Final thesis

Tight Approximability Results for the Maximum Solution Equation Problem over Abelian Groups Fredrik Kuivinen
 LITH-IDA-EX--05/049--SE

2005-06-01

Final thesis

Tight Approximability Results for the Maximum Solution Equation Problem over Abelian Groups
 by Fredrik Kuivinen

LITH-IDA-EX--05/049--SE

```
Supervisor: Gust\v Nordh
    Department of Computer and Information
    Science at Linköpings universitet
Examiner: Peter Jonsson
    Department of Computer and Information
    Science at Linköpings universitet
```


Abstract

In the maximum solution equation problem a collection of equations are given over some algebraic structure. The objective is to find an assignment to the variables in the equations such that all equations are satisfied and the sum of the variables is maximised. We give tight approximability results for the maximum solution equation problem when the equations are given over finite abelian groups. We also prove that the weighted and unweighted versions of this problem have asymptotically equal approximability thresholds. Furthermore, we show that the problem is equally hard to solve as the general problem even if each equation is restricted to contain at most three variables and solvable in polynomial time if the equations are restricted to contain at most two variables each. All of our results also hold for the generalised version of maximum solution equation where the elements of the group are mapped arbitrarily to non-negative integers in the objective function.

Keywords : systems of equations, finite groups, NP-hardness, approximation

Acknowledgements
I would like to thank my supervisor Gustav Nordh and my examiner Peter Jonsson for all the help and useful discussions during the work with this thesis. I would also like to thank Peter Hackman, for ideas on how the solutions to linear system of equations over a ring is structured, and Johan Håstad, for quickly answering my questions regarding one of his papers.

Contents

1 Introduction 1
1.1 A Short Introduction to Complexity Theory 4
1.2 Preliminaries 7
1.3 Definitions and Results 9
2 Inapproximability 12
2.1 Preliminaries 13
2.2 Inapproximability of Max Expr 15
2.3 A First Inapproximability Result for. Max Sol EQN 16
2.4 Inapproximability of Max Sown 19
3 Approximability 22
3.1 Algorithm Overview 22
3.2 Matrix Restructurixo 23
3.2.1 Preliminarie 24
3.2.2 Transfphm-Matrix 24
3.2.3 REMpNE-ROWS 29
3.3 Random-Solution 30
3.3.1 The Algorithm 32
3.3.2 Technical Lemmas 33
3.3.3 Correctness 35
3.4 ApproX-Solution 39
3.4.1 Correctness 40
3.4.2 Performance Analysis 42
4 Weighted vs. Unweighted Problems 45
4.1 Weak Approximability 46
4.2 Weights Do Not Matter (Much) 47
5 Conclusion 52

Chapter 1

Introduction

Problems related to solving equations over various algebraic structures have been studied extensively during a large time frame. The most fundamental problem is, perhaps, EQN which is the problem of: given an equation, does it have a solution? That is, is it possible to assign mes to the variables in the equation such that the equation is satisfiedoldmann and Russell [9] studied this problem for finite groups. They showed that EQN is NPcomplete for all non-solvable groups adolvable in polynomial time for nilpotent groups.

A problem related to EQN is Q^{2}. In EQN* a collection of equations are given and the question is yother or not there exists an assignment to the variables such that \&iNequations are satisfied. For finite groups Goldmann and Russell [9] have shown that this problem is solvable in polynomial time if the grup is abelian and NP-complete otherwise. Moore et al. [16] have studie his problem when the equations are given over finite monoids. The same problem have been studied for semigroups [14, 22] and even universal algebras [15].

Another problem is the following: given a over-determined system of equations, satisfy as many equations as possible simultaneously. This problem have been studied with respect to approximability by Håstad [10]. He proved optimal inapproximability bounds for the case where the equations are given over a finite abelian group. Håstad's result has later on been
generalised by Engebretsen et al. [6] to cover finite non-abelian groups as well. Those results uses the PCP theorem [1] which has been used to prove a number of inapproximability results. Other problems that have been studied which are related to this area is \#EQN* (counting the number of solutions to a system of equations) [18] and Equiv-EqN* and Iso-EQN* (deciding whether two systems of equations are equivalent or isomorphic, respectively) [17].

In this paper we study the following problem: given a system of equations over a finite abelian group, find the best solution. With "best solution" we mean a solution (an assignment to the variables that satisfies all equations) that maximises the sum of the variables. We call this problem Maximum Solution Equation (here after denoted by Max Sol Eqn).

A problem that is similar to Max Sol Eqn is Nearest Codeword. ${ }^{1}$ In this problem we are given a matrix A and a vector \boldsymbol{b}. The objective is to find a vector \boldsymbol{x} such that the hamming weight (the number of positions in the vector that differs from 0) of $A x-b$ is minimised. The decision version of a restricted variant ${ }^{2}$ of this problem was proved to be NP-complete by Bruck and Noar [4]. Later on Feige and Micciancio [8] proved inapproximability results for the same restricted probiem. Arora et al. [2] proved that Nearest Codeword over $G F(2)$ is net approximable within $2^{\log ^{1-\epsilon} n}$ for any $\epsilon>0$ unless NP \subseteq DTIME $\left.n e^{(\log n)}\right)$. Nearest Codeword is interesting because it has practicaloplications in the field of error correcting codes.

MAX Sol EQN is paranetrised on the group we are working with and a map from the elemed the group to non-negative integers. The map is used in the objecte function to compute the measure of a solution. Our main result give tight approximability results for Max Sol EqN for every finite abefind group and every map from the elements of the group to non-negative integers. That is, we prove that for every finite abelian group and every map from group elements to non-negative integers there is a constant, α, such that MAX Sol EqN is approximable within α but not approximable within $\alpha-\epsilon$ in polynomial time for any $\epsilon>0$ unless

[^0]$\mathbf{P}=\mathbf{N P}$. We also show that the weighted and the unweighted versions of this problem are asymptotically equally hard to approximate. All our hardness results hold even if the instances are restricted to have at most three variables per equation. We also prove that this is tight since with two variables per equation the problems are solvable to optimum in polynomial time.

Our work may be seen as a generalisation of Khanna et al.'s [13] work on the problem $\operatorname{Max} \operatorname{Ones}(\mathcal{F})$ in the sense that we study larger domains. However, their work is not restricted to equations over finite groups which the results in this paper are. Nevertheless, they give a 2 -approximation algorithm for $\operatorname{Max} \operatorname{Ones}(\mathcal{F})$ when \mathcal{F} is affine. We prove that, unless $\mathbf{P}=$ NP, this is tight. (Max $\operatorname{Ones}(\mathcal{F})$ when \mathcal{F} is an affine constraint family is equivalent to a specific version of Max Sol Eqn.)

The structure of this thesis is as follows, in the first (this) chapter we give an introduction to the problem. We begin with a background of the area and present some previous results. In the second section we give a general introduction to the theory of computational complexity and its relation to optimisation and approximation problems. We then go on and state some preliminaries where we define our not ©on. Our problem, called Max Sol EqN, is then formally defined togeter with the results that we have obtained.

In Chapter 2 we prove our inapproxivl\&ility results for Max Sol EqN. That is, we prove that if $\mathbf{P} \neq \mathbf{N P}$ thes there do not exist any polynomial time approximation algorithms for 2 . Sol EQN with a performance ratio strictly less than some α.

We also want to bound approximability from above. That is, we want to say "Max Sol EgN•Is approximable within α ", for some constant α. The easiest way to danis is to construct an approximation algorithm for Max Sol EqN and prove that the performance ratio for the algorithm is α. This is what we do in Chapter 3 .

The results in Chapter 2 say things about one version (the weighted version) of Max Sol EqN and Chapter 3 say things about another version (the unweighted version) of Max Sol EqN. In Chapter 4 we prove that the weights do not really matter, the approximability threshold for the weighted and unweighted versions of Max Sol EqN are asymptotically equal.

Finally，in Chapter 5，we prove our main results．The proof combines the results from the previous chapters．The last section in the final chapter contains a short discussion about possible future work related to the work in this thesis．

1．1 A Short Introduction to Complexity The－ ory

This section contains a short introduction to complexity theory and its relation to optimisation and approximation problems．Readers familiar with those concepts may want to skip this part of the thesis．For a more detailed presentation see，e．g．，［3］．

In this thesis we are going to study a specific optimisation problem．In an optimisation problem we are，in general，given a set of variables，a set of constraints over those variables and an objective function．The goal is to assign values from some domain to the variables such that the constraints are fulfilled and the objective function is ejt（1）r maximised or minimised．A well known optimisation problem is the（11）ear programming problem（here after called LP）．In the LP problem ze，are given a set of linear inequalities over some variables．The goal is find an assignment to the variables such that the inequalities are sensfied and a given linear combination of the variables is maximised $⿴ 囗 十$ inimised）．The LP problem is well studied and can，for example，becuved with the Simplex algorithm．The set of values that can be assisned to a variable in an optimisation problem is called the domain of the problem．In the LP case the domain is the set of real numbers．

Another exple of a optimisation problem is Max 2Sat．In Max 2SAT we are given a set of disjunctions over a set of variables．Each dis－ junction contains exactly two literals．An example of a possible disjunction is thus $\neg x \vee y$ ．The goal is to assign truth values（either true or false）to the variables such that the maximum number of disjunctions are satisfied． In this case the domain consists of two values，true and false．

In the LP case it turns out to be possible to find an optimal solution fast （we will define what we mean with＂fast＂soon）．For some other problems，
for example, Max 2Sat it is probably not possible to find optimal solutions fast. When it is not possible to find an optimal solution fast it is natural to ask if we can find a "good" solution fast, for some definition of "good". This is formalised with approximation algorithms. An approximation algorithm is a fast algorithm that produces a solution to an optimisation problem and gives some sort of guarantee about the quality of the solution. The guarantee can, for example be, (for an maximisation problem) "the measure of a solution returned by the approximation algorithm will never be less than 50% of the measure of the optimal solution". The value 50% is called the performance ratio of the algorithm. In the Max 2SAT case there exists an approximation algorithm that return solutions who's measure is at least 93% of the measure of the optimal solution. [7]

Example 1.1
Maximise $3 x_{1}+5 x_{2}$ subject to the following constraints

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 8 \\
& -x_{1}+x_{2} \geq-5
\end{aligned}
$$

In this example we have an instance of the problem. In this instance the objective is to maximise $3 x_{1}+5 x_{2}$ subject to the constraints in the example. The optimal solution to this 1 gance is $x_{1}=6, x_{2}=1$ which gives us the measure $3 \cdot 6+5 \cdot 1=2$ An approximation algorithm for the LP problem with the guarantriat it will return solutions that have a measure that is at least 50% Sine optimal measure could, for example, return the solution $x_{1}=0,-4$ to the instance in this example. This solution has the measure 28 and is larger than the required $0.5 \cdot 23$. It could not, however, return $x_{\mathfrak{N}} 1, x_{2}=1$ since this solution has the measure 8 which is smaller the $0.5 \cdot 23$. Neither could it return $x_{1}=0, x_{2}=10$ because those values do not satisfy the constraints, they are not a feasible solution to the instance.

In complexity theory it is often said that an algorithm is "fast" or "practical" if the running time of the algorithm is bounded by a polynomial in the size of the input.

In this thesis we will study a specific optimisation problem with respect to approximability. We will give an approximation algorithm for our problem, and we will prove that it (probably) do not exists any approximation algorithms that are better than our approximation algorithm. Our inapproximability results are of the following form, "Max Sol EQN is not approximable within $\alpha-\epsilon$ for any $\epsilon>0$, unless $\mathbf{P}=\mathbf{N P}$ ", where α is some well defined number. If, for example $\alpha=2$, then the meaning of a theorem of the above mentioned form is that it is unlikely that there exists an approximation algorithm that can generate solutions to MAx Sol EqN such that the solutions always are better than 50% of the optimum value. Results of this form bound the approximability of a certain problem from below, they say that it is (probably) not possible to approximate Max Sol EQN within a constant smaller than α.

One of the most interesting and most well studied open questions in complexity theory is whether or not $\mathbf{P}=\mathbf{N P}$. It is widely believed that $\mathbf{P} \neq \mathbf{N P}$, but no one has managed to prove that. Informally one could state this question in the following way: For all problems where it is possible to verify a solution fast, is it equally hard to find solutions as it is to verify a given solution? \mathbf{P} contains all problems \boldsymbol{f} at are solvable in polynomial time, i.e., fast and NP contains all proms where it is possible to verify a given solution in polynomial time bntuitively it seems that it is easier to verify a solution than to find alution. Consider, for example, the problem of finding a proper colring of a map, using only three colours. A colouring of a map is co Ricered proper if two adjacent countries have different colours. A trive way to get a proper colouring is to assign a unique colour to eacl \& id butry. But if we are restricted to use only three colours, say red, grean•and blue is there a fast way to decide if it is possible to find a proper wouring to a given map using only those colours? It is easy to verify Nolution to the map colouring problem, just check if every country in the map have a different colour compared to its neighbours. However, it seems to be very hard to come up with a fast way to find out if there exists a proper colouring to a given map. One way is to try every possible combination of colour assignments, however the running time of this method will grove exponentially with the number of countries in the map and it is therefore not considered fast. The map colouring problem is usually called Graph Colourability and has been proved to be NP-
complete by Stockmeyer [20]. This means that if someone comes up with a fast algorithm for the map colouring problem then we would have $\mathbf{P}=\mathbf{N P}$.

The "unless $\mathbf{P}=\mathbf{N P}$ " part of our inapproximability results thus states that our inapproximability results only holds if $\mathbf{P} \neq \mathbf{N P}$. If it turns out that $\mathbf{P}=\mathbf{N P}$ then the results in this thesis would become useless, because for every problem studied here it would exist a fast algorithm which could find the optimum.

1.2 Preliminaries

We assume that the reader has some basic knowledge of complexity theory. We will nevertheless briefly state some fundamental definitions of optimisation problems and approximation in this section, see Section 1.1 for a brief introduction or [3] for a more detailed presentation of complexity theory. We also assume that the reader has some basic knowledge of group theory. More specifically the theory of abelian groups. For an introduction to abstract algebra the reader is referred to [12] and [21].

An optimisation problem has a set of admissiQe input data, called the instances of the problem. Each instance has of feasible solutions. The optimisation problem also has a function of two variables, an instance and a feasible solution, that associates an jineger with each such pair. This function denotes the measure of the sotion. The goal of an optimisation problem is to find a feasible solu that either maximises or minimises the measure for a given instance

An NPO problem is an misation problem where instances and feasible solutions can be recgensed in polynomial time, feasible solutions are polynomially bounded iad ine input size and the measure can be computed in polynomial time. JNe will only study NPO maximisation problems in this thesis

We will denote the measure of our problems with $m(I, s)$, where I is an instance and s is a feasible solution. The optimum for an instance I of some problem (which problem we are talking about will be clear from the context) is designated by $\operatorname{OPT}(I)$. We say that a maximisation problem Π is r-approximable if there exists a polynomial time algorithm A such that for every instance I of $\Pi, m(I, A(I)) \geq \mathrm{OPT}(I) / r$. Equivalently, we say
that the performance ratio of A is r if this inequality holds. The same terminology is used if there exists a randomised polynomial time algorithm where the expected value of the measure is greater than $\operatorname{OPT}(I) / r$. That is, if there exists a randomised polynomial time algorithm A^{\prime} such that for every instance I of $\Pi, \mathrm{E}\left[m\left(I, A^{\prime}(I)\right)\right] \geq \mathrm{OPT}(I) / r$, then Π is said to be r-approximable.

In reductions we will work with two different problems simultaneously. The objects associated with the problem that the reduction is from will be denoted by symbols without ' and objects associated with the other problem will be denoted by symbols with '. Thus, for example, the measuring function of the problem that the reduction starts with will be denoted by $m(I, s)$ and the measuring function of the other problem will be denoted by $m^{\prime}\left(I^{\prime}, s^{\prime}\right)$.

For a random variable X and a set S we use the notation $X \sim U(S)$ to denote that X is uniformly distributed over S. That is, $X \sim U(S)$ means that for every $x \in S$ we have $\operatorname{Pr}[X=x]=1 /|S|$.

We use the standard definition of $o(\cdot)$. That is, given two functions $f(n)$ and $g(n)$, we say that $f(n)$ is in $o(g(n))$ if $f(n) / g(n) \rightarrow 0$ as n tends to infinity. [23] Hence, we have in particcar, that if $f(n)$ is in $o(1)$ then $f(n) \rightarrow 0$ as n tends to infinity.

For a finite abelian group $G=(\sqrt{6}$) we have
for some integer n, prin p_{1}, \ldots, p_{n} and integers $\alpha_{1}, \ldots, \alpha_{n}$. See e.g. Theorem 11.3 in [12]. Sne subsequent parts of this thesis we will assume that, unless explicitly-stated otherwise, the group G is defined as above. We will also idendily the group with its domain, i.e., we will sometimes treat G as a sech that $G=D$. We see the elements in G as vectors of integers. Position number i in each such vector is an element of $\mathbf{Z}_{p_{i}{ }_{i}}$. For a group G we denote its identity element with 0_{G}. We will use addition as the group operator. Every group dealt with in this text is finite.

For a group G and a subgroup $G^{\prime} \subseteq G$ of this group we denote the coset, C, of G^{\prime} with representative $c \in G$ as $G^{\prime}+c$. That is,

$$
G^{\prime}+c=C=\left\{x+c \mid x \in G^{\prime}\right\}
$$

For a function $f: X \rightarrow \mathbf{N}$ and a set $S \subseteq X$ we use the notations $f_{\max }(S)$ and $f_{\text {sum }}(S)$ for the following quantities,

$$
f_{\max }(S)=\max _{x \in S} f(x) \quad f_{\text {sum }}(S)=\sum_{x \in S} f(x)
$$

We will sometimes use $f_{\max }$ and $f_{\text {sum }}$ as a shortening of $f_{\max }(X)$ and $f_{\text {sum }}(X)$, respectively. Those notations will only be used when they are well defined.

We use "mod" as a modulos operator. For an integer a and a positive integer b we define " $a \bmod b$ " as follows,

$$
c=a \bmod b \Longleftrightarrow 0 \leq c<b \quad \text { and } \quad c \equiv a \quad(\bmod b) .
$$

Note that there is a large difference between " $a \bmod b$ ", which is defined to be the unique integer that lies between 0 and $b-1$ (inclusive) and is congruent to a modulo b, and " $a \equiv b(\bmod m)$ " which states that a is congruent to b modulo m.

To describe our algorithms we use a simpleaseudo code syntax. It is mostly self-documenting but we will make@me comments of it here. We use \leftarrow as the assignment operator. Fo Ca matrix A the expression $\operatorname{Rows}(A)$ denotes the number of rows in A © $\operatorname{Cols}(A)$ denotes the number of columns in A. For a set S the exprepion $\operatorname{Rand}(S)$ is a random element from S, more precisely, for every $x<8$ the value of the expression $\operatorname{Rand}(S)$ is x with probability $1 /|S|$.

1.3 Definitionstaind Results

We are going to stua the following problem in this thesis.
Definition 1.1. Weighted Maximum Solution Equation (G, g) where G is a group and $g: G \rightarrow \mathbf{N}$ is a function, is denoted by W-Max SoL $\operatorname{EqN}(G, g)$. An instance of W-Max Sol $\operatorname{EqN}(G, g)$ is defined to be a triple (V, E, w) where,

- V is a set of variables.
- E is a set of equations of the form $w_{1}+\ldots+w_{k}=0_{G}$, where each w_{i} is either a variable, an inverted variable or a group constant.
- w is a weight function $w: V \rightarrow \mathbf{N}$.

The objective is to find an assignment $f: V \rightarrow G$ to the variables such that all equations are satisfied and the sum

$$
\sum_{v \in V} w(v) g(f(v))
$$

is maximised.
Note that the function g and the group G are not parts of the input. Thus, W-Max Sol $\operatorname{Eqn}(G, g)$ is a problem parameterised by G and g. We will also study the unweighted problem, $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$, which is equivalent to W-Max Sol $\operatorname{EqN}(G, g)$ with the additional restriction that the weight function is equal to 1 for every variable in every instance. The collection of linear equations in an instance of W-MAx Sol Eqn $(G$, g) can also be represented in the standard asy as integer-valued matrix, A, and a vector of group elements, \boldsymbol{b}. If variables are called x_{1}, \ldots, x_{m} we can then, with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)^{T}$ use $A \boldsymbol{x}=\boldsymbol{b}$ as an equivalent form of the sets V and E in the definitionove.

Due to Goldmann and Rusg N's result [9] that solving systems of equations over non-abelian grous ${ }^{\text {IS }}$ NP-hard, it is NP-hard to find feasible solutions to Max Sol $\sqrt{C_{0}}(H, g)$ if H is non-abelian. It is therefore sufficient to only stury Max $\operatorname{Sol} \operatorname{EqN}(H, g)$ where H is abelian.

To describe our prsults we need the following concept.
Definition 18(Coset-Validity). Let G be an abelian group. A nonempty set $B \subseteq G$ is coset-valid with respect to G if there exists a matrix A, a vector b, a vector of variables $x=\left(x_{1}, \ldots, x_{m}\right)^{T}$ such that the system of equations $A x=b$ restricts the values that x_{1} can have such that those values form a subgroup, G^{\prime}, of G. Furthermore, there exists a group element $c \in G$ such that $B=G^{\prime}+c$.

That is, the set

$$
G^{\prime}=\left\{x_{1} \mid A \boldsymbol{x}=\boldsymbol{b}\right\}
$$

is a subgroup of G. Furthermore, there exists a group constant, $c \in G$, such that

$$
B=\left\{c+x_{1} \mid A x=b\right\} .
$$

If those conditions are fulfilled then B is coset-valid with respect to G. Note that B is a coset of G^{\prime} with representative c.

Given a group G there is always at least one set that is coset-valid with respect to G, namely G itself.

The main result of this thesis is the following theorem about the approximability of Max $\operatorname{Sol} \operatorname{EqN}(G, g)$.

Theorem 1.1 (Main). For every finite abelian group G and every function $g: G \rightarrow \mathbf{N}$, Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is approximable within α where

$$
\alpha=\max \left\{\left.\frac{g_{\max }(B)}{g_{\mathrm{sum}}(B)}|B| \right\rvert\, B \text { is coset-valid with respect to } G\right\} .
$$

Furthermore, for every finite abelian group G and every non-constant function $g: G \rightarrow \mathbf{N}$ Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is not gxproximable within $\alpha-\epsilon$ for any $\epsilon>0$ unless $\mathbb{P}=\mathbb{N P}$.

We will prove Theorem 1.1 in Chapter 55° Note that if g is a constant function then every feasible solution have same measure and finding an optimum is solvable in polynomial tige?

We will also prove that the aproximability threshold for W-Max Sol $\operatorname{EQN}(G, g)$ is asymptotically gal to the approximability threshold for Max Sol $\operatorname{EqN}(G, g)$. Th\&is we will prove that W-Max Sol Eqn $(G$, $g)$ is approximable within $+o(1)$ where the $o(\cdot)$-notation is with respect to the size of the instande. Furthermore, we will prove that W-Max Sol $\operatorname{EQN}(G, g)$ is not apNaximable within $\alpha-\epsilon$ for any $\epsilon>0$, unless $\mathbf{P}=\mathbf{N P}$.

Chapter 2

Inapproximability

In this chapter we are going to prove inapproximability results for Max Sol EqN. We will begin with a section with some preliminaries, we use a few other problems in our inapproximability proofs which are presented in Section 2.1, we also introduce a special kin of reduction.

We will then go on and prove an chepproximability result for one of the new problems, namely Maximb Expression, which is defined in Section 2.1. To do this we use Had's [10] inapproximability results for Max-E k-Lin- G, the latter prom is also defined in Section 2.1.

In Section 2.3 we use thapproximability results of Maximum ExPRESSION in a gap-preserrog reduction to prove an inapproximability bound for Max Sol EQN $(G<)$ This bound turns out to be tight for some groups G and some functiass $g: G \rightarrow \mathbf{N}$, but not for all such combinations. We will then use thi Nesult as a stepping stone to prove our final inapproximability resuly Section 2.4. The proof of the final result relies on the observation that for some combinations of groups, G, and functions, g, it is possible to construct a linear system of equations that induce a subgroup of G which is, in a sense made clear below, hard to approximate.

This latter result is the main theorem of this chapter. It is formally stated as follows:

Theorem 2.1 (Main Inapproximability Theorem). For every finite
abelian group G and every non-constant function $g: G \rightarrow \mathbf{N}$ it is not possible to approximate $\mathrm{W}-\mathrm{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$ within $\alpha-\epsilon$ where

$$
\alpha=\max \left\{\left.\frac{g_{\max }(B)}{g_{\text {sum }}(B)}|B| \right\rvert\, B \text { is coset-valid with respect to } G\right\}
$$

for any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$
This theorem turns out to be a tight inapproximability result for WMax Sol $\operatorname{Eqn}(G, g)$. That is, the theorem states that it is not possible to approximate W -Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ within $\alpha-\epsilon$ for some α and any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$. We will, in Chapter 3 and Chapter 4 prove that there exists an α-approximation algorithm for W-Max Sol $\operatorname{EqN}(G, g)$.

2.1 Preliminaries

We will prove our inapproximability results with a special kind of reduction, namely a gap-preserving reduction introducad by Arora in [1]. The definition is as follows.

Definition 2.1 (Gap-preserving reduction [1]). Let Π and Π^{\prime} be two maximisation problems and $\rho, \rho^{\prime}>1$ gap-preserving reduction with parameters $c, \rho, c^{\prime}, \rho^{\prime}$ from Π to $\left.\Pi^{\prime}\right)^{\prime}$ polynomial time algorithm f. For each instance I of Π, f producesw instance $I^{\prime}=f(I)$ of Π^{\prime}. The optima of I and I^{\prime}, satisfy the follouriveroperties:

- if $\operatorname{OPT}(I) \geq c$ then $\operatorname{gIT}^{\prime}\left(I^{\prime}\right) \geq c^{\prime}$, and
- if $\operatorname{OPT}(I) \leq c / N$ men $\operatorname{OPT}\left(I^{\prime}\right) \leq c^{\prime} / \rho^{\prime}$.

Gap-preserving reductions are useful because if for every language in NP there is a polynomial time reduction to the maximisation problem Π such that Yes instances are mapped to instances of Π of measure at least c and No instances to instances of measure at most c / ρ, then a gappreserving reduction from Π to Π^{\prime} implies that finding ρ^{\prime}-approximations to Π^{\prime} is NP-hard. [1]

Definition 2.2. Maximum Expression over the abelian group G is denoted by $\operatorname{Max} \operatorname{Expr}(G)$. An instance of $\operatorname{Max} \operatorname{Expr}(G)$ is defined to be $I=(V, E)$ where,

- V is a set of variables, and
- $E=\left\{e_{1}, \ldots, e_{m}\right\}$ is a set of expressions. Each expression e_{i} is of the form $c_{i}+w_{i 1}+w_{i 2}+\ldots$ where $w_{i 1}, w_{i 2}, \ldots$ are either variables or inverted variables and c_{i} is a group constant.

The objective is to find an assignment $f: V \rightarrow G$ and a group element $x \in G$ such that the maximum number of expressions in E evaluate to x when the variables in the expressions are assigned values according to f.

The inapproximability of the following problem is the starting point for our results in this chapter.

Definition 2.3 (Max-Ek-Lin-G [10]). An instance of Max-Ek-Lin-G is defined to be (V, E) where

- V is a set of variables, and
- E is a set of linear equations over group G with exactly k variables in each equation.

The objective is to find an assigrent $f: V \rightarrow G$ such that the maximum number of equations in E argisfied.

The following theorencsan be deduced from the proof of Theorem 5.9 in [10]. (In [10] the the Cm is first proved for the case $k=3$ there is then, on page 827, a hint gn* how this proof can be generalised to an arbitrary k. However, it appeas that the proof which is suggested in [10] do not work. A slight modifdation of Theorem 5.9 in [10] do give the desired result, though. [11])

Theorem 2.2. For every problem Π in NP there is a polynomial time reduction from instances I of Π to instances $I^{\prime}=(V, E)$ of Max-Ek-LinG such that

- if I is a YES instance then at least $(1-\delta)|E|$ equations can be satisfied, and
- if I is a No instance then no assignment satisfies more than $|E|(1+$ §) $/|G|$ equations
where δ is an arbitrary constant such that $0<\delta<1$. Furthermore, no equation in E contains any variables in their inverted form. That is, all occurrences of the variables are non-inverted.

2.2 Inapproximability of MAX Expr

The inapproximability results we need for Max Expr is proved in this section.

Lemma 2.1. For every problem Π in NP there is a polynomial time reduction from instances I of Π to instances $I^{\prime}=(V, E)$ of $\operatorname{Max} \operatorname{Expr}(G)$ such that

- if I is a Yes instance then $\operatorname{OPT}\left(I^{\prime}\right) \geq(1-\delta)|E|$, and
- if I is a No instance then $\operatorname{OPT}\left(I^{\prime}\right) \leq|E|(1+\delta) /|G|$
where δ is an arbitrary constant such that $0<\infty<1$. Furthermore, every expression in E has exactly k variables an $\left(k, p_{i}\right)=1$ for every i, $1 \leq i \leq n$.
Proof. Choose $k>1$ such that $\operatorname{gcd}\left(k_{i}\right)=1$ for every $i, 1 \leq i \leq n$. We could, for example, choose k as $k+\prod_{i=1}^{n} p_{i}$.

We will prove the theorem wich reduction from Max-Ek-Lin-G. Theorem 2.2 makes this a suita D° approach. Given an instance J of an arbitrary problem Π in NP, redruce J to an instance, $I=(V, E)$, of MAX-Ek-Lin- G with the reductip in Theorem 2.2. We will construct an instance $I^{\prime}=\left(V, E^{\prime}\right)$ of $\operatorname{Max} \operatorname{APR}(G)$ from I.

Every equation e_{j} in E is of the form $x_{1}+\ldots+x_{k}=c_{j}$. For every e_{j} add the expression e_{j}^{\prime}, which we define as, $x_{1}+\ldots+x_{k}-c_{j}$ to E^{\prime}.

According to Theorem 2.2 we know that either $\operatorname{OPT}(I) \geq|E|(1-\delta)$ or $\operatorname{OPT}(I) \leq|E|(1+\delta) /|G|$.
Case 1: $(\operatorname{OPT}(I) \geq(1-\delta)|E|)$ Let f be an assignment such that $m(I, f) \geq$ $(1-\delta)|E|$. The same assignment used on I^{\prime} will give $m^{\prime}\left(I^{\prime}, f\right) \geq m(I, f)=$ $(1-\delta)|E|$. (At least $(1-\delta)|E|$ of the expressions will evaluate to 0_{G}.)

Case 2: $(\operatorname{OPT}(I) \leq|E|(1+\delta) /|G|)$ Assume that we have an assignment $f^{\prime}: V \rightarrow G$ to I^{\prime} such that $m^{\prime}\left(I^{\prime}, f^{\prime}\right)>|E|(1+\delta) /|G|$. Then there exists an element $a \in G$ such that more than $|E|(1+\delta) /|G|$ expressions in I^{\prime} evaluate to a when f^{\prime} is used.

As $\operatorname{gcd}\left(k, p_{i}\right)=1$ for every $i, 1 \leq i \leq n$ the integer k has a multiplicative inverse in every $\mathbf{Z}_{p_{i}}{ }^{\alpha_{i}}$. Therefore, the equation $k q=-a$ has a solution q in G. We can now construct an new assignment, f, to the variables in I and I^{\prime}.

$$
f(v)=f^{\prime}(v)+q
$$

If we use f on I^{\prime} we get the following value for the expressions that evaluated to a under f^{\prime} : (we are abusing our notation here; $f(Q)$ where Q is an equation or an expression means that the variables in Q shall be assigned values according to f)

$$
\begin{aligned}
f\left(e_{j}^{\prime}\right) & =f\left(x_{1}\right)+\ldots+f\left(x_{k}\right)-c_{j} \\
& =k q+f^{\prime}\left(x_{1}\right)+\ldots+f^{\prime}\left(x_{k}\right)-c_{j} \\
& =k q+a=-a+a=0_{G}
\end{aligned}
$$

Under f^{\prime} we had more than $|E|(1+\delta) / \mid G$ xpressions which evaluated to a, now under f all those expressions exate to 0_{G}. However, that more than $|E|(1+\delta) /|G|$ expressions in $I<$ evaluate to 0_{G} is equivalent to that more than $|E|(1+\delta) /|G|$ equations I are satisfied. We have constructed an assignment f such that $m(\mathcal{I})>|E|(1+\delta) /|G|$. This contradicts our initial premise that ol $\leq|E|(1+\delta) /|G|$, the assignment f^{\prime} can therefore not exist. Hencsopt $\left(I^{\prime}\right) \leq|E|(1+\delta) /|G|$.

To conclude the proxnote that we have proven that if OPT $(I) \geq|E|(1-$ $\delta)$ then $\operatorname{OPT}\left(I^{\prime}\right) \geq \mid G(-\delta)$ and if $\operatorname{OPT}(I) \leq|E|(1+\delta) /|G|$ then $\operatorname{OPT}\left(I^{\prime}\right) \leq$ $|E|(1+\delta) /|G|$. Th δ, together with Theorem 2.2, gives us the desired result.

2.3 A First Inapproximability Result for MAX Sol EqN

In this section we prove a first inapproximability result for Max Sol EqN. This result will be used in Section 2.4 to prove a stronger inapproximability
result for Max Sol Eqn.
Lemma 2.2. For any finite abelian group G and any non-constant function $g: G \rightarrow \mathbf{N}$ it is not possible to approximate W-Max Sol EqN (G, g) within $\alpha-\epsilon$ where

$$
\alpha=|G| \frac{g_{\max }}{g_{\mathrm{sum}}}
$$

for any $\epsilon>0$, unless $\mathbf{P}=\mathbf{N P}$.
Proof. We will prove the lemma with a gap-preserving reduction from $\operatorname{Max} \operatorname{Expr}(G)$. Given an instance, J, of an arbitrary problem Π in NP, reduce J to an instance, $I=(V, E)$, of $\operatorname{Max} \operatorname{Expr}(G)$ with the reduction in Lemma 2.1. We will use I to construct an instance $I^{\prime}=\left(V, E^{\prime}, w^{\prime}\right)$ of W-Max Sol $\operatorname{EqN}(G, g)$. According to Lemma 2.1 every expression e_{j} in E is of the form $x_{1}+\ldots+x_{k}+c_{j}$. Furthermore, we have $\operatorname{gcd}\left(k, p_{i}\right)=1$ for every $i, 1 \leq i \leq n$.

For every $e_{j} \in E$ add the equation e_{j}^{\prime}, defined as $x_{1}+\ldots+x_{k}+c_{j}=z_{j}$ to E^{\prime}, where z_{j} is a fresh variable. Let $w^{\prime}\left(z_{j}\right)=1$ for all $1 \leq j \leq|E|$ and $w^{\prime}(\cdot)=0$ otherwise.

We claim that the procedure presented aboven gap-preserving reduction from Max $\operatorname{Expr}(G)$ to Max Sol Eqn (g) with parameters

Where δ is the constant from Lemma 2.1. The last parameter, ρ^{\prime}, is specified below. Accords to Lemma 2.1 we know that either $\operatorname{OPT}(I) \geq$ $|E|(1-\delta)=c$ or opa $\delta) \leq|E|(1+\delta) /|G|=c / \rho$.
Case 1: $(\operatorname{OPT}(I) \geq(1-\delta)|E|)$ Let f be an assignment such that $m(I, f) \geq$ $(1-\delta)|E|$ and let $a \in G$ be the element that most expressions in E evaluate to under f. Let b be an element in G such that $g(b)=g_{\text {max }}$ and let q be the element in G such that $k q=-a+b$, such a q exists because $\operatorname{gcd}\left(k, p_{i}\right)=1$ for every $i, 1 \leq i \leq n$. Construct an assignment f^{\prime} as follows: let $f^{\prime}(x)=f(x)+q$ for every $x \in V$ and let $f^{\prime}\left(z_{j}\right)$ be the value in G such that equation e_{j}^{\prime} is satisfied.

It is clear that every equation in E^{\prime} is satisfied by f^{\prime}. Furthermore, note that for the expressions in E where $f\left(e_{j}\right)=a$ holds we have, for the corresponding equation e_{j}^{\prime},

$$
\begin{aligned}
f^{\prime}\left(e_{j}^{\prime}\right) & \Longleftrightarrow f^{\prime}\left(x_{1}\right)+\ldots+f^{\prime}\left(x_{k}\right)+c_{j}=f^{\prime}\left(z_{j}\right) \\
& \Longleftrightarrow k q+f\left(x_{1}\right)+\ldots+f\left(x_{k}\right)+c_{j}=f^{\prime}\left(z_{j}\right) \\
& \Longleftrightarrow k q+a=f^{\prime}\left(z_{j}\right) \\
& \Longleftrightarrow f^{\prime}\left(z_{j}\right)=b .
\end{aligned}
$$

Hence, for every expression e_{j} that evaluated to a under f the variable z_{j} gets the value b. As $g(b)=g_{\text {max }}$ we get

$$
m^{\prime}\left(f^{\prime}, I^{\prime}\right) \geq(1-\delta)\left|E^{\prime}\right| g_{\max }=c^{\prime}
$$

Case 2: $(\operatorname{Opt}(I) \leq|E|(1+\delta) /|G|)$ For any assignment f^{\prime} to I^{\prime} any subset of the z_{j} variables that have been assigned the same value must contain at most $\lfloor|E|(1+\delta) /|G|\rfloor$ variables. (Otherwise we would have $m\left(I, f^{\prime}\right)>$ $|E|(1+\delta) /|G|$, which contradicts our assumption.) The measure of any assignment, f^{\prime}, to I^{\prime} is then bounded by
$\left.m^{\prime}\left(I^{\prime}, f^{\prime}\right) \leq \sqrt{\frac{\delta}{d} \in G} \cdot|E| \frac{1+\delta}{|G|}\right\rfloor g(d)$

$$
\begin{aligned}
& \text { 1E| } \frac{1+\delta}{|G|} \sum_{d \in G} g(d) \\
& \leq|E| \frac{1+\delta}{|G|} g_{\text {sum }}
\end{aligned}
$$

Let h denote thatantity on the right hand side of the inequality above. We want to find the largest ρ^{\prime} that satisfies OPT $\left(I^{\prime}\right) \leq c^{\prime} / \rho^{\prime}$. If we choose ρ^{\prime} such that $c^{\prime} / \rho^{\prime}=h$ then $\operatorname{OPT}\left(I^{\prime}\right) \leq c^{\prime} / \rho^{\prime}$ because of $\operatorname{OPT}\left(I^{\prime}\right)=m^{\prime}\left(I^{\prime}, f^{\prime}\right) \leq h$.

$$
\begin{aligned}
\rho^{\prime}=\frac{c^{\prime}}{h} & =\frac{(1-\delta)|E| g_{\max }}{|E| \frac{1+\delta}{|G|} g_{\mathrm{sum}}} \\
& =|G| \frac{g_{\max }-\delta g_{\max }}{g_{\mathrm{sum}}+\delta g_{\mathrm{sum}}}
\end{aligned}
$$

Now, given a fixed but arbitrary $\epsilon>0$ we can choose $0<\delta<1$ such that

$$
\rho^{\prime}>|G| \frac{g_{\max }}{g_{\mathrm{sum}}}-\epsilon=\alpha-\epsilon .
$$

Note that due to the assumption that g is non-constant we have $|G| g_{\max } / g_{\text {sum }}>$ 1. The gap-preserving reduction implies that it is NP-hard to find ρ^{\prime} approximations to W-Max Sol $\operatorname{EqN}(G, g)$, and as $\rho^{\prime}>\alpha-\epsilon$ we have the desired result.

2.4 Inapproximability of MAx Sol EqN

We are now ready to prove the main inapproximability theorem.
Proof (Of Theorem 2.1). We will begin with an outline of the proof. Let I^{\prime} be an arbitrary instance of W-Max Sol $\operatorname{EqN}\left(G^{\prime}, g^{\prime}\right)$, where G^{\prime} is a new group and $g^{\prime}: G^{\prime} \rightarrow \mathbf{N}$ is a new function, both of them will soon be defined. We will then prove that W-Max Sol EQN $\left(G^{\prime}, g^{\prime}\right)$ is not approximable within $\alpha-\epsilon$ for any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$. As the final step we will transform I^{\prime} to an essentially equivalentstance I of W-Max Sol $\operatorname{EQN}(G, g)$. That is, for every solution s to Cuve can construct a solution s^{\prime} to I^{\prime} in polynomial time such that $m\left(I^{\prime}\right)^{\circ}=m^{\prime}\left(I^{\prime}, s^{\prime}\right)$ and vice versa.

If we could approximate W-Max $\operatorname{EqN}(G, g)$ within some ratio $\beta<\alpha$ we would be able to approxia-Max Sol EQN $\left(G^{\prime}, g^{\prime}\right)$ within β too, because given an instance, Υ^{\prime}, of W-MAx Sol EqN $\left(G^{\prime}, g^{\prime}\right)$ we can transform it into an essentialy equivalent instance, I, of W-MAX SoL $\operatorname{EQN}(G, g)$ and find a β-ap<roximate solution, s, to this instance. This solution, s, can then be tansformed into a β-approximate solution, s^{\prime}, to I^{\prime} (due to the relation etween I and I^{\prime}, they are essentially equivalent). We will now prove the theorem.

Let A be a matrix, \boldsymbol{b} be a vector, c a group constant and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)^{T}$ a vector of variables such that

$$
B=\left\{x_{1}+c \mid A x=b\right\} \quad \text { and } \quad \alpha=\frac{g_{\max }(B)}{g_{\text {sum }}(B)}|B|
$$

The objects A, \boldsymbol{b} and c do clearly exist due to the definition of coset-validity.

Let the group G^{\prime} be defined as follows

$$
G^{\prime}=\left\{x_{1} \mid A \boldsymbol{x}=\boldsymbol{b}\right\} .
$$

That G^{\prime} is a subgroup of G follows from the definition of coset-validity.
We define $g^{\prime}: G^{\prime} \rightarrow \mathbf{N}$ as $g^{\prime}(x)=g(x+c)$. Note that $g_{\max }^{\prime}=g_{\max }(B)$ and $g_{\text {sum }}^{\prime}=g_{\text {sum }}(B)$. Hence, according to Lemma 2.2, Max Sol Eqn $\left(G^{\prime}\right.$, $\left.g^{\prime}\right)$ is not approximable within $\alpha-\epsilon$ for any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$.

An instance, $I^{\prime}=\left(V^{\prime}, E^{\prime}, w^{\prime}\right)$, of W-Max $\operatorname{Sol} \operatorname{EQN}\left(G^{\prime}, g^{\prime}\right)$ can be transformed into an instance, $I=(V, E, w)$, of W-Max Sol Eqn (G, g) in the following way, assume that $V^{\prime}=\left\{x_{1}, \ldots, x_{m^{\prime}}\right\}$.

Let

$$
V=V^{\prime} \cup\left\{y_{i j} \mid 1 \leq i \leq m^{\prime}, 1 \leq j \leq m^{\prime}\right\} \cup\left\{z_{i} \mid 1 \leq i \leq m^{\prime}\right\} .
$$

For each variable x_{i} in V add the equations

to the set $E^{\prime \prime}$. Thosed ations will force the x_{i} variables to be assigned values that are in G^{\prime}. Finally we let $E=E^{\prime} \cup E^{\prime \prime}$. The weight function, w, is constructed follows, for $1 \leq i \leq m^{\prime}, w\left(z_{i}\right)=w^{\prime}\left(x_{i}\right)$ otherwise $w(\cdot)=0$.

Given a solution $s: V \rightarrow G$ to I we can construct a solution $s^{\prime}: V^{\prime} \rightarrow G^{\prime}$ to I^{\prime} with the property that $m(s, I)=m^{\prime}\left(s^{\prime}, I^{\prime}\right)$. Note that the equations in $E^{\prime \prime}$ force the x_{i} variables to be assigned values that are contained in G^{\prime}. Hence, for every feasible solution s to I we have that $s\left(x_{i}\right) \in G^{\prime}$ for all i such that $1 \leq i \leq m$. Let s^{\prime} be constructed as $s^{\prime}\left(x_{i}\right)=s\left(x_{i}\right)$ for all i such that $1 \leq i \leq m$. Note that s^{\prime} must be a feasible solution to I^{\prime} as we have included the equations in E^{\prime} in E. The measure of s and s^{\prime} are then
related to each other in the following way,

$$
\begin{aligned}
m(I, s) & =\sum_{i=1}^{m} w\left(z_{i}\right) g\left(s\left(z_{i}\right)\right) \\
& =\sum_{i=1}^{m} w^{\prime}\left(x_{i}\right) g\left(s\left(x_{i}\right)+c\right) \\
& =\sum_{i=1}^{m} w^{\prime}\left(x_{i}\right) g^{\prime}\left(s^{\prime}\left(x_{i}\right)\right)=m\left(I^{\prime}, s^{\prime}\right) .
\end{aligned}
$$

If we are given a solution, r^{\prime} to I^{\prime} we can in a similar way construct a solution r to I such that $m(I, r)=m^{\prime}\left(I^{\prime}, r^{\prime}\right)$.

This concludes the proof, if we can approximate W-Max Sol Eqn $(G$, g) within some factor then we can also approximate W-MAx Sol EqN $\left(G^{\prime}\right.$, $\left.g^{\prime}\right)$ within the same factor.

Chapter 3

Approximability

Our approximability results for Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ will be proven in this chapter. We will present a randomised approximation algorithm, called Approx-Solution, that just picks a feasible solution at random. The somewhat complicated part turns out to bore analysis of this algorithm. We will show that the performance ratia this algorithm is equal, up to an arbitrary additive constant, to the inemproximability ratio of Theorem 2.1. That is, we will prove the followind ${ }^{\text {theorem. }}$

Theorem 3.1 (Main Appoomability Theorem). Approx-Solution is an α-approximation alg thm for $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$, where

$$
\alpha=\max \left\{\left.\frac{g_{\max }\langle(B)}{\operatorname{Sim}_{\mathrm{m}}(B)}|B| \right\rvert\, B \text { is coset-valid with respect to } G\right\} .
$$

3.1 Algorithm Overview

The algorithm consists of four parts, Transform-Matrix, RemoveRows, Random-Solution and Approx-Solution. As we are working with the abelian group G we can divide the input into n independent system of equations, each one over a group of the form $\mathbf{Z}_{p_{i}}{ }_{i}$. This is done in Approx-Solution. Each such system of equations is then given to

Transform-Matrix which restructures the system of equations to a specific form. This restructuring is then continued in Remove-Rows. The restructuring is performed in a way which preserves the solutions to the system of equations. Finally the decomposed and restructured systems of equations is fed to Random-Solution which generates a random solution. Note that the sequence Transform-Matrix and Remove-Rows is run once for each group which G is composed of. Hence, they will in total be run n times where n is the number of groups that G is composed of. The n system of equations generated by Transform-Matrix and Remove-Rows is then used by Random-Solution to find one solution to the original system of equations over G.

3.2 Matrix Restructuring

The goal of this chapter is to present an algorithm which restructures a system of equations, given on matrix form $A x=b$, into an other equivalent system of equations, $A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$, where the matrix A^{\prime} satisfies certain properties.

The structure of this chapter is as followse begin with a description of what kind of restructuring we want to to the system of equations. We then continue with a section with me mathematical preliminaries that we will use in the subsequent pats of the chapter. In the final two sections we present the two restru faring algorithms Transform-Matrix and Remove-Rows, we also.po their correctness.

At the end of the restrlating algorithms we want that $A^{\prime}=\left(a_{i j}^{\prime}\right)$ satisfies the properties lis $\downarrow d \cdot$ below. (Remember that we are working over $\mathbf{Z}_{p^{\alpha}}$ here.)
(i) $a_{i j}^{\prime}=0$ for $i>j$.
(ii) For every i we either have $a_{i i}^{\prime}=p^{k}$ for some k or $a_{i i}^{\prime}=0$, furthermore for $i \leq j$ we either have $a_{i i}^{\prime} \leq a_{j j}^{\prime}$ or $a_{i i}^{\prime}=p^{k}$ and $a_{j j}^{\prime}=0$ for some k.
(iii) For every row i and every element $a_{i j}^{\prime}$, if $j>i$ then $a_{i j}^{\prime}$ is a multiple of $a_{i i}^{\prime}$.

The transformation from A to A^{\prime} is done by Transform-Matrix. The algorithm Remove-Rows will then do some further restructuring, which is not captured by the properties above.

3.2.1 Preliminaries

We need the following lemma in this section. It is a fundamental result about the existence of a multiplicative inverse. The proof can be found in any introduction to the theory of numbers. It can, for example, easily be deduced from Theorem 4.10 in [19].

Lemma 3.1. For a given x the equation

$$
\begin{equation*}
x y \equiv 1 \quad\left(\bmod p^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

has one unique solution (i.e., all solutions to (3.1) are congruent modulo $\left.p^{\alpha}\right)$ if $p \nmid x$, furthermore if $p \mid x$ then no solutions exist to (3.1).

When a solution exists to (3.1) it is called the inverse of x modulo p^{α} and the solution is denoted by x^{-1}

3.2.2

Transform-Matri
Given a system of equations of $Z_{p^{\alpha}}$, for some prime p and integer α, on matrix form, $A x=b$, it is $8 x$ see that any combination of the following elementary operations cres a new system of equations which have the same set of solutions $<$ the original one.

1. Interchangia two rows of A and the corresponding elements in b. That is, nordering the equations.
2. Interchanging two columns of A. That is, reordering the variables.
3. Adding a multiple of row i to row j and adding the same multiple of b_{i} to b_{j}, where $i \neq j$.
4. Multiplying a row of A and the corresponding element in by a constant c such that $p \nmid c$.

We will only prove that operation number 4 preserves the set of solutions to the system of equations.

Proof (Of 4.). Let

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} x_{i}=q \tag{3.2}
\end{equation*}
$$

be an equation over $\mathbf{Z}_{p^{\alpha}}$, where a_{i} are integers, x_{i} are variables and q is a group constant. As $p \nmid c$ there exists, according to Lemma 3.1, an integer c^{-1} such that $c c^{-1}=1$.

If (3.2) holds then

$$
\begin{equation*}
c \sum_{i=1}^{m} a_{i} x_{i}=c q \Longleftrightarrow \sum_{i=1}^{m} c a_{i} x_{i}=c q \tag{3.3}
\end{equation*}
$$

clearly also holds. Furthermore, if (3.3) holds

$$
c^{-1} \sum_{i=1}^{m} c a_{i} x_{i}=c^{-1} c \theta^{2} \sum_{i=1}^{m} a_{i} x_{i}=q
$$

also holds. Hence, (3.2) is eparvalent to (3.3).
With the elementary erations we will soon see that it is always possible to transform the Natrix A to a matrix $A^{\prime}=\left(a_{i j}^{\prime}\right)$ that satisfies properties (i)-(iii) listed in Section 3.2.

The algorithm Transform-Matrix is supposed to, given a matrix A, a column vector b with as many rows as there are rows in A, a prime p and an integer α return a matrix A^{\prime} that satisfies (i)-(iii) from Section 3.2 and a vector \boldsymbol{b}^{\prime} such that the system of equations $\boldsymbol{A x}=\boldsymbol{b}$ is equivalent to $A^{\prime} x=b^{\prime}$ over $\mathbb{Z}_{p^{\alpha}}$. Intuitively Transform-Matrix transforms A to an upper triangular matrix of a special form.

```
Algorithm 1: Transform-Matrix \((A, b, p, \alpha)\)
    Reduce \(A\) modulo \(p^{\alpha}\).
    \(l \leftarrow 1\)
    For \(c\) from 1 to \(\operatorname{Rows}(A)\) do
    Let \(i \geq c\) and \(j \geq c\) be indices in \(A\) such that \(p^{l} \nmid a_{i j}\).
    If no such indices exists then
        If \(l=\alpha\) then
            \(>\) At this stage every element \(a_{i j}\) with \(i \geq c\) is equal to
                zero.
            Return \((A, \boldsymbol{b})\)
        Else
            \(l \leftarrow l+1\)
            Goto 4
            end
        end
        Interchange row \(i\) and row \(c\) of \(A\) and interchange \(b_{i}\) and \(b_{c}\).
        Interchange column \(j\) and column \(c\) of \(A\).
        At this stage we have \(a_{c c}=s p^{l-1}\) for some \(s\) such that \(p \nmid s\).
        Multiply row \(c\) in \(A\) and \(\boldsymbol{b}\) with \(s^{-1}\).
        Reduce row \(c\) in \(A\) and \(\boldsymbol{b}\) modulo \(p^{\alpha}\).
        For \(r\) from \(c+1\) to \(\operatorname{Rows}(A)\) do
            We have \(a_{r c}=t p^{l-1}\) for some \(t\). Subtract \(t\) times row \(c\) from
            row \(r\). Reduce row \(c\) modulo \(p^{\alpha}\).
        end
    end
    Return \((A, b)\)
```

We will now describe how Transform-Matrix works. On lines 1 and 2 we reduce the matrix, A, modulo p^{α} and initialise l to $1 . l$ is a variable that will be used to keep track of the current exponent of p we are working with. On line 4 we look for an element, on a row that we have not yet processed, which is not divisible by p^{l}. If $l=l_{0}$ at some point in the algorithm then we know that there are no elements in the non-processed part of the matrix which is not divisible by $p^{l_{0}-1}$, because such elements would have been chosen on line 4 in some previous iteration of the algorithm, when l held a
smaller value. Therefore, if we find an element which is not divisible by p^{l} we know that it must be divisible by p^{l-1}. If we do not find such an element we increase l and try again. When we have found our non-divisible-by-p ${ }^{l}$ element we rearrange the matrix such that this element is positioned on the diagonal, this element is now denoted by $a_{c c}$. The repositioning is done on lines 13 and 14. On line 15 we multiply the row with an appropriate value to get a power of p in the diagonal element $a_{c c}$. Finally, on lines 17-19 we add an appropriate multiple of the current row (row c) to every row below to get zeros in the column below $a_{c c}$.

It is easily verified that Transform-Matrix runs in polynomial time.
We prove the correctness of Transform-Matrix in the following lemma.
Lemma 3.2 (Correctness of Transform-Matrix). Transform-Matrix always returns a matrix, A^{\prime}, that satisfies the properties (i)-(iii). Furthermore, if Transform-Matrix returns $\left(A^{\prime}, \boldsymbol{b}^{\prime}\right)$ on input A, \boldsymbol{b}, p and α then the system of equations $A \boldsymbol{x}=\boldsymbol{b}$ and $A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$ have the same set of solutions over $\mathbf{Z}_{p^{\alpha}}$ (except a possible reordering of the variables).

Proof. The second part of the lemma holds because the only modifications done to A and \boldsymbol{b} by the algorithm are elementry operations. The multiplication on row 15 do not create any prohs because as $p \nmid s$, there exists an inverse s^{-1} to s, hence $s s^{-1}=1$ However, the only elements in $\mathrm{Z}_{p_{i}^{\alpha_{i}}}$ that have inverses are those whicN e e not multiples of p and as s is an inverse to s^{-1} we must have $p \nmid \boldsymbol{\gamma}$ (this follows from Lemma 3.1). We will prove the first part of the lempa with the following loop invariants.
L_{1} : At the beginning of lis the $\operatorname{Rows}(A) \times c-1$ upper left sub matrix of A satisfies (i).
L_{2} : At the beginning line 4 the $c-1 \times c-1$ upper left sub matrix of A satisfies (ii).
L_{3} : At the beginning of line 4 the $c-1 \times \operatorname{Cols}(A)$ upper left sub matrix of A satisfies (iii).

When $c=1$ the loop invariants are vacuously true. Now assume that the loop invariants are true for $c=c_{0}$. We will prove that they are also true for $c=c_{0}+1$.

Case 1: (There are indices $i, j \geq c$ in A such that $p^{l} \nmid a_{i j}$. .)
L_{1} : For all r such that $c+1 \leq r \leq \operatorname{Rows}(A)$ we will have $a_{r c}=t p^{l-1}$ for some t, because if $p^{l-1} \nmid a_{r c}$ then those indices would have been chosen on line 4 in some previous iteration of the algorithm and l would not have been increased to its present value. As we have $a_{r c}=$ $t p^{l-1}$ lines $14-15$ will clearly make the matrix satisfy $a_{r c}=0$ for $c+1 \leq r \leq \operatorname{Rows}(A)$ and as we have assumed that L_{1} holds for $c \leq c_{0}$ the loop invariant L_{1} must hold for $c=c_{0}+1$ too.
L_{2} : We will have $a_{c c}=s p^{l-1}$ for some s such that $p \nmid s$ on line 15. (We must have $p^{l-1} \mid a_{c c}$ because otherwise this matrix element would have been chosen in some previous iteration of the algorithm before l was increased to its present value, furthermore we cannot have $p \mid s$ because then we would not have had $p^{l} \nmid a_{i j}$ on line 4.) As $p \nmid s, s$ do have a multiplicative inverse in $\mathbf{Z}_{p^{\alpha}}$. After we multiply row c with s^{-1} we will have $a_{c c}=p^{l-1}$. Note that $a_{c c}$ will not be modified any more by the algorithm, hence as L_{2} is true for $c \leq c_{0}$ it is also true for $c \leq c_{0}+1$.
L_{3} : To prove L_{3} for this case, assumernat there is an index j such that $j>c$ and $a_{c c} \nmid a_{c j}$. Then whith have $l>1$, because otherwise we would have $a_{c c}=1$, whimplies $a_{c c} \mid a_{c j}$. However, l would not have been increased its present value if there was an element, $a_{c j}$, in the matrix su\& Chat $a_{c c}=p^{l-1} \nmid a_{c j}$. We conclude that the element $a_{c j}$ cannot Gist.

Case 2: (There arg indices $i, j \geq c$ in A such that $p^{l} \nmid a_{i j}$.) If $l=\alpha$ every element $a_{i} \sqrt{ } 1 t h j \geq c$ must be equal to zero, as the matrix has been reduced modul p^{α} and there did not exist any indices $i, j \geq c$ such that $p^{\alpha}=0 \nmid a_{i j}$. As we have assumed that L_{1}, L_{2} and L_{3} holds for $c \leq c_{0}, L_{1}$, L_{2} and L_{2} must, in this case, hold for the entire matrix.

Assume that $l<\alpha$. The variable l will then be increased and sooner or later we will either get case 1 or the first part of case 2 . With that, we are done with case 2.

The loop will terminate on either line 7 or on line 21. We have already considered the first case above. In the second case the loop terminated
because $c=\operatorname{Rows}(A)$, the loop invariants then tells us that A satisfies (i)-(iii).

3.2.3 Remove-Rows

Property (ii) and (iii) implies that if we have $a_{i i}=0$ for some i we get two different cases.

Case 1: $\left(b_{i}=0\right)$ Row i expresses an equation that do not constrain the variables in any way and can hence be removed. That is, row i expresses an equation of the form

$$
\sum_{i=1}^{m} a_{i} x_{i}=b_{i}
$$

with $a_{i}=0$ for $1 \leq i \leq m$ and $b_{i}=0$
Case 2: $\quad\left(b_{i} \neq 0\right)$ Row i expres an equation that do not have any solutions. That is, row i express an equation of the form

$$
\sum_{i=1}^{m} a_{i} x_{i}=b_{i}
$$

with $a_{i}=0$ for $1 \leq i \leq m$ and $b_{i} \neq 0$. The entire system of equations is therefore unsolvable.

The algorithm Remove-Rows takes care of this extra transformation. From the discussion above we get the following lemma.

```
Algorithm 2: Remove-Rows \((A, b)\)
    For \(r\) from \(\operatorname{Rows}(A)\) down to 1 do
    2 If \(a_{r r}=0\) then
    \(3 \quad\) If \(b_{r}=0\) then
                                    Remove row \(r\) from \(A\)
                    Remove row \(r\) from \(b\)
            Else
                    Return "no solutions"
            end
        Else
            Return \((A, b)\)
        end
    end
    Return \((A, b)\)
```

Lemma 3.3 (Correctness of Remove-Rows). Given a matrix A that satisfies (i)-(iii) from Section 3.2 and a vector \boldsymbol{b}, if $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution, Remove-Rows returns a δ matrix A^{\prime} and vector b^{\prime} such that $A x=b$ is equivalent to $A^{\prime} x=b^{\prime}{ }_{c}^{C} A x=b$ do not have any solutions then Remove-Rows will either retor a new matrix A^{\prime} and vector \boldsymbol{b}^{\prime} such that $A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$ do not have any stions or it will return "no solutions".

3.3 Random-s

A consequence of fact that finite abelian groups can be seen as direct products of groyp of the form $\mathbf{Z}_{p^{\alpha}}$ for some prime p and integer α is that a system of equadons over G can be decomposed into n systems of equations over the groups $\mathbf{Z}_{p_{i}}{ }^{\alpha_{i}}$ for $i, 1 \leq i \leq n$. Furthermore, as the elements in the group G can be seen as vectors where the element in position i in the vector is an element in $\mathbf{Z}_{p_{i}}{ }^{\alpha_{i}}$, the vector \boldsymbol{b} can be decomposed into n vectors, $\boldsymbol{b}^{(1)}, \ldots, \boldsymbol{b}^{(n)}$, such that

$$
\boldsymbol{b}=\left(\boldsymbol{b}^{(1)}, \ldots, \boldsymbol{b}^{(n)}\right)
$$

where $\boldsymbol{b}^{(i)}$ is a vector with elements in $\mathbf{Z}_{p_{i}}{ }_{i}$.
Hence, given A and \boldsymbol{b} we can decompose \boldsymbol{b} into $b^{(1)}, \ldots, b^{(n)}$ and give, for each i such that $1 \leq i \leq n, A, b^{(i)}, p_{i}$ and α_{i} to Transform-Matrix. We will then end up with n matrices, let us call them $A^{\prime(1)}, \ldots, A^{\prime(n)}$, and n vectors, called $\boldsymbol{b}^{\prime(1)}, \ldots, \boldsymbol{b}^{\prime(n)}$.

As Transform-Matrix only does solution-preserving operations on A and b we can, given $A^{\prime(1)}, \ldots, A^{\prime(n)}$ and $b^{\prime(1)}, \ldots, b^{\prime(n)}$, generate solutions to $A \boldsymbol{x}=\boldsymbol{b}$. This is precisely what the algorithm presented in the following section does. Intuitively Random-Solution generates a random solution by back substitution.

3.3.1 The Algorithm

```
Algorithm 3: Random-Solution ( \(\left(A^{(1)}\right.\)
    All matrices \(A^{(1)}, \ldots, A^{(n)}\) have the same number of columns.
    \(c \leftarrow \operatorname{Cols}\left(A^{(1)}\right)\)
    2 For \(j\) from 1 to \(n\) do
    \(3 \quad r \leftarrow \operatorname{Rows}\left(A^{(j)}\right)\)
    \(4 \quad\) For \(i\) from \(r+1\) to \(c\) do
        \(B_{i}^{(j)} \leftarrow \mathbf{Z}_{p_{j}{ }_{j}}\)
        \(x_{i}^{(j)} \leftarrow \operatorname{Rand}\left(B_{i}^{(j)}\right)\)
    end
    For \(i\) from \(r\) down to 1 do
            \(e_{i}^{(j)} \leftarrow b_{i}^{(j)}-\sum_{k=i+1}^{c} a_{i k}^{(j)} x_{k}^{(j)}\)
        \(B_{i}^{(j)} \leftarrow\left\{q \mid q \in \mathbf{Z}_{p_{j}^{\alpha_{j}}}, a_{i i}^{(j)} q \equiv e_{i}^{(j)}\left(\bmod p_{j}^{\alpha_{j}}\right)\right\}\)
        If \(B_{i}^{(j)}=\emptyset\) then
                Return "no solutions"
        end
        \(x_{i}^{(j)} \leftarrow \operatorname{Rand}\left(B_{i}^{(j)}\right)\)
    end
    end
    For \(i\) from 1 to \(c\) do
    \(x_{i} \leftarrow\left(x_{i}^{(1)}, \ldots, x_{i}^{(n)}\right)\)
    end
20 Return \(\left(x_{1}, \ldots, x_{c}\right)\)
```

Random-Solution is supposed to be given n matrices $A^{(1)}, \ldots, A^{(n)}$ and n vectors $\boldsymbol{b}^{(1)}, \ldots, \boldsymbol{b}^{(n)}$, those matrices and vectors come from TransformMatrix followed by Remove-Rows. The matrices therefore satisfies the properties (i)-(iii) in Section 3.2.

On line 1 in we assign the number of columns in the matrices to c. This is done to shorten the notation somewhat in the subsequent parts of
the algorithm. The first for loop, on lines $2-16$, loops over the different groups that G is composed of. We generate a solution to the system of equations over each such group independently of each other. On lines 4-7 we generate values to the last $c-r-1$ variables. They are not constrained in any way by any other variables and can therefore be chosen freely from the entire group. On lines 8-15 we generate values for the variables that are constrained by other variables. We do this "backwards", i.e., we start with variable number r and go down to 1 , this is because variable number $i-1$ may depend upon variable number i, we therefore need the value of variable number i before we know which values can be assigned to variable number $i-1$. However, due to the form of the transformed matrix variable number i will never depend upon variable number $i-1$. This observation is the fundamental idea behind Random-Solution. In the last for loop on lines 17-19 we compose the different group solutions to one solution over G.

It is easily verified that Random-Solution runs in polynomial time. To prove the correctness of Random-Solution we need a couple of technical lemmas, which are presented in the following section. In will use those lemmas in Section 3.3.3 to prove the correctness RANDOM-Solution.

3.3.2 Technical Lemmas

We need two lemmas to prove the Osults in this chapter. The first one is about the number of solutions to a specific congruence. The second lemma is about the distribution a linear combination of certain random variables.

Lemma 3.4. A congranace of the form

$$
x p^{n} \equiv c \quad\left(\bmod p^{\alpha}\right)
$$

for some prime p, positive integer α and non-negative integer n have,

1. exactly p^{n} incongruent solutions if $n<\alpha$ and $p^{n} \mid c$, and
2. no solutions if $n>0$ and $p^{n} \nmid c$.

Note that congruences modulo p^{α} is equivalent to equations over the group $\mathbf{Z}_{p^{\alpha}}$. Each congruence class modulo p^{α} may be seen as one group element in $\mathbf{Z}_{p^{\alpha}}$. We will therefore be able to use this lemma when we prove results about equations over groups of the form $\mathbf{Z}_{p^{\alpha}}$.
Proof (Of 1). As $p^{n} \mid c$ then there exists an integer m such that $m p^{n}=c$.

$$
\begin{array}{ll}
x p^{n} \equiv c\left(\bmod p^{\alpha}\right) & \Longleftrightarrow \\
p^{\alpha} \mid x p^{n}-m p^{n} & \Longleftrightarrow \\
\exists k: k p^{\alpha}=x p^{n}-m p^{n} & \Longleftrightarrow \\
\exists k: x=k p^{\alpha-n}+m &
\end{array}
$$

The last statement gives us the p^{n} incongruent solutions, they are generated by $k=0, \ldots, k=p^{n}-1$.
Proof (Of 2).

$x p^{n} \equiv c \quad\left(\bmod p^{\alpha}\right)$	\Longleftrightarrow
$p^{\alpha} \mid x p^{n}-c$	\Longleftrightarrow
$\exists k: k p^{\alpha}=x p^{n}-c$	\Longleftrightarrow
$\exists k: c=x p^{n}-k p^{\alpha}$	\Longleftrightarrow
$\exists k: c=p^{n}\left(x-k p^{\alpha-n}\right)$	

Hence, the only possibility for a solution@ exist is if $p^{n} \mid c$, but we assumed $p^{n} \nmid c$ and therefore no solution can exist

We will also need the following about the distribution of linear combinations of certain uniform distributed random variables.

Lemma 3.5. Let A and \mathbf{X} be subgroups of $H=\mathbf{Z}_{p^{\alpha}}$ for some prime p and integer α. Given tronstants, $a, b \in \mathbf{N}$ and two independent random variables $X \sim U(A)$ and $Y \sim U(B)$, define the random variable Z as $Z=a X+b Y$. Wsaill then have $Z \sim U(C)$ for some subgroup C of H.

Proof. For eve subgroup of H there is a non-negative integer, r, such that the subgroup is equal to $\left\{p^{r} x \mid 0 \leq x<p^{\alpha-r}\right\}$.

Assume that k and l are integers such that $A=\left\{p^{k} x \mid 0 \leq x<p^{\alpha-k}\right\}$ and $B=\left\{p^{l} x \mid 0 \leq x<p^{\alpha-l}\right\}$. Due to the observation above those integers exists. Furthermore, let $a^{\prime}, b^{\prime}, n$ and m be the integers such that $a=a^{\prime} p^{n}$ and $b=b^{\prime} p^{m}$ where $p \nmid a^{\prime}, b^{\prime}$. Such integers exists for every integer a and b.

We introduce new random variables, X^{\prime} and Y^{\prime}, such that $X=p^{k} X^{\prime}$ and $Y=p^{l} Y^{\prime}$, we then have $X^{\prime} \sim U\left(\left\{0, \ldots, p^{\alpha-k}-1\right\}\right)$ and $Y^{\prime} \sim U(\{0, \ldots, p$

1\}). Furthermore, we can now express the random variable Z as

$$
\begin{equation*}
Z=a X+b Y=a^{\prime} p^{n} X+b^{\prime} p^{m} Y=a^{\prime} p^{n+k} X^{\prime}+b^{\prime} p^{m+l} Y^{\prime} \tag{3.4}
\end{equation*}
$$

Assume, without loss of generality, that $n+k \leq m+l$. We can then rewrite (3.4) as,

$$
Z=p^{n+k}\left(a^{\prime} X^{\prime}+b^{\prime} p^{m+l-n-k} Y^{\prime}\right) .
$$

If $n+k \geq \alpha$ then $Z=U\left(\left\{0_{H}\right\}\right)$ (i.e., $\left.\operatorname{Pr}\left[Z=0_{H}\right]=1\right)$. This follows from the fact that every integer which is divisible by p^{α} is congruent with 0 modulo $\mathbb{Z}_{p^{\alpha}}$. This Z and the trivial subgroup $C=\left\{0_{H}\right\}$ of H give us the desired result for this case. Now assume that $n+k<\alpha$ and let $C=\left\{x p^{n+k} \mid 0 \leq x<p^{\alpha-n-k}\right\}$. For each $x p^{n+k} \in C$ the probability that Z equals $x p^{n+k}$ is,

$$
\left.\begin{array}{lll}
\operatorname{Pr}\left[\begin{array}{lll}
Z \equiv x p^{n+k} & \left(\bmod p^{\alpha}\right)
\end{array}\right] & = \\
\operatorname{Pr}\left[p^{n+k}\left(a^{\prime} X^{\prime}+b^{\prime} p^{m+l-n-k} Y^{\prime}\right) \equiv x p^{n+k}\right. & \left(\bmod p^{\alpha}\right)
\end{array}\right] \quad=\begin{array}{ll}
\operatorname{Pr}\left[\begin{array}{lll}
a^{\prime} X^{\prime}+b^{\prime} p^{m+l-n-k} Y^{\prime} \equiv x & \left(\bmod p^{\alpha-\eta} \mathbf{N}^{\prime}\right)
\end{array}\right] . &
\end{array}
$$

Note that $a^{\prime} X^{\prime} \bmod p^{\alpha-n-k} \sim U\left(\left\{0, \ldots{ }^{\alpha \cdot n-k}-1\right\}\right)$, this implies, together with the fact that Y^{\prime} is indepen of $a^{\prime} X^{\prime}$, that the probability

$$
\operatorname{Pr}\left[a^{\prime} X^{\prime} \equiv x \quad\left(\bmod p^{\alpha} \mathscr{饣}^{\boldsymbol{-}}\right)\right]=p^{-(\alpha-n-k)}=p^{n+k-\alpha}
$$

is equal to (3.5). We conclugi what $Z \sim U(C)$.

3.3.3 Correctneg

In the following lemma we will prove the correctness of RANDOM-Solution. We will use variable names from the algorithm in this lemma, hence c, r and $x_{i}^{(j)}$ refer to those variables in the algorithm.

This lemma is the main ingredient in our approximability result for $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$. What we really want to prove is that the variables $x_{i}^{(j)}$ will always be uniformly distributed over a coset of some subgroup of G. At a first look on Random-Solution this seems to be a trivial
statement, those variables are clearly uniformly distributed because they are assigned values with a statement such as $\operatorname{Rand}(S)$, for some set S ! However, note that the set S may depend on previous choices made by the algorithm. It is therefore not clear that those variables will be uniformly distributed. However, the following lemma and its proof tells us that this always is the case.

Lemma 3.6 (Correctness of Random-Solution). If Random-Solution is given an instance of Max Sol $\operatorname{EqN}(G, g)$ with at least one feasible solution that have been fed through Transform-Matrix and Remove-Rows then for all i and j such that $1 \leq i \leq c$ and $1 \leq j \leq n$ the following entities exists,

- a subgroup $G_{i}^{(j)}$ of $\mathbf{Z}_{p_{j}}{ }_{j}$,
- a random variable $Z_{i}^{(j)}$, and
- a group constant $c_{i}^{(j)} \in \mathbb{Z}_{p_{j}}{ }_{j}$.

Furthermore, those entities and the varigh $x_{i}^{(j)}$, satisfy the following properties

- $x_{i}^{(j)}=Z_{i}^{(j)}+c_{i}^{(j)}$, and
- $Z_{i}^{(j)} \sim U\left(G_{i}^{(j)}\right)$.

The central part +6 lemma is the last two bullet points, which tells us that $x_{i}^{(j)}$ is unifornily distributed over some coset of some subgroup of $\mathrm{Z}_{p_{j}}^{\alpha_{j}}$. We will nord
Proof. Fix j. will prove the lemma with induction on i. The induction hypothesis we will use is:

There exists random variables $Y_{1}^{(j)}, \ldots, Y_{c}^{(j)}$ such that for every $i^{\prime}, i \leq$ $i^{\prime} \leq c$ the following entities exists,

- a subgroup $G_{i^{\prime}}^{(j)}$ of $\mathbf{Z}_{p_{j}}{ }^{\alpha_{j}}$,
- integers $d_{1, i^{\prime}}^{(j)}, \ldots, d_{c, i^{\prime}}^{(j)}$, and
- group constants $c_{i^{\prime}}^{(j)} \in \mathbf{Z}_{p_{j}}{ }^{\alpha_{j}}$.

Those entities satisfy the following properties

- $x_{i^{\prime}}^{(j)}=c_{i^{\prime}}^{(j)}+\sum_{k=i^{\prime}}^{c} d_{k, i^{\prime}}^{(j)} Y_{k}^{(j)}$, and
- $Y_{i^{\prime}}^{(j)} \sim U\left(G_{i^{\prime}}^{(j)}\right)$, furthermore each $Y_{i^{\prime}}^{(j)}$ is independent of every $Y_{i^{\prime \prime}}^{\left(j^{\prime}\right)}$ such that $i^{\prime} \neq i^{\prime \prime}$ or $j \neq j^{\prime}$.

The hypothesis is clearly true for all i such that $r+1 \leq i \leq c$. (To see this let $G_{i}^{(j)}=\mathbf{Z}_{p_{i}}, c_{i}^{(j)}=0, d_{i, i}^{(j)}=1$ and $d_{i, i^{\prime}}^{(j)}=0$ for $i^{\prime}, i+1 \leq i^{\prime} \leq c$.) Assume that the hypothesis is true for $i=i_{0}$. We will prove that the hypothesis is true for $i=i_{0}-1$. With $i=i_{0}-1 \leq r$ we will, on line 10 in Random-Solution, have

$$
e_{i}^{(j)}=b_{i}^{(j)}-\sum_{k=i+1}^{c} a_{i k}^{(j)} x_{k}^{(j)} .
$$

Property (ii) and (iii) of A implies that ther is an integer q such that $p_{j}^{q}=a_{i i}^{(j)} \mid a_{i k}^{(j)}$ for all k such that $i+1 \leq k \cdot c$. (We cannot have $a_{i i}^{(j)}=0$, because Remove-Rows removes such i(w.). Furthermore, if $p_{j}^{q} \nmid b_{i}^{(j)}$ then $p_{j}^{q} \nmid e_{i}^{(j)}$.

We can actually assume that $\boldsymbol{c}_{j}^{\prime} \mid e_{i}^{(j)}$, because if we have $p_{j}^{q} \nmid e_{i}^{(j)}$ then according to Lemma 3.4, the aduation

$$
\equiv e_{i}^{(j)} \quad\left(\bmod p_{j}^{\alpha_{j}}\right)
$$

do not have any solutions and we have assumed that we are working with an instance that do have at least one feasible solution.

The values that can be assigned to $x_{i}^{(j)}$ are one of the solutions to the equation

$$
\begin{aligned}
p_{j}^{q} x_{i}^{(j)} & \equiv e_{i}^{(j)} & & \left(\bmod p_{j}^{\alpha_{j}}\right) \\
p_{j}^{q} x_{i}^{(j)} & \equiv b_{i}^{(j)}-\sum_{k=i+1}^{c} a_{i k}^{(j)} x_{k}^{(j)} & & \left(\bmod p_{j}^{\alpha_{j}}\right)
\end{aligned}
$$

The solutions to this equation can, according to Lemma 3.4, be written as

$$
\begin{equation*}
x_{i}^{(j)}=W p_{j}^{\alpha_{j}-q}+p_{j}^{-q}\left(b_{i}^{(j)}-\sum_{k=i+1}^{c} a_{i k}^{(j)} x_{k}^{(j)}\right) \tag{3.6}
\end{equation*}
$$

for $W=0, \ldots, W=p_{j}^{q}-1$. As we have assumed the induction hypothesis (3.6) can be rewritten as

$$
\begin{equation*}
x_{i}^{(j)}=W p_{j}^{\alpha_{j}-q}+p_{j}^{-q} b_{i}^{(j)}-\left(\sum_{k=i+1}^{c} D_{k} Y_{k, j}+p_{j}^{-q} a_{i k}^{(j)} c_{k}^{(j)}\right) \tag{3.7}
\end{equation*}
$$

for some integers D_{i+1}, \ldots, D_{k}. Line 14 of Random-Solution picks W uniformly at random from $\left\{0, \ldots, p_{j}^{q}-1\right\}$, furthermore this choice is independent of everything that has happened before. Hence we can see W as a random variable such that $W \sim U\left(\left\{0, \ldots, p_{j}^{q}-1\right\}\right)$, furthermore W is independent of every $Y_{k}^{(j)}$ for all $k \geq i+1$ and j. Equation (3.7) can be rewritten as

Which is exactly what we want prove, because the set

is a subgroup of \mathbb{N}_{j}^{\prime}. since G^{\prime} just is all multiples of $p_{j}^{\alpha_{j}-q}$ that exists in $\mathbf{Z}_{p^{\alpha_{j}}}$. Now, le $\hat{i}_{i}^{(j)}=G^{\prime}, Y_{i}^{(j)}=W p_{j}^{\alpha-q}, d_{k, i}^{(j)}=-D_{k}$ for $k, i+1 \leq k \leq c$, $d_{i, i}^{(j)}=1$, and, finally,

$$
c_{i}^{(j)}=p_{j}^{-q} b_{i}^{(j)}-p_{j}^{-q} \sum_{k=i+1}^{c} a_{i k}^{(j)} c_{k}^{(j)} .
$$

This completes the induction step.

It remains to prove that the induction hypothesis implies the lemma we want to prove. By repeatedly applying Lemma 3.5 to

$$
x_{i}^{(j)}=c_{i}^{(j)}+\sum_{k=i+1}^{c} d_{k, i}^{(j)} Y_{k}^{(j)}
$$

we get the desired result. To see this consider the first two terms in the sum, $d_{i+1, i}^{(j)} Y_{i+1}^{(j)}$ and $d_{i+2, i}^{(j)} Y_{i+2}^{(j)}$. Let Q_{1} be defined as $Q_{1}=d_{i+1, i}^{(j)} Y_{i+1}^{(j)}+$ $d_{i+2, i}^{(j)} Y_{i+2}^{(j)}$. Lemma 3.5 then tells us that Q_{1} is uniformly distributed over some subgroup of $\mathbf{Z}_{p_{j}}{ }_{j}$. We can then apply Lemma 3.5 again on Q_{1} and the third term in the sum, $d_{i+3, i}^{(j)} Y_{i+3}^{(j)}$, to define a new random variable, Q_{2}, as the sum of Q_{1} and the third term. Due to Lemma $3.5 Q_{2}$ will also be uniformly distributed over some subgroup of $\mathbf{Z}_{p_{j}}{ }_{j}$. Continuing in the same manner we will get

$$
x_{i}^{(j)}=c_{i}^{(j)}+Q_{c-i-1}
$$

where Q_{c-i-1} is uniformly distributed overme subgroup of $\mathbf{Z}_{p_{j}}{ }_{j}$. As the last step let $Z_{i}^{(j)}=Q_{c-i-1}$.

3.4 Approx-Sqatution

In this section we present the final part of the approximation algorithm, Approx-Solution. Approx-Solution uses Transform-Matrix, RemoveRows and Random-Solution to find an approximate solution to an instance $I=(A, b)$ of Max Sol $\operatorname{EqN}(G, g)$.

We begin with presenting the algorithm in this section, in Section 3.4.1 we prove its correctness and, finally, in Section 3.4.2 we analyse the performance of the algorithm.

```
Algorithm 4: Approx-Solution \((A, \boldsymbol{b})\)
    \({ }_{1}\) For \(i\) from 1 to \(n\) do
    \(2 \quad\left(A^{\prime(i)}, b^{\prime(i)}\right) \leftarrow \operatorname{Transform-Matrix}\left(A, b^{(i)}, p_{i}, \alpha_{i}\right)\)
    \(3 \quad A^{\prime(i)} \leftarrow\) Remove-Rows \(\left(A^{\prime(i)}, \boldsymbol{b}^{\prime(i)}\right)\)
    4 end
    \({ }_{5}\) Return Random-Solution \(\left(\left(A^{\prime(1)}, \ldots, A^{\prime(n)}\right),\left(b^{\prime(1)}, \ldots, b^{\prime(n)}\right)\right)\)
```

On lines 4-4 the matrix A is transformed with both Transform-Matrix and Remove-Rows. Note that for each group which G is composed of an individual matrix $A^{\prime(i)}$ is produced. The result of the for loop is then fed to Random-Solution to produce an approximate solution to the instance.

The for loop on lines 4-4 runs n times. As n is independent of the size of the input and Transform-Matrix and Remove-Rows are polynomial time algorithms, the for loop is also a polynomial time algorithm. As the last step Approx-Solution invokes Random-Solution, and the latter is a polynomial time algorithm, we can conclude that Approx-Solution is a polynomial time algorithm.

3.4.1 Correctness

The correctness of Approx-Sojenton is given by the following lemma.
Lemma 3.7 (Correctnes of Approx-Solution). Given an instance, $I=(A, \boldsymbol{b})$, of Max Solv $\operatorname{Cov}(G, g)$ then

1. Approx-SolyTIon will not return a non-feasible solution,
2. if there is least one feasible solution to I then Approx-Solution will not return "no solutions", and
3. for every feasible solution to I there is a non-zero probability that it will be returned by Approx-Solution.

Proof (Part 1). A consequence of the fact that finite abelian groups can be seen as direct products of groups of the form $\mathbf{Z}_{p^{\alpha}}$ for some prime p and integer α is that a system of equations over G can be decomposed into
n systems of equations over the groups $\mathbf{Z}_{p_{i}}{ }^{\alpha_{i}}$ for $i, 1 \leq i \leq n$. This is what Approx-Solution does on lines 4-4. Furthermore, Lemma 3.2 and Lemma 3.3 says that lines 4-4 do not alter the set of feasible solutions.

Transform-Matrix returns an equivalent system of equations with the property that the matrix is upper triangular. This makes back substitution a valid approach to find solutions, which is exactly what RANDomSolution does. It is therefore clear that Random-Solution will not return a non-feasible solution.

Proof (Part 2). "no solutions" is returned on two places, on line 2 in Remove-Rows and on line 12 in Random-Solution. Lemma 3.3 says that Remove-Rows will only return "no solutions" if there do not exist any feasible solutions to I. Random-Solution returns "no solutions" if $B_{i}^{(j)}=\emptyset$. Lemma 3.4 tells us that this happens if and only if $a_{i i}^{(j)} \nmid e_{i}^{(j)}$

Property (iii) of $A^{(j)}$ implies that we will have $a_{i i}^{(j)} \nsucc e_{i}^{(j)}$ if and only if $a_{i i}^{(j)} \nmid b_{i}^{(j)}$. As $b_{i}^{(j)}$ is independent of the random choices that RaNDOMSolution does we will only get $a_{i i}^{(j)} \nmid b_{i}^{(j)}$ if there are no feasible solutions to the instance I.
Proof (Part 3). As argued in the proof of pald of this lemma, lines 4-4 of Approx-Solution cannot cause any tro because they only transform the system of equations to a set of syster equations which are equivalent to the system we started with.

Let us assume that A have , fumns and r rows, furmore assume that $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{c}$ is a feasible ontion to I (with $\boldsymbol{y}_{i}=\left(y_{i}^{(1)}, \ldots, y_{i}^{(n)}\right)$ for all $i, 1 \leq i \leq c$ as usual). Thed for $r+1 \leq i \leq c$ and $1 \leq j \leq n$ we must have $y_{i}^{(j)} \in \mathbb{Z}_{p_{j} \alpha_{j}}$, due to liga $4-7$ of Random-Solution it is then a non-zero probability that $x_{i}^{(j)}=y_{i}^{(j)}$ for those i :s and j :s.

Line 10 of Random-Solution finds, in iteration i, all group elements that satisfies equation number i. As $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{c}$ is a feasible solution it must satisfy every equation, $y_{i}^{(j)}$ must therefore be one of the group elements that satisfies equation i. We conclude that we will have $\operatorname{Pr}\left[x_{i}^{(j)}=y_{i}^{(j)}\right]>0$ on line 14.

3.4.2 Performance Analysis

We are now almost ready to analyse the performance of Approx-Solution. We need the following lemma in the performance analysis.

Lemma 3.8. Given three sequences of integers, $a_{1}, \ldots, a_{w}, b_{1}, \ldots, b_{w}$ and $b_{1}^{\prime}, \ldots, b_{w}^{\prime}$. Then

$$
\begin{equation*}
\sum_{i=1}^{w} a_{i} b_{i}^{\prime} \leq\left(\max _{1 \leq i \leq w} b_{i}^{\prime} / b_{i}\right) \cdot \sum_{i=1}^{w} a_{i} b_{i} . \tag{3.8}
\end{equation*}
$$

Proof. Let us introduce d and e defined as

$$
d / e=\max _{1 \leq i \leq w} b_{i}^{\prime} / b_{i}
$$

such that $d=b_{i}^{\prime}$ and $e=b_{i}$ for some i. Now we have

$$
\begin{equation*}
\left(a_{1} b_{1}+\ldots+a_{w} b_{w}\right) \frac{d}{e}=a_{1} \frac{b_{1} d}{e}+\ldots+a_{w} \frac{b_{w} d}{e} \tag{3.9}
\end{equation*}
$$

Let us now compare the coefficients in fron of of the a_{i} values in this sum with the coefficient in front of the, of (3.8). We get

The first inequality follows 10 fact that d / e is the greatest such ratio. Note that b_{i}^{\prime} is the cogf ${ }^{2}$ nt in front of a_{i} in the left hand side of (3.8) and $b_{k} d / e$ is the coeff(ient in front of a_{k} on the right hand side of (3.8). Hence we get the disuired result.

We are now ady to prove the main theorem of this chapter, which really is the pelormance ratio of Approx-Solution.
Proof (Of Theorem 3.1). Let $I=(A, b)$ be an instance of Max Sol $\operatorname{EQN}(G, g)$. Assume that A have r rows and c columns.

Lemma 3.6 says that for every $j, 1 \leq j \leq n$ and $i, 1 \leq i \leq c$ there are subgroups, $G_{i}^{(j)} \subseteq \mathbb{Z}_{p_{j}}$, and group constants $c_{i}^{(j)} \in \mathbb{Z}_{p_{j}}$, such that

$$
x_{i}^{(j)} \sim U\left(G_{i}^{(j)}+c_{i}^{(j)}\right)
$$

where $x_{i}^{(j)}$ are variables from RAndom-Solution.
Let us define the following groups G_{i} and group constants c_{i}

$$
G_{i}=G_{i}^{(1)} \times \cdots \times G_{i}^{(n)} \quad c_{i}=\left(c_{i}^{(1)}, \ldots, c_{i}^{(n)}\right)
$$

for all $i, 1 \leq i \leq c$. We then get

$$
\begin{equation*}
\left(x_{i}^{(1)}, \ldots, x_{i}^{(n)}\right) \sim U\left(G_{i}+c_{i}\right) \tag{3.10}
\end{equation*}
$$

for all $i, 1 \leq i \leq n$. (From now on we will use x_{i} to denote the left hand side of the expression above.) Furthermore, if $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{c}$ is a feasible solution then $y_{i} \in G_{i}+c_{i}$ for all $i, 1 \leq i \leq c$. This follows from (3.10), part 1 of Lemma 3.7 (Approx-Solution do not return non-feasible solutions) and part 3 of Lemma 3.7 (for every feasible solution there is a non-zero probability it will be returned by Approx-Solution).

The previous argument together with the fact that the variables x_{i} for $i, 1 \leq i \leq c$ are constrained by a system of equans implies that the set $G_{i}+c_{i}$ is coset-valid with respect to G. We © therefore have

$$
\begin{equation*}
\alpha \geq \frac{g_{\max }(G)\left(\tau_{i}\right)}{g_{\sin }\left(2 c_{i}\right)}\left|G_{i}\right| \tag{3.11}
\end{equation*}
$$

for every $i, 1 \leq i \leq n$. (Note 2 we have $\left|G_{i}+c_{i}\right|=\left|G_{i}\right|$.)
We are now ready to agayse Approx-Solution. Let S^{*} be defined as follows,

$$
S^{*}=\sum_{i=1}^{c} g_{\max }\left(G_{i}+c_{i}\right)
$$

From the discussion above we know that there is a non-zero probability that Approx-Solution will return an optimal solution. Let $s:\left\{x_{1}, \ldots, x_{c}\right\} \rightarrow$ G denote an optimal solution. As relation (3.10) holds we must have, for every $i, 1 \leq i \leq c, g\left(s\left(x_{i}\right)\right) \leq g_{\max }\left(G_{i}+c_{i}\right)$. It follows that $S^{*} \geq$ OPT.

Let S denote the measure of a solution computed by Approx-Solution.

$$
\begin{aligned}
\mathrm{E}[S] & =\mathrm{E}\left[\sum_{i=1}^{c} g\left(x_{i}\right)\right]=\sum_{i=1}^{c} \mathrm{E}\left[g\left(x_{i}\right)\right] \\
& =\sum_{i=1}^{c} \frac{g_{\mathrm{sum}}\left(G_{i}+c_{i}\right)}{\left|G_{i}\right|} \\
& \geq S^{*} / \alpha \geq \mathrm{OPT} / \alpha
\end{aligned}
$$

[^1]
Chapter 4

Weighted vs. Unweighted Problems

In Chapter 2 we proved that it is not possible to approximate W-Max Sol $\operatorname{EQN}(G, g)$ better than a certain constant unless $\boldsymbol{P}=\mathbf{N P}$. We then proved that Max Sol $\operatorname{EqN}(G, g)$ is approximable worn the same constant. The main difference between those two resultatare that we have proved our inapproximability result for the weighterproblem and our approximability result for the unweighted problem. will, in this chapter, show that the approximability thresholds for theighted and unweighted problems are asymptotically equal. This regis is formally formulated in the following theorem.

Theorem 4.1. If $\operatorname{MAx} \operatorname{EQN}(G, g)$ is approximable within in r, then W-Max Sol $\operatorname{EQN}(G \sqrt{ })$ is approximable within $r+o(1)$, where the $o(\cdot)$ notation is with respect to the size of the instance.

In the context of Theorem 4.1 the $o(\cdot)$-notation means that if it possible to approximate Max $\operatorname{Sol} \operatorname{EQN}(G, g)$ within r then, for sufficiently large instances, it is possible to approximate W-Max $\operatorname{Sol} \operatorname{EQN}(G, g)$ within $r+\epsilon$ for any fixed $\epsilon>0$.

The proof of Theorem 4.1 is divided into two parts. In Section 4.1 we prove that the weighted version of our problem, W-Max Sol EqN,
is in a specific sense at least weakly approximable. We then prove, in Section 4.2, that if W-Max Sol EQN is weakly approximable then the approximation thresholds of Max Sol EqN and W-Max Sol Eqn must be asymptotically equal.

4.1 Weak Approximability

In this section we will prove a lemma which says that W-Max Sol Eqn $(G$, $g)$ is at least weakly approximable, i.e., there is a $p(n)$-approximation algorithm for some polynomial $p(n)$. We will then use this lemma to do a reduction from W-Max $\operatorname{Sol} \operatorname{Eqn}(G, g)$ to Max $\operatorname{Sol} \operatorname{Eqn}(G, g)$.

We use the terminology from [13] and say that if a problem Π is r approximable and there exists a polynomial $p(n)$ such that $r \leq p(|I|)$ for every instance I then Π is in poly-APX.

The proof of the following lemma is based on the proof of Lemma 6.2 in [13].

Lemma 4.1. For every finite abelian coup G and every function $g: G \rightarrow$ \mathbf{N}, W-Max Sol $\operatorname{Eqn}(G, g)$ is in $\boldsymbol{O}^{\text {ly }} \mathbf{y}-\mathbf{A P X}$.

Proof. An instance, $I=(V / 2)$, of $\mathrm{W}-\mathrm{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$ can be seen as a system of equations, x by $A \boldsymbol{x}=\boldsymbol{b}$ over G. It is well known that the problem of finding Rtions to a linear system of equations over G is solvable in polynomjaltime. See, e.g., Theorem 1 in [9].

Let $V=\left\{x_{1}, x_{m}\right\}$ and assume that $w\left(x_{1}\right) \geq w\left(x_{2}\right) \geq \ldots \geq w\left(x_{m}\right)$. We also assum Hat there is some $x \in G$ such that $g(x)>0$. If this is not the case then W -Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is trivially in poly-APX.

We claim that Weakly-Approximate is a $|V| g_{\max }$-approximate algorithm. The running time of the algorithm is $O(|G| n f(n))$ where $f(n)$ is the time taken to solve one system of linear equations. This is polynomial in the input size $n=|I|$. Let x_{i} be the first variable the algorithm finds which can be set to a value such that $g\left(x_{i}\right)>0$. The measure of this solution is then at least $w\left(x_{i}\right)$. Furthermore, $\operatorname{OPT}(I) \leq|V| g_{\max } w\left(x_{i}\right)$.

```
Algorithm 5: Weakly-Approximate( }A,b
1 For }i\mathrm{ from 1 to m do
    Foreach }y\inG\mathrm{ such that }g(y)>0\mathrm{ do
    Create a new system of equations, A'x= b
            Ax=b}\mathrm{ and the equation }\mp@subsup{x}{i}{}=y
            If }\mp@subsup{A}{}{\prime}x=\mp@subsup{b}{}{\prime}\mathrm{ is solvable then
                Return \boldsymbol{x}}\mathrm{ , such that }\mp@subsup{A}{}{\prime}\boldsymbol{x}=\mp@subsup{\boldsymbol{b}}{}{\prime
            end
    end
    8 end
```

 If we reach this line no feasible solution exists.

4.2 Weights Do Not Matter (Much)

In this section we will prove the main result of this chapter, i.e., Theorem 4.1. To do this we use a specific type of approximation preserving reduction, an AP-reduction, which is defined below.

Definition 4.1 (AP-reducibility [13]). For a constant $\beta>0$ and two NPO problems Π and Π^{\prime}, we say that Π is β-AP-reducible to Π^{\prime}, denoted $\Pi \leq_{\mathrm{AP}}^{\beta} \Pi^{\prime}$, if two polynomial time computable functions F and H exists such that the following holds:

1. For any instance I of $\Pi, F(I)$ is an instance of Π^{\prime}.
2. For any instance I of П1, and any feasible solution s^{\prime} for $F(I), H\left(I, s^{\prime}\right)$ is a feasible solution for I.
3. For any instance I of Π and any $r \geq 1$, if s^{\prime} is an r-approximate solution for $F(I)$, then $H\left(I, s^{\prime}\right)$ is an $(1+(r-1) \beta+o(1))$-approximate solution for I, where the $o(\cdot)$-notation is with respect to $|I|$.

The definition of AP-reducibility looks complicated, but what it really means is that if $A \leq_{\mathrm{AP}}^{\beta} B$ for some problems A and B and we have an r-approximation algorithm for B then we also have an $(1+(r-1) \beta+$
$o(1))$-approximation algorithm for A. In particular, if $A \leq{ }_{\text {AP }}^{1} B$ and B is approximable within r then A is approximable within $r+o(1)$.

The notation W-Max Sol $\operatorname{Eqn}_{p}(G, g)$, used in the proof of Lemma 4.2 below, denotes W-Max Sol $\operatorname{EqN}(G, g)$ with the additional restriction that the weight function is bounded by a polynomial. That is, there exists a polynomial $p(n)$ such that for every instance $I=(V, E, w)$

$$
\sum_{v \in V} w(v) \leq p(|I|) .
$$

The proof of the following lemma is based on Lemma 3.11 in [13], which in turn is based on Theorem 4 in [5].

Lemma 4.2. For any finite abelian group G and function $g: G \rightarrow \mathbf{N}$, if W-Max Sol $\operatorname{EqN}(G, g)$ is in poly-APX, then W-Max Sol EqN (G, g) 1-AP-reduces to Max $\operatorname{Sol} \operatorname{Eqn}(G, g)$.

Proof. The proof will be in two parts. In the first part, we will reduce W-Max Sol $\operatorname{EqN}(G, g)$ to W-Max Solden (G, g) with the additional restriction that the weights are strictly eater than zero. In the second part, we reduce this restricted versior W-Max Sol $\operatorname{EQN}_{p}(G, g)$ to Max Sol $\operatorname{EqN}(G, g)$.

Given an instance $I=(V / \mathcal{V})$ of W-Max Sol $\operatorname{EQN}(G, g)$, we will construct a new weight furion, w^{\prime}, and use this to define an instance $I^{\prime}=\left(V, E, w^{\prime}\right)$ of W-MAçoL $\operatorname{EQN}_{p}(G, g)$.

Let A be a $p(x)$-admatimation algorithm for W-Max $\operatorname{Sol} \operatorname{EQN}(G, g)$ and let $t=m(I, A(\mathbb{N})$;i.e., t is the measure of the solution returned by the algorithm A on \mathbb{K} Let $M=g_{\max }, n=|I|$ and $N=M n p(n)(n p(n)+1)$. We define a n scaled down weight function $w^{\prime \prime}$ such that

$$
w^{\prime \prime}(v)=\left\lfloor\frac{w(v) N}{t}\right\rfloor+1
$$

for every $v \in V$. Finally let $w^{\prime}(v)=\min \left\{w^{\prime \prime}(v), N p(n)+1\right\}$. It is clear that I^{\prime} is an instance of $\mathrm{W}-\mathrm{Max}$ Sol $\operatorname{EqN}_{p}(G, g)$ because w^{\prime} is polynomially bounded.

We will now prove that if $w^{\prime \prime}(v)>w^{\prime}(v)$ for some $v \in V$, then no feasible solution to I (or I^{\prime}) can have assigned v a value such that $g(v)>0$.

$$
w^{\prime \prime}(v)>w^{\prime}(v) \Rightarrow\left\lfloor\frac{w(v) N}{t}\right\rfloor+1>N p(n)+1 \Rightarrow w(v)>\operatorname{tp}(n)
$$

As the measure of a solution with $g(v)>0$ would be at least $w(v)$, the last inequality contradicts the assumption that A is a $p(x)$-approximation algorithm and hence we have $g(v)=0$. This implies that we have $\operatorname{OpT}\left(I^{\prime}\right) \geq$ $(N / t) \operatorname{OPT}(I)$.

We can now construct algorithm H in the AP-reduction.

Assume that s^{\prime} is an r-approximate solution for I^{\prime}. If $r \geq p(n)$, then the returned solution is clearly an r-approximate solution to I. Below we prove that even if $r \leq p(n)$, then the returned solution is a $(r+1 / n)$-approximate solution to I. The measure of the returned solution is at least

$$
\begin{aligned}
m\left(I, s^{\prime}\right) & =\sum_{v \in V} s^{\prime}(v) w(v) \\
& \geq \frac{t}{N} \sum_{v \in V} s^{\prime}(v)\left\lfloor\frac{w(v) N}{t}\right\rfloor \\
& \left.\geq \frac{t}{N} \sum_{v \in V} s^{\prime}(v)\left(\left\lvert\, \frac{w(v) N}{t}\right.\right\rfloor+1\right)-\frac{t}{N} M n \\
& =\frac{t}{N} m\left(I^{\prime}, s^{\prime}\right)-\frac{t}{N} M n \geq \frac{t}{N}\left(\frac{\operatorname{OPT}\left(I^{\prime}\right)}{r}-M n\right) \\
& \geq \frac{\operatorname{OPT}(I)}{r}-\frac{M n t}{N} \geq \frac{\operatorname{OPT}(I)}{r}-\frac{M n \operatorname{OPT}(I)}{N} \\
& \geq \operatorname{OPT}(I)\left(\frac{1}{r}-\frac{1}{n r^{2}+r}\right)=\frac{\operatorname{OPT}(I)}{r+1 / n} .
\end{aligned}
$$

Note that the weights are not only bounded by a polynomial but they are also strictly greater than zero. With that the first step of the reduction is finished.

All that remains to be done is to colplete the reduction to Max Sol $\operatorname{EqN}(G, g)$. As the sum of the ronts is bounded by a polynomial it is possible to replicate each variate a suitable number of times. Assume that $V=\left\{v_{1}, \ldots, v_{m}\right\}$, then each variable $v_{i} \in V$ with weight $w^{\prime}\left(v_{i}\right)$ introduce $w^{\prime}\left(v_{i}\right)-1$ fresh wriables,

$$
\left.1 \leq j \leq w^{\prime}\left(v_{i}\right)-1\right\}
$$

and the equations

$$
\left\{v_{i}=v_{i}^{(j)} \mid 1 \leq j \leq w^{\prime}\left(v_{i}\right)-1\right\} .
$$

(Note that no fresh variables or equations are introduced if $w^{\prime}\left(v_{i}\right)=1$.) This procedure will create an instance, $I^{\prime \prime}$, of $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$ which is essentially equivalent to the original instance I^{\prime} in the sense that given a solution, s^{\prime}, to I^{\prime} it is possible to construct a solution, $s^{\prime \prime}$, to $I^{\prime \prime}$ in polynomial time such that $m^{\prime}\left(I^{\prime}, s^{\prime}\right)=m^{\prime \prime}\left(I^{\prime \prime}, s^{\prime \prime}\right)$ and vice versa.

[^2]
Chapter 5

Conclusion

In this chapter we will put together the results from Chapters 2, 3 and 4 to prove the main result of this thesis. We begin with a summary of what we have done in the previous chapters where we repeat the main theorem of each chapter. After that we Wove the main theorem of the thesis (Theorem 1.1). When we have pued our main result we state some results of a few variants of MAx Sgt EQN, and finally we will give some ideas for possible future work in line of research.

In Chapter 2 we proved therlowing result about the inapproximability of W-Max Sol Eqn(G,

Theorem 2.1 (MaiCMapproximability Theorem). For every finite abelian group G and every non-constant function $g: G \rightarrow \mathbf{N}$ it is not possible to apprasnate W-Max Sol $\operatorname{EqN}(G, g)$ within $\alpha-\epsilon$ where

$$
\alpha=\max \left\{\left.\frac{g_{\max }(B)}{g_{\text {sum }}(B)}|B| \right\rvert\, B \text { is coset-valid with respect to } G\right\}
$$

for any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$.
Chapter 3 contained our approximability results for Max Sol Eqn (G, $g)$. The main result was the following theorem.

Theorem 3.1 (Main Approximability Theorem). Approx-Solution is an α-approximation algorithm for Max $\operatorname{Sol} \operatorname{EQN}(G, g)$, where

$$
\alpha=\max \left\{\left.\frac{g_{\max }(B)}{g_{\text {sum }}(B)}|B| \right\rvert\, B \text { is coset-valid with respect to } G\right\} .
$$

In Chapter 4 we proved that the difference between Max Sol $\operatorname{Eqn}(G$, $g)$ and W-Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is in fact quite small. This result was summarised in the following theorem.

Theorem 4.1. If Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is approximable within in r, then W-Max Sol $\operatorname{EqN}(G, g)$ is approximable within $r+o(1)$, where the $o(\cdot)$ notation is with respect to the size of the instance.

We will now use those results to prove the main theorem of this thesis, which we repeat here for completeness.

Theorem 1.1 (Main). For every finite abelian group G and every function $g: G \rightarrow \mathbf{N}$, Max $\operatorname{Sol} \operatorname{EqN}(G, g)$ is approximable within α where

Furthermore, for every finite abelian iup G and every non-constant function $g: G \rightarrow \mathbf{N}$ Max Sol $\operatorname{EqN}(G)$ is not approximable within $\alpha-\epsilon$ for any $\epsilon>0$ unless $\mathbf{P}=\mathbf{N P}$.
Proof. The approximation algegrm in Theorem 3.1 is the first part of Theorem 1.1.

Lemma 4.1 says that if we can find r-approximate solutions for Max Sol $\operatorname{EqN}(G, g)$, then né can find $(r+o(1))$-approximate solutions for W-Max Sol $\operatorname{EqN}(g)$. Hence, if we can find $\alpha-\delta$ approximations for some $\delta>0$ for $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$ then we can find $(\alpha-\delta+o(1))$ approximate solutions for W-Max Sol $\operatorname{EqN}(G, g)$. However, as the sizes of the instances grow we will, at some point, have $-\delta+o(1)<0$ which means that we would be able to find $(\alpha-\epsilon)$-approximate solutions, where $\epsilon>0$, for W-Max $\operatorname{Sol} \operatorname{EqN}(G, g)$. But Theorem 2.1 says that this is not possible. Therefore, Max Sol $\operatorname{EqN}(G, g)$ is not approximable within $\alpha-\delta$, for any $\delta>0$, unless $\mathbf{P}=\mathbf{N P}$.

The situation is almost the same for W-Max $\operatorname{Sol} \operatorname{EqN}(G, g)$. We have an α-approximate algorithm for $\operatorname{Max} \operatorname{Sol} \operatorname{EqN}(G, g)$ (Theorem 3.1) therefore, due to Lemma 4.1 we have a $(\alpha+o(1))$-approximate algorithm for W-Max Sol $\operatorname{Eqn}(G, g)$. Furthermore, it is not possible to approximate W-Max Sol $\operatorname{EqN}(G, g)$ within $\alpha-\epsilon$ for any $\epsilon>0$ (Theorem 2.1).

All our hardness results holds for equations with at most three variables per equation. If we are given an equation with n variables where $n>3$, we can reduce this equation to one equation with $n-1$ variables and one equation with 3 variables in the following way: Given the equation $x_{1}+\ldots+x_{n}=c$ where each x_{i} is either a variable or an inverted variable and c is a group constant, introduce the equation $z=x_{1}+x_{2}$ where z is a fresh variable. Furthermore replace the original equation with the equation $z+x_{3}+\ldots+x_{n}=c$. Let the weight of z be zero. Those two equations are clearly equivalent to the original equation in the problem W-MAX SoL $\operatorname{EqN}(G, g)$. The proof of Lemma 4.1 do not introduce any equations with more than two variables, so we get the same result for Max Sol Eqn $(G$, g).

If the instances of W-Max Sol $\operatorname{EqN}(G, g)$ are restricted to have at most two variables per equation then the roblem is tractable. The following algorithm solves this restricted proden in polynomial time.

A system of equations where the are at most two variables per equation can be represented by a graplin the following way: let each variable be a vertex in the graph and igoduce an edge between two vertices if the corresponding variables aprai in the same equation. It is clear that the connected components of graph are independent subsystems of the system of equations. He finding the optimum of the system of equations is equivalent to finding the optimum of each of the subsystems that corresponds to the adnected components. To find the optimum of one such subsystem, chele a variable, x, and assign a value to it. This assignment will force assignments of values to every other variable in the subsystem. The optimum can be found by testing every possible assignment of values to x. If this is done for every independent subsystem the optimum for the entire system of equations will be found in polynomial time.

We have given tight approximability results for the maximum solution equation problem over finite abelian groups. One natural generalisation of our work might be to investigate the (in)approximability of this problem
when the variables are constrained by some other relation than equations over a finite group. This perspective leads to a family of Constraint Satisfaction Problems that are parameterised on the constraint family. From this point of view there are many open problems. A start might be to try to characterise which constraint families give rise to tractable problems.

Bibliography

[1] Sanjeev Arora. Probabilistic checking of proofs and hardness of approximation problems. PhD thesis, 1995.
[2] Sanjeev Arora, Laszlo Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317-331, 1997.
[3] Daniel Pierre Bovet and Pierluigi Creanzi. Introduction to the theory of complexity. Prentice Hall Intern©(t)
[4] Jehoshua Bruck and Moni NOr. The hardness of decoding linear codes with preprocessing. LKE Transactions on Information Theory, 36(2):381-385, 1990.
[5] Pierluigi Crescenziocardo Silvestri, and Luca Trevisan. To weight or not to weight: Where is the question? In ISTCS 96': Proceedings of the 4 th Isra*Symposium on Theory of Computing and Systems, pages 68-7NEEE, 1996.
[6] Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability results for equations over finite groups. Theor. Comput. Sci., 312(1):17-45, 2004.
[7] Uriel Feige and Michel Goemanst. Approximating the value of two power proof systems, with applications to max 2sat and max dicut. In ISTCS '95: Proceedings of the 3rd Israel Symposium on the Theory
of Computing Systems (ISTCS'95), page 182, Washington, DC, USA, 1995. IEEE Computer Society.
[8] Uriel Feige and Daniele Micciancio. The inapproximability of lattice and coding problems with preprocessing. J. Comput. Syst. Sci., 69(1):45-67, 2004.
[9] Mikael Goldmann and Alexander Russell. The complexity of solving equations over finite groups. Inf. Comput., 178(1):253-262, 2002.
[10] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001.
[11] Johan Håstad. Personal communication, 2005.
[12] Thomas W. Judson. Abstract Algebra, Theory and Applications. PWS Publishing Company, 1994.
[13] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863-1920, 2000.
[14] Ondrej Klíma, Pascal Tesson, and Dents Thérien. Dichotomies in the complexity of solving systems fequations over finite semigroups. Technical Report TR04-091, Flerronic Colloq. on Computational Complexity, 2004.
[15] Benoit Larose and LaszlRadori. Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Submitted for publipsion.
[16] Cristopher MooN, Pascal Tesson, and Denis Thérien. Satisfiability of systems of equations over finite monoids. In Mathematical Foundations of Computer Science 2001, 26th International Symposium, MFCS 2001, volume 2136 of Lecture Notes in Computer Science, pages 537-547. Springer, 2001.
[17] Gustav Nordh. The complexity of equivalence and isomorphism of systems of equations over finite groups. In Mathematical Foundations of

Computer Science 2004, 29th International Symposium, MFCS 2004, volume 3153 of Lecture Notes in Computer Science, pages 380-391. Springer, 2004.
[18] Gustav Nordh and Peter Jonsson. The complexity of counting solutions to systems of equations over finite semigroups. In Computing and Combinatorics, 10th Annual International Conference, COCOON 2004, volume 3106 of Lecture Notes in Computer Science, pages 370379. Springer, 2004.
[19] Kenneth H. Rosen. Elementary Number Theory and its Application. Addison-Wesley, 4 edition, 2000.
[20] Larry Stockmeyer. Planar 3-colorability is polynomial complete. SIGACT News, 5(3):19-25, 1973.
[21] Per-Anders Svensson. Abstrakt algebra. Studentlitteratur, 2001.
[22] Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semigroups. PhD thesis. 2003.
[23] Eric W. Weisstein. Asymptotic eqtion. In MathWorld. Wolfram Research, Inc., 2005.

	Avdelning, Institution Division, Depww.FirstRanker.com	Datum TCSlab, Dept. of Computer and Information Science 58183 LINKÖPING

Titel	Snäva approximerbarhetsresultat för maxlösningsproblemet Över abel- ska grupper Tight Approximability Results for the Maximum Solution Equation Probler Abelian Groups
Författare Fredrik Kuivinen Author	

[^3]Nyckelord
Keywords systems of equations, finite groups, NP-hardness, approximation

Copyright

Svenska

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/

English

The publishers will keep this document online one Internet - or its possible replacement for a period of 25 years from the date of publcation barring exceptional circumstances.

The online availability of the documen?mplies a permanent permission for anyone to read, to download, to print out single consfor your own use and to use it unchanged for any non-commercial research and education 1 purpose. Subsequent transfers of copyright cannot revoke this permission. All other ysor the document are conditional on the consent of the copyright owner. The publisher saken technical and administrative measures to assure authenticity, security and acces

According to intellectupl roperty law the author has the right to be mentioned when his/her work is accessed as lescribed above and to be protected against infringement.

For additional informaton about the Linköping University Electronic Press and its procedures for publicad and for assurance of document integrity, please refer to its WWW home page: http://ran ep.liu.se/
(c) Fredrik Kuivinen

Linköping, 14th June 2005

[^0]: ${ }^{1}$ This problem is sometimes called MLD for Maximum Likelinood Decoding.
 ${ }^{2}$ The problem we are referring to is Nearest Codeword with preprocessing. See [4] for a definition.

[^1]: The last inequality follows almost directly from (3.11) and Lemma 3.8 if $a_{i}=1, b_{i}^{\prime}=g_{\max }\left(G_{i}+c_{i}\right)$ and $b_{i}=g_{\text {sum }}\left(G_{i}+c_{i}\right) /\left|G_{i}\right|$. To use Lemma 3.8 we only have to note that $\alpha \geq\left|G_{i}\right| g_{\max }\left(G_{i}+c_{i}\right) / g_{\text {sum }}\left(G_{i}+c_{i}\right)$ for $i, 1 \leq i \leq c$ (i.e., we do not necessarily have $\alpha=\left|G_{i}\right| g_{\max }\left(G_{i}+c_{i}\right) / g_{\text {sum }}\left(G_{i}+c_{i}\right)$ for some i, but this fact is not a problem).

[^2]: We are now ready to prove Theorem 4.1
 Proof (Of Theorem 4.1). The AP-reduction of Lemma 4.2 do exists due to Lemma 4.1. Hence, given an r-approximation algorithm to Max Sol $\operatorname{EQN}(G, g)$ we can construct an $(r+o(1))$-approximation algorithm to WMax $\operatorname{Sol} \operatorname{EqN}(G, g)$.

[^3]: Sammanfattning
 Abstract
 In the maximum solution equation prafem a collection of equations are given over some algebraic struct@re. The objective is to find an assignment to the variables in the equations such that all equations are satisfied and the sum of the varjables is maximised. We give tight approximability results for the n@ximum solution equation problem when the equations are given orgromite abelian groups. We also prove that the weighted and unweigod versions of this problem have asymptotically equal approximadidy thresholds. Furthermore, we show that the problem is equally hard to solve as the general problem even if each equation is restricted to contain at most three variables and solvable in polynomial whe if the equations are restricted to contain at most two variables aach. All of our results also hold for the generalised version of maxinum solution equation where the elements of the group are mapped arbitrarily to non-negative integers in the objective function.

