groups of off-line variables. Table 2.1 presents
the complete list of the off-line variables: MD stands for machine direction
and CD stands for cross-direction. Below we give a short description of the
variables, as their names are not self-explanatory.

Lab data are obtained at a paper mil lab and reflect various paper prop-
erties. DIP content means the percentage of recycled fibers in the pulp, SBK
content evaluates the percentage of the sulphate type pulp. Formation index
assesses the tendency of fibers to make clusters. Paper roughness is estimated
for the lower side (LS) and upper side (US) using two different air pressure
rates. The defects registered in the paper are black scribbles, holes, attenua-
tion, dark and light spots and others. The direction variable in the Tambor
position group takes the value of 1 if it is the edge roll and 0 otherwise. The
variables from the roll machine group characterize the winding hardness and
speed.

Web break frequency, web width, ink registry, main registry, web tension,
and moisture content are the categories of the on-line variables. Table 2.2
presents the complete list of the on-line variables. Mostly, the maximum

8
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Table 2.1: The list of the Off-line data

Group Feature name Unit Index

Lab data Tensile Index, MD Nm/g 85
Tensile Index, CD Nm/g 86
DIP Content % 87
SBK Content % 88
Starch Content Kg/ton 89
Formation – 90
Ash Content % 91
Tear strength, CD mN 92
Roughness 1kg LS ml/min 93
Roughness 1kg US ml/min 94
Roughness 5kg LS ml/min 95
Roughness 5kg US ml/min 96
Air permeability Ml/min 97
Anisotropy – 98
Elongation, MD % 99
Pinhole Area PPM 100
Moisture content 101
Grammage g/m2 102

Printing speed # Changes Count 108
Dominating speed Revs/hour 109

Defects # Of defects found Count 110
Roll machine Hardness, mean 115

Hardness, variance 116
Speed, mean 117
Speed, variance 118

Others Time from service Hours 120
Runtime from service Hours 121
Roll age Days 122

Tambor position Direction 0/1 123
Distance from centre, CD m 124

frequency of the web break is two, since the roll will be changed after that.
In the Ink registry group of variables, Y refers to the registry values for
the yellow colour, and US and LS refer to the upper and lower paper side,
respectively. The parameter k describes the slope of the line fitted to the ink
registry adjustment data, separately for the MD and CD adjustments. The
same explanation applies to the Main registry group of variables. The number

9
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of adjustments is counted during the entire printing duration for a given paper
roll. The variables in the Web tension axis 1 group are obtained from the
web tension measurements made before the printing nip. The other group
of web tension variables are obtained from the web tension measurements
made after the printing nip. The last two variables in the Web tension axis
2 group are calculated in a sliding window.

The Moisture content group of variables characterize the adjustments
made of the left- and the right-hand of the paper web to compensate for
moisture deviation from the predetermined level. The adjustments are made
in discrete moisture units.

Fig. 2.1 presents a schematic description of the sampling system used to
collect the online data. The UNISET 2 illustrates the printing press used.
The bar code reader connected to the sampling system through RS485 via
TCP/IP reads the paper reel ID code. The ID code allows linking the online
data with the off-line data obtained from a paper mill. The linked data are
stored in a database. The press control system is connected to both the
control unit and the sampling system via ARCNET. The registry data are
obtained via this connection. Finally, the Damp unit is connected to both
the Spray bars through RS485 and the control unit through RS422. The
moisture content data are obtained via this connection. Although not shown
in the scheme, the web break frequency and the web tension data are also
logged in the database.

There are 61 independent variables in total and the total number of data
points available for the experiments were 309. Amongst those, only 37 data
points represent the web break cases. Thus, there are very few data points
representing the break class. Moreover, not all the 61 variables were available
for all the 307 paper reels investigated. All the 61 variables were available
only for 87 reels containing 11 break cases. Therefore single groups and
several groups of variables have been used in different experiments. For
example, by removing the web width group of variables, we increased the
size of the data matrix X from 87 × 61 to 148 × 57. Therefore, this data
matrix was the main data set used in the experiments. There were 18 break
cases in this set of data. Thus, the data set used contains all the groups of
variables presented in Table 2.1 and Table 2.2, except the Web width group
of variables. Note that if we end with variables which belong to less number
of groups, then we do the experiment again using only these variables. Due
to that the number of data points may be increased, for example by using
the variables from the Lab data, Ink registry, and Web tension groups, the
number of data points increased to 213 with 28 break cases.

10
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Table 2.2: The list of the Online data

Group Feature name Unit Index

Web break frequency Frequency Count 1
Web width Width, mean mm 2

Width, variance mm 3
Position, mean mm 4
Position, variance mm 5

Ink registry Y, US MD, (k) 6
MD, # adjustments Count 7
CD, (k) 8
CD, # adjustments Count 9

Ink registry Y, LS MD, (k) 10
MD, # adjustments Count 11
CD, (k) 12
CD, # adjustments Count 13

Main registry MD, (k) 14
MD, # adjustments Count 15
CD, (k) 16
CD, # adjustments Count 17

Web tension, axis 1 Web tension, mean N 18
Web tension, variance N 19
Moment, mean N 20
Moment, variance N 21

Web tension, axis 2 Web tension, mean N 22
Web tension, variance N 23
Moment, mean N 24
Moment, variance N 25
Min sliding Mean N 26
Max sliding Mean N 27

Moisture content Sum left, mean 103
Sum right, mean 104
Sum all, mean 105
Difference l-r, mean 106
# adjustments Count 107
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Figure 2.1: A schematic description of the sampling system.
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Chapter 3

The approach

We start our work by exploring linear relations between the independent and
the dependent variables. All the variables discussed in the previous chapter
are independent, except one—web break occurrence—which is the dependent
variable. The existence of strong linear relations indicates a possibility of
finding an appropriate solution based on a simple linear model.

Next, two genetic search based approaches are applied. In the first one,
the task is considered as a two-class (break, non-break) classification problem.
In the second approach, relations between various process parameters and
the web break occurrence are explored through mapping the multi-variable
process data into a low dimensional space.

3.1 Exploring linear relations

Correlation analysis and the multivariate linear regression are the two tech-
niques used to examine the linear relations. We use the Person’s correlation
coefficient to assess the strength and direction of the linear relationships. To
estimate the parameters of the linear model, the least squares technique is
applied.

3.2 Genetic search based approach

As it has already been discussed, the project aims at finding the most im-
portant variables affecting the occurrence of web breaks. Genetic algorithms
(GA) are known as being capable of finding an optimal solution in various
optimization problems. Therefore, we utilize GA in both the classification
and mapping based techniques in order to explore relations between var-
ious process parameters and web breaks occurrence. Given a long enough
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search time, not only the optimal variable subset, but also the optimal hyper-
parameters of the techniques can be found during the genetic search. Fig. 3.1
presents the flowchart of the genetic search based procedure used to find the
most important process variables.

Best chromosomes 

The most important 

variables

Decoding

Encoding

DATAParameters

Values of

parameters

Genetic Search

Figure 3.1: The flowchart of the genetic search based procedure for finding
the most important process variables.

Process variables as well as hyper-parameters governing the behaviour
of the classifier or the mapping technique are encoded into the so-called
chromosomes and are presented together with the process data to the genetic
search procedure. The genetic search results into a set of best chromosomes
containing information on the most important variables and the values of the
hyper-parameters. As mentioned above, the genetic search is based either on
classification or mapping into a low-dimensional space and aims at finding
the optimal set of variables according to some quality (fitness) function. A
more thorough description of the genetic search process will be given in the
next chapter.

3.2.1 Classification based genetic search

In this case, the problem is treated as a task of data classification into break
and non break classes. During the genetic search a classifier is designed using
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N labelled samples. Since both hyper-parameters of a classifier and input
variables are encoded in a chromosome, the procedures of classifier design
and the selection of relevant input variables (features) are integrated into
one process, based on genetic search. Since the correct classification rate
of the test set data constitutes the fitness function used during the search,
the search process results into a set of input variables providing the best
classification performance.

In general, classifiers can be categorized into three main groups: based on
similarity, probabilistic approach, and classifiers constructing decision bound-
aries. The first approach is straightforward. An example of this approach is
template matching. The second approach relies on Bayes decision rule [14].
The k-nearest neighbor (k-NN) and the Parzen window classifier are exam-
ples for this approach [14]. The third approach makes decision boundaries
depend on the minimization of some error criterion. A multilayer perceptron
(MLP) and a support vector machine (SVM) are two popular examples for
this approach [15]. A classifier of this type is well-suited for integration into
the genetic search process.

SVM is one of the most successful and popular classifiers. SVM separates
two different classes by constructing a hyper-plane maximizing the margin,
i.e. the distance between the closest data points of opposite classes. The
advantages of SVM are the following: the ability to find the global maxi-
mum of the objective function, no assumptions made about the data, the
complexity of SVM depends on the number of support vectors, but not on
the dimensionality of the transformed space [14, 16, 15]. Therefore, we have
chosen SVM as a base classifier in this work. A short description of the
SVM classifier is given in the next chapter. Several other authors have also
used GA for SVM design [17] and SVM designed integrated with variable
selection [18].

3.2.2 Mapping based genetic search

In this approach, relations between various process variables and the web
break occurrence are explored through mapping the multi-variable process
data into a two-dimensional space. We expect that the web break and non
break cases will be mapped into more or less distinctive areas of the space.
The process of the emergence of separate clusters of break and non break
cases is promoted in the genetic search based mapping process through the
optimization of a specifically designed fitness function. Again the processes
of discovering the mapping and variable selection are combined based on
a genetic search. The search aims at finding the optimal feature subset
according to the fitness function. The fitness function applied to assess the
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mapping quality is the correct classification rate (CCR) of the test set data
represented by the two space components. Two classifiers, SVM and kNN,
are used to make the classification.

Mapping techniques can be categorized as being linear or nonlinear. Lin-
ear methods suppose that the data set takes the shape of a linear manifold,
while nonlinear methods assume that the manifold is nonlinear. There are
many methods of both types. Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) are examples of linear techniques. Multi-
Dimensional Scaling (MDS), Self-Organizing Map (SOM) [19], Curvilinear
Component Analysis (CCA), Locally Linear Coordination (LLC), Locally
Linear Embedding (LLE), and Stochastic Neighborhood Embedding (SNE)
are the most prominent examples of nonlinear techniques [20].

PCA is the most popular linear mapping technique and often outperforms
other linear methods. For example, Martinez [21] demonstrated that PCA
outperforms LDA when training data sets are small. We have also used this
linear mapping technique.

Previous studies have shown that CCA outperforms other nonlinear tech-
niques, such as MDS, performing similar tasks. CCA functions as a ”self-
organized neural network performing two tasks: vector quantization of the
sub-manifold in the data set (input space) and nonlinear projection of these
quantizing vectors towards an output space” [12]. If we compare CCA and
SOM, which is a famous mapping technique, we find that SOM does not
preserve the original form of the sub-manifold, while CCA preserves both
the local topology and the global shape of the sub-manifold. Comparing
CCA with Sheppard’s nonlinear MDS, we will find that MDS requires a lot
of computation time because of its complex cost function. In addition, the
cost function is highly sensitive to noise and can not escape from local min-
ima [12]. Since previous studies have shown that CCA has many advantages
over other nonlinear methods performing similar tasks, we have chosen CCA
as a nonlinear mapping technique.

Other researchers have also attempted to combine mapping techniques
with GA in order to improve the overall performance of mapping techniques.
For example, Polani and Uthmann [22] used GA to find the appropriate
topology of SOM, while Tanaka et al. [23] applied GA to optimize the SOM
weights.
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Chapter 4

Methods and techniques

4.1 Exploring linear relations

4.1.1 Correlation

Correlation analysis is a statistical technique used to measure the strength
and the tendency of a linear relationship between two variables x and y. The
correlation coefficient r ranges between −1 and +1 [24]

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

i = 1, 2, ..., N (4.1)

where N is the number of data points and x̄, ȳ are the mean of x and y
respectively.

As the variables are more related, the absolute value of r increases. A
positive r value indicates a directly proportionality of the variables, while a
negative value indicates an inverse proportionality.

In this project, in order to determine the statistical significance of com-
puted correlation coefficient values, the p − values have been used. The
p − value expresses the probability of obtaining the computed value of the
correlation coefficient by chance.

4.1.2 Linear regression model

We use the linear regression model to predict the output y, usually called de-
pendent variable, using a vector x = (x1, x2, ..., xn) of independent variables.
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The linear regression model can be written as [25]:

y = β0 +
n∑

j=1

xnβn (4.2)

where βi are parameters of the model. The optimal values of the parameters
found by the least square technique are given by [25]:

β = (XTX)−1XTy (4.3)

where X is a N × n matrix of input data and y is the N -vector output.
To test the statistical significance of a particular parameter βj, we use

the standardized coefficient (z − score) [25]

zj =
βj

σ
√

dj

(4.4)

where dj is the j diagonal element of the matrix (XTX)−1 and σ is the
standard deviation of the noise. If we assume that σ is known, then zj has a
standard normal distribution and a 1− 2α confidence interval for βj is

(βj − z(1−α)σ
√

dj, βj + z(1−α)σ
√

dj) (4.5)

where z(1−α) is the 1 − α percentile of the normal distribution, for example
z(1−0.025) = 1.96. Thus, the approximate 95% confidence interval is given by
βj ± 2σ

√
dj.

4.2 Genetic search

The idea of GA was first suggested by Holland and his associates in the
1960s [11]. GA is a search technique for solving optimization problems. En-
coding, initialization, evaluation, selection and genetic operations represent
the main steps of GA. The most important issues to consider when solving
a problem by GA are encoding and evaluation, where the genetic represen-
tation of the problem and the fitness function for evaluating the suggested
solution are defined [26, 27]. Fig. 4.1 illustrates the main steps of GA.

Once the encoding and evaluation parts are defined, GA starts a random
generating process of the population of the probable solutions in the form of
chromosomes. Each chromosome consists of a string of random numbers,
usually binary numbers, representing genes.

In this work, the chromosome is divided into three parts. One part is
related to data (encodes the presents/absence of the input variables) and the
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Figure 4.1: The main steps of GA.

other two parts are related to hyper-parameters (in the case of SVM, one
encodes the value of the regularization constant C and the other encodes a
kernel parameter, for example the kernel width σ when using Gaussian ker-
nels). A binary encoding scheme has been used in this work. To generate
the initial population, the values of the SVM parameters are selected ran-
domly from predefined intervals, while a random mask string is created in
order to select the input variables.

A predefined fitness function is used to make an evaluation for the
generated chromosomes. We used the CCR of the test set data as a fit-
ness function. Observe that in the mapping based genetic search, the CCR
is evaluated using the mapped two-dimensional data. Based on the fitness
values, the chromosomes are selected, usually the selection of a chromo-
some probability is proportional to its fitness value. The genetic operations
crossover and mutation are applied to the selected chromosomes, resulting in
a new generation or population.

In crossover, pairs of parents are combined to create new chromosomes
called offspring, as shown in Fig. 4.2. By applying crossover to the generated
offsprings iteratively, it is expected that a generation of good chromosomes
leading to good better solution will be created.

In mutation, random changes on the genes are introduced. The rate of
mutation changes is proportional to the length of the chromosome. Fig. 4.3
illustrates the mutation operation on a chromosome, where the genes shown
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Figure 4.2: Illustration of the crossover operation.

in red have been changed. By doing crossover iteratively a good solution
can be found, while a mutation operation can be used to escape from local
optima [28]. The genetic operations are applied to chromosomes with the
probability of crossover pc and mutation pm. Chromosomes are included into
a new population with the probability of reproduction pr. These probabilities
governed the genetic search process.

Figure 4.3: Illustration of the mutation operation.

4.3 Support vector machine

Typically, a support vector machine relies on representing the data in a new
high dimension space more than in the original. By mapping the data into
the new space SVM aims at finding a hyper-plane, which classifies the data
into two categories. The support vectors are the closest to the hyperplane
patterns from the two classes in the transformed training data set. The
support vectors are responsible for defining the hyper-plane [14]. Fig. 4.4
illustrates the hyperplane (decision boundary) found by training a SVM,
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where the crosses (+) indicate the support vectors. One needs to find the
nonlinear mapping function appropriate for the problem at hand. Polynomial
and Gaussian are examples of nonlinear kernel functions used to implement
the non-linear data mapping.

1 2 3 4 5

1

2

3

4

X1

X
2

 

 

class one
class two
support vector
class one margin
decision boundary
class two margin

Figure 4.4: The optimal hyperplane (decision boundary) found by training
a SVM. The hyperplane is defined by the support vectors.

Depending on the definition of the optimization problem, several forms of
SVM can be distinguished, for example, 1-norm or 2-norm SVM. Since there
are examples demonstrating that the 1-norm SVM outperforms the 2-norm,
especially if there are redundant noise features [29], the 1-norm SVM is used
in this work. Assuming that Φ(x) is the non-linear mapping of the data point
x into the new space, the 1-norm soft margin SVM can be constructed by
solving the following minimization problem [30]:

min
w,b,γ,ξ

−γ + C

N∑
i=1

ξi (4.6)

Subject to

yi(〈w, Φ(xi)〉+ b) ≥ γ − ξi, ξi ≥ 0, ‖ w ‖2= 1, i = 1, ..., N (4.7)

where w is the weight vector, yi = ±1 is the desired output (non break −1
and break +1), N is the number of training data points, 〈〉 stands for the
inner product, γ is the margin, ξi are the slack variables, b is the threshold,
and C is the regularization constant controlling the trade-off between the
margin and the slack variables.
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The discriminant function for a new data point x is given by [30]:

f(x) = H[
N∑

i=1

α∗i yjk(x,xi)+b], (4.8)

where k(x,xi) stands for the kernel, and the Heaviside function H[y(x)] =
−1, if y(x) ≤ 0 and H[y(x)] = 1 otherwise. In this work, the Gaussian
kernels have been used. The optimal values of the parameters α∗i and b are
found by maximizing the following function [30].

W (α) = −
N∑

i,j=1

αiαjyiyjk(xi,xj) (4.9)

subject to

N∑
i=1

αiyi = 0,
N∑

i=1

αi = 1, 0 ≤ αi ≤ C, i = 1, ..., N (4.10)

4.4 k-nearest neighbor classifier

The k-NN classifier is considered as one of the simplest classification tech-
niques. The popularity of this method comes from the fact that the error of
the k-NN is bounded by twice the Bayes error [14]. Therefore, if there is a
sample of an infinite size, the k-NN error will be less than twice the Bayes
error rate. The k-NN classifies data points based on the plurality of its k
closest neighbours of the training set. To measure the distance between the
test data point and the training samples the Euclidian distance is generally
used. Usually the value of k is chosen to be odd, to prevent the occurrence
of tie salutations, especially if the problem has two classes [31].

In this project, the k-NN classifier has been used in the mapping-based
genetic search, to assess the correct classification rate of the mapped two-
dimensional data. The suitable value of k has been found experimentally
and the Euclidian distance measure has been used to measure the distance
between two data points.

4.5 Principal component analysis

PCA is an unsupervised linear dimensionality reduction technique. PCA
projects the data onto the orthogonal directions of maximal variance. The
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projection accounting for most of the data variance is called the first principal
component [32, 33].

Let X be the data matrix of size N × n, where N is the number of data
points and n stands for data dimensionality. Then by applying PCA one
can obtain an optimal linear mapping, in the least square sense, of the n-
dimensional data on q ≤ n dimensions. The mapping result is the data
matrix Z [32]:

Z = XVq (4.11)

where Vq is the n × q matrix of the first q eigenvectors of the correlation
matrix SX = 1

N−1
XTX corresponding to the q largest eigenvalues λi, i =

1, ..., q. Then, the correlation matrix of the transformed data [32]:

SZ =
1

N − 1
ZTZ = diag{λ1, . . . , λq} (4.12)

is a diagonal matrix.
The diagonal elements λi can be used to calculate the minimum mean-

square error (MMSE) owing to mapping the data into the q-dimensional
space [32]:

MMSE =
n∑

i=q+1

λi (4.13)

4.6 Curvilinear Component Analysis

Curvilinear Component Analysis is a nonlinear dimensionality reduction strat-
egy, in which the data are mapped from a high n-dimensional space to a low
dimensional space with q dimensions, where q ≤ n. CCA aims to map the
data in such a way that local topology is preserved. The mapping is im-
plemented by minimizing a cost function based on matching the inter-point
distances in the input and output spaces [12, 34].

Let the Euclidean distances between a pair of data points (i, j) be denoted
as χij = d(xi,xj) and ζij = d(yi,yj) in the input and the output space,
respectively. Then, the cost function minimized to obtain the mapping is
given by [12]:

E =
1

2

∑
i

∑

j 6=i

(χij − ζij)
2F (ζij, λy) =

1

2

∑
i

∑

j 6=i

Eij (4.14)
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where the weighting function F (ζij, λy) is used to favor local topology preser-
vation. F (ζij, λy) should be a bounded and decreasing function. For example,
a sigmoid, unit step function, decreasing exponential or Lorentz function [12].

To minimize the cost function, Eq.(4.14), a new method is used. Given a
randomly chosen data point i, the adaptation rule for the jth data point yj

in the output space is as follows [12]:

∆yj(i) = α(t)∇iEij = −α(t)∇jEij (4.15)

where α(t) decreases with time, for example α(t) = α0/(1 + t) [12]. Consid-
ering a quantized weighting function (∂F/∂ζij = 0) a simple adaptation rule
is obtained [12]:

∆yj = α(t)F (ζij, λy)(χij − ζij)
yj − yi

ζij

∀j 6= i (4.16)

It was found that the new procedure of minimizing the cost function saves
a terrific amount of calculation time. Secondly, the procedure could escape
from the local minima, and finally the final cost was lower than the cost
achieved using ordinary gradient based techniques [12].
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Chapter 5

Experimental investigations

In all the tests, we repeat the experiments 10 times using different random
partitions of the data set into training 70% and test 30% sets. The results
presented are the average values calculated from these 10 runs. In the genetic
search based approaches, the predefined search intervals have been used to
limit the search space of the appropriate parameter values, for example the
kernel width σ and the regularization constant C. The Gaussian kernels
have been used in this work. The following values of crossover, mutation and
reproduction probabilities have been used: pc = 0.1, pm = 0.1, and pr = 0.01
in the genetic search process.

We start our experimental tests by exploring linear relations between the
independent and dependent variables. After that, two genetic search based
approaches are investigated.

5.1 Exploring linear relations

We measure the linear correlation between the independent variables and
the web break frequency. Table 5.1 presents the correlation coefficients and
the p−values for the variables exhibiting the p−values lower than 0.05. The
p−value expresses the probability of obtaining such a correlation by chance.

As can be seen from Table 5.1, the variables come from the three main
groups of variables: printing speed, ink registry, and web tension. Moreover,
most of the variables (about 73%) belong to the web tension group, indicating
the importance of this type of online variables. However, the correlation
coefficient values for all the variables presented in the table are relatively
low, meaning that the linear relations between the independent variables
and the web break frequency are not strong.

The linear regression model has been built using the standardized inde-
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Table 5.1: The coefficient of correlation between the independent variables
and the web break frequency along with the p−values lower than 0.05.

Variable r p-value

108 0.31 10×10−5

6 -0.27 7.5×10−4

10 -0.30 2.5×10−4

18 -0.35 1.2×10−5

19 0.40 6.7×10−7

21 -0.21 0.0109
22 -0.18 0.0266
23 0.35 1.2×10−5

25 0.24 0.0029
26 -0.28 6×10−4

27 0.24 0.0028

pendent variables. The significance of the variables to be included into the
model has been tested by calculating the z−score (Eq.4.4) for the estimated
components of the parameter vector β. To select the appropriate model size,
we used the stepwise elimination of model parameters. Only the variables
significant at the 95% confidence level (z−score> 1.96) were included into
the model. By applying this approach we ended up with 5 variables: 10, 18,
19, 21 and 124. Table 5.2 presents the selected variables, the estimated val-
ues of the components of the parameter vector β of the model, the standard
errors of the components, and the z−score values.

Table 5.2: The variables included into the linear model along with values
of the model parameters, the standard errors of the parameters, and the
z−score values.

Variable β Standard error of β z−score

124 -0.0495 0.0235 -2.1068
10 -0.0896 0.0237 -3.7839
18 0.1797 0.0779 2.3055
19 0.2830 0.0758 3.7351
21 -0.0517 0.0253 -2.0447

As can be seen from Table 5.2, the final model contains 5 variables repre-
senting the tambor position (124), ink registry (10), and the web tension axis
1 (18, 19, 21) groups of variables. Observe that all the variables, except 124,
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were found by the correlation analysis. The root mean squared error (RMSE)
for this model is 0.2824. This RMSE can be compared with RMSE = 0.3280
obtained for the model containing all the available variables. The mean of
the absolute value of the prediction error of the model is 0.1779, while this
error for the predictions always using the mean value of the dependent vari-
able (the basic error rate) is 0.2137. Thus, the linear model reduces the basic
error rate by only 16.73%. Based on these tests we conclude that the linear
model is not appropriate for solving the problem.

5.2 Classification based genetic search

In the classification based genetic search approach, the problem is treated as
a task of data classification into break and non break classes. The SVM has
been used as a classifier. We started the experiments by using the following
fitness function (FF):

FF =
#CCBC + #CCNBC

#Test data
(5.1)

where #CCBC and #CCNBC is the number of correctly classified break and
non-break cases, respectively, from the test data set, and #Test data is the
number of data points in the test data set.

On average, the search ended with 5 variables: 10, 26, 97, 101 and 102.
These variables represent the Lab (97, 101, 102), Ink registry (10) and Web
tension axis 2 (26) groups of variables. The average CCR of 90.77% was
obtained using 54 support vectors. Table 5.3 provides the CCR for both
break and non-break cases coming from the training and test data sets.

Table 5.3: The CCR (%) of the break and non break cases obtained for the
training and test data sets using the fitness function given by Eq. 5.1.

Case Train Test

Break 80.53 46.67
Non break 99.46 97.85
Total 97.03 90.77

As can be seen from Table 5.3, the CCR obtained for the break cases
is much lower than the CCR obtained for the non-break ones. This can be
explained by the much lower number of break cases available. There were 56
non-break and 9 break cases in the test data set. Approximately the same
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proportion of the break and non-break cases (1:6) has also been observed in
training data sets. Therefore, in the experiment, the importance of the break
cases was increased. The following fitness function has been applied:

FF = 6×#CCBC + #CCNBC (5.2)

Four variables: 10, 26, 97 and 99 were found using this fitness function. As
before, these variables represent the Lab, Ink registry and Web tension groups
of variables. Table 5.4 summarizes the CCR obtained using the selected
variables.

Table 5.4: The CCR (%) of the break and non break cases obtained for the
training and test data sets using the fitness function given by Eq. 5.2.

Case Train Test

Break 81.05 51.11
Non break 100 96.43
Total 97.57 90.15

As can be seen from Table 5.3 and Table 5.4, the CCR for the break
cases increased by 4.44%, while the CCR for the non break cases decreased
by 1.5%. Since we aim at increasing the percentage of correctly classified
break cases, we based the FF solely on CCBC in the next experiment:

FF = #CCBC (5.3)

When using this fitness function, four variables: 10, 20, 22 and 97 have been
found during the genetic search. Again, these variables represent the Lab,
Ink registry, and Web tension groups of variables. Table 5.5 summarizes the
CCR obtained from the SVM trained using this set of variables.

Table 5.5: The CCR (%) of the break and non break cases obtained for the
training and test data sets using the fitness function given by Eq. 5.3.

Case Train Test

Break 92.63 53.33
Non break 99.77 90.00
Total 98.85 84.92

As can be seen from Table 5.5, the increase of the correct classification
rate of the break cases if compared to case of using the fitness function given
by Eq. 5.2, the overall CCR decreased significantly. Approximately the same
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number of support vectors have been used in the experiments using the three
aforementioned fitness functions.

A large number of support vectors found usually leads to complicated,
highly non-linear decision boundaries. By contrast, we aim at finding a
set of variables leading to simple and compact regions of the variable space
separately enclosing break and non-break cases. To find such simple compact
regions of the variable space, we constrain the number of support vectors used
to define the decision boundaries. We implement the constraint by adding
the additional term to the fitness function given by Eq. 5.3

FF = #CCBC +
ν

#SV
(5.4)

where #SV is the number of support vectors and the value of the parameter
ν is found experimentally (ν = 3).

When using this fitness function, we started the search process from the
best model found so far (variables 10, 26, 97, and 99). The search process
ended with the same variables and a slightly lower number of support vec-
tors used to define the decision boundaries. The average number of support
vectors was equal to 49.5. The values of the hyper-parameters characterizing
the SVM classifier were also different. Table 5.6 presents the average CCR
obtained from the classifier. As can be seen, there is a big difference between
the correct classification rate obtained for the training and test break cases.
This fact has been observed in all the tests and can be explained by a very
small number of break cases available.

Table 5.6: The CCR (%) of the break and non break cases obtained for the
training and test data sets using the fitness function given by Eq. 5.4.

Case Train Test

Break 86.84 55.56
Non break 100 94.64
Total 98.31 89.23

Summarizing the results of the tests we can state that the most often se-
lected variables are: Air permeability (97), Elongation MD (99), Ink registry
Y, LS (10), and Min sliding mean (26). These variables represent the Lab,
Ink registry, and Web tension groups of variables. The variables 97 and 10
have been selected in all the tests performed.
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5.3 Mapping based genetic search

Two mapping approaches were explored, a linear PCA based mapping and
a non-linear one based on CCA.

5.3.1 PCA based genetic search

In the first test, a k−NN has been used as a classifier for categorizing the
break and non-break cases represented by the first two principal components.
The value of k was found experimentally by testing k = 1, 3, 5, and 7. The
fitness function given by Eq. 5.3 has been used in this experiment. Table 5.7
presents the results obtained for the different k values.

Table 5.7: The CCR (%) obtained from the k-NN classifier for the break and
non break cases along with the overall performance

Model Break case Non break case Overall performance

1-NN 33.33 83.93 76.92
3-NN 33.33 89.29 81.54
5-NN 66.67 98.21 93.85
7-NN 22.22 92.86 83.08

As can be seen, the model with k = 5 achieves the highest performance.
By using this model k = 5, 6 out of 9 break cases, and 55 out of 56 non break
cases were classified correctly. Eight variables have been selected when using
this model: 6, 13, 16, 19, 20, 25, 99 and 101. As before, these variables rep-
resent the Lab, Ink registry, and Web tension groups of variables. However,
only two variables, 20 and 99 have also been selected by the classification
based genetic search approach.

In the second test, the SVM has been used to classify the mapped data
along with the following fitness function utilized in the genetic search

FF = 6×#CCBC + #CCNBC +
ν

#SV
(5.5)

where the value of the parameter ν was found experimentally and was equal
to ν = 8. The search process ended with 8 variables: 90, 102, 8, 10, 12,
16, 23 and 27, representing the Lab, Ink registry, and Web tension groups
of variables. Table 5.8 presents the CCR obtained from the model. As it
can be seen, the CCR of the break cases obtained in the transformed space
is significantly lower than that achieved in the classification based approach,
see for example Table 5.6. Therefore, one can expect that there are no clear
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distinct regions of break and non break cases in the transformed space. The
plots of the data onto the space spanned by the first two eigenvectors of the
data covariance matrix substantiate this fact.

Table 5.8: The CCR (%) of the break and non break cases obtained for the
training and test data sets using the fitness function given by Eq. 5.5.

Case Train Test

Break 76.32 48.89
Non break 99.22 95.18
Total 96.28 88.77

Fig. 5.1 presents two plots of the data onto the first two eigenvectors of
the data covariance matrix. The left-hand side plot was obtained using all
the original variables to calculate PC(s), while Fig. 5.1 (right) presents the
mapping, where only the selected variables 8, 10, 12, 16, 23, 27, 90 and 102,
were used to calculate the principal components. In the right-hand side plot
in red the decision boundaries of the classes are shown along with the class
margins.
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Figure 5.1: Left: The first two principal components of the original data.
Right: The first two principal components of the 8-dimensional data.

As we can see from Fig. 5.1, there are no clear regions of break and non
break cases. While some clustering tendency appears when using data of the
reduced dimensionality, the degree of overlap is still high, as it is obvious
from the obtained 48.89% classification accuracy of the break cases.

The application of the two classifiers, k−NN and SVM, in the PCA based
genetic search approach resulted into two different variable subsets with only
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one common variable (16). This fact indicates that for a given data set, there
are no variables with strong relations with the web break frequency. There
is weak contribution from several variables. On the other hand, in most
of the cases, the selected variables come from the three groups of variables
mentioned above, namely, Lab data, Ink registry, and Web tension. Compar-
ing the variables selected in the classification based and PCA based genetic
search approaches we find 5 common variables, namely 10, 20, 99, 101 and
102.

5.3.2 CCA based genetic search

As in the PCA based genetic search approach, two classifiers, k−NN and
SVM, have been used. The fitness function given by Eq. 5.3 has been uti-
lized in the search process when using the k−NN classifier to categorize the
mapped data. Since, depending on initial conditions, CCA produces different
results for different runs, the results were averaged over 5 runs. As before, the
value of k was found experimentally. Table 5.7 presents the results obtained
for the different k values.

Table 5.9: The CCR (%) obtained from the k-NN classifier for the break and
non break cases along with the overall performance.

Model Break case Non break case Overall performance

1-NN 48.89 76.79 72.92
3-NN 67.78 71.43 70.92
5-NN 83.33 75.89 76.92
7-NN 72.22 92.86 90.00

As can be seen from Table 5.9, the 7-NN classifier achieved the highest
overall performance. This model also selected five variables: 10, 26, 88, 100
and 102, on average, correctly classified 6.5 out of 9 break cases and 52 out
of 56 non break cases. On the other hand, the highest CCR (83%) for the
break cases was achieved by the 5-NN classifier. This model selected five
variables: 10, 20, 93, 97 and 99. Thus, there is only one common variable
(10) selected using the 5-NN and 7-NN classifiers.

In the next test, a SVM was used as a classifier. Several fitness functions
presented in the previous sections were explored. The fitness function given
by Eq. 5.3 provided the highest CCR. Eight variables: 9, 10, 20, 22, 86, 88,
97 and 102 were selected. Table. 5.10 summarizes the results obtained from
this model.
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Table 5.10: The CCR (%) of the break and non break cases obtained from
the CCA based approach for the training and test data sets using the fitness
function given by Eq. 5.3.

Case Train Test

Break 97.89 58.89
Non break 100 94.82
Total 99.73 89.85

On average, the model classifies correctly 5.3 out of 9 break cases and 53.1
out of 56 non break cases and uses 44.4 support vectors. The CCR obtained
for the test break cases is higher than that achieved for the break cases in any
other experiment involving a SVM. Fig. 5.2 presents the nonlinear mapping
of the data obtained by the CCA technique. In the left-hand side plot all the
original variables are used to create the 2D mapping, while only the selected
variables 9, 10, 20, 22, 86, 88, 97 and 102 are used to create the right-hand
side plot. The lines shown in the right-hand side plot illustrate the decision
boundary and the class margins found by the SVM.
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Figure 5.2: Left: The original data mapped onto the first two CCA com-
ponents. Right: The 8-dimensional data mapped onto the first two CCA
components.

As we can see from Fig. 5.2, the mapping created using only the selected
variables exhibits a clearer clustering tendency of the break and non break
cases than that exploiting all the original variables. However, the clustering
tendency revealed in the 2D space is not strong enough for drawing clear
conclusions. Comparing the results obtained from the k-NN and SVM clas-
sifiers, we find that there are 5 common variables: 10, 20, 88, 97 and 102.
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However, when considering all the three classifiers, 5-NN, 7-NN and SVM
separately, only one common variable (10) is obtained. Table 5.11 presents
the variables selected by the different techniques.

Table 5.11: The variables selected by the different techniques.
Method Variables

Linear relations
Correlation anal. 6 10 18 19 21 22 23 25 26 27 108
Linear model 10 18 19 21 124

SVM based GA
FF of Eq. 5.1 10 26 97 101 102
FF of Eq. 5.2 10 26 97 99
FF of Eq. 5.3 10 20 22 97

PCA based GA
5-NN classifier 6 13 16 19 20 25 99 101
SVM classifier 8 10 12 16 23 27 90 102

CCA based GA
5-NN classifier 10 20 93 97 99
7-NN classifier 10 26 88 100 102
SVM classifier 9 10 20 22 86 88 97 102

As can be seen from Table. 5.11, the variable selection results are quite
diverse. To get a clearer picture, we build a variable selection frequency
histogram, shown in Fig. 5.3. Only variables with the selection frequency
larger than two were used to build the histogram.
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Figure 5.3: The variable selection frequency.

As Fig. 5.3 shows, the variable 10 from the Ink registry group is the vari-
able most often. The variable characterizes operator actions in adjusting the
yellow colour register in machine direction on the lower paper side. This
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variable gives an indication of deviation in the paper properties or the print-
ing press. The variable (97) selected second-most often comes from the Lab
data group of variables and expresses Air permeability. The variable reflects
the paper porosity. There two more variables from the same group, namely
Grammage (102) and Elongation MD (99). The Web tension group of vari-
ables is represented by four variables: Web tension variance, axis 1 (19),
Mean value of web tension moment, axis 1 (20), Mean web tension, axis 2
(22), and Minimum value of sliding web tension mean, axis 2 (26). Four
variables selected from the Web tension group of variables substantiate the
importance of web tension control on web break occurrence.
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Chapter 6

Conclusions

Several techniques for identifying the main variables influencing the web
break occurrence in a pressroom were developed and investigated. The total
number of variables, obtained off-line in a paper mill as well as measured
online in a pressroom, was equal to 61. First, the linear relations between
the independent variables and the web break frequency were investigated.
Then two main approaches were explored. The first one, classification based
genetic search, treats the problem as a data classification task into ”break”
and ”non break” classes. The second approach, also based on genetic search,
combines the procedures of variable selection and data mapping into a low
dimensional space. The integration of the variable selection and classifier
design or mapping processes allows us to find the most important variables,
according to some quality function, affecting the classification or mapping
results.

The results of experimental investigations performed using data collected
at a Swedish paper mill have shown that the linear relations between the
independent variables and the web break frequency are not strong and the
linear model was unsuitable for solving the problem. In addition, we have
found that the Web tension group of variables has the highest linear relation
with the web break frequency, especially the Web tension variance, axis 1
variable, where it was found that if the web tension variance, axis 1 exceeds
500, the probability of having a web break is equal to 0.44.

The non-linear relations were revealed using a classification and mapping
based genetic search. Up to 93% of the test set data was classified correctly
using the selected variables. The relatively high correct classification rate
indicates the importance of the selected variables. It was found that the
variable Ink registry Y LS MD, coming from the online group of variables, is
the most important one. The variable describes the operator actions taken in
adjusting the yellow ink register in machine direction on the lower paper side.
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The next most important variable is Air permeability. This variable describes
the porosity of paper and gives us an indication about the liquid penetration
during the printing operation. In accordance with the results obtained in
previous studies, we found that the web tension group of variables has a
relatively high influence on the web break occurrence. We identified four
variables from this group, namely Web tension variance, axis 1, Mean value
of web tension moment, axis 1, Mean web tension, axis 2, and Minimum
value of sliding web tension mean, axis 2.

Other important variables identified are Elongation and Grammage. The
elongation determines the distance the web increases under a tensile strength
before breaking (strain to failure). While the Grammage reflects the pa-
per density. Both variables are very important since they are considered as
a web strength variation sources. Thus, we identified three groups of im-
portant variables: Lab data, Ink registry, and Web tension data. Previous
studies have indicated that operator actions may be an important source
of web breaks. Our findings related to the Ink registry group of variables
substantiate these observations.

One important shortcoming of the study is the relatively small set of data.
For large data sets, the ranking of the variables can be different. However,
the techniques are valid.
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