www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 1

Introduction

Problems related to solving equations over various algebraic structures have
been studied extensively during a large time frame. The most fundamental
problem is, perhaps, EQN which is the problem of: given an equation, does
it have a solution? That is, is it possible to assig?ﬁlues to the variables in
the equation such that the equation is satisfi oldmann and Russell [9]
studied this problem for finite groups. T.Qa showed that EQN is NP-
complete for all non-solvable groups aQEL lvable in polynomial time for
nilpotent groups.

A problem related to EQN is . In EQN* a collection of equations
are given and the question is her or not there exists an assignment
to the variables such thatQE\ quations are satisfied. For finite groups
Goldmann and Russell [Q\ Mve shown that this problem is solvable in
polynomial time if the is abelian and NP-complete otherwise. Moore
et al. [16] have studi is problem when the equations are given over finite
monoids. The same problem have been studied for semigroups [14, 22] and
even universal algebras [15].

Another problem is the following: given a over-determined system of
equations, satisfy as many equations as possible simultaneously. This prob-
lem have been studied with respect to approximability by Hastad [10]. He
proved optimal inapproximability bounds for the case where the equations
are given over a finite abelian group. Hastad’s result has later on been
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2 1. INTRODUCTION

generalised by Engebretsen et al. [6] to cover finite non-abelian groups as
well. Those results uses the PCP theorem [1] which has been used to prove
a number of inapproximability results. Other problems that have been
studied which are related to this area is #EQN* (counting the number of
solutions to a system of equations) [18] and EQuiv-EQN* and Iso-EqQN*
(deciding whether two systems of equations are equivalent or isomorphic,
respectively) [17].

In this paper we study the following problem: given a system of equa-
tions over a finite abelian group, find the best solution. With “best solu-
tion” we mean a solution (an assignment to the variables that satisfies all
equations) that maximises the sum of the variables. We call this problem
MAXIMUM SOLUTION EQUATION (here after denoted by MAX SoL EQN).

A problem that is similar to MAX SoL EQN is NEAREST CODEWORD.!
In this problem we are given a matrix A and a vector b. The objective is to
find a vector x such that the hamming weight (the number of positions in
the vector that differs from 0) of Ax — b is minimised. The decision version
of a restricted variant? of this problem was proved to be NP-complete by
Bruck and Noar [4]. Later on Feige and Micgiancio [8] proved inapproxima-
bility results for the same restricted pro&&. Arora et al. [2] proved that

NEAREST CODEWORD over GF(2) is tQyapproximable within 216" " for
any ¢ > 0 unless NP C DTIME(n@W@Og")). NEAREST CODEWORD is in-
teresting because it has practica ications in the field of error correcting

codes. (b.

MAX SoL EQN is para\gﬁised on the group we are working with and
a map from the elemepf{ ® the group to non-negative integers. The map
is used in the objectNe function to compute the measure of a solution.
Our main result gg®3tight approximability results for MAX SoL EQN for
every finite abeRl? group and every map from the elements of the group
to non-negativ® integers. That is, we prove that for every finite abelian
group and every map from group elements to non-negative integers there
is a constant, «, such that MAX SoL EQN is approximable within « but
not approximable within o — ¢ in polynomial time for any € > 0 unless

IThis problem is sometimes called MLD for MAXIMUM LIKELIHOOD DECODING.
2The problem we are referring to is NEAREST CODEWORD with preprocessing. See [4]
for a definition.
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P = NP. We also show that the weighted and the unweighted versions
of this problem are asymptotically equally hard to approximate. All our
hardness results hold even if the instances are restricted to have at most
three variables per equation. We also prove that this is tight since with two
variables per equation the problems are solvable to optimum in polynomial
time.

Our work may be seen as a generalisation of Khanna et al.’s [13] work
on the problem MAX ONES(F) in the sense that we study larger domains.
However, their work is not restricted to equations over finite groups which
the results in this paper are. Nevertheless, they give a 2-approximation
algorithm for MAX ONES(F) when F is affine. We prove that, unless P =
NP, this is tight. (MAX ONES(F) when F is an affine constraint family is
equivalent to a specific version of MAX SoL EQN.)

The structure of this thesis is as follows, in the first (this) chapter we
give an introduction to the problem. We begin with a background of the
area and present some previous results. In the second section we give a
general introduction to the theory of computational complexity and its
relation to optimisation and approximation problems. We then go on and
state some preliminaries where we define our not@\dn. Our problem, called
Max SoL EQN, is then formally defined tog%@r with the results that we
have obtained. .

In Chapter 2 we prove our inapproxi@ﬂity results for MAX SoL EQN.
That is, we prove that if P # NP t ﬁ\ ere do not exist any polynomial
time approximation algorithms foQE&( SoL EQN with a performance ratio
strictly less than some a. N

We also want to bound ‘s&approximability from above. That is, we
want to say “MAX SoL EQWN.Is approximable within o, for some constant
«. The easiest way to dad{iis is to construct an approximation algorithm for
MAxX SoL EQN and prove that the performance ratio for the algorithm
is . This is what we do in Chapter 3.

The results in Chapter 2 say things about one version (the weighted
version) of MAX SoL EQN and Chapter 3 say things about another version
(the unweighted version) of MAX SoL EQN. In Chapter 4 we prove that
the weights do not really matter, the approximability threshold for the
weighted and unweighted versions of MAX SOL EQN are asymptotically
equal.
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4 1. INTRODUCTION

Finally, in Chapter 5, we prove our main results. The proof combines
the results from the previous chapters. The last section in the final chapter
contains a short discussion about possible future work related to the work
in this thesis.

1.1 A Short Introduction to Complexity The-
ory

This section contains a short introduction to complexity theory and its
relation to optimisation and approximation problems. Readers familiar
with those concepts may want to skip this part of the thesis. For a more
detailed presentation see, e.g., [3].

In this thesis we are going to study a specific optimisation problem. In
an optimisation problem we are, in general, given a set of variables, a set of
constraints over those variables and an objective function. The goal is to
assign values from some domain to the variables such that the constraints
are fulfilled and the objective function is e@r maximised or minimised. A
well known optimisation problem is the.{d®&ar programming problem (here
after called LP). In the LP problem x(e§re given a set of linear inequalities
over some variables. The goal i @& find an assignment to the variables
such that the inequalities are 1@\1 fied and a given linear combination of
the variables is maximised (é'mimised). The LP problem is well studied
and can, for example, b ed with the Simplex algorithm. The set of
values that can be aggiRned to a variable in an optimisation problem is
called the domain ok tMde problem. In the LP case the domain is the set of
real numbers.

Another e le of a optimisation problem is MAX 2SAT. In MAX
2SAT we are given a set of disjunctions over a set of variables. Each dis-
junction contains exactly two literals. An example of a possible disjunction
is thus -z V y. The goal is to assign truth values (either true or false) to
the variables such that the maximum number of disjunctions are satisfied.
In this case the domain consists of two values, true and false.

In the LP case it turns out to be possible to find an optimal solution fast
(we will define what we mean with “fast” soon). For some other problems,
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1.1. A SHORT INTRODUCTION TO COMPLEXITY THEORY 5%

for example, MAX 2SAT it is probably not possible to find optimal solutions
fast. When it is not possible to find an optimal solution fast it is natural to
ask if we can find a “good” solution fast, for some definition of “good”. This
is formalised with approximation algorithms. An approximation algorithm
is a fast algorithm that produces a solution to an optimisation problem
and gives some sort of guarantee about the quality of the solution. The
guarantee can, for example be, (for an maximisation problem) “the measure
of a solution returned by the approximation algorithm will never be less
than 50% of the measure of the optimal solution”. The value 50% is called
the performance ratio of the algorithm. In the MAX 2SAT case there exists
an approximation algorithm that return solutions who’s measure is at least
93% of the measure of the optimal solution. [7]

| |
Example 1.1
Maximise 3x; + 5x2 subject to the following constraints

xr1 + 2%’2 S 8

—T1 +x2 > =5

In this example we have an instance of th problem. In this instance
the objective is to maximise 3x1 4+ 5x2 spject to the constraints in the
example. The optimal solution to thi ance is 1 = 6, xo = 1 which

gives us the measure 3-6 +5-1 = ,§ An approximation algorithm for
the LP problem with the guarang at it will return solutions that have
a measure that is at least 50% (69 e optimal measure could, for example,
return the solution x; = 0, Q&—— 4 to the instance in this example. This
solution has the measure 2\ ahd is larger than the required 0.5-23. It could
not, however, return z 1, o = 1 since this solution has the measure
8 which is smaller t 0.5 - 23. Neither could it return 7 = 0, x5 = 10
because those values do not satisfy the constraints, they are not a feasible
solution to the instance.

| |

In complexity theory it is often said that an algorithm is “fast” or
“practical” if the running time of the algorithm is bounded by a polynomial
in the size of the input.
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6 1. INTRODUCTION

In this thesis we will study a specific optimisation problem with re-
spect to approximability. We will give an approximation algorithm for our
problem, and we will prove that it (probably) do not exists any approxi-
mation algorithms that are better than our approximation algorithm. Our
inapproximability results are of the following form, “MAX SOL EQN is not
approximable within a — € for any ¢ > 0, unless P = NP”, where « is
some well defined number. If, for example o = 2, then the meaning of a
theorem of the above mentioned form is that it is unlikely that there exists
an approximation algorithm that can generate solutions to MAX SoL EQN
such that the solutions always are better than 50% of the optimum value.
Results of this form bound the approximability of a certain problem from
below, they say that it is (probably) not possible to approximate MAX SOL
EQN within a constant smaller than o.

One of the most interesting and most well studied open questions in
complexity theory is whether or not P = NP. It is widely believed that
P ## NP, but no one has managed to prove that. Informally one could state
this question in the following way: For all problems where it is possible to
verify a solution fast, is it equally hard to find solutions as it is to verify
a given solution? P contains all problemst\at are solvable in polynomial
time, i.e., fast and NP contains all pr ms where it is possible to verify
a given solutlon in polynomial tim uitively it seems that it is easier
to verify a solution than to fin &éolutlon Consider, for example, the
problem of finding a proper c mg of a map, using only three colours.
A colouring of a map is coQidered proper if two adjacent countries have
different colours. A tr ay to get a proper colouring is to assign a
unique colour to eacl@ ntry. But if we are restricted to use only three
colours, say red, gr nd blue is there a fast way to decide if it is possible
to find a proper uring to a given map using only those colours? It is
easy to verify ution to the map colouring problem, just check if every
country in the map have a different colour compared to its neighbours.
However, it seems to be very hard to come up with a fast way to find out
if there exists a proper colouring to a given map. One way is to try every
possible combination of colour assignments, however the running time of
this method will grove exponentially with the number of countries in the
map and it is therefore not considered fast. The map colouring problem
is usually called GRAPH COLOURABILITY and has been proved to be NP-
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complete by Stockmeyer [20]. This means that if someone comes up with a
fast algorithm for the map colouring problem then we would have P = NP.

The “unless P = NP” part of our inapproximability results thus states
that our inapproximability results only holds if P £ NP. If it turns out
that P = NP then the results in this thesis would become useless, because
for every problem studied here it would exist a fast algorithm which could
find the optimum.

1.2 Preliminaries

We assume that the reader has some basic knowledge of complexity theory.
We will nevertheless briefly state some fundamental definitions of optimi-
sation problems and approximation in this section, see Section 1.1 for a
brief introduction or [3] for a more detailed presentation of complexity the-
ory. We also assume that the reader has some basic knowledge of group
theory. More specifically the theory of abelian groups. For an introduction
to abstract algebra the reader is referred to [12] and [21].

An optimisation problem has a set of admissgh® input data, called the
instances of the problem. Each instance has of feasible solutions. The
optimisation problem also has a functlon o(cwo variables, an instance and
a feasible solution, that associates an er with each such pair. This
function denotes the measure of the @1 on. The goal of an optimisation
problem is to find a feasible bolu@@hat either maximises or minimises
the measure for a given 1nsta

An NPO problem is an? 1bat10n problem where instances and fea-
sible solutions can be rec ed in polynomial time, feasible solutions are
polynomially bounded i e input size and the measure can be computed
in polynomial time. will only study NPO maximisation problems in
this thesis.

We will denote the measure of our problems with m([,s), where I is
an instance and s is a feasible solution. The optimum for an instance I of
some problem (which problem we are talking about will be clear from the
context) is designated by opT([). We say that a maximisation problem II
is r-approximable if there exists a polynomial time algorithm A such that
for every instance I of I, m(I, A(I)) > opT([)/r. Equivalently, we say
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that the performance ratio of A is r if this inequality holds. The same
terminology is used if there exists a randomised polynomial time algorithm
where the expected value of the measure is greater than opT(I)/r. That
is, if there exists a randomised polynomial time algorithm A’ such that for
every instance I of II, E[m(I, A’(I))] > opt(I)/r, then II is said to be
r-approximable.

In reductions we will work with two different problems simultaneously.
The objects associated with the problem that the reduction is from will be
denoted by symbols without ’ and objects associated with the other problem
will be denoted by symbols with . Thus, for example, the measuring
function of the problem that the reduction starts with will be denoted by
m(I,s) and the measuring function of the other problem will be denoted
by m/(I’,s").

For a random variable X and a set S we use the notation X ~ U(S) to
denote that X is uniformly distributed over S. That is, X ~ U(S) means
that for every x € S we have Pr[X = :U] - 1/|S|

We use the standard deﬁmtlon of 0 . That 1s glven two functions
f(n) and g(n), we say that f(n) is in o(g(n)) if f(n — 0 as n tends
to infinity. [23] Hence, we have in partlé , that 1f f is in o(1) then

f(n) — 0 as n tends to infinity.
For a finite abelian group G = @\—{— we have

G = ap X o-ee X Zp‘—“n
1 n

for some integer n, pri X’pl, ...,pn and integers ag,...,q,. See e.g.
Theorem 11.3 in [12] gn he subsequent parts of this thesis we will assume
that, unless explici tated otherwise, the group G is defined as above.
We will also ide the group with its domain, i.e., we will sometimes
treat G as a uch that G = D. We see the elements in G as vectors of
integers. Position number ¢ in each such vector is an element of pr;i. For
a group G we denote its identity element with Og. We will use addition as
the group operator. Every group dealt with in this text is finite.

For a group G and a subgroup G’ C G of this group we denote the
coset, C, of G’ with representative ¢ € G as G’ + ¢. That is,

G +c=C={z+c|lzed}.
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For a function f : X — N and a set S C X we use the notations
fmax(S) and foum(S) for the following quantities,

fmax(S) =max f(z)  faum(S) = f(=)

reS
TeS

We will sometimes use fuax and fsum as a shortening of fi,..(X) and
fsum (X)), respectively. Those notations will only be used when they are
well defined.

We use “mod” as a modulos operator. For an integer a and a positive
integer b we define “a mod b” as follows,

c=amodb < 0<c<b and c=a (mod?d).

Note that there is a large difference between “a mod b”, which is defined
to be the unique integer that lies between 0 and b — 1 (inclusive) and is
congruent to a modulo b, and “a = b (mod m)” which states that a is
congruent to b modulo m.

To describe our algorithms we use a simplegyseudo code syntax. It
is mostly self-documenting but we will mdkeég:i comments of it here.

We use « as the assignment operator. matrlx A the expression
Rows(A) denotes the number of rows in @q C’ols ) denotes the number
of columns in A. For a set S the expr n Rcmd(S ) is a random element

from S, more precisely, for every xé@‘thc value of the expression Rand(5)
is  with probability 1/|95].
\6

1.3 Definitio ind Results

We are going to stu he following problem in this thesis.

Definition 1.1. WEIGHTED MAXIMUM SOLUTION EQUATION(G, g) where
G is a group and g : G — N is a function, is denoted by W-MAX SOL
EQN(G, g). An instance of W-MAX SoL EQN(G, g) is defined to be a
triple (V, E,w) where,

o V is a set of variables.
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o I is a set of equations of the form wy + ... 4+ wi = Og, where each
w; 18 either a variable, an inverted variable or a group constant.

e w is a weight function w :V — N.

The objective is to find an assignment f :V — G to the variables such
that all equations are satisfied and the sum

18 maximaised.

Note that the function g and the group G are not parts of the input.
Thus, W-MAX SoL EQN(G, g) is a problem parameterised by G and g.
We will also study the unweighted problem, MAX SorL EQN(G, ¢), which
is equivalent to W-MAX SoL EQN(G, ¢) with the additional restriction
that the weight function is equal to 1 for every variable in every instance.
The collection of linear equations in an instance of W-MaX SoL EQN(G,

g) can also be represented in the standard as an integer-valued matrix,
A, and a vector of group elements, b. e variables are called z1,...,x,,
we can then, with & = (21, ..., 2z, )5 \use Az = b as an equivalent form of
the sets V and FE in the definitid ove.

Due to Goldmann and Ru s result [9] that solving systems of equa-
tions over non-abelian gr 1s NP-hard, it is NP-hard to find feasible
solutions to MAX Soi, (H, g) if H is non-abelian. It is therefore

sufficient to only studgWax SoL EQN(H, g) where H is abelian.
To describe ourggsults we need the following concept.

Definition 1 Coset-Validity). Let G be an abelian group. A non-
empty set B C G s coset-valid with respect to G if there exists a matriz
A, a vector b, a vector of variables € = (z1,...,2,,)" such that the system
of equations Ax = b restricts the values that 1 can have such that those
values form a subgroup, G', of G. Furthermore, there exists a group element
c € G such that B =G’ + c.
That is, the set
G = {r, | Az = b}
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1 a subgroup of G. Furthermore, there exists a group constant, ¢ € G, such
that
B={c+x | Az =b}.

If those conditions are fulfilled then B is coset-valid with respect to G. Note
that B is a coset of G' with representative c.

Given a group G there is always at least one set that is coset-valid with
respect to GG, namely G itself.

The main result of this thesis is the following theorem about the ap-
proximability of MAX SoL EQN(G, g).

Theorem 1.1 (Main). For every finite abelian group G and every func-
tion g : G — N, MAx SoL EQN(G, g) is approximable within o where

max B . B .
o = max {%B ' B is coset-valid with respect to G} .
gsllIIl

Furthermore, for every finite abelian group G and every non-constant
function g : G — N MAX SoL EQN(G, g) is not&qpmm’mable within o — €
for any € > 0 unless P = NP. Q)

We will prove Theorem 1.1 in ChapterQ.s Note that if g is a constant
function then every feasible solution h e same measure and finding an
optimum is solvable in polynomial tigs.

We will also prove that the aq&(lmabﬂity threshold for W-MAX SoOL
EQN(G, g) is asymptotically 1 to the approximability threshold for
Max SoL EQN(G, g). Tha A we will prove that W-Max Sor EQN(G,
g) is approximable withi o(1) where the o(-)-notation is with respect
to the size of the inst: . Furthermore, we will prove that W-Max SoL
EQN(G, g) is not aps®ximable within o — € for any € > 0, unless P = NP.
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Chapter 2

Inapproximability

In this chapter we are going to prove inapproximability results for MAX
SoL EQN. We will begin with a section with some preliminaries, we use a
few other problems in our inapproximability proofs which are presented in
Section 2.1, we also introduce a special ki f reduction.

We will then go on and prove an 'Qgpproximability result for one of
the new problems, namely MAXIMM\# EXPRESSION, which is defined in
Section 2.1. To do this we use d’s [10] inapproximability results for
MAX-Ek-LIN-G, the latter pr 15 also defined in Section 2.1.

In Section 2.3 we use Qg-mapprommablhty results of MAXIMUM EX-
PRESSION in a gap-preser, reduction to prove an inapproximability bound
for MAX SoL EQN(G }x This bound turns out to be tight for some groups
G and some funct1 »g : G — N, but not for all such combinations. We
sult as a stepping stone to prove our final inapprox-
n Section 2.4. The proof of the final result relies on the
observation that for some combinations of groups, GG, and functions, g, it is
possible to construct a linear system of equations that induce a subgroup
of G which is, in a sense made clear below, hard to approximate.

This latter result is the main theorem of this chapter. It is formally
stated as follows:

Theorem 2.1 (Main Inapproximability Theorem). For every finite
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abelian group G and every non-constant function g : G — N it is not
possible to approzimate W-MAX SoL EQN(G, g) within o — € where

max B . . .
a = max {g—g|3| ‘ B is coset-valid with respect to G}
gSuIIl

for any € > 0 unless P = NP.

This theorem turns out to be a tight inapproximability result for W-
Max SoL EQN(G, g). That is, the theorem states that it is not possible
to approximate W-MAX SoL EQN(G, ¢) within « — € for some o and any
e > 0 unless P = NP. We will, in Chapter 3 and Chapter 4 prove that
there exists an a-approximation algorithm for W-Max SorL EQN(G, g).

2.1 Preliminaries

We will prove our inapproximability results with a special kind of reduc-

tion, namely a gap-preserving reduction introdt by Arora in [1]. The
definition is as follows. 0

Definition 2.1 (Gap- preservmg re@ [1]). Let IT and II" be two
maximisation problems and p,p’ > gap- prebelvmg reduction with

each instance I of 11, f producesQ&instance I' = f(I) of II'. The optima
of I and I', satisfy the folloy roperties:

parameters ¢, p,c’, p’ from II to H?' polynomzal time algorithm f. For

o if OPT(]) > ¢ then QNT'(I') > ¢/, and
o if oPT(I) < ¢/ QMen orT(I') < /p.

Gap-preserving reductions are useful because if for every language in
NP there is a polynomial time reduction to the maximisation problem
IT such that YES instances are mapped to instances of II of measure at
least ¢ and NO instances to instances of measure at most ¢/p, then a gap-

preserving reduction from IT to I’ implies that finding p’-approximations
to I is NP-hard. [1]
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Definition 2.2. MAXIMUM EXPRESSION over the abelian group G is de-
noted by MAX EXPR(G). An instance of MAX EXPR(G) is defined to be
I = (V,E) where,

e V is a set of variables, and

o £ ={ey,...,en} is a set of expressions. Each expression e; is of the
form c¢; + w;1 + wio + ... where w;1, w40, ... are either variables or
inverted vartables and c; 1s a group constant.

The objective is to find an assignment f : V. — G and a group element
x € G such that the maximum number of expressions in E evaluate to x
when the variables in the expressions are assigned values according to f.

The inapproximability of the following problem is the starting point for
our results in this chapter.

Definition 2.3 (MAX-Ek-LIN-G [10]). An instance of MAX-Ek-LIN-G
is defined to be (V, E) where

e V is a set of variables, and

e F is a set of linear equations over, group G with exactly k variables

in each equation. é.
The objective is to find an assi nt f 'V — G such that the maximum
number of equations in E a 1sfied.

The following theore n be deduced from the proof of Theorem 5.9
in [10]. (In [10] the theRm is first proved for the case k = 3 there is then,
on page 827, a hint qnshow this proof can be generalised to an arbitrary k.
However, it appegd®that the proof which is suggested in [10] do not work.
A slight modj ion of Theorem 5.9 in [10] do give the desired result,
though. [11])

Theorem 2.2. For every problem I1 in NP there is a polynomial time
reduction from instances I of 11 to instances I' = (V, E) of MAX-Ek-LIN-
G such that

e if [ is a YES instance then at least (1—0)|E| equations can be satisfied,
and
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e if I is a NO instance then no assignment satisfies more than |E|(1 +
9)/|G| equations

where § is an arbitrary constant such that 0 < § < 1. Furthermore, no
equation in E contains any variables in their inverted form. That s, all
occurrences of the variables are non-inverted.

2.2 Inapproximability of MAX EXPR

The inapproximability results we need for MAX EXPR is proved in this
section.

Lemma 2.1. For every problem II tn NP there is a polynomial time re-
duction from instances I of 11 to instances I' = (V, E) of MAX EXPR(G)
such that

e if [ is a YES instance then opT(I') > (1 —0)|F|, and
e if I is a NO instance then opT(I") < |E|(1+0)/|G|

where § 1s an arbitrary constant such that 0 1. Furthermore, every
expression in E has exactly k variables an&,gcd k,p;) = 1 for every i,
1 <4 <n.

Proof. Choose k > 1 such that ged \k— 1 for every i, 1 < i < n. We
could, for example, choose k as k + HZ 1 Di-

We will prove the theorem vy reduction from MAX-Ek-LIN-G. The-
orem 2.2 makes this a suit@pproach Given an instance J of an arbi-
trary problem II in NP, gdsce J to an instance, I = (V, E), of MAX-Ek-
LIN-G with the reductigy™in Theorem 2.2. We will construct an instance
I' = (V, E') of MAXRXPR(G) from I.

Every equation e, in F is of the form z; 4 ... + 21, = ¢;. For every e;
add the expression e], which we define as, z1 + ...+ 2 — ¢j to E'.

According to Theorem 2.2 we know that either opT(I) > |E|(1 —§) or
op1(1) < |E|(1+6)/|G].

Case 1: (opT(I) > (1—0)|E]) Let f be an assignment such that m(1, f)
(1—0)|E|. The same assignment used on I’ will give m’(I’, f) > m(I, f)
(1 —0)|E|. (At least (1 — 0)|E| of the expressions will evaluate to Og.)

IV
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Case 2: (opT(]) < |E|(1+ 6)/|G|) Assume that we have an assignment
f':V — G to I' such that m/(I’, f') > |E|(1 + 0)/|G|. Then there exists
an element a € G such that more than |F|(1 + §)/|G| expressions in I’
evaluate to a when f’ is used.

As ged(k, p;) = 1 for every i, 1 <i < n the integer k£ has a multiplicative
inverse in every Zp;w. Therefore, the equation kg = —a has a solution ¢ in
GG. We can now construct an new assignment, f, to the variables in I and
r.

fv)=f(v)+q
If we use f on I’ we get the following value for the expressions that evalu-
ated to a under f’: (we are abusing our notation here; f(Q)) where @ is an
equation or an expression means that the variables in () shall be assigned
values according to f)

flef) = flz)+...+ flae) — ¢
= kq+ fl(z1) +. .+ fl(@e) — ¢
= kqg4+a=—a+a=0g

Under f” we had more than |E|(1+6)/ |G®(pressions which evaluated to
a, now under f all those expressions ate to 0. However, that more
than |E[(1 + 6)/|G| expressions in I{ eValuate to O¢ is equivalent to that
more than |F|(1+0)/|G| equati &4 I are satisfied. We have constructed
an assignment f such that ) > |E|(1 +6)/|G|. This contradicts
our initial premise that O < |E|(1 + 9)/|G|, the assignment f’ can
therefore not exist. Hen %\GPT(I’) < |E|(1+49)/|G].

To conclude the p ote that we have proven that if opT(I) > |E|(1—
d) then opT(I’) > | E.;—é) and if opT(I) < |E|(1+9)/|G| then opT(I") <
|E|(149)/|G|. TR§together with Theorem 2.2, gives us the desired result.
O

2.3 A First Inapproximability Result for MAX
SoL EQN

In this section we prove a first inapproximability result for MAX SoL EQN.
This result will be used in Section 2.4 to prove a stronger inapproximability
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result for MAX SoL EQN.

Lemma 2.2. For any finite abelian group G and any non-constant function
g : G — N it is not possible to approximate W-MAX SoL EQN(G, g) within
a — € where

gsum

for any € > 0, unless P = NP.

Proof. We will prove the lemma with a gap-preserving reduction from
Max ExXPR(G). Given an instance, J, of an arbitrary problem II in NP,
reduce J to an instance, I = (V, F), of MAX EXPR(G) with the reduction
in Lemma 2.1. We will use I to construct an instance I’ = (V, E',w’) of
W-Max SoL EQN(G, g). According to Lemma 2.1 every expression e; in
E is of the form x1 + ... 4+ z; + ¢;. Furthermore, we have ged(k,p;) =1
for every i, 1 <1 < n.

For every e; € F add the equation e;, defined as 1 + ...+ xp +¢; = 2;
to E', where z; is a fresh variable. Let w’(z;) =1 for all 1 < j < |E| and
w'(+) = 0 otherwise.

We claim that the procedure presented aboy gap-preserving reduc-
tion from MAX EXPR(G) to MaX SoL EQNEY ¢g) with parameters

C -

/
C —

=5
r - B

Where 0 is the constant %n Lemma 2.1. The last parameter, p’, is
specified below. Accord® to Lemma 2.1 we know that either opT(I) >
|E|(1 —6) =coropP <|E|(146)/|G| = ¢/p.

Case 1: (opT(I) > (1—0)|E|) Let f be an assignment such that m(7, f) >
(1—6)|F| and let a € G be the element that most expressions in F evaluate
to under f. Let b be an element in G such that g(b) = gmax and let
g be the element in GG such that kg = —a + b, such a ¢ exists because
ged(k,p;) = 1 for every i, 1 < i < n. Construct an assignment f’ as
follows: let f'(x) = f(x) + ¢ for every z € V and let f’(z;) be the value in

GG such that equation e} is satisfied.
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Now, given a fixed but arbitrary ¢ > 0 we can choose 0 < § < 1 such that

p > |G’|gInax —e=a—¢.

sum

Note that due to the assumption that g is non-constant we have |G |gmax/gsum >
1. The gap-preserving reduction implies that it is NP-hard to find p'-
approximations to W-MAX SoL EQN(G, g), and as p’ > o — € we have the
desired result. 0

2.4 Inapproximability of MAX SoL EQN

We are now ready to prove the main inapproximability theorem.
Proof (Of Theorem 2.1).  We will begin with an outline of the proof.
Let I’ be an arbitrary instance of W-MAX SoL EQN(G’, ¢'), where G’
is a new group and ¢’ : G — N is a new function, both of them will
soon be defined. We will then prove that W-Max SoL EQN(G’, ¢’) is not
approximable within oo — € for any € > 0 unless P INP. As the final step
we will transform I’ to an essentially equivalen tance I of W-MAX SOL
EQN(G, g). That is, for every solution s to {H¥e can construct a solution
s’ to I’ in polynomial time such that m ‘=m/(I',s') and vice versa.

If we could approximate W-MAX EQN(G, g) within some ratio
B < a we would be able to approxj W-Max SorL EQN(G’, ¢') within
(B too, because given an mstan ’, of W-Max SoL EQN(G', ¢') we
can transform it into an ess equivalent instance, I, of W-MAX SoL
EQN(G, ¢) and find a 3 éroxnnate solution, s, to this instance. This
solution, s, can then be 'sformed into a (B-approximate solution, s’, to
I’ (due to the relatio tween [ and I’, they are essentially equivalent).
We will now prove t heorem.

Let A be a matrix, b be a vector, ¢ a group constant and = (x1,..., %
a vector of variables such that

)T

gmaX(B)

B={zi+c|Ax =0 and o =
tor el J doum (B)

|BI.

The objects A, b and ¢ do clearly exist due to the definition of coset-validity.
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Let the group G’ be defined as follows
G' = {x1 | Az =b}.

That G’ is a subgroup of G follows from the definition of coset-validity.

We define ¢’ : G’ — N as ¢'(z) = g(z + ¢). Note that g/, = gmax(B)
and g.,,, = gsum(B). Hence, according to Lemma 2.2, MAX SoL EQN(G’,
¢’) is not approximable within o — € for any € > 0 unless P = NP.

An instance, I’ = (V' E',w’), of W-MaAx SoL EQN(G’, ¢') can be
transformed into an instance, I = (V, E,w), of W-MaX SoL EQN(G, g)
in the following way, assume that V' = {x1,..., 2, }.

Let

V=V'U{y; |1<i<m/,1<j<m'}uUu{z|1<i<m'}.
For each variable x; in V' add the equations

Yi1
S
y? ‘
Yi1

Q~ = x;+c

to the set E”. Thos ‘sl%atlons will force the x; variables to be assigned
values that are in %‘mdlly we let £ = E' UE"”. The weight function,
w, is constructec follows, for 1 < i < m/, w(z) = w'(x;) otherwise
w(-) = 0.

Given a solution s : V' — G to I we can construct a solution s’ : V! — G’
to I’ with the property that m(s,I) = m/(s’,I’). Note that the equations
in E” force the x; variables to be assigned values that are contained in G’.
Hence, for every feasible solution s to I we have that s(x;) € G’ for all
i such that 1 < i < m. Let s’ be constructed as s'(z;) = s(z;) for all
such that 1 <7 < m. Note that s’ must be a feasible solution to I’ as we
have included the equations in £’ in E. The measure of s and s’ are then

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 3
Approximability

Our approximability results for MAX SOL EQN(G, ¢) will be proven in this
chapter. We will present a randomised approximation algorithm, called
APPROX-SOLUTION, that just picks a feasible solution at random. The
somewhat complicated part turns out to he analysis of this algorithm.
We will show that the performance rati QYhis algorithm is equal, up to an
arbitrary additive constant, to the ir&pproximabihty ratio of Theorem 2.1.
That is, we will prove the follows 1eorem.

Theorem 3.1 (Main App Qrability Theorem). APPROX-SOLUTION
1S an a-approximation az_&m for MaAx SoL EQN(G, g), where

RN
NG

= max | B| ' B is coset-valid with respect to G} .

3.1 Algorithm Overview

The algorithm consists of four parts, TRANSFORM-MATRIX, REMOVE-
Rows, RANDOM-SOLUTION and APPROX-SOLUTION. As we are working
with the abelian group G we can divide the input into n independent sys-
tem of equations, each one over a group of the form Zp?i. This is done
in APPROX-SOLUTION. Each such system of equations is then given to
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TRANSFORM-MATRIX which restructures the system of equations to a spe-
cific form. This restructuring is then continued in REMOVE-RoOws. The
restructuring is performed in a way which preserves the solutions to the
system of equations. Finally the decomposed and restructured systems of
equations is fed to RANDOM-SOLUTION which generates a random solu-
tion. Note that the sequence TRANSFORM-MATRIX and REMOVE-ROWS
is run once for each group which G is composed of. Hence, they will in
total be run n times where n is the number of groups that G is composed
of. The n system of equations generated by TRANSFORM-MATRIX and
REMOVE-ROWS is then used by RANDOM-SOLUTION to find one solution
to the original system of equations over G.

3.2 Matrix Restructuring

The goal of this chapter is to present an algorithm which restructures a
system of equations, given on matrix form Ax = b, into an other equiva-
lent system of equations, A’x = b’, where the matrix A’ satisfies certain
properties.

The structure of this chapter is as followsc% begin with a description
of what kind of restructuring we want tg o to the system of equations.
We then continue with a section wit e mathematical preliminaries
that we will use in the subsequent 5 of the chapter. In the final two
sections we present the two restrq@ﬂng algorithms TRANSFORM-MATRIX
and REMOVE-ROWS, we also R their correctness.

At the end of the restr€ptNting algorithms we want that A’ = (a;j)
satisfies the properties liggl*below. (Remember that we are working over
Z,o here.)

(i) aj; =0 fori > j.

(ii) For every i we either have a}; = p* for some k or a}; = 0, furthermore
. . . / / Ik A .
for ¢ < j we either have aj; < a}; or a;; = p* and a}; = 0 for some k.

(iii) For every row i and every element a

70 if j > i then a;j is a multiple
of al,.
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The transformation from A to A’ is done by TRANSFORM-MATRIX. The
algorithm REMOVE-ROWS will then do some further restructuring, which
is not captured by the properties above.

3.2.1 Preliminaries

We need the following lemma in this section. It is a fundamental result
about the existence of a multiplicative inverse. The proof can be found in

any introduction to the theory of numbers. It can, for example, easily be
deduced from Theorem 4.10 in [19].

Lemma 3.1. For a given x the equation
zy=1 (mod p%) (3.1)

has one unique solution (i.e., all solutions to (3.1) are congruent modulo
p®) if ptx, furthermore if p | © then no solutions exist to (3.1).

When a solution exists to (3.1) it is called the inverse of # modulo p®

1 O@

and the solution is denoted by x~".
<

3.2.2 TRANSFORM—MATRDQ}‘

Given a system of equations o@pn, for some prime p and integer «, on
matrix form, Ax = b, it is o see that any combination of the following
elementary operations ¢ s a new system of equations which have the
same set, of solutions Q\ e original one.
1. Interchangi wo rows of A and the corresponding elements in b.
That is, dering the equations.

2. Interchanging two columns of A. That is, reordering the variables.

3. Adding a multiple of row ¢ to row j and adding the same multiple of
b; to bj, where ¢ # j.

4. Multiplying a row of A and the corresponding element in b by a
constant ¢ such that p 1 c.
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At this stage every element a;; with 7 > ¢ is equal to

ZEro.
7 Return (A, b)
8 Else
9 [—1+1
10 Goto 4
11 end
12 end
13 Interchange row ¢ and row ¢ of A and interchange b; and b..
14 Interchange column j and column ¢ of A.
15 At this stage we have a.. = sp!~! for'some s such that p1{ s.
Multiply row ¢ in A and b with s—!.
16 Reduce row ¢ in A and b modulo p©.
17 For r from c+ 1 to Rows(A) do
18 We have a,. = tp!~L for some t. Subtract ¢ times row ¢ from
row 7. Reduce row'c modulo p®.
19 end
20 end

21 Return (A, b)

We will now describe how TRANSFORM-MATRIX works. On lines 1 and 2
we reduce the matrix, A, modulo p® and initialise [ to 1. [ is a variable that
will be used to keep track of the current exponent of p we are working with.
On line 4 we look for an element, on a row that we have not yet processed,
which is not divisible by p'. If | = Iy at some point in the algorithm then we
know that there are no elements in the non-processed part of the matrix
which is not divisible by p'*~—!, because such elements would have been
chosen on line 4 in some previous iteration of the algorithm, when [ held a
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smaller value. Therefore, if we find an element which is not divisible by p
we know that it must be divisible by p!~!. If we do not find such an element
we increase [ and try again. When we have found our non-divisible-by-p'
element we rearrange the matrix such that this element is positioned on the
diagonal, this element is now denoted by a... The repositioning is done on
lines 13 and 14. On line 15 we multiply the row with an appropriate value
to get a power of p in the diagonal element a... Finally, on lines 17-19 we
add an appropriate multiple of the current row (row ¢) to every row below
to get zeros in the column below a...

It is easily verified that TRANSFORM-MATRIX runs in polynomial time.

We prove the correctness of TRANSFORM-MATRIX in the following lemma.

Lemma 3.2 (Correctness of TRANSFORM-MATRIX). TRANSFORM-MATRIX
always returns a matriz, A’, that satisfies the properties (i)—(iii). Further-
more, if TRANSFORM-MATRIX returns (A’,b") on input A, b, p and « then
the system of equations Ax = b and A'x = b’ have the same set of solutions
over Zyo (except a possible reordering of the variables ).

Proof. The second part of the lemma holds becauge the only modifications
done to A and b by the algorithm are eleme operations. The mul-
tiplication on row 15 do not create any pro s because as p 1 s, there

exists an inverse s~! to s, hence ss~! = JJPowever, the only elements in
e not multiples of p and as s is

Z - that have inverses are those whic
an inverse to s~! we must have p this follows from Lemma 3.1). We
will prove the first part of the le with the following loop invariants.

<9
Ly: At the beginning of lh@%the Rows(A) x ¢ — 1 upper left sub matrix
of A satisfies (i). .

Lo: At the beginni line 4 the ¢ — 1 x ¢ — 1 upper left sub matrix of
A satisfies (ii).

L3: At the beginning of line 4 the ¢ — 1 x Cols(A) upper left sub matrix
of A satisfies (iii).

When ¢ = 1 the loop invariants are vacuously true. Now assume that the
loop invariants are true for ¢ = c¢yg. We will prove that they are also true
for ¢ = ¢g + 1.
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Case 1: (There are indices i,j > ¢ in A such that p' { a;;.)

Ly: For all  such that ¢+ 1 < r < Rows(A) we will have a,, = tp'~!
for some ¢, because if p'~! { ar. then those indices would have been
chosen on line 4 in some previous iteration of the algorithm and [
would not have been increased to its present value. As we have a,.. =
tp'~1 lines 14-15 will clearly make the matrix satisfy a,. = 0 for
c+1 <r < Rows(A) and as we have assumed that L; holds for
¢ < ¢g the loop invariant L; must hold for ¢ = ¢g + 1 too.

Lo: We will have a.. = sp'~! for some s such that p { s on line 15. (We
must have p'~! | ac. because otherwise this matrix element would
have been chosen in some previous iteration of the algorithm before
[ was increased to its present value, furthermore we cannot have p | s
because then we would not have had p’ { a;; on line 4.) As pts, s do
have a multiplicative inverse in Z,.. After we multiply row ¢ with
s~ we will have a.. = p'~'. Note that a.. will not be modified any

more by the algorithm, hence as Lo is true for ¢ < ¢q it is also true

for ¢ < ¢g + 1. @

L3: To prove L3 for this case, assum(%at there is an index j such that
j > c and aec 1 acj. Then Nitust have [ > 1, because otherwise
we would have a.. = 1, & implies ac. | ac;. However, | would
not have been increasedf? its present value if there was an element,
acj, in the matrix st at aee = plt f acj. We conclude that the
element a; canno‘{\@lst.

Case 2: (There ar, n% indices i,j > c in A such that p' { a;;.) If | = «
every element a;; 1 7 > ¢ must be equal to zero, as the matrix has been
reduced moduQp™ and there did not exist any indices ¢,7 > ¢ such that
p® =01 a;;. As we have assumed that L;, Ly and L3 holds for ¢ < ¢p, L1,
Lo and Lo must, in this case, hold for the entire matrix.

Assume that [ < a. The variable [ will then be increased and sooner or
later we will either get case 1 or the first part of case 2. With that, we are
done with case 2.

The loop will terminate on either line 7 or on line 21. We have already
considered the first case above. In the second case the loop terminated
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All matrices AV, ..., A™ have the same number of columns.
1 ¢« Cols (A(l))
2 For j from 1 to n do
3 r «— Rows (A(j))
4 For i from r + 1 to c do

BY) 7 o,
) p.7

5
6 xgj) «— Rand (ng))
7 end
8 For i from r down to 1 do
9 egj) — bgj) - Zi:m az('i)xl(cj)
() @) — () a;

10 B, <—{q|q€Zp;vJ, a; q =e;" (mod p; )}
11 If BZ.(j) = () then
12 Return “no solutions”
13 end

+9  Rand <B(j>)
14 i i
15 end
16 end

17 For 7 from 1 to c.do
e (az(l) x(")>
18 i i o Ty

19 end

20 Return (xq,...,z.)

RANDOM-SOLUTION is supposed to be given n matrices A1), ..., A™ and
n vectors b, b(") those matrices and vectors come from TRANSFORM-

MATRIX followed by REMOVE-ROWS. The matrices therefore satisfies the
properties (i)—(iii) in Section 3.2.

On line 1 in we assign the number of columns in the matrices to c.
This is done to shorten the notation somewhat in the subsequent parts of
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the algorithm. The first for loop, on lines 2-16, loops over the different
groups that G is composed of. We generate a solution to the system of
equations over each such group independently of each other. On lines 4-7
we generate values to the last ¢ —r — 1 variables. They are not constrained
in any way by any other variables and can therefore be chosen freely from
the entire group. On lines 8-15 we generate values for the variables that
are constrained by other variables. We do this “backwards”, i.e., we start
with variable number r and go down to 1, this is because variable number
¢ — 1 may depend upon variable number i, we therefore need the value of
variable number ¢ before we know which values can be assigned to variable
number ¢ — 1. However, due to the form of the transformed matrix variable
number ¢ will never depend upon variable number ¢ — 1. This observation is
the fundamental idea behind RANDOM-SOLUTION. In the last for loop on
lines 17-19 we compose the different group solutions to one solution over
G.

It is easily verified that RANDOM-SOLUTION runs in polynomial time.
To prove the correctness of RANDOM-SOLUTION we need a couple of tech-
nical lemmas, which are presented in the following section. In will use those
lemmas in Section 3.3.3 to prove the Correctness@‘RANDOM—SOLUTION.

©
3.3.2 Technical Lemmas \{.é

is about the number of solutio a specific congruence. The second
lemma is about the distributio{ a linear combination of certain random
variables. A

We need two lemmas to prove th; @ts in this chapter. The first one

*

Lemma 3.4. A congrg®ce of the form
xp” =c¢ (mod p%)
for some prime p, positive integer o and non-negative integer n have,
1. exactly p™ incongruent solutions if n < a and p" | ¢, and

2. no solutions if n > 0 and p" 1 c.
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Note that congruences modulo p® is equivalent to equations over the
group Z,~. Each congruence class modulo p® may be seen as one group
element in Z,~. We will therefore be able to use this lemma when we prove
results about equations over groups of the form Z.

Proof (Of 1). As p™ | ¢ then there exists an integer m such that mp™ = c.

xp™ =c¢ (mod p%) =
p* | xp™ — mp" —
dk : kp® = xp” — mp" <=
dk:x=kp* " +m

The last statement gives us the p™ incongruent solutions, they are generated
by k=0,....k=p" —1. O
Proof (Of 2).
zp™ =c¢ (mod p%)
dk : kp® = xp" — ¢
dk . c = xp™ — kp©
dk:c=p"(x — kp* R

1ree

Hence, the only possibility for a solution€Q) exist is if p™ | ¢, but we assumed

p™ 1 ¢ and therefore no solution can XE‘E. O
We will also need the followi%%mma about the distribution of linear

combinations of certain uniforw distributed random variables.

Lemma 3.5. Let A and &e subgroups of H = Zy« for some prime p
and integer . Given tw&%bnstants, a,b € N and two independent random
variables X ~ U(A)%nd Y ~ U(B), define the random variable Z as
Z =aX +bY. WMl then have Z ~ U(C) for some subgroup C' of H.

Proof. For ew subgroup of H there is a non-negative integer, r, such
that the subgroup is equal to {p"z | 0 < x < p*~"}.
Assume that k£ and [ are integers such that A = {p*z | 0 < z < p*~F}
and B = {plz | 0 <z < p*~'}. Due to the observation above those integers
exists. Furthermore, let o/, ', n and m be the integers such that a = a’p"
and b = b'p™ where p1a’,b’. Such integers exists for every integer a and b.
We introduce new random variables, X’ and Y’, such that X = p*X’
and Y = p'Y”’, we then have X’ ~ U({0,...,p* ¥ ~1})and Y’ ~ U({0,...,p* !
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1}). Furthermore, we can now express the random variable Z as
7 — (IX + bY . a/an + b/anY . a/pn—i-k:X/ + b/an—Hy/‘ (34)

Assume, without loss of generality, that n + k < m + [. We can then
rewrite (3.4) as

7 — pn+k (CL/X/ + b/p'rrrl»lfnfky/) .

If n+k > «athen Z = U({0g}) (ie., Pr[Z =0g] = 1). This follows
from the fact that every integer which is divisible by p® is congruent with
0 modulo Z,«. This Z and the trivial subgroup C' = {0y} of H give
us thc desired result for this case. Now assume that n + k£ < a and let

= {zp"t* | 0 < o < p* "k}, For each xp"** € C the probability that
Z equals zp"t* is

Pr[Z = ap"™ (mod p)] -
Pr [p"‘+k (a’X’ + b/p7n+l—n—kyl) = .’L’pn+k (mod pa)} o
Pra/ X'+ ¥pmH=""FY' =2 (mod po‘o@)} : (3.5)

Note that a’X’ mod p®~"= % ~ U({0,. (_)"_k — 1}), this implies, to-
gether with the fact that Y’ is 1ndepen of a’ X', that the probability

Pr [CLX/:T (mod p Q% —p—(” n—k) _ 77+A —a

is equal to (3.5). We conclu e\’ﬁ%mt Z ~U(C). O

*

3.3.3 Correctn

In the following lemma we will prove the correctness of RANDOM-SOLUTION.
We will use variable names from the algorithm in this lemma, hence ¢, r

and L(j ) refer to those variables in the algorithm.
ThlS lemma is the main ingredient in our approximability result for

Max SoL EQN(G, g). What we really want to prove is that the variables

%‘EJ ) will always be uniformly distributed over a coset of some subgroup

of G. At a first look on RANDOM-SOLUTION this seems to be a trivial

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

36 3. APPROXIMABILITY

statement, those variables are clearly uniformly distributed because they
are assigned values with a statement such as Rand(S), for some set S
However, note that the set S may depend on previous choices made by the
algorithm. It is therefore not clear that those variables will be uniformly
distributed. However, the following lemma and its proof tells us that this
always is the case.

Lemma 3.6 (Correctness of RANDOM-SOLUTION). If RANDOM-SOLUTION
is given an instance of MAX SOL EQN(G, g) with at least one feasible solu-
tion that have been fed through TRANSFORM-MATRIX and REMOVE-ROWS
then for all i and j such that1 <1 < c and 1 < 5 <n the following entities
exists,

e a subgroup Gg'j) of Zpgx,,- .

e a random variable Zi(j), and

e a group constant 07(;'7) € Zp(_»,-.

J

Furthermore, those entities and the Uariaé%,gj), satisfy the following prop-
erties

° m,gj) = ij) + c,gj), and \l_é‘
« 79 LU (G§.1>>_ Qpﬂ\

The central part of'th’lemma is the last two bullet points, which tells
us that x,gj ) is unifo y distributed over some coset of some subgroup of
pr‘vj. We will nogQ¥0 on with the proof.

J
Proof. Fix j. will prove the lemma with induction on 7. The induction
hypothesis we will use is:

There exists random variables Yl(j ), o Yc(j ) such that for every i, 1 <
i’ < ¢ the following entities exists,

e a subgroup Gg}j) of Z o,

e integers d('jg,, o d£72, and
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It remains to prove that the induction hypothesis implies the lemma we
want to prove. By repeatedly applying Lemma 3.5 to

=1 3
k=i+1

we get the desired result. To see this consider the first two terms in the

sum, dfi)“Y?(Jz)l and d5227§/7$% Let @1 be defined as Q1 = dgi)l?YfJZ% +

dE‘QQzYLgﬂ% Lemma 3.5 then tells us that @)1 is uniformly distributed over
some subgroup of Zpgwj. We can then apply Lemma 3.5 again on ); and

J
the third term in the sum, dffgﬂﬁ(ﬁ%, to define a new random variable, ()5,
as the sum of (); and the third term. Due to Lemma 3.5 ()5 will also be

uniformly distributed over some subgroup of Zpaj . Continuing in the same
J

manner we will get

flfz(j) - ng) + Qc—i—1 &
00
where Q)._;_1 is uniformly distributed oveéso‘me subgroup of Zp(vj . As the
last step let Zi(j) = Qe_i_1- Q\t‘ O

>
&

%\
3.4 APPROX-S TION

In this section we présent the final part of the approximation algorithm,
APPROX-SOLUTION. APPROX-SOLUTION uses TRANSFORM-MATRIX, REMOVE-
Rows and RANDOM-SOLUTION to find an approximate solution to an in-
stance I = (A, b) of MAX SoL EQN(G, g).

We begin with presenting the algorithm in this section, in Section 3.4.1
we prove its correctness and, finally, in Section 3.4.2 we analyse the per-
formance of the algorithm.
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n systems of equations over the groups Z o , for i, 1 < ¢ < n. This is
what APPROX-SOLUTION does on lines 4— 4 Furthermore Lemma 3.2 and
Lemma 3.3 says that lines 4-4 do not alter the set of feasible solutions.

TRANSFORM-MATRIX returns an equivalent system of equations with
the property that the matrix is upper triangular. This makes back substi-
tution a valid approach to find solutions, which is exactly what RANDOM-
SOLUTION does. It is therefore clear that RANDOM-SOLUTION will not
return a non-feasible solution. O

Proof (Part 2).  “no solutions” is returned on two places, on line 2 in
REMOVE-ROWS and on line 12 in RANDOM-SOLUTION. Lemma 3.3 says
that REMOVE-ROWS will only return “no solutions” if there do not exist
any feasible solutions to I. RANDOM-SOLUTION returns “no solutions' if

B(J = (). Lemma 3.4 tells us that this happens if and only if a )(e(‘]

Property (iii) of AY) implies that we will have am 1 eé‘” if and only

if a(j) 1 b(.J) As b(.J) is independent of the random choices that RANDOM-
SOLUTION does we will only get a(‘7 ) 1 b,gj ) if there are no feasible solutions

to the instance I. O

Proof (Part 3). As argued in the proof of par@?of this lemma, lines 4-4 of
APPROX-SOLUTION cannot cause any tro@ " because they only transform

the system of equations to a set of syst f equations which are equivalent
to the system we started with. 20X
Let us assume that A have umns and r rows, furthermore assume

that y1,...,y. is a feasible @wn to I (with y; = <yZ( ),...,yE )> for all
i,1 <i<casusual). T
(]) ez Pl due to li

probabrhty that :U(j) - yf” for those 7:s and j:s.

forr+1<i<cand1l<j<n we must have
-7 of RANDOM-SOLUTION it is then a non-zero

Line 10 of RANDOM-SOLUTION finds, in iteration ¢, all group elements

that satisfies equation number 7. As y1,...,y. is a feasible solution it must

() must therefore be one of the group elements that

satisfies equation i. We conclude that we will have Pr [ ,( = yZ(J )} > (0 on

line 14. O

satisfy every equation, ¥,
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3.4.2 Performance Analysis

We are now almost ready to analyse the performance of APPROX-SOLUTION.
We need the following lemma in the performance analysis.

Lemma 3.8. Given three sequences of integers, a1, ..., Gy, bi,...,by and
Yy, bl,. Then

Zalbi < <1I£1izzxw bi/bl> Zazbl. (3.8)
i=1 o i=1
Proof. Let us introduce d and e defined as

d/e = max b/b;

1<i<w
such that d = b} and e = b; for some i. Now we have

d bid bwd
(albl—}—...—i—awbw)—:alL—i—...jLaw .
(& € €

(3.9)

Let us now compare the coefficients in fr@@of one of the a; values in this
sum with the coefficient in front of tl@ame value in the left hand side

of (3.8). We get .
! ébid
2N

d
- >
e i e

> b

i

The first inequality follows&n the fact that d/e is the greatest such ratio.
Note that b is the co &nt in front of a; in the left hand side of (3.8)
and bid/e is the COCfélCIlt in front of a; on the right hand side of (3.8).
Hence we get the d&N'ed result. a
dy to prove the main theorem of this chapter, which
really is the p®¥ormance ratio of APPROX-SOLUTION.
Proof (Of Theorem 3.1). Let I = (A,b) be an instance of MAX SOL
EQN(G, g). Assume that A have r rows and ¢ columns.

Lemma 3.6 says that for every j, 1 < j <n and i, 1 <1 < ¢ there are

subgroups, G,Ej ) - prj, and group constants 9 e Zpuj such that
) )

7
J

2 ~ U (sz n CEJ)) 7
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Chapter 4

Weighted vs. Unweighted
Problems

In Chapter 2 we proved that it is not possible to approximate W-Max SoL
EQN(G, g) better than a certain constant unless®»= NP. We then proved
that MAX SoL EQN(G, g) is approximable V\@n the same constant. The
main difference between those two resu tre that we have proved our
inapproximability result for the Weighta&kproblem and our approximability
result for the unweighted problem. V@;Will, in this chapter, show that the
approximability thresholds for t ighted and unweighted problems are
asymptotically equal. This re@ 1s formally formulated in the following
theorem. A)

Theorem 4.1. If MAX ) EQN(G, g) is approximable within in r, then
W-Max SoL EQN( is approximable within r 4+ o(1), where the o(-)-
notation is with respett to the size of the instance.

In the context of Theorem 4.1 the o(-)-notation means that if it possible
to approximate MAX SoL EQN(G, ¢) within r then, for sufficiently large
instances, it is possible to approximate W-MAX SoL EQN(G, g) within
r + € for any fixed € > 0.

The proof of Theorem 4.1 is divided into two parts. In Section 4.1
we prove that the weighted version of our problem, W-MAX SoL EQN,
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is in a specific sense at least weakly approximable. We then prove, in
Section 4.2, that if W-Max SoL EQN is weakly approximable then the
approximation thresholds of MAX SoL EQN and W-MAX SoL EQN must
be asymptotically equal.

4.1 Weak Approximability

In this section we will prove a lemma which says that W-Max SoL EQN(G,
g) is at least weakly approximable, i.e., there is a p(n)-approximation al-
gorithm for some polynomial p(n). We will then use this lemma to do a
reduction from W-MAX SoL EQN(G, g) to MAaX SoL EQN(G, g).

We use the terminology from [13] and say that if a problem II is 7-
approximable and there exists a polynomial p(n) such that » < p(|I]) for
every instance [ then II is in poly-APX.

The proof of the following lemma is based on the proof of Lemma 6.2

in [13].
Q

Lemma 4.1. For every finite abelian §&pup G and every function g : G —
N, W-Max Sor EQN(G, g) is in @ply-APX.
Proof. An instance, I = (V (a'?of W-Max SoL EQN(G, ¢g) can be seen
as a system of equations, X»en by Ax = b over . It is well known that
the problem of finding* tions to a linear system of equations over G is
solvable in polynom'e%ime. See, e.g., Theorem 1 in [9].

Let V = {21, N =} and assume that w(xy) > w(ze) > ... > w(zy,).
We also assume¥Rat there is some x € G such that g(z) > 0. If this is not
the case then W-MaAXx SoL EQN(G, g) is trivially in poly-APX.

We claim that WEAKLY-APPROXIMATE is a |V |gmax-approximate algo-
rithm. The running time of the algorithm is O(|G|nf(n)) where f(n) is the
time taken to solve one system of linear equations. This is polynomial in
the input size n = |I|. Let x; be the first variable the algorithm finds which
can be set to a value such that g(x;) > 0. The measure of this solution is
then at least w(z;). Furthermore, OPT(I) < [V|gmaxw(z;). O
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If we reach this line no feasible solution exists.

4.2 Weights Do Not Matter (Much)

In this section we will prove the main result of this chapter, i.e., Theo-
rem 4.1. To do this we use a specific type of approximation preserving
reduction, an AP-reduction, which is defined below.

Definition 4.1 (AP-reducibility [13])..For a constant § > 0 and two
NPO problems II and IT', we say that 11 'is’ f-AP-reducible to II’, denoted
II SQP IT', if two polynomial time computable functions F and H exists
such that the following holds:

1. For any instance I of I1,"F(I) is an instance of II'.

2. For any instance I of I, and any feasible solution s’ for F(I), H(I,s")
1s a feasible solution for I.

3. For any instance I of II and any r > 1, if s’ is an r-approximate
solution for F(I), then H(I,s") is an (1+(r—1)5+o0(1))-approximate
solution for I, where the o(-)-notation is with respect to |I|.

The definition of AP-reducibility looks complicated, but what it really
means is that if A gip B for some problems A and B and we have an
r-approximation algorithm for B then we also have an (1 + (r — 1)8 +
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o(1))-approximation algorithm for A. In particular, if A <, B and B is
approximable within r then A is approximable within r 4 o(1).

The notation W-MAX SoL EQN, (G, g), used in the proof of Lemma 4.2
below, denotes W-MaxX SoL EQN(G, g) with the additional restriction
that the weight function is bounded by a polynomial. That is, there exists
a polynomial p(n) such that for every instance I = (V, E, w)

> w(v) < p(1]).

veV

The proof of the following lemma is based on Lemma 3.11 in [13], which
in turn is based on Theorem 4 in [5].

Lemma 4.2. For any finite abelian group G and function g : G — N, if
W-Max SoL EQN(G, g) is in poly-APX, then W-Max SoL EQN(G, g)
1-AP-reduces to MAX SoL EQN(G, g).

Proof. The proof will be in two parts. In the first part, we will reduce
W-Max SoL EQN(G, g) to W-MAX So N, (G, g) with the additional
restriction that the weights are strict eater than zero. In the second
part, we reduce this restricted versiogo"W-Max SoL EQN, (G, g) to MAx
SoL EQN(G, g). \l_g

Given an instance I = (V. ) of W-Max SoL EQN(G, g), we will
construct a new weight fu n, w’, and use this to define an instance
I'=(V,E,w') of W-M L EqQN, (G, g).

Let A be a p(z)-agp¥Wximation algorithm for W-MAx Sor EQN(G, g)
and let t = m(I, A(Q\)s i-e., t is the measure of the solution returned by the
algorithm A on RLet M = gmax, n = |I| and N = Mnp(n)(np(n) + 1).
We define a ne®dscaled down weight function w” such that

w" (v) = V’“’)NJ +1

t

for every v € V. Finally let w'(v) = min{w” (v), Np(n)+1}. It is clear that
I' is an instance of W-MaX SoL EQN, (G, g¢) because w’ is polynomially
bounded.
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Chapter 5

Conclusion

In this chapter we will put together the results from Chapters 2, 3 and
4 to prove the main result of this thesis. We begin with a summary of
what we have done in the previous chapters where we repeat the main
theorem of each chapter. After that Weo@O\/e the main theorem of the
thesis (Theorem 1.1). When we have p d our main result we state some
results of a few variants of MAX S QN, and finally we will give some
ideas for possible future work in«}¥line of research.

In Chapter 2 we proved thc@owing result about the inapproximability
of W-MaAx SoL EQN(G,

Theorem 2.1 (Maigﬁapproximability Theorem). For every finite
abelian group G ard «€very non-constant function g : G — N it is not
possible to appr ate W-MAaX SoL EQN(G, g) within o — € where

x(B . S
a = max {gnn—()|B| ‘ B is coset-valid with respect to G}
gsum(B>

for any € > 0 unless P = NP.

Chapter 3 contained our approximability results for MAX SoL EQN(G,
g). The main result was the following theorem.
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Theorem 3.1 (Main Approximability Theorem). APPROX-SOLUTION
is an a-approximation algorithm for MAX SoL EQN(G, g), where

max B . . .
= max {g—gw\ | B is coset-valid with respect to G} .
gSUIn

In Chapter 4 we proved that the difference between MAX SoL EQN(G,
g) and W-Max SoL EQN(G, g) is in fact quite small. This result was
summarised in the following theorem.

Theorem 4.1. If MAaX SoL EQN(G, g) is approzimable within in r, then
W-Max Sor EQN(G, g) is approxzimable within r + o(1), where the o(-)-
notation is with respect to the size of the instance.

We will now use those results to prove the main theorem of this thesis,
which we repeat here for completeness.

Theorem 1.1 (Main). For every finite abelian group G and every func-
tion g : G — N, MAx SoL EQN(G, g) is approximable within o where

max B . B N
a = max {gd—()\B\ | B is coset—valz@@h respect to G} .
gsum(B) (J
Furthermore, for every finite abelian, @dp G and every non-constant
function g : G — N Max SoL EQN(G, 15 not approximable within o — €

for any € > 0 unless P = NP. 20X
Proof. The approximation al m in Theorem 3.1 is the first part of
Theorem 1.1. N

Lemma 4.1 says that \we can find r-approximate solutions for MAX
SoL EqQN(G, g), then can find (r + o(1))-approximate solutions for
W-Max SoL EQN( . Hence, if we can find o — § approximations for

some § > 0 for MAaXx SoL EQN(G, g) then we can find (o — § + o(1))-
approximate solutions for W-MAX SoL EQN(G, g). However, as the sizes
of the instances grow we will, at some point, have —J + o(1) < 0 which
means that we would be able to find (a — €)-approximate solutions, where
e > 0, for W-Max SoL EQN(G, g). But Theorem 2.1 says that this is
not possible. Therefore, MAX SOL EQN(G, g) is not approximable within
a — 9, for any § > 0, unless P = NP. O
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The situation is almost the same for W-MAX SoL EQN(G, g). We
have an a-approximate algorithm for MAX SoL EQN(G, g) (Theorem 3.1)
therefore, due to Lemma 4.1 we have a (a+o0(1))-approximate algorithm for
W-Max SoL EQN(G, g). Furthermore, it is not possible to approximate
W-Max SoL EQN(G, g) within « — € for any € > 0 (Theorem 2.1).

All our hardness results holds for equations with at most three variables
per equation. If we are given an equation with n variables where n > 3,
we can reduce this equation to one equation with n — 1 variables and
one equation with 3 variables in the following way: Given the equation
r1 + ...+ x, = c where each z; is either a variable or an inverted variable
and c is a group constant, introduce the equation z = x1 4+ x9 where z is a
fresh variable. Furthermore replace the original equation with the equation
z+x3+ ...+ x, = c. Let the weight of z be zero. Those two equations
are clearly equivalent to the original equation in the problem W-MAX SoOL
EQN(G, g). The proof of Lemma 4.1 do not introduce any equations with
more than two variables, so we get the same result for MAX SoL EQN(G,
9)-

If the instances of W-MAX SoL EQN(G, g) are restricted to have at
most two variables per equation then the lem is tractable. The follow-
ing algorithm solves this restricted pr Qh in polynomial time.

A system of equations where thexg are at most two variables per equa-
tion can be represented by a gragléh the following way: let each variable
be a vertex in the graph and i uce an edge between two vertices if the
corresponding variables ap in the same equation. It is clear that the
connected components.o{ graph are independent subsystems of the sys-
tem of equations. H finding the optimum of the system of equations
is equivalent to fin @he optimum of each of the subsystems that cor-
responds to the ected components. To find the optimum of one such
subsystem, chQ®®e a variable, x, and assign a value to it. This assignment
will force assignments of values to every other variable in the subsystem.
The optimum can be found by testing every possible assignment of values
to x. If this is done for every independent subsystem the optimum for the
entire system of equations will be found in polynomial time.

We have given tight approximability results for the maximum solution
equation problem over finite abelian groups. One natural generalisation of
our work might be to investigate the (in)approximability of this problem
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