
www.F
irs

tR
an

ke
r.c

om

Final thesis

Tight Approximability Results for the
Maximum Solution Equation Problem over

Abelian Groups

by
Fredrik Kuivinen

LITH-IDA-EX--05/049--SE

2005-06-01

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Final thesis

Tight Approximability Results for the Maximum
Solution Equation Problem over Abelian Groups

by Fredrik Kuivinen

LITH-IDA-EX--05/049--SE

Supervisor : Gustav Nordh
Department of Computer and Information
Science at Linköpings universitet

Examiner : Peter Jonsson
Department of Computer and Information
Science at Linköpings universitet

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ii

Abstract

In the maximum solution equation problem a collection of equations are
given over some algebraic structure. The objective is to find an assignment
to the variables in the equations such that all equations are satisfied and the
sum of the variables is maximised. We give tight approximability results
for the maximum solution equation problem when the equations are given
over finite abelian groups. We also prove that the weighted and unweighted
versions of this problem have asymptotically equal approximability thresh-
olds. Furthermore, we show that the problem is equally hard to solve as the
general problem even if each equation is restricted to contain at most three
variables and solvable in polynomial time if the equations are restricted
to contain at most two variables each. All of our results also hold for the
generalised version of maximum solution equation where the elements of
the group are mapped arbitrarily to non-negative integers in the objective
function.

Keywords : systems of equations, finite groups, NP-hardness, approx-
imation

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

iii

Acknowledgements

I would like to thank my supervisor Gustav Nordh and my examiner Peter
Jonsson for all the help and useful discussions during the work with this
thesis. I would also like to thank Peter Hackman, for ideas on how the
solutions to linear system of equations over a ring is structured, and Johan
H̊astad, for quickly answering my questions regarding one of his papers.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

iv

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Contents

1 Introduction 1
1.1 A Short Introduction to Complexity Theory 4
1.2 Preliminaries . 7
1.3 Definitions and Results . 9

2 Inapproximability 12
2.1 Preliminaries . 13
2.2 Inapproximability of Max Expr 15
2.3 A First Inapproximability Result for Max Sol Eqn 16
2.4 Inapproximability of Max Sol Eqn 19

3 Approximability 22
3.1 Algorithm Overview . 22
3.2 Matrix Restructuring . 23

3.2.1 Preliminaries . 24
3.2.2 Transform-Matrix 24
3.2.3 Remove-Rows . 29

3.3 Random-Solution . 30
3.3.1 The Algorithm . 32
3.3.2 Technical Lemmas 33
3.3.3 Correctness . 35

3.4 Approx-Solution . 39
3.4.1 Correctness . 40
3.4.2 Performance Analysis 42

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

vi Contents

4 Weighted vs. Unweighted Problems 45
4.1 Weak Approximability . 46
4.2 Weights Do Not Matter (Much) 47

5 Conclusion 52

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 1

Introduction

Problems related to solving equations over various algebraic structures have
been studied extensively during a large time frame. The most fundamental
problem is, perhaps, Eqn which is the problem of: given an equation, does
it have a solution? That is, is it possible to assign values to the variables in
the equation such that the equation is satisfied? Goldmann and Russell [9]
studied this problem for finite groups. They showed that Eqn is NP-
complete for all non-solvable groups and solvable in polynomial time for
nilpotent groups.

A problem related to Eqn is Eqn∗. In Eqn∗ a collection of equations
are given and the question is whether or not there exists an assignment
to the variables such that all equations are satisfied. For finite groups
Goldmann and Russell [9] have shown that this problem is solvable in
polynomial time if the group is abelian and NP-complete otherwise. Moore
et al. [16] have studied this problem when the equations are given over finite
monoids. The same problem have been studied for semigroups [14, 22] and
even universal algebras [15].

Another problem is the following: given a over-determined system of
equations, satisfy as many equations as possible simultaneously. This prob-
lem have been studied with respect to approximability by H̊astad [10]. He
proved optimal inapproximability bounds for the case where the equations
are given over a finite abelian group. H̊astad’s result has later on been

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2 1. Introduction

generalised by Engebretsen et al. [6] to cover finite non-abelian groups as
well. Those results uses the PCP theorem [1] which has been used to prove
a number of inapproximability results. Other problems that have been
studied which are related to this area is #Eqn∗ (counting the number of
solutions to a system of equations) [18] and Equiv-Eqn∗ and Iso-Eqn∗

(deciding whether two systems of equations are equivalent or isomorphic,
respectively) [17].

In this paper we study the following problem: given a system of equa-
tions over a finite abelian group, find the best solution. With “best solu-
tion” we mean a solution (an assignment to the variables that satisfies all
equations) that maximises the sum of the variables. We call this problem
Maximum Solution Equation (here after denoted by Max Sol Eqn).

A problem that is similar to Max Sol Eqn is Nearest Codeword.1

In this problem we are given a matrix A and a vector b. The objective is to
find a vector x such that the hamming weight (the number of positions in
the vector that differs from 0) of Ax−b is minimised. The decision version
of a restricted variant2 of this problem was proved to be NP-complete by
Bruck and Noar [4]. Later on Feige and Micciancio [8] proved inapproxima-
bility results for the same restricted problem. Arora et al. [2] proved that
Nearest Codeword over GF (2) is not approximable within 2log1−ε n for
any ε > 0 unless NP ⊆ DTIME(npoly(log n)). Nearest Codeword is in-
teresting because it has practical applications in the field of error correcting
codes.

Max Sol Eqn is parametrised on the group we are working with and
a map from the elements of the group to non-negative integers. The map
is used in the objective function to compute the measure of a solution.
Our main result give tight approximability results for Max Sol Eqn for
every finite abelian group and every map from the elements of the group
to non-negative integers. That is, we prove that for every finite abelian
group and every map from group elements to non-negative integers there
is a constant, α, such that Max Sol Eqn is approximable within α but
not approximable within α − ε in polynomial time for any ε > 0 unless

1This problem is sometimes called MLD for Maximum Likelihood Decoding.
2The problem we are referring to is Nearest Codeword with preprocessing. See [4]

for a definition.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3

P = NP. We also show that the weighted and the unweighted versions
of this problem are asymptotically equally hard to approximate. All our
hardness results hold even if the instances are restricted to have at most
three variables per equation. We also prove that this is tight since with two
variables per equation the problems are solvable to optimum in polynomial
time.

Our work may be seen as a generalisation of Khanna et al.’s [13] work
on the problem Max Ones(F) in the sense that we study larger domains.
However, their work is not restricted to equations over finite groups which
the results in this paper are. Nevertheless, they give a 2-approximation
algorithm for Max Ones(F) when F is affine. We prove that, unless P =
NP, this is tight. (Max Ones(F) when F is an affine constraint family is
equivalent to a specific version of Max Sol Eqn.)

The structure of this thesis is as follows, in the first (this) chapter we
give an introduction to the problem. We begin with a background of the
area and present some previous results. In the second section we give a
general introduction to the theory of computational complexity and its
relation to optimisation and approximation problems. We then go on and
state some preliminaries where we define our notation. Our problem, called
Max Sol Eqn, is then formally defined together with the results that we
have obtained.

In Chapter 2 we prove our inapproximability results for Max Sol Eqn.
That is, we prove that if P 6= NP then there do not exist any polynomial
time approximation algorithms for Max Sol Eqn with a performance ratio
strictly less than some α.

We also want to bound the approximability from above. That is, we
want to say “Max Sol Eqn is approximable within α”, for some constant
α. The easiest way to do this is to construct an approximation algorithm for
Max Sol Eqn and then prove that the performance ratio for the algorithm
is α. This is what we do in Chapter 3.

The results in Chapter 2 say things about one version (the weighted
version) of Max Sol Eqn and Chapter 3 say things about another version
(the unweighted version) of Max Sol Eqn. In Chapter 4 we prove that
the weights do not really matter, the approximability threshold for the
weighted and unweighted versions of Max Sol Eqn are asymptotically
equal.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4 1. Introduction

Finally, in Chapter 5, we prove our main results. The proof combines
the results from the previous chapters. The last section in the final chapter
contains a short discussion about possible future work related to the work
in this thesis.

1.1 A Short Introduction to Complexity The-
ory

This section contains a short introduction to complexity theory and its
relation to optimisation and approximation problems. Readers familiar
with those concepts may want to skip this part of the thesis. For a more
detailed presentation see, e.g., [3].

In this thesis we are going to study a specific optimisation problem. In
an optimisation problem we are, in general, given a set of variables, a set of
constraints over those variables and an objective function. The goal is to
assign values from some domain to the variables such that the constraints
are fulfilled and the objective function is either maximised or minimised. A
well known optimisation problem is the linear programming problem (here
after called LP). In the LP problem we are given a set of linear inequalities
over some variables. The goal is to find an assignment to the variables
such that the inequalities are satisfied and a given linear combination of
the variables is maximised (or minimised). The LP problem is well studied
and can, for example, be solved with the Simplex algorithm. The set of
values that can be assigned to a variable in an optimisation problem is
called the domain of the problem. In the LP case the domain is the set of
real numbers.

Another example of a optimisation problem is Max 2Sat. In Max
2Sat we are given a set of disjunctions over a set of variables. Each dis-
junction contains exactly two literals. An example of a possible disjunction
is thus ¬x ∨ y. The goal is to assign truth values (either true or false) to
the variables such that the maximum number of disjunctions are satisfied.
In this case the domain consists of two values, true and false.

In the LP case it turns out to be possible to find an optimal solution fast
(we will define what we mean with “fast” soon). For some other problems,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1.1. A Short Introduction to Complexity Theory 5

for example, Max 2Sat it is probably not possible to find optimal solutions
fast. When it is not possible to find an optimal solution fast it is natural to
ask if we can find a “good” solution fast, for some definition of “good”. This
is formalised with approximation algorithms. An approximation algorithm
is a fast algorithm that produces a solution to an optimisation problem
and gives some sort of guarantee about the quality of the solution. The
guarantee can, for example be, (for an maximisation problem) “the measure
of a solution returned by the approximation algorithm will never be less
than 50% of the measure of the optimal solution”. The value 50% is called
the performance ratio of the algorithm. In the Max 2Sat case there exists
an approximation algorithm that return solutions who’s measure is at least
93% of the measure of the optimal solution. [7]

Example 1.1
Maximise 3x1 + 5x2 subject to the following constraints

x1 + 2x2 ≤ 8
−x1 + x2 ≥ −5

In this example we have an instance of the LP problem. In this instance
the objective is to maximise 3x1 + 5x2 subject to the constraints in the
example. The optimal solution to this instance is x1 = 6, x2 = 1 which
gives us the measure 3 · 6 + 5 · 1 = 23. An approximation algorithm for
the LP problem with the guarantee that it will return solutions that have
a measure that is at least 50% of the optimal measure could, for example,
return the solution x1 = 0, x2 = 4 to the instance in this example. This
solution has the measure 20 and is larger than the required 0.5 ·23. It could
not, however, return x1 = 1, x2 = 1 since this solution has the measure
8 which is smaller than 0.5 · 23. Neither could it return x1 = 0, x2 = 10
because those values do not satisfy the constraints, they are not a feasible
solution to the instance.

In complexity theory it is often said that an algorithm is “fast” or
“practical” if the running time of the algorithm is bounded by a polynomial
in the size of the input.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6 1. Introduction

In this thesis we will study a specific optimisation problem with re-
spect to approximability. We will give an approximation algorithm for our
problem, and we will prove that it (probably) do not exists any approxi-
mation algorithms that are better than our approximation algorithm. Our
inapproximability results are of the following form, “Max Sol Eqn is not
approximable within α − ε for any ε > 0, unless P = NP”, where α is
some well defined number. If, for example α = 2, then the meaning of a
theorem of the above mentioned form is that it is unlikely that there exists
an approximation algorithm that can generate solutions to Max Sol Eqn
such that the solutions always are better than 50% of the optimum value.
Results of this form bound the approximability of a certain problem from
below, they say that it is (probably) not possible to approximate Max Sol
Eqn within a constant smaller than α.

One of the most interesting and most well studied open questions in
complexity theory is whether or not P = NP. It is widely believed that
P 6= NP, but no one has managed to prove that. Informally one could state
this question in the following way: For all problems where it is possible to
verify a solution fast, is it equally hard to find solutions as it is to verify
a given solution? P contains all problems that are solvable in polynomial
time, i.e., fast and NP contains all problems where it is possible to verify
a given solution in polynomial time. Intuitively it seems that it is easier
to verify a solution than to find a solution. Consider, for example, the
problem of finding a proper colouring of a map, using only three colours.
A colouring of a map is considered proper if two adjacent countries have
different colours. A trivial way to get a proper colouring is to assign a
unique colour to each country. But if we are restricted to use only three
colours, say red, green and blue is there a fast way to decide if it is possible
to find a proper colouring to a given map using only those colours? It is
easy to verify a solution to the map colouring problem, just check if every
country in the map have a different colour compared to its neighbours.
However, it seems to be very hard to come up with a fast way to find out
if there exists a proper colouring to a given map. One way is to try every
possible combination of colour assignments, however the running time of
this method will grove exponentially with the number of countries in the
map and it is therefore not considered fast. The map colouring problem
is usually called Graph Colourability and has been proved to be NP-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1.2. Preliminaries 7

complete by Stockmeyer [20]. This means that if someone comes up with a
fast algorithm for the map colouring problem then we would have P = NP.

The “unless P = NP” part of our inapproximability results thus states
that our inapproximability results only holds if P 6= NP. If it turns out
that P = NP then the results in this thesis would become useless, because
for every problem studied here it would exist a fast algorithm which could
find the optimum.

1.2 Preliminaries

We assume that the reader has some basic knowledge of complexity theory.
We will nevertheless briefly state some fundamental definitions of optimi-
sation problems and approximation in this section, see Section 1.1 for a
brief introduction or [3] for a more detailed presentation of complexity the-
ory. We also assume that the reader has some basic knowledge of group
theory. More specifically the theory of abelian groups. For an introduction
to abstract algebra the reader is referred to [12] and [21].

An optimisation problem has a set of admissible input data, called the
instances of the problem. Each instance has a set of feasible solutions. The
optimisation problem also has a function of two variables, an instance and
a feasible solution, that associates an integer with each such pair. This
function denotes the measure of the solution. The goal of an optimisation
problem is to find a feasible solution that either maximises or minimises
the measure for a given instance.

An NPO problem is an optimisation problem where instances and fea-
sible solutions can be recognised in polynomial time, feasible solutions are
polynomially bounded in the input size and the measure can be computed
in polynomial time. We will only study NPO maximisation problems in
this thesis.

We will denote the measure of our problems with m(I, s), where I is
an instance and s is a feasible solution. The optimum for an instance I of
some problem (which problem we are talking about will be clear from the
context) is designated by opt(I). We say that a maximisation problem Π
is r-approximable if there exists a polynomial time algorithm A such that
for every instance I of Π, m(I,A(I)) ≥ opt(I)/r. Equivalently, we say

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

8 1. Introduction

that the performance ratio of A is r if this inequality holds. The same
terminology is used if there exists a randomised polynomial time algorithm
where the expected value of the measure is greater than opt(I)/r. That
is, if there exists a randomised polynomial time algorithm A′ such that for
every instance I of Π, E [m(I, A′(I))] ≥ opt(I)/r, then Π is said to be
r-approximable.

In reductions we will work with two different problems simultaneously.
The objects associated with the problem that the reduction is from will be
denoted by symbols without ′ and objects associated with the other problem
will be denoted by symbols with ′. Thus, for example, the measuring
function of the problem that the reduction starts with will be denoted by
m(I, s) and the measuring function of the other problem will be denoted
by m′(I ′, s′).

For a random variable X and a set S we use the notation X ∼ U(S) to
denote that X is uniformly distributed over S. That is, X ∼ U(S) means
that for every x ∈ S we have Pr [X = x] = 1/|S|.

We use the standard definition of o(·). That is, given two functions
f(n) and g(n), we say that f(n) is in o(g(n)) if f(n)/g(n)→ 0 as n tends
to infinity. [23] Hence, we have in particular, that if f(n) is in o(1) then
f(n)→ 0 as n tends to infinity.

For a finite abelian group G = (D,+) we have

G ∼= Zp
α1
1
× · · · × Zpαn

n

for some integer n, primes p1, . . . , pn and integers α1, . . . , αn. See e.g.
Theorem 11.3 in [12]. In the subsequent parts of this thesis we will assume
that, unless explicitly stated otherwise, the group G is defined as above.
We will also identify the group with its domain, i.e., we will sometimes
treat G as a set such that G = D. We see the elements in G as vectors of
integers. Position number i in each such vector is an element of Zp

αi
i

. For
a group G we denote its identity element with 0G. We will use addition as
the group operator. Every group dealt with in this text is finite.

For a group G and a subgroup G′ ⊆ G of this group we denote the
coset, C, of G′ with representative c ∈ G as G′ + c. That is,

G′ + c = C = {x + c | x ∈ G′} .

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1.3. Definitions and Results 9

For a function f : X → N and a set S ⊆ X we use the notations
fmax(S) and fsum(S) for the following quantities,

fmax(S) = max
x∈S

f(x) fsum(S) =
∑
x∈S

f(x).

We will sometimes use fmax and fsum as a shortening of fmax(X) and
fsum(X), respectively. Those notations will only be used when they are
well defined.

We use “mod” as a modulos operator. For an integer a and a positive
integer b we define “a mod b” as follows,

c = a mod b ⇐⇒ 0 ≤ c < b and c ≡ a (mod b).

Note that there is a large difference between “a mod b”, which is defined
to be the unique integer that lies between 0 and b − 1 (inclusive) and is
congruent to a modulo b, and “a ≡ b (mod m)” which states that a is
congruent to b modulo m.

To describe our algorithms we use a simple pseudo code syntax. It
is mostly self-documenting but we will make some comments of it here.
We use ← as the assignment operator. For a matrix A the expression
Rows(A) denotes the number of rows in A and Cols(A) denotes the number
of columns in A. For a set S the expression Rand(S) is a random element
from S, more precisely, for every x ∈ S the value of the expression Rand(S)
is x with probability 1/|S|.

1.3 Definitions and Results

We are going to study the following problem in this thesis.

Definition 1.1. Weighted Maximum Solution Equation(G, g) where
G is a group and g : G → N is a function, is denoted by W-Max Sol
Eqn(G, g). An instance of W-Max Sol Eqn(G, g) is defined to be a
triple (V,E, w) where,

• V is a set of variables.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

10 1. Introduction

• E is a set of equations of the form w1 + . . . + wk = 0G, where each
wi is either a variable, an inverted variable or a group constant.

• w is a weight function w : V → N.

The objective is to find an assignment f : V → G to the variables such
that all equations are satisfied and the sum∑

v∈V

w(v)g(f(v))

is maximised.

Note that the function g and the group G are not parts of the input.
Thus, W-Max Sol Eqn(G, g) is a problem parameterised by G and g.
We will also study the unweighted problem, Max Sol Eqn(G, g), which
is equivalent to W-Max Sol Eqn(G, g) with the additional restriction
that the weight function is equal to 1 for every variable in every instance.
The collection of linear equations in an instance of W-Max Sol Eqn(G,
g) can also be represented in the standard way as an integer-valued matrix,
A, and a vector of group elements, b. If the variables are called x1, . . . , xm

we can then, with x = (x1, . . . , xm)T , use Ax = b as an equivalent form of
the sets V and E in the definition above.

Due to Goldmann and Russell’s result [9] that solving systems of equa-
tions over non-abelian groups is NP-hard, it is NP-hard to find feasible
solutions to Max Sol Eqn(H, g) if H is non-abelian. It is therefore
sufficient to only study Max Sol Eqn(H, g) where H is abelian.

To describe our results we need the following concept.

Definition 1.2 (Coset-Validity). Let G be an abelian group. A non-
empty set B ⊆ G is coset-valid with respect to G if there exists a matrix
A, a vector b, a vector of variables x = (x1, . . . , xm)T such that the system
of equations Ax = b restricts the values that x1 can have such that those
values form a subgroup, G′, of G. Furthermore, there exists a group element
c ∈ G such that B = G′ + c.

That is, the set
G′ = {x1 | Ax = b}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1.3. Definitions and Results 11

is a subgroup of G. Furthermore, there exists a group constant, c ∈ G, such
that

B = {c + x1 | Ax = b} .

If those conditions are fulfilled then B is coset-valid with respect to G. Note
that B is a coset of G′ with representative c.

Given a group G there is always at least one set that is coset-valid with
respect to G, namely G itself.

The main result of this thesis is the following theorem about the ap-
proximability of Max Sol Eqn(G, g).

Theorem 1.1 (Main). For every finite abelian group G and every func-
tion g : G→ N, Max Sol Eqn(G, g) is approximable within α where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
.

Furthermore, for every finite abelian group G and every non-constant
function g : G→ N Max Sol Eqn(G, g) is not approximable within α− ε
for any ε > 0 unless P = NP.

We will prove Theorem 1.1 in Chapter 5. Note that if g is a constant
function then every feasible solution has the same measure and finding an
optimum is solvable in polynomial time.

We will also prove that the approximability threshold for W-Max Sol
Eqn(G, g) is asymptotically equal to the approximability threshold for
Max Sol Eqn(G, g). That is, we will prove that W-Max Sol Eqn(G,
g) is approximable within α + o(1) where the o(·)-notation is with respect
to the size of the instance. Furthermore, we will prove that W-Max Sol
Eqn(G, g) is not approximable within α−ε for any ε > 0, unless P = NP.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 2

Inapproximability

In this chapter we are going to prove inapproximability results for Max
Sol Eqn. We will begin with a section with some preliminaries, we use a
few other problems in our inapproximability proofs which are presented in
Section 2.1, we also introduce a special kind of reduction.

We will then go on and prove an inapproximability result for one of
the new problems, namely Maximum Expression, which is defined in
Section 2.1. To do this we use H̊astad’s [10] inapproximability results for
Max-Ek-Lin-G, the latter problem is also defined in Section 2.1.

In Section 2.3 we use the inapproximability results of Maximum Ex-
pression in a gap-preserving reduction to prove an inapproximability bound
for Max Sol Eqn(G, g). This bound turns out to be tight for some groups
G and some functions g : G → N, but not for all such combinations. We
will then use this result as a stepping stone to prove our final inapprox-
imability result in Section 2.4. The proof of the final result relies on the
observation that for some combinations of groups, G, and functions, g, it is
possible to construct a linear system of equations that induce a subgroup
of G which is, in a sense made clear below, hard to approximate.

This latter result is the main theorem of this chapter. It is formally
stated as follows:

Theorem 2.1 (Main Inapproximability Theorem). For every finite

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.1. Preliminaries 13

abelian group G and every non-constant function g : G → N it is not
possible to approximate W-Max Sol Eqn(G, g) within α− ε where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
for any ε > 0 unless P = NP.

This theorem turns out to be a tight inapproximability result for W-
Max Sol Eqn(G, g). That is, the theorem states that it is not possible
to approximate W-Max Sol Eqn(G, g) within α− ε for some α and any
ε > 0 unless P = NP. We will, in Chapter 3 and Chapter 4 prove that
there exists an α-approximation algorithm for W-Max Sol Eqn(G, g).

2.1 Preliminaries

We will prove our inapproximability results with a special kind of reduc-
tion, namely a gap-preserving reduction introduced by Arora in [1]. The
definition is as follows.

Definition 2.1 (Gap-preserving reduction [1]). Let Π and Π′ be two
maximisation problems and ρ, ρ′ > 1. A gap-preserving reduction with
parameters c, ρ, c′, ρ′ from Π to Π′ is a polynomial time algorithm f . For
each instance I of Π, f produces an instance I ′ = f(I) of Π′. The optima
of I and I ′, satisfy the following properties:

• if opt(I) ≥ c then opt(I ′) ≥ c′, and

• if opt(I) ≤ c/ρ then opt(I ′) ≤ c′/ρ′.

Gap-preserving reductions are useful because if for every language in
NP there is a polynomial time reduction to the maximisation problem
Π such that Yes instances are mapped to instances of Π of measure at
least c and No instances to instances of measure at most c/ρ, then a gap-
preserving reduction from Π to Π′ implies that finding ρ′-approximations
to Π′ is NP-hard. [1]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

14 2. Inapproximability

Definition 2.2. Maximum Expression over the abelian group G is de-
noted by Max Expr(G). An instance of Max Expr(G) is defined to be
I = (V,E) where,

• V is a set of variables, and

• E = {e1, . . . , em} is a set of expressions. Each expression ei is of the
form ci + wi1 + wi2 + . . . where wi1, wi2, . . . are either variables or
inverted variables and ci is a group constant.

The objective is to find an assignment f : V → G and a group element
x ∈ G such that the maximum number of expressions in E evaluate to x
when the variables in the expressions are assigned values according to f .

The inapproximability of the following problem is the starting point for
our results in this chapter.

Definition 2.3 (Max-Ek-Lin-G [10]). An instance of Max-Ek-Lin-G
is defined to be (V,E) where

• V is a set of variables, and

• E is a set of linear equations over the group G with exactly k variables
in each equation.

The objective is to find an assignment f : V → G such that the maximum
number of equations in E are satisfied.

The following theorem can be deduced from the proof of Theorem 5.9
in [10]. (In [10] the theorem is first proved for the case k = 3 there is then,
on page 827, a hint on how this proof can be generalised to an arbitrary k.
However, it appears that the proof which is suggested in [10] do not work.
A slight modification of Theorem 5.9 in [10] do give the desired result,
though. [11])

Theorem 2.2. For every problem Π in NP there is a polynomial time
reduction from instances I of Π to instances I ′ = (V,E) of Max-Ek-Lin-
G such that

• if I is a Yes instance then at least (1−δ)|E| equations can be satisfied,
and

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.2. Inapproximability of Max Expr 15

• if I is a No instance then no assignment satisfies more than |E|(1 +
δ)/|G| equations

where δ is an arbitrary constant such that 0 < δ < 1. Furthermore, no
equation in E contains any variables in their inverted form. That is, all
occurrences of the variables are non-inverted.

2.2 Inapproximability of Max Expr

The inapproximability results we need for Max Expr is proved in this
section.

Lemma 2.1. For every problem Π in NP there is a polynomial time re-
duction from instances I of Π to instances I ′ = (V,E) of Max Expr(G)
such that

• if I is a Yes instance then opt(I ′) ≥ (1− δ)|E|, and

• if I is a No instance then opt(I ′) ≤ |E|(1 + δ)/|G|

where δ is an arbitrary constant such that 0 < δ < 1. Furthermore, every
expression in E has exactly k variables and gcd(k, pi) = 1 for every i,
1 ≤ i ≤ n.

Proof. Choose k > 1 such that gcd(k, pi) = 1 for every i, 1 ≤ i ≤ n. We
could, for example, choose k as k = 1 +

∏n
i=1 pi.

We will prove the theorem with a reduction from Max-Ek-Lin-G. The-
orem 2.2 makes this a suitable approach. Given an instance J of an arbi-
trary problem Π in NP, reduce J to an instance, I = (V,E), of Max-Ek-
Lin-G with the reduction in Theorem 2.2. We will construct an instance
I ′ = (V,E′) of Max Expr(G) from I.

Every equation ej in E is of the form x1 + . . . + xk = cj . For every ej

add the expression e′j , which we define as, x1 + . . . + xk − cj to E′.
According to Theorem 2.2 we know that either opt(I) ≥ |E|(1− δ) or

opt(I) ≤ |E|(1 + δ)/|G|.
Case 1: (opt(I) ≥ (1−δ)|E|) Let f be an assignment such that m(I, f) ≥
(1− δ)|E|. The same assignment used on I ′ will give m′(I ′, f) ≥ m(I, f) =
(1− δ)|E|. (At least (1− δ)|E| of the expressions will evaluate to 0G.)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

16 2. Inapproximability

Case 2: (opt(I) ≤ |E|(1 + δ)/|G|) Assume that we have an assignment
f ′ : V → G to I ′ such that m′(I ′, f ′) > |E|(1 + δ)/|G|. Then there exists
an element a ∈ G such that more than |E|(1 + δ)/|G| expressions in I ′

evaluate to a when f ′ is used.
As gcd(k, pi) = 1 for every i, 1 ≤ i ≤ n the integer k has a multiplicative

inverse in every Zp
αi
i

. Therefore, the equation kq = −a has a solution q in
G. We can now construct an new assignment, f , to the variables in I and
I ′.

f(v) = f ′(v) + q

If we use f on I ′ we get the following value for the expressions that evalu-
ated to a under f ′: (we are abusing our notation here; f(Q) where Q is an
equation or an expression means that the variables in Q shall be assigned
values according to f)

f(e′j) = f(x1) + . . . + f(xk)− cj

= kq + f ′(x1) + . . . + f ′(xk)− cj

= kq + a = −a + a = 0G

Under f ′ we had more than |E|(1 + δ)/|G| expressions which evaluated to
a, now under f all those expressions evaluate to 0G. However, that more
than |E|(1 + δ)/|G| expressions in I ′ evaluate to 0G is equivalent to that
more than |E|(1+ δ)/|G| equations in I are satisfied. We have constructed
an assignment f such that m(f, I) > |E|(1 + δ)/|G|. This contradicts
our initial premise that opt(I) ≤ |E|(1 + δ)/|G|, the assignment f ′ can
therefore not exist. Hence, opt(I ′) ≤ |E|(1 + δ)/|G|.

To conclude the proof note that we have proven that if opt(I) ≥ |E|(1−
δ) then opt(I ′) ≥ |E|(1−δ) and if opt(I) ≤ |E|(1+δ)/|G| then opt(I ′) ≤
|E|(1+δ)/|G|. This, together with Theorem 2.2, gives us the desired result.

ut

2.3 A First Inapproximability Result for Max

Sol Eqn

In this section we prove a first inapproximability result for Max Sol Eqn.
This result will be used in Section 2.4 to prove a stronger inapproximability

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.3. A First Inapproximability Result for Max Sol Eqn 17

result for Max Sol Eqn.

Lemma 2.2. For any finite abelian group G and any non-constant function
g : G→ N it is not possible to approximate W-Max Sol Eqn(G, g) within
α− ε where

α = |G|gmax

gsum

for any ε > 0, unless P = NP.

Proof. We will prove the lemma with a gap-preserving reduction from
Max Expr(G). Given an instance, J , of an arbitrary problem Π in NP,
reduce J to an instance, I = (V,E), of Max Expr(G) with the reduction
in Lemma 2.1. We will use I to construct an instance I ′ = (V,E′, w′) of
W-Max Sol Eqn(G, g). According to Lemma 2.1 every expression ej in
E is of the form x1 + . . . + xk + cj . Furthermore, we have gcd(k, pi) = 1
for every i, 1 ≤ i ≤ n.

For every ej ∈ E add the equation e′j , defined as x1 + . . .+xk + cj = zj

to E′, where zj is a fresh variable. Let w′(zj) = 1 for all 1 ≤ j ≤ |E| and
w′(·) = 0 otherwise.

We claim that the procedure presented above is a gap-preserving reduc-
tion from Max Expr(G) to Max Sol Eqn(G, g) with parameters

c = (1− δ)|E|,
c′ = (1− δ)|E|gmax, and

ρ = |G|1− δ

1 + δ
.

Where δ is the constant from Lemma 2.1. The last parameter, ρ′, is
specified below. According to Lemma 2.1 we know that either opt(I) ≥
|E|(1− δ) = c or opt(I) ≤ |E|(1 + δ)/|G| = c/ρ.
Case 1: (opt(I) ≥ (1−δ)|E|) Let f be an assignment such that m(I, f) ≥
(1−δ)|E| and let a ∈ G be the element that most expressions in E evaluate
to under f . Let b be an element in G such that g(b) = gmax and let
q be the element in G such that kq = −a + b, such a q exists because
gcd(k, pi) = 1 for every i, 1 ≤ i ≤ n. Construct an assignment f ′ as
follows: let f ′(x) = f(x) + q for every x ∈ V and let f ′(zj) be the value in
G such that equation e′j is satisfied.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

18 2. Inapproximability

It is clear that every equation in E′ is satisfied by f ′. Furthermore,
note that for the expressions in E where f(ej) = a holds we have, for the
corresponding equation e′j ,

f ′(e′j) ⇐⇒ f ′(x1) + . . . + f ′(xk) + cj = f ′(zj)
⇐⇒ kq + f(x1) + . . . + f(xk) + cj = f ′(zj)
⇐⇒ kq + a = f ′(zj)
⇐⇒ f ′(zj) = b.

Hence, for every expression ej that evaluated to a under f the variable zj

gets the value b. As g(b) = gmax we get

m′(f ′, I ′) ≥ (1− δ)|E′|gmax = c′.

Case 2: (opt(I) ≤ |E|(1+ δ)/|G|) For any assignment f ′ to I ′ any subset
of the zj variables that have been assigned the same value must contain
at most b|E|(1 + δ)/|G|c variables. (Otherwise we would have m(I, f ′) >
|E|(1 + δ)/|G|, which contradicts our assumption.) The measure of any
assignment, f ′, to I ′ is then bounded by

m′(I ′, f ′) ≤
∑
d∈G

⌊
|E|1 + δ

|G|

⌋
g(d)

≤ |E|1 + δ

|G|
∑
d∈G

g(d)

≤ |E|1 + δ

|G|
gsum

Let h denote the quantity on the right hand side of the inequality above. We
want to find the largest ρ′ that satisfies opt(I ′) ≤ c′/ρ′. If we choose ρ′ such
that c′/ρ′ = h then opt(I ′) ≤ c′/ρ′ because of opt(I ′) = m′(I ′, f ′) ≤ h.

ρ′ =
c′

h
=

(1− δ)|E|gmax

|E| 1+δ
|G| gsum

= |G|gmax − δgmax

gsum + δgsum

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.4. Inapproximability of Max Sol Eqn 19

Now, given a fixed but arbitrary ε > 0 we can choose 0 < δ < 1 such that

ρ′ > |G|gmax

gsum
− ε = α− ε.

Note that due to the assumption that g is non-constant we have |G|gmax/gsum >
1. The gap-preserving reduction implies that it is NP-hard to find ρ′-
approximations to W-Max Sol Eqn(G, g), and as ρ′ > α− ε we have the
desired result. ut

2.4 Inapproximability of Max Sol Eqn

We are now ready to prove the main inapproximability theorem.
Proof (Of Theorem 2.1). We will begin with an outline of the proof.
Let I ′ be an arbitrary instance of W-Max Sol Eqn(G′, g′), where G′

is a new group and g′ : G′ → N is a new function, both of them will
soon be defined. We will then prove that W-Max Sol Eqn(G′, g′) is not
approximable within α− ε for any ε > 0 unless P = NP. As the final step
we will transform I ′ to an essentially equivalent instance I of W-Max Sol
Eqn(G, g). That is, for every solution s to I we can construct a solution
s′ to I ′ in polynomial time such that m(I, s) = m′(I ′, s′) and vice versa.

If we could approximate W-Max Sol Eqn(G, g) within some ratio
β < α we would be able to approximate W-Max Sol Eqn(G′, g′) within
β too, because given an instance, I ′, of W-Max Sol Eqn(G′, g′) we
can transform it into an essentially equivalent instance, I, of W-Max Sol
Eqn(G, g) and find a β-approximate solution, s, to this instance. This
solution, s, can then be transformed into a β-approximate solution, s′, to
I ′ (due to the relation between I and I ′, they are essentially equivalent).
We will now prove the theorem.

Let A be a matrix, b be a vector, c a group constant and x = (x1, . . . , xm)T

a vector of variables such that

B = {x1 + c | Ax = b} and α =
gmax(B)
gsum(B)

|B|.

The objects A, b and c do clearly exist due to the definition of coset-validity.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

20 2. Inapproximability

Let the group G′ be defined as follows

G′ = {x1 | Ax = b} .

That G′ is a subgroup of G follows from the definition of coset-validity.
We define g′ : G′ → N as g′(x) = g(x + c). Note that g′max = gmax(B)

and g′sum = gsum(B). Hence, according to Lemma 2.2, Max Sol Eqn(G′,
g′) is not approximable within α− ε for any ε > 0 unless P = NP.

An instance, I ′ = (V ′, E′, w′), of W-Max Sol Eqn(G′, g′) can be
transformed into an instance, I = (V,E,w), of W-Max Sol Eqn(G, g)
in the following way, assume that V ′ = {x1, . . . , xm′}.

Let

V = V ′ ∪ {yij | 1 ≤ i ≤ m′, 1 ≤ j ≤ m′} ∪ {zi | 1 ≤ i ≤ m′} .

For each variable xi in V add the equations

A

 yi1

...
yim′

 = b

xi = yi1

zi = xi + c

to the set E′′. Those equations will force the xi variables to be assigned
values that are in G′. Finally we let E = E′ ∪ E′′. The weight function,
w, is constructed as follows, for 1 ≤ i ≤ m′, w(zi) = w′(xi) otherwise
w(·) = 0.

Given a solution s : V → G to I we can construct a solution s′ : V ′ → G′

to I ′ with the property that m(s, I) = m′(s′, I ′). Note that the equations
in E′′ force the xi variables to be assigned values that are contained in G′.
Hence, for every feasible solution s to I we have that s(xi) ∈ G′ for all
i such that 1 ≤ i ≤ m. Let s′ be constructed as s′(xi) = s(xi) for all i
such that 1 ≤ i ≤ m. Note that s′ must be a feasible solution to I ′ as we
have included the equations in E′ in E. The measure of s and s′ are then

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.4. Inapproximability of Max Sol Eqn 21

related to each other in the following way,

m(I, s) =
m∑

i=1

w(zi)g(s(zi))

=
m∑

i=1

w′(xi)g(s(xi) + c)

=
m∑

i=1

w′(xi)g′(s′(xi)) = m(I ′, s′).

If we are given a solution, r′ to I ′ we can in a similar way construct a
solution r to I such that m(I, r) = m′(I ′, r′).

This concludes the proof, if we can approximate W-Max Sol Eqn(G,
g) within some factor then we can also approximate W-Max Sol Eqn(G′,
g′) within the same factor. ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 3

Approximability

Our approximability results for Max Sol Eqn(G, g) will be proven in this
chapter. We will present a randomised approximation algorithm, called
Approx-Solution, that just picks a feasible solution at random. The
somewhat complicated part turns out to be the analysis of this algorithm.
We will show that the performance ratio of this algorithm is equal, up to an
arbitrary additive constant, to the inapproximability ratio of Theorem 2.1.
That is, we will prove the following theorem.

Theorem 3.1 (Main Approximability Theorem). Approx-Solution
is an α-approximation algorithm for Max Sol Eqn(G, g), where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
.

3.1 Algorithm Overview

The algorithm consists of four parts, Transform-Matrix, Remove-
Rows, Random-Solution and Approx-Solution. As we are working
with the abelian group G we can divide the input into n independent sys-
tem of equations, each one over a group of the form Zp

αi
i

. This is done
in Approx-Solution. Each such system of equations is then given to

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.2. Matrix Restructuring 23

Transform-Matrix which restructures the system of equations to a spe-
cific form. This restructuring is then continued in Remove-Rows. The
restructuring is performed in a way which preserves the solutions to the
system of equations. Finally the decomposed and restructured systems of
equations is fed to Random-Solution which generates a random solu-
tion. Note that the sequence Transform-Matrix and Remove-Rows
is run once for each group which G is composed of. Hence, they will in
total be run n times where n is the number of groups that G is composed
of. The n system of equations generated by Transform-Matrix and
Remove-Rows is then used by Random-Solution to find one solution
to the original system of equations over G.

3.2 Matrix Restructuring

The goal of this chapter is to present an algorithm which restructures a
system of equations, given on matrix form Ax = b, into an other equiva-
lent system of equations, A′x = b′, where the matrix A′ satisfies certain
properties.

The structure of this chapter is as follows, we begin with a description
of what kind of restructuring we want to do to the system of equations.
We then continue with a section with some mathematical preliminaries
that we will use in the subsequent parts of the chapter. In the final two
sections we present the two restructuring algorithms Transform-Matrix
and Remove-Rows, we also prove their correctness.

At the end of the restructuring algorithms we want that A′ =
(
a′ij
)

satisfies the properties listed below. (Remember that we are working over
Zpα here.)

(i) a′ij = 0 for i > j.

(ii) For every i we either have a′ii = pk for some k or a′ii = 0, furthermore
for i ≤ j we either have a′ii ≤ a′jj or a′ii = pk and a′jj = 0 for some k.

(iii) For every row i and every element a′ij , if j > i then a′ij is a multiple
of a′ii.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

24 3. Approximability

The transformation from A to A′ is done by Transform-Matrix. The
algorithm Remove-Rows will then do some further restructuring, which
is not captured by the properties above.

3.2.1 Preliminaries

We need the following lemma in this section. It is a fundamental result
about the existence of a multiplicative inverse. The proof can be found in
any introduction to the theory of numbers. It can, for example, easily be
deduced from Theorem 4.10 in [19].

Lemma 3.1. For a given x the equation

xy ≡ 1 (mod pα) (3.1)

has one unique solution (i.e., all solutions to (3.1) are congruent modulo
pα) if p - x, furthermore if p | x then no solutions exist to (3.1).

When a solution exists to (3.1) it is called the inverse of x modulo pα

and the solution is denoted by x−1.

3.2.2 Transform-Matrix

Given a system of equations over Zpα , for some prime p and integer α, on
matrix form, Ax = b, it is easy to see that any combination of the following
elementary operations creates a new system of equations which have the
same set of solutions as the original one.

1. Interchanging two rows of A and the corresponding elements in b.
That is, reordering the equations.

2. Interchanging two columns of A. That is, reordering the variables.

3. Adding a multiple of row i to row j and adding the same multiple of
bi to bj , where i 6= j.

4. Multiplying a row of A and the corresponding element in b by a
constant c such that p - c.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.2. Matrix Restructuring 25

We will only prove that operation number 4 preserves the set of solutions
to the system of equations.

Proof (Of 4.). Let

m∑
i=1

aixi = q (3.2)

be an equation over Zpα , where ai are integers, xi are variables and q is a
group constant. As p - c there exists, according to Lemma 3.1, an integer
c−1 such that cc−1 = 1.

If (3.2) holds then

c
m∑

i=1

aixi = cq ⇐⇒
m∑

i=1

caixi = cq (3.3)

clearly also holds. Furthermore, if (3.3) holds then

c−1
m∑

i=1

caixi = c−1cq ⇐⇒
m∑

i=1

aixi = q

also holds. Hence, (3.2) is equivalent to (3.3). ut
With the elementary operations we will soon see that it is always pos-

sible to transform the matrix A to a matrix A′ =
(
a′ij
)

that satisfies prop-
erties (i)–(iii) listed in Section 3.2.

The algorithm Transform-Matrix is supposed to, given a matrix A,
a column vector b with as many rows as there are rows in A, a prime p
and an integer α return a matrix A′ that satisfies (i)–(iii) from Section 3.2
and a vector b′ such that the system of equations Ax = b is equivalent to
A′x = b′ over Zpα . Intuitively Transform-Matrix transforms A to an
upper triangular matrix of a special form.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

26 3. Approximability

Algorithm 1: Transform-Matrix(A, b, p, α)

Reduce A modulo pα.1

l← 12

For c from 1 to Rows(A) do3

Let i ≥ c and j ≥ c be indices in A such that pl - aij .4

If no such indices exists then5

If l = α then6

� At this stage every element aij with i ≥ c is equal to
zero.

Return (A, b)7

Else8

l← l + 19

Goto 410

end11

end12

Interchange row i and row c of A and interchange bi and bc.13

Interchange column j and column c of A.14

At this stage we have acc = spl−1 for some s such that p - s.15

Multiply row c in A and b with s−1.
Reduce row c in A and b modulo pα.16

For r from c + 1 to Rows(A) do17

We have arc = tpl−1 for some t. Subtract t times row c from18

row r. Reduce row c modulo pα.
end19

end20

Return (A, b)21

We will now describe how Transform-Matrix works. On lines 1 and 2
we reduce the matrix, A, modulo pα and initialise l to 1. l is a variable that
will be used to keep track of the current exponent of p we are working with.
On line 4 we look for an element, on a row that we have not yet processed,
which is not divisible by pl. If l = l0 at some point in the algorithm then we
know that there are no elements in the non-processed part of the matrix
which is not divisible by pl0−1, because such elements would have been
chosen on line 4 in some previous iteration of the algorithm, when l held a

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.2. Matrix Restructuring 27

smaller value. Therefore, if we find an element which is not divisible by pl

we know that it must be divisible by pl−1. If we do not find such an element
we increase l and try again. When we have found our non-divisible-by-pl

element we rearrange the matrix such that this element is positioned on the
diagonal, this element is now denoted by acc. The repositioning is done on
lines 13 and 14. On line 15 we multiply the row with an appropriate value
to get a power of p in the diagonal element acc. Finally, on lines 17–19 we
add an appropriate multiple of the current row (row c) to every row below
to get zeros in the column below acc.

It is easily verified that Transform-Matrix runs in polynomial time.
We prove the correctness of Transform-Matrix in the following lemma.

Lemma 3.2 (Correctness of Transform-Matrix). Transform-Matrix
always returns a matrix, A′, that satisfies the properties (i)–(iii). Further-
more, if Transform-Matrix returns (A′, b′) on input A, b, p and α then
the system of equations Ax = b and A′x = b′ have the same set of solutions
over Zpα (except a possible reordering of the variables).

Proof. The second part of the lemma holds because the only modifications
done to A and b by the algorithm are elementary operations. The mul-
tiplication on row 15 do not create any problems because as p - s, there
exists an inverse s−1 to s, hence ss−1 = 1. However, the only elements in
Zp

αi
i

that have inverses are those which are not multiples of p and as s is
an inverse to s−1 we must have p - s−1 (this follows from Lemma 3.1). We
will prove the first part of the lemma with the following loop invariants.

L1: At the beginning of line 4 the Rows(A)× c− 1 upper left sub matrix
of A satisfies (i).

L2: At the beginning of line 4 the c− 1× c− 1 upper left sub matrix of
A satisfies (ii).

L3: At the beginning of line 4 the c− 1×Cols(A) upper left sub matrix
of A satisfies (iii).

When c = 1 the loop invariants are vacuously true. Now assume that the
loop invariants are true for c = c0. We will prove that they are also true
for c = c0 + 1.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

28 3. Approximability

Case 1: (There are indices i, j ≥ c in A such that pl - aij .)

L1: For all r such that c + 1 ≤ r ≤ Rows(A) we will have arc = tpl−1

for some t, because if pl−1 - arc then those indices would have been
chosen on line 4 in some previous iteration of the algorithm and l
would not have been increased to its present value. As we have arc =
tpl−1 lines 14–15 will clearly make the matrix satisfy arc = 0 for
c + 1 ≤ r ≤ Rows(A) and as we have assumed that L1 holds for
c ≤ c0 the loop invariant L1 must hold for c = c0 + 1 too.

L2: We will have acc = spl−1 for some s such that p - s on line 15. (We
must have pl−1 | acc because otherwise this matrix element would
have been chosen in some previous iteration of the algorithm before
l was increased to its present value, furthermore we cannot have p | s
because then we would not have had pl - aij on line 4.) As p - s, s do
have a multiplicative inverse in Zpα . After we multiply row c with
s−1 we will have acc = pl−1. Note that acc will not be modified any
more by the algorithm, hence as L2 is true for c ≤ c0 it is also true
for c ≤ c0 + 1.

L3: To prove L3 for this case, assume that there is an index j such that
j > c and acc - acj . Then we must have l > 1, because otherwise
we would have acc = 1, which implies acc | acj . However, l would
not have been increased to its present value if there was an element,
acj , in the matrix such that acc = pl−1 - acj . We conclude that the
element acj cannot exist.

Case 2: (There are no indices i, j ≥ c in A such that pl - aij .) If l = α
every element aij with j ≥ c must be equal to zero, as the matrix has been
reduced modulo pα and there did not exist any indices i, j ≥ c such that
pα = 0 - aij . As we have assumed that L1, L2 and L3 holds for c ≤ c0, L1,
L2 and L2 must, in this case, hold for the entire matrix.

Assume that l < α. The variable l will then be increased and sooner or
later we will either get case 1 or the first part of case 2. With that, we are
done with case 2.

The loop will terminate on either line 7 or on line 21. We have already
considered the first case above. In the second case the loop terminated

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.2. Matrix Restructuring 29

because c = Rows(A), the loop invariants then tells us that A satisfies
(i)–(iii).

ut

3.2.3 Remove-Rows

Property (ii) and (iii) implies that if we have aii = 0 for some i we get two
different cases.

Case 1: (bi = 0) Row i expresses an equation that do not constrain the
variables in any way and can hence be removed. That is, row i expresses
an equation of the form

m∑
i=1

aixi = bi

with ai = 0 for 1 ≤ i ≤ m and bi = 0.

Case 2: (bi 6= 0) Row i expresses an equation that do not have any
solutions. That is, row i expresses an equation of the form

m∑
i=1

aixi = bi

with ai = 0 for 1 ≤ i ≤ m and bi 6= 0. The entire system of equations is
therefore unsolvable.

The algorithm Remove-Rows takes care of this extra transformation.
From the discussion above we get the following lemma.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

30 3. Approximability

Algorithm 2: Remove-Rows(A, b)

For r from Rows(A) down to 1 do1

If arr = 0 then2

If br = 0 then3

Remove row r from A4

Remove row r from b5

Else6

Return “no solutions”7

end8

Else9

Return (A, b)10

end11

end12

Return (A, b)13

Lemma 3.3 (Correctness of Remove-Rows). Given a matrix A that
satisfies (i)–(iii) from Section 3.2 and a vector b, if Ax = b has at least
one solution, Remove-Rows returns a new matrix A′ and vector b′ such
that Ax = b is equivalent to A′x = b′. If Ax = b do not have any solutions
then Remove-Rows will either return a new matrix A′ and vector b′ such
that A′x = b′ do not have any solutions or it will return “no solutions”.

3.3 Random-Solution

A consequence of the fact that finite abelian groups can be seen as direct
products of groups of the form Zpα for some prime p and integer α is that a
system of equations over G can be decomposed into n systems of equations
over the groups Zp

αi
i

for i, 1 ≤ i ≤ n. Furthermore, as the elements in
the group G can be seen as vectors where the element in position i in the
vector is an element in Zp

αi
i

, the vector b can be decomposed into n vectors,
b(1), . . . , b(n), such that

b =
(
b(1), . . . , b(n)

)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.3. Random-Solution 31

where b(i) is a vector with elements in Zp
αi
i

.
Hence, given A and b we can decompose b into b(1), . . . , b(n) and give,

for each i such that 1 ≤ i ≤ n, A, b(i), pi and αi to Transform-Matrix.
We will then end up with n matrices, let us call them A′(1), . . . , A′(n), and
n vectors, called b′

(1)
, . . . , b′

(n).
As Transform-Matrix only does solution-preserving operations on A

and b we can, given A′(1), . . . , A′(n) and b′
(1)

, . . . , b′
(n), generate solutions

to Ax = b. This is precisely what the algorithm presented in the following
section does. Intuitively Random-Solution generates a random solution
by back substitution.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

32 3. Approximability

3.3.1 The Algorithm

Algorithm 3: Random-Solution
((

A(1), . . . , A(n)
)
,
(
b(1), . . . , b(n)

))
� All matrices A(1), . . . , A(n) have the same number of columns.
c← Cols

(
A(1)

)
1

For j from 1 to n do2

r ← Rows
(
A(j)

)
3

For i from r + 1 to c do4

B
(j)
i ← Z

p
αj
j

5

x
(j)
i ← Rand

(
B

(j)
i

)
6

end7

For i from r down to 1 do8

e
(j)
i ← b

(j)
i −

∑c
k=i+1 a

(j)
ik x

(j)
k9

B
(j)
i ←

{
q

∣∣∣∣ q ∈ Z
p

αj
j

, a
(j)
ii q ≡ e

(j)
i (mod p

αj

j)
}

10

If B
(j)
i = ∅ then11

Return “no solutions”12

end13

x
(j)
i ← Rand

(
B

(j)
i

)
14

end15

end16

For i from 1 to c do17

xi ←
(
x

(1)
i , . . . , x

(n)
i

)
18

end19

Return (x1, . . . , xc)20

Random-Solution is supposed to be given n matrices A(1), . . . , A(n) and
n vectors b(1), . . . , b(n), those matrices and vectors come from Transform-
Matrix followed by Remove-Rows. The matrices therefore satisfies the
properties (i)–(iii) in Section 3.2.

On line 1 in we assign the number of columns in the matrices to c.
This is done to shorten the notation somewhat in the subsequent parts of

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.3. Random-Solution 33

the algorithm. The first for loop, on lines 2–16, loops over the different
groups that G is composed of. We generate a solution to the system of
equations over each such group independently of each other. On lines 4–7
we generate values to the last c− r− 1 variables. They are not constrained
in any way by any other variables and can therefore be chosen freely from
the entire group. On lines 8–15 we generate values for the variables that
are constrained by other variables. We do this “backwards”, i.e., we start
with variable number r and go down to 1, this is because variable number
i − 1 may depend upon variable number i, we therefore need the value of
variable number i before we know which values can be assigned to variable
number i−1. However, due to the form of the transformed matrix variable
number i will never depend upon variable number i−1. This observation is
the fundamental idea behind Random-Solution. In the last for loop on
lines 17–19 we compose the different group solutions to one solution over
G.

It is easily verified that Random-Solution runs in polynomial time.
To prove the correctness of Random-Solution we need a couple of tech-
nical lemmas, which are presented in the following section. In will use those
lemmas in Section 3.3.3 to prove the correctness of Random-Solution.

3.3.2 Technical Lemmas

We need two lemmas to prove the results in this chapter. The first one
is about the number of solutions to a specific congruence. The second
lemma is about the distribution of a linear combination of certain random
variables.

Lemma 3.4. A congruence of the form

xpn ≡ c (mod pα)

for some prime p, positive integer α and non-negative integer n have,

1. exactly pn incongruent solutions if n < α and pn | c, and

2. no solutions if n > 0 and pn - c.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

34 3. Approximability

Note that congruences modulo pα is equivalent to equations over the
group Zpα . Each congruence class modulo pα may be seen as one group
element in Zpα . We will therefore be able to use this lemma when we prove
results about equations over groups of the form Zpα .
Proof (Of 1). As pn | c then there exists an integer m such that mpn = c.

xpn ≡ c (mod pα) ⇐⇒
pα | xpn −mpn ⇐⇒
∃k : kpα = xpn −mpn ⇐⇒
∃k : x = kpα−n + m

The last statement gives us the pn incongruent solutions, they are generated
by k = 0, . . . , k = pn − 1. ut
Proof (Of 2).

xpn ≡ c (mod pα) ⇐⇒
pα | xpn − c ⇐⇒
∃k : kpα = xpn − c ⇐⇒
∃k : c = xpn − kpα ⇐⇒
∃k : c = pn(x− kpα−n)

Hence, the only possibility for a solution to exist is if pn | c, but we assumed
pn - c and therefore no solution can exist. ut

We will also need the following lemma about the distribution of linear
combinations of certain uniformly distributed random variables.

Lemma 3.5. Let A and B be subgroups of H = Zpα for some prime p
and integer α. Given two constants, a, b ∈ N and two independent random
variables X ∼ U(A) and Y ∼ U(B), define the random variable Z as
Z = aX + bY . We will then have Z ∼ U(C) for some subgroup C of H.

Proof. For every subgroup of H there is a non-negative integer, r, such
that the subgroup is equal to {prx | 0 ≤ x < pα−r}.

Assume that k and l are integers such that A = {pkx | 0 ≤ x < pα−k}
and B = {plx | 0 ≤ x < pα−l}. Due to the observation above those integers
exists. Furthermore, let a′, b′, n and m be the integers such that a = a′pn

and b = b′pm where p - a′, b′. Such integers exists for every integer a and b.
We introduce new random variables, X ′ and Y ′, such that X = pkX ′

and Y = plY ′, we then have X ′ ∼ U({0, . . . , pα−k−1}) and Y ′ ∼ U({0, . . . , pα−l−

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.3. Random-Solution 35

1}). Furthermore, we can now express the random variable Z as

Z = aX + bY = a′pnX + b′pmY = a′pn+kX ′ + b′pm+lY ′. (3.4)

Assume, without loss of generality, that n + k ≤ m + l. We can then
rewrite (3.4) as,

Z = pn+k
(
a′X ′ + b′pm+l−n−kY ′) .

If n + k ≥ α then Z = U({0H}) (i.e., Pr [Z = 0H] = 1). This follows
from the fact that every integer which is divisible by pα is congruent with
0 modulo Zpα . This Z and the trivial subgroup C = {0H} of H give
us the desired result for this case. Now assume that n + k < α and let
C = {xpn+k | 0 ≤ x < pα−n−k}. For each xpn+k ∈ C the probability that
Z equals xpn+k is,

Pr
[
Z ≡ xpn+k (mod pα)

]
=

Pr
[
pn+k

(
a′X ′ + b′pm+l−n−kY ′) ≡ xpn+k (mod pα)

]
=

Pr
[
a′X ′ + b′pm+l−n−kY ′ ≡ x (mod pα−n−k)

]
. (3.5)

Note that a′X ′ mod pα−n−k ∼ U({0, . . . , pα−n−k − 1}), this implies, to-
gether with the fact that Y ′ is independent of a′X ′, that the probability

Pr
[
a′X ′ ≡ x (mod pα−n−k)

]
= p−(α−n−k) = pn+k−α

is equal to (3.5). We conclude that Z ∼ U(C). ut

3.3.3 Correctness

In the following lemma we will prove the correctness of Random-Solution.
We will use variable names from the algorithm in this lemma, hence c, r

and x
(j)
i refer to those variables in the algorithm.

This lemma is the main ingredient in our approximability result for
Max Sol Eqn(G, g). What we really want to prove is that the variables
x

(j)
i will always be uniformly distributed over a coset of some subgroup

of G. At a first look on Random-Solution this seems to be a trivial

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

36 3. Approximability

statement, those variables are clearly uniformly distributed because they
are assigned values with a statement such as Rand(S), for some set S!
However, note that the set S may depend on previous choices made by the
algorithm. It is therefore not clear that those variables will be uniformly
distributed. However, the following lemma and its proof tells us that this
always is the case.

Lemma 3.6 (Correctness of Random-Solution). If Random-Solution
is given an instance of Max Sol Eqn(G, g) with at least one feasible solu-
tion that have been fed through Transform-Matrix and Remove-Rows
then for all i and j such that 1 ≤ i ≤ c and 1 ≤ j ≤ n the following entities
exists,

• a subgroup G
(j)
i of Z

p
αj
j

,

• a random variable Z
(j)
i , and

• a group constant c
(j)
i ∈ Z

p
αj
j

.

Furthermore, those entities and the variable x
(j)
i , satisfy the following prop-

erties

• x
(j)
i = Z

(j)
i + c

(j)
i , and

• Z
(j)
i ∼ U

(
G

(j)
i

)
.

The central part of the lemma is the last two bullet points, which tells
us that x

(j)
i is uniformly distributed over some coset of some subgroup of

Z
p

αj
j

. We will now go on with the proof.
Proof. Fix j. We will prove the lemma with induction on i. The induction
hypothesis we will use is:

There exists random variables Y
(j)
1 , . . . , Y

(j)
c such that for every i′, i ≤

i′ ≤ c the following entities exists,

• a subgroup G
(j)
i′ of Z

p
αj
j

,

• integers d
(j)
1,i′ , . . . , d

(j)
c,i′ , and

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.3. Random-Solution 37

• group constants c
(j)
i′ ∈ Z

p
αj
j

.

Those entities satisfy the following properties

• x
(j)
i′ = c

(j)
i′ +

∑c
k=i′ d

(j)
k,i′Y

(j)
k , and

• Y
(j)
i′ ∼ U

(
G

(j)
i′

)
, furthermore each Y

(j)
i′ is independent of every Y

(j′)
i′′

such that i′ 6= i′′ or j 6= j′.

The hypothesis is clearly true for all i such that r + 1 ≤ i ≤ c. (To see
this let G

(j)
i = Z

p
αj
j

, c
(j)
i = 0, d

(j)
i,i = 1 and d

(j)
i,i′ = 0 for i′, i + 1 ≤ i′ ≤ c.)

Assume that the hypothesis is true for i = i0. We will prove that the
hypothesis is true for i = i0 − 1. With i = i0 − 1 ≤ r we will, on line 10 in
Random-Solution, have

e
(j)
i = b

(j)
i −

c∑
k=i+1

a
(j)
ik x

(j)
k .

Property (ii) and (iii) of A implies that there is an integer q such that
pq

j = a
(j)
ii | a

(j)
ik for all k such that i + 1 ≤ k ≤ c. (We cannot have a

(j)
ii = 0,

because Remove-Rows removes such rows.) Furthermore, if pq
j - b

(j)
i then

pq
j - e

(j)
i .

We can actually assume that pq
j | e

(j)
i , because if we have pq

j - e
(j)
i then

according to Lemma 3.4, the equation

a
(j)
ii x

(j)
i ≡ e

(j)
i (mod p

αj

j)

do not have any solutions and we have assumed that we are working with
an instance that do have at least one feasible solution.

The values that can be assigned to x
(j)
i are one of the solutions to the

equation

pq
jx

(j)
i ≡ e

(j)
i (mod p

αj

j) ⇐⇒
pq

jx
(j)
i ≡ b

(j)
i −

∑c
k=i+1 a

(j)
ik x

(j)
k (mod p

αj

j).

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

38 3. Approximability

The solutions to this equation can, according to Lemma 3.4, be written as

x
(j)
i = Wp

αj−q
j + p−q

j

(
b
(j)
i −

c∑
k=i+1

a
(j)
ik x

(j)
k

)
(3.6)

for W = 0, . . . ,W = pq
j − 1. As we have assumed the induction hypothesis

(3.6) can be rewritten as

x
(j)
i = Wp

αj−q
j + p−q

j b
(j)
i −

(
c∑

k=i+1

DkYk,j + p−q
j a

(j)
ik c

(j)
k

)
(3.7)

for some integers Di+1, . . . , Dk. Line 14 of Random-Solution picks W
uniformly at random from {0, . . . , pq

j − 1}, furthermore this choice is inde-
pendent of everything that has happened before. Hence we can see W as
a random variable such that W ∼ U({0, . . . , pq

j − 1}), furthermore W is

independent of every Y
(j)
k for all k ≥ i + 1 and j. Equation (3.7) can be

rewritten as

x
(j)
i = Wpαj−q −

c∑
k=i+1

DkY
(j)
k + p−q

j b
(j)
i − p−q

j

c∑
k=i+1

a
(j)
ik c

(j)
k .

Which is exactly what we want to prove, because the set

G′ =
{

Wp
αj−q
j

∣∣∣∣ W ∈ {0, . . . , pq
j − 1}

}
is a subgroup of Z

p
αj
j

since G′ just is all multiples of p
αj−q
j that exists in

Z
p

αj
j

. Now, let G
(j)
i = G′, Y

(j)
i = Wpα−q

j , d
(j)
k,i = −Dk for k, i + 1 ≤ k ≤ c,

d
(j)
i,i = 1, and, finally,

c
(j)
i = p−q

j b
(j)
i − p−q

j

c∑
k=i+1

a
(j)
ik c

(j)
k .

This completes the induction step.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.4. Approx-Solution 39

It remains to prove that the induction hypothesis implies the lemma we
want to prove. By repeatedly applying Lemma 3.5 to

x
(j)
i = c

(j)
i +

c∑
k=i+1

d
(j)
k,iY

(j)
k

we get the desired result. To see this consider the first two terms in the
sum, d

(j)
i+1,iY

(j)
i+1 and d

(j)
i+2,iY

(j)
i+2. Let Q1 be defined as Q1 = d

(j)
i+1,iY

(j)
i+1 +

d
(j)
i+2,iY

(j)
i+2. Lemma 3.5 then tells us that Q1 is uniformly distributed over

some subgroup of Z
p

αj
j

. We can then apply Lemma 3.5 again on Q1 and

the third term in the sum, d
(j)
i+3,iY

(j)
i+3, to define a new random variable, Q2,

as the sum of Q1 and the third term. Due to Lemma 3.5 Q2 will also be
uniformly distributed over some subgroup of Z

p
αj
j

. Continuing in the same
manner we will get

x
(j)
i = c

(j)
i + Qc−i−1

where Qc−i−1 is uniformly distributed over some subgroup of Z
p

αj
j

. As the

last step let Z
(j)
i = Qc−i−1. ut

3.4 Approx-Solution

In this section we present the final part of the approximation algorithm,
Approx-Solution. Approx-Solution uses Transform-Matrix, Remove-
Rows and Random-Solution to find an approximate solution to an in-
stance I = (A, b) of Max Sol Eqn(G, g).

We begin with presenting the algorithm in this section, in Section 3.4.1
we prove its correctness and, finally, in Section 3.4.2 we analyse the per-
formance of the algorithm.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

40 3. Approximability

Algorithm 4: Approx-Solution(A, b)

For i from 1 to n do1 (
A′(i), b′

(i)
)
← Transform-Matrix(A, b(i), pi, αi)2

A′(i) ← Remove-Rows(A′(i), b′
(i))3

end4

Return Random-Solution
((

A′(1), . . . , A′(n)
)

,
(
b′

(1)
, . . . , b′

(n)
))

5

On lines 4–4 the matrix A is transformed with both Transform-Matrix
and Remove-Rows. Note that for each group which G is composed of an
individual matrix A′(i) is produced. The result of the for loop is then fed to
Random-Solution to produce an approximate solution to the instance.

The for loop on lines 4–4 runs n times. As n is independent of the size of
the input and Transform-Matrix and Remove-Rows are polynomial
time algorithms, the for loop is also a polynomial time algorithm. As the
last step Approx-Solution invokes Random-Solution, and the latter
is a polynomial time algorithm, we can conclude that Approx-Solution
is a polynomial time algorithm.

3.4.1 Correctness

The correctness of Approx-Solution is given by the following lemma.

Lemma 3.7 (Correctness of Approx-Solution). Given an instance,
I = (A, b), of Max Sol Eqn(G, g) then

1. Approx-Solution will not return a non-feasible solution,

2. if there is at least one feasible solution to I then Approx-Solution
will not return “no solutions”, and

3. for every feasible solution to I there is a non-zero probability that it
will be returned by Approx-Solution.

Proof (Part 1). A consequence of the fact that finite abelian groups can
be seen as direct products of groups of the form Zpα for some prime p and
integer α is that a system of equations over G can be decomposed into

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.4. Approx-Solution 41

n systems of equations over the groups Zp
αi
i

for i, 1 ≤ i ≤ n. This is
what Approx-Solution does on lines 4–4. Furthermore, Lemma 3.2 and
Lemma 3.3 says that lines 4–4 do not alter the set of feasible solutions.

Transform-Matrix returns an equivalent system of equations with
the property that the matrix is upper triangular. This makes back substi-
tution a valid approach to find solutions, which is exactly what Random-
Solution does. It is therefore clear that Random-Solution will not
return a non-feasible solution. ut

Proof (Part 2). “no solutions” is returned on two places, on line 2 in
Remove-Rows and on line 12 in Random-Solution. Lemma 3.3 says
that Remove-Rows will only return “no solutions” if there do not exist
any feasible solutions to I. Random-Solution returns “no solutions” if
B

(j)
i = ∅. Lemma 3.4 tells us that this happens if and only if a

(j)
ii - e

(j)
i .

Property (iii) of A(j) implies that we will have a
(j)
ii - e

(j)
i if and only

if a
(j)
ii - b

(j)
i . As b

(j)
i is independent of the random choices that Random-

Solution does we will only get a
(j)
ii - b

(j)
i if there are no feasible solutions

to the instance I. ut

Proof (Part 3). As argued in the proof of part 1 of this lemma, lines 4–4 of
Approx-Solution cannot cause any trouble because they only transform
the system of equations to a set of systems of equations which are equivalent
to the system we started with.

Let us assume that A have c columns and r rows, furthermore assume
that y1, . . . ,yc is a feasible solution to I (with yi =

(
y
(1)
i , . . . , y

(n)
i

)
for all

i, 1 ≤ i ≤ c as usual). Then for r + 1 ≤ i ≤ c and 1 ≤ j ≤ n we must have
y
(j)
i ∈ Z

p
αj
j

, due to lines 4–7 of Random-Solution it is then a non-zero

probability that x
(j)
i = y

(j)
i for those i:s and j:s.

Line 10 of Random-Solution finds, in iteration i, all group elements
that satisfies equation number i. As y1, . . . ,yc is a feasible solution it must
satisfy every equation, y

(j)
i must therefore be one of the group elements that

satisfies equation i. We conclude that we will have Pr
[
x

(j)
i = y

(j)
i

]
> 0 on

line 14. ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

42 3. Approximability

3.4.2 Performance Analysis

We are now almost ready to analyse the performance of Approx-Solution.
We need the following lemma in the performance analysis.

Lemma 3.8. Given three sequences of integers, a1, . . . , aw, b1, . . . , bw and
b′1, . . . , b

′
w. Then

w∑
i=1

aib
′
i ≤

(
max

1≤i≤w
b′i/bi

)
·

w∑
i=1

aibi. (3.8)

Proof. Let us introduce d and e defined as

d/e = max
1≤i≤w

b′i/bi

such that d = b′i and e = bi for some i. Now we have

(a1b1 + . . . + awbw)
d

e
= a1

b1d

e
+ . . . + aw

bwd

e
. (3.9)

Let us now compare the coefficients in front of one of the ai values in this
sum with the coefficient in front of the same value in the left hand side
of (3.8). We get

d

e
≥ b′i

bi
⇒ bid

e
≥ b′i.

The first inequality follows from the fact that d/e is the greatest such ratio.
Note that b′i is the coefficient in front of ai in the left hand side of (3.8)
and bkd/e is the coefficient in front of ak on the right hand side of (3.8).
Hence we get the desired result. ut

We are now ready to prove the main theorem of this chapter, which
really is the performance ratio of Approx-Solution.
Proof (Of Theorem 3.1). Let I = (A, b) be an instance of Max Sol
Eqn(G, g). Assume that A have r rows and c columns.

Lemma 3.6 says that for every j, 1 ≤ j ≤ n and i, 1 ≤ i ≤ c there are
subgroups, G

(j)
i ⊆ Z

p
αj
j

, and group constants c
(j)
i ∈ Z

p
αj
j

such that

x
(j)
i ∼ U

(
G

(j)
i + c

(j)
i

)
,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.4. Approx-Solution 43

where x
(j)
i are variables from Random-Solution.

Let us define the following groups Gi and group constants ci

Gi = G
(1)
i × · · · ×G

(n)
i ci =

(
c
(1)
i , . . . , c

(n)
i

)
for all i, 1 ≤ i ≤ c. We then get(

x
(1)
i , . . . , x

(n)
i

)
∼ U(Gi + ci) (3.10)

for all i, 1 ≤ i ≤ n. (From now on we will use xi to denote the left hand side
of the expression above.) Furthermore, if y1, . . . ,yc is a feasible solution
then yi ∈ Gi + ci for all i, 1 ≤ i ≤ c. This follows from (3.10), part 1
of Lemma 3.7 (Approx-Solution do not return non-feasible solutions)
and part 3 of Lemma 3.7 (for every feasible solution there is a non-zero
probability it will be returned by Approx-Solution).

The previous argument together with the fact that the variables xi for
i, 1 ≤ i ≤ c are constrained by a system of equations implies that the set
Gi + ci is coset-valid with respect to G. We will therefore have

α ≥ gmax(Gi + ci)
gsum(Gi + ci)

|Gi| (3.11)

for every i, 1 ≤ i ≤ n. (Note that we have |Gi + ci| = |Gi|.)
We are now ready to analyse Approx-Solution. Let S∗ be defined as

follows,

S∗ =
c∑

i=1

gmax(Gi + ci).

From the discussion above we know that there is a non-zero probability that
Approx-Solution will return an optimal solution. Let s : {x1, . . . , xc} →
G denote an optimal solution. As relation (3.10) holds we must have, for
every i, 1 ≤ i ≤ c, g(s(xi)) ≤ gmax(Gi + ci). It follows that S∗ ≥ opt.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

44 3. Approximability

Let S denote the measure of a solution computed by Approx-Solution.

E [S] = E

[
c∑

i=1

g(xi)

]
=

c∑
i=1

E [g(xi)]

=
c∑

i=1

gsum(Gi + ci)
|Gi|

≥ S∗/α ≥ opt/α

The last inequality follows almost directly from (3.11) and Lemma 3.8 if
ai = 1, b′i = gmax(Gi+ci) and bi = gsum(Gi+ci)/|Gi|. To use Lemma 3.8 we
only have to note that α ≥ |Gi|gmax(Gi + ci)/gsum(Gi + ci) for i, 1 ≤ i ≤ c
(i.e., we do not necessarily have α = |Gi|gmax(Gi + ci)/gsum(Gi + ci) for
some i, but this fact is not a problem). ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 4

Weighted vs. Unweighted
Problems

In Chapter 2 we proved that it is not possible to approximate W-Max Sol
Eqn(G, g) better than a certain constant unless P = NP. We then proved
that Max Sol Eqn(G, g) is approximable within the same constant. The
main difference between those two results are that we have proved our
inapproximability result for the weighted problem and our approximability
result for the unweighted problem. We will, in this chapter, show that the
approximability thresholds for the weighted and unweighted problems are
asymptotically equal. This result is formally formulated in the following
theorem.

Theorem 4.1. If Max Sol Eqn(G, g) is approximable within in r, then
W-Max Sol Eqn(G, g) is approximable within r + o(1), where the o(·)-
notation is with respect to the size of the instance.

In the context of Theorem 4.1 the o(·)-notation means that if it possible
to approximate Max Sol Eqn(G, g) within r then, for sufficiently large
instances, it is possible to approximate W-Max Sol Eqn(G, g) within
r + ε for any fixed ε > 0.

The proof of Theorem 4.1 is divided into two parts. In Section 4.1
we prove that the weighted version of our problem, W-Max Sol Eqn,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

46 4. Weighted vs. Unweighted Problems

is in a specific sense at least weakly approximable. We then prove, in
Section 4.2, that if W-Max Sol Eqn is weakly approximable then the
approximation thresholds of Max Sol Eqn and W-Max Sol Eqn must
be asymptotically equal.

4.1 Weak Approximability

In this section we will prove a lemma which says that W-Max Sol Eqn(G,
g) is at least weakly approximable, i.e., there is a p(n)-approximation al-
gorithm for some polynomial p(n). We will then use this lemma to do a
reduction from W-Max Sol Eqn(G, g) to Max Sol Eqn(G, g).

We use the terminology from [13] and say that if a problem Π is r-
approximable and there exists a polynomial p(n) such that r ≤ p(|I|) for
every instance I then Π is in poly-APX.

The proof of the following lemma is based on the proof of Lemma 6.2
in [13].

Lemma 4.1. For every finite abelian group G and every function g : G→
N, W-Max Sol Eqn(G, g) is in poly-APX.

Proof. An instance, I = (V,E,w), of W-Max Sol Eqn(G, g) can be seen
as a system of equations, given by Ax = b over G. It is well known that
the problem of finding solutions to a linear system of equations over G is
solvable in polynomial time. See, e.g., Theorem 1 in [9].

Let V = {x1, . . . , xm} and assume that w(x1) ≥ w(x2) ≥ . . . ≥ w(xm).
We also assume that there is some x ∈ G such that g(x) > 0. If this is not
the case then W-Max Sol Eqn(G, g) is trivially in poly-APX.

We claim that Weakly-Approximate is a |V |gmax-approximate algo-
rithm. The running time of the algorithm is O(|G|nf(n)) where f(n) is the
time taken to solve one system of linear equations. This is polynomial in
the input size n = |I|. Let xi be the first variable the algorithm finds which
can be set to a value such that g(xi) > 0. The measure of this solution is
then at least w(xi). Furthermore, opt(I) ≤ |V |gmaxw(xi). ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4.2. Weights Do Not Matter (Much) 47

Algorithm 5: Weakly-Approximate(A, b)

For i from 1 to m do1

Foreach y ∈ G such that g(y) > 0 do2

Create a new system of equations, A′x = b′, which consists of3

Ax = b and the equation xi = y.
If A′x = b′ is solvable then4

Return x, such that A′x = b′5

end6

end7

end8

� If we reach this line no feasible solution exists.

4.2 Weights Do Not Matter (Much)

In this section we will prove the main result of this chapter, i.e., Theo-
rem 4.1. To do this we use a specific type of approximation preserving
reduction, an AP-reduction, which is defined below.

Definition 4.1 (AP-reducibility [13]). For a constant β > 0 and two
NPO problems Π and Π′, we say that Π is β-AP-reducible to Π′, denoted
Π ≤β

AP Π′, if two polynomial time computable functions F and H exists
such that the following holds:

1. For any instance I of Π, F (I) is an instance of Π′.

2. For any instance I of Π, and any feasible solution s′ for F (I), H(I, s′)
is a feasible solution for I.

3. For any instance I of Π and any r ≥ 1, if s′ is an r-approximate
solution for F (I), then H(I, s′) is an (1+(r−1)β+o(1))-approximate
solution for I, where the o(·)-notation is with respect to |I|.

The definition of AP-reducibility looks complicated, but what it really
means is that if A ≤β

AP B for some problems A and B and we have an
r-approximation algorithm for B then we also have an (1 + (r − 1)β +

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

48 4. Weighted vs. Unweighted Problems

o(1))-approximation algorithm for A. In particular, if A ≤1
AP B and B is

approximable within r then A is approximable within r + o(1).
The notation W-Max Sol Eqnp(G, g), used in the proof of Lemma 4.2

below, denotes W-Max Sol Eqn(G, g) with the additional restriction
that the weight function is bounded by a polynomial. That is, there exists
a polynomial p(n) such that for every instance I = (V,E, w)∑

v∈V

w(v) ≤ p(|I|).

The proof of the following lemma is based on Lemma 3.11 in [13], which
in turn is based on Theorem 4 in [5].

Lemma 4.2. For any finite abelian group G and function g : G → N, if
W-Max Sol Eqn(G, g) is in poly-APX, then W-Max Sol Eqn(G, g)
1-AP-reduces to Max Sol Eqn(G, g).

Proof. The proof will be in two parts. In the first part, we will reduce
W-Max Sol Eqn(G, g) to W-Max Sol Eqnp(G, g) with the additional
restriction that the weights are strictly greater than zero. In the second
part, we reduce this restricted version of W-Max Sol Eqnp(G, g) to Max
Sol Eqn(G, g).

Given an instance I = (V,E,w) of W-Max Sol Eqn(G, g), we will
construct a new weight function, w′, and use this to define an instance
I ′ = (V,E,w′) of W-Max Sol Eqnp(G, g).

Let A be a p(x)-approximation algorithm for W-Max Sol Eqn(G, g)
and let t = m(I,A(I)), i.e., t is the measure of the solution returned by the
algorithm A on I. Let M = gmax, n = |I| and N = Mnp(n)(np(n) + 1).
We define a new scaled down weight function w′′ such that

w′′(v) =
⌊

w(v)N
t

⌋
+ 1

for every v ∈ V . Finally let w′(v) = min{w′′(v), Np(n)+1}. It is clear that
I ′ is an instance of W-Max Sol Eqnp(G, g) because w′ is polynomially
bounded.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4.2. Weights Do Not Matter (Much) 49

We will now prove that if w′′(v) > w′(v) for some v ∈ V , then no feasible
solution to I (or I ′) can have assigned v a value such that g(v) > 0.

w′′(v) > w′(v)⇒
⌊

w(v)N
t

⌋
+ 1 > Np(n) + 1⇒ w(v) > tp(n)

As the measure of a solution with g(v) > 0 would be at least w(v), the
last inequality contradicts the assumption that A is a p(x)-approximation
algorithm and hence we have g(v) = 0. This implies that we have opt(I ′) ≥
(N/t)opt(I).

We can now construct algorithm H in the AP-reduction.

Algorithm 6: H(I, s′)

If m(I, s′) > m(I,A(I)) then1

Return s′2

Else3

Return A(I)4

end5

Assume that s′ is an r-approximate solution for I ′. If r ≥ p(n), then the
returned solution is clearly an r-approximate solution to I. Below we prove
that even if r ≤ p(n), then the returned solution is a (r+1/n)-approximate
solution to I. The measure of the returned solution is at least

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

50 4. Weighted vs. Unweighted Problems

m(I, s′) =
∑
v∈V

s′(v)w(v)

≥ t

N

∑
v∈V

s′(v)
⌊

w(v)N
t

⌋
≥ t

N

∑
v∈V

s′(v)
(⌊

w(v)N
t

⌋
+ 1
)
− t

N
Mn

=
t

N
m(I ′, s′)− t

N
Mn ≥ t

N

(
opt(I ′)

r
−Mn

)
≥ opt(I)

r
− Mnt

N
≥ opt(I)

r
− Mnopt(I)

N

≥ opt(I)
(

1
r
− 1

nr2 + r

)
=

opt(I)
r + 1/n

.

Note that the weights are not only bounded by a polynomial but they are
also strictly greater than zero. With that the first step of the reduction is
finished.

All that remains to be done is to complete the reduction to Max Sol
Eqn(G, g). As the sum of the weights is bounded by a polynomial it
is possible to replicate each variable a suitable number of times. Assume
that V = {v1, . . . , vm}, then for each variable vi ∈ V with weight w′(vi)
introduce w′(vi)− 1 fresh variables,{

v
(j)
i

∣∣∣ 1 ≤ j ≤ w′(vi)− 1
}

,

and the equations {
vi = v

(j)
i

∣∣∣ 1 ≤ j ≤ w′(vi)− 1
}

.

(Note that no fresh variables or equations are introduced if w′(vi) = 1.)
This procedure will create an instance, I ′′, of Max Sol Eqn(G, g) which
is essentially equivalent to the original instance I ′ in the sense that given
a solution, s′, to I ′ it is possible to construct a solution, s′′, to I ′′ in
polynomial time such that m′(I ′, s′) = m′′(I ′′, s′′) and vice versa. ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4.2. Weights Do Not Matter (Much) 51

We are now ready to prove Theorem 4.1
Proof (Of Theorem 4.1). The AP-reduction of Lemma 4.2 do exists due
to Lemma 4.1. Hence, given an r-approximation algorithm to Max Sol
Eqn(G, g) we can construct an (r + o(1))-approximation algorithm to W-
Max Sol Eqn(G, g). ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 5

Conclusion

In this chapter we will put together the results from Chapters 2, 3 and
4 to prove the main result of this thesis. We begin with a summary of
what we have done in the previous chapters where we repeat the main
theorem of each chapter. After that we prove the main theorem of the
thesis (Theorem 1.1). When we have proved our main result we state some
results of a few variants of Max Sol Eqn, and finally we will give some
ideas for possible future work in this line of research.

In Chapter 2 we proved the following result about the inapproximability
of W-Max Sol Eqn(G, g).

Theorem 2.1 (Main Inapproximability Theorem). For every finite
abelian group G and every non-constant function g : G → N it is not
possible to approximate W-Max Sol Eqn(G, g) within α− ε where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
for any ε > 0 unless P = NP.

Chapter 3 contained our approximability results for Max Sol Eqn(G,
g). The main result was the following theorem.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

53

Theorem 3.1 (Main Approximability Theorem). Approx-Solution
is an α-approximation algorithm for Max Sol Eqn(G, g), where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
.

In Chapter 4 we proved that the difference between Max Sol Eqn(G,
g) and W-Max Sol Eqn(G, g) is in fact quite small. This result was
summarised in the following theorem.

Theorem 4.1. If Max Sol Eqn(G, g) is approximable within in r, then
W-Max Sol Eqn(G, g) is approximable within r + o(1), where the o(·)-
notation is with respect to the size of the instance.

We will now use those results to prove the main theorem of this thesis,
which we repeat here for completeness.

Theorem 1.1 (Main). For every finite abelian group G and every func-
tion g : G→ N, Max Sol Eqn(G, g) is approximable within α where

α = max
{

gmax(B)
gsum(B)

|B|
∣∣∣∣ B is coset-valid with respect to G

}
.

Furthermore, for every finite abelian group G and every non-constant
function g : G→ N Max Sol Eqn(G, g) is not approximable within α− ε
for any ε > 0 unless P = NP.

Proof. The approximation algorithm in Theorem 3.1 is the first part of
Theorem 1.1.

Lemma 4.1 says that if we can find r-approximate solutions for Max
Sol Eqn(G, g), then we can find (r + o(1))-approximate solutions for
W-Max Sol Eqn(G, g). Hence, if we can find α − δ approximations for
some δ > 0 for Max Sol Eqn(G, g) then we can find (α − δ + o(1))-
approximate solutions for W-Max Sol Eqn(G, g). However, as the sizes
of the instances grow we will, at some point, have −δ + o(1) < 0 which
means that we would be able to find (α− ε)-approximate solutions, where
ε > 0, for W-Max Sol Eqn(G, g). But Theorem 2.1 says that this is
not possible. Therefore, Max Sol Eqn(G, g) is not approximable within
α− δ, for any δ > 0, unless P = NP. ut

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

54 5. Conclusion

The situation is almost the same for W-Max Sol Eqn(G, g). We
have an α-approximate algorithm for Max Sol Eqn(G, g) (Theorem 3.1)
therefore, due to Lemma 4.1 we have a (α+o(1))-approximate algorithm for
W-Max Sol Eqn(G, g). Furthermore, it is not possible to approximate
W-Max Sol Eqn(G, g) within α− ε for any ε > 0 (Theorem 2.1).

All our hardness results holds for equations with at most three variables
per equation. If we are given an equation with n variables where n > 3,
we can reduce this equation to one equation with n − 1 variables and
one equation with 3 variables in the following way: Given the equation
x1 + . . . + xn = c where each xi is either a variable or an inverted variable
and c is a group constant, introduce the equation z = x1 + x2 where z is a
fresh variable. Furthermore replace the original equation with the equation
z + x3 + . . . + xn = c. Let the weight of z be zero. Those two equations
are clearly equivalent to the original equation in the problem W-Max Sol
Eqn(G, g). The proof of Lemma 4.1 do not introduce any equations with
more than two variables, so we get the same result for Max Sol Eqn(G,
g).

If the instances of W-Max Sol Eqn(G, g) are restricted to have at
most two variables per equation then the problem is tractable. The follow-
ing algorithm solves this restricted problem in polynomial time.

A system of equations where there are at most two variables per equa-
tion can be represented by a graph in the following way: let each variable
be a vertex in the graph and introduce an edge between two vertices if the
corresponding variables appear in the same equation. It is clear that the
connected components of the graph are independent subsystems of the sys-
tem of equations. Hence, finding the optimum of the system of equations
is equivalent to finding the optimum of each of the subsystems that cor-
responds to the connected components. To find the optimum of one such
subsystem, choose a variable, x, and assign a value to it. This assignment
will force assignments of values to every other variable in the subsystem.
The optimum can be found by testing every possible assignment of values
to x. If this is done for every independent subsystem the optimum for the
entire system of equations will be found in polynomial time.

We have given tight approximability results for the maximum solution
equation problem over finite abelian groups. One natural generalisation of
our work might be to investigate the (in)approximability of this problem

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

55

when the variables are constrained by some other relation than equations
over a finite group. This perspective leads to a family of Constraint Sat-
isfaction Problems that are parameterised on the constraint family. From
this point of view there are many open problems. A start might be to try
to characterise which constraint families give rise to tractable problems.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Bibliography

[1] Sanjeev Arora. Probabilistic checking of proofs and hardness of ap-
proximation problems. PhD thesis, 1995.

[2] Sanjeev Arora, Laszlo Babai, Jacques Stern, and Z. Sweedyk. The
hardness of approximate optima in lattices, codes, and systems of
linear equations. J. Comput. Syst. Sci., 54(2):317–331, 1997.

[3] Daniel Pierre Bovet and Pierluigi Crescenzi. Introduction to the theory
of complexity. Prentice Hall International (UK) Ltd., 1994.

[4] Jehoshua Bruck and Moni Naor. The hardness of decoding linear
codes with preprocessing. IEEE Transactions on Information Theory,
36(2):381–385, 1990.

[5] Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. To weight
or not to weight: Where is the question? In ISTCS 96’: Proceedings
of the 4th Israeli Symposium on Theory of Computing and Systems,
pages 68–77. IEEE, 1996.

[6] Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapprox-
imability results for equations over finite groups. Theor. Comput. Sci.,
312(1):17–45, 2004.

[7] Uriel Feige and Michel Goemanst. Approximating the value of two
power proof systems, with applications to max 2sat and max dicut.
In ISTCS ’95: Proceedings of the 3rd Israel Symposium on the Theory

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Bibliography 57

of Computing Systems (ISTCS’95), page 182, Washington, DC, USA,
1995. IEEE Computer Society.

[8] Uriel Feige and Daniele Micciancio. The inapproximability of lat-
tice and coding problems with preprocessing. J. Comput. Syst. Sci.,
69(1):45–67, 2004.

[9] Mikael Goldmann and Alexander Russell. The complexity of solving
equations over finite groups. Inf. Comput., 178(1):253–262, 2002.

[10] Johan H̊astad. Some optimal inapproximability results. J. ACM,
48(4):798–859, 2001.

[11] Johan H̊astad. Personal communication, 2005.

[12] Thomas W. Judson. Abstract Algebra, Theory and Applications. PWS
Publishing Company, 1994.

[13] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P.
Williamson. The approximability of constraint satisfaction problems.
SIAM J. Comput., 30(6):1863–1920, 2000.

[14] Ondrej Kĺıma, Pascal Tesson, and Denis Thérien. Dichotomies in
the complexity of solving systems of equations over finite semigroups.
Technical Report TR04-091, Electronic Colloq. on Computational
Complexity, 2004.

[15] Benoit Larose and Laszlo Zadori. Taylor terms, constraint satisfac-
tion and the complexity of polynomial equations over finite algebras.
Submitted for publication.

[16] Cristopher Moore, Pascal Tesson, and Denis Thérien. Satisfiability
of systems of equations over finite monoids. In Mathematical Foun-
dations of Computer Science 2001, 26th International Symposium,
MFCS 2001, volume 2136 of Lecture Notes in Computer Science, pages
537–547. Springer, 2001.

[17] Gustav Nordh. The complexity of equivalence and isomorphism of sys-
tems of equations over finite groups. In Mathematical Foundations of

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

58 Bibliography

Computer Science 2004, 29th International Symposium, MFCS 2004,
volume 3153 of Lecture Notes in Computer Science, pages 380–391.
Springer, 2004.

[18] Gustav Nordh and Peter Jonsson. The complexity of counting so-
lutions to systems of equations over finite semigroups. In Computing
and Combinatorics, 10th Annual International Conference, COCOON
2004, volume 3106 of Lecture Notes in Computer Science, pages 370–
379. Springer, 2004.

[19] Kenneth H. Rosen. Elementary Number Theory and its Application.
Addison-Wesley, 4 edition, 2000.

[20] Larry Stockmeyer. Planar 3-colorability is polynomial complete.
SIGACT News, 5(3):19–25, 1973.

[21] Per-Anders Svensson. Abstrakt algebra. Studentlitteratur, 2001.

[22] Pascal Tesson. Computational Complexity Questions Related to Finite
Monoids and Semigroups. PhD thesis, 2003.

[23] Eric W. Weisstein. Asymptotic notation. In MathWorld. Wolfram
Research, Inc., 2005.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak
Language

2 Svenska/Swedish

4 Engelska/English

2

Rapporttyp
Report category

2 Licentiatavhandling

4 Examensarbete

2 C-uppsats

2 D-uppsats

2 Övrig rapport

2

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel

Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

In the maximum solution equation problem a collection of equations
are given over some algebraic structure. The objective is to find an
assignment to the variables in the equations such that all equations are
satisfied and the sum of the variables is maximised. We give tight ap-
proximability results for the maximum solution equation problem when
the equations are given over finite abelian groups. We also prove that
the weighted and unweighted versions of this problem have asymptoti-
cally equal approximability thresholds. Furthermore, we show that the
problem is equally hard to solve as the general problem even if each
equation is restricted to contain at most three variables and solvable
in polynomial time if the equations are restricted to contain at most
two variables each. All of our results also hold for the generalised ver-
sion of maximum solution equation where the elements of the group are
mapped arbitrarily to non-negative integers in the objective function.

TCSlab,
Dept. of Computer and Information Science
581 83 LINKÖPING

2005-06-01

—

LITH-IDA-EX--05/049--SE

—

http://www.ep.liu.se/exjobb/ida/2005/dd-d/049/

2005-06-01

Tight Approximability Results for the Maximum Solution Equation
Problem over Abelian Groups

Snäva approximerbarhetsresultat för maxlösningsproblemet över abel-
ska grupper

Fredrik Kuivinen

systems of equations, finite groups, NP-hardness, approximation

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Copyright

Svenska
Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare - under 25 år fr̊an
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning
och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva
detta tillst̊and. All annan användning av dokumentet kräver upphovsmannens medgivande.
För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och
administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfat-
tning som god sed kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt skydd
mot att dokumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang som är
kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hem-
sida http://www.ep.liu.se/

English
The publishers will keep this document online on the Internet - or its possible replacement -
for a period of 25 years from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its WWW
home page: http://www.ep.liu.se/

c© Fredrik Kuivinen
Linköping, 14th June 2005

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

