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Summary. Workflow scheduling is one of the key issues in the management of
workflow execution. Scheduling is a process that maps and manages execution of
inter-dependent tasks on distributed resources. It introduces allocating suitable re-
sources to workflow tasks so that the execution can be completed to satisfy objective
functions specified by users. Proper scheduling can have significant impact on the
performance of the system. In this chapter, we investigate existing workflow schedul-
ing algorithms developed and deployed by various Grid projects.
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5.1 Introduction

Grids [22] have emerged as a global cyber-infrastructure for the next-generation
of e-Science and e-business applications, by integrating large-scale, distributed
and heterogeneous resources. A number of Grid middleware and management
tools such as Globus [21], UNICORE [1], Legion [27] and Gridbus [13] have
been developed, in order to provide infrastructure that enables users to ac-
cess remote resources transparently over a secure, shared scalable world-wide
network. More recently, Grid computing has progressed towards a service-
oriented paradigm [7, 24] which defines a new way of service provisioning
based on utility computing models. Within utility Grids, each resource is rep-
resented as a service to which consumers can negotiate their usage and Quality
of Service.

Scientific communities in areas such as high-energy physics, gravitational-
wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids
to share, manage and process large data sets. In order to support complex
scientific experiments, distributed resources such as computational devices,
data, applications, and scientific instruments need to be orchestrated while
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Fig. 5.1. Grid Workflow Management System.

managing the application workflow operations within Grid environments [36].
Workflow is concerned with the automation of procedures, whereby files and
other data are passed between participants according to a defined set of rules
in order to achieve an overall goal [30]. A workflow management system de-
fines, manages and executes workflows on computing resources.

Fig. 5.1 shows an architecture of workflow management systems for Grid
computing. In general, a workflow specification is created by a user using work-
flow modeling tools, or generated automatically with the aid of Grid informa-
tion services such as MDS(Monitoring and Discovery Services) [20] and VDS
(Virtual Data System) [23] prior to the run time. A workflow specification de-
fines workflow activities (tasks) and their control and data dependencies. At
run time, a workflow enactment engine manages the execution of the workflow
by utilizing Grid middleware. There are three major components in a work-
flow enactment engine: the workflow scheduling, data movement and fault
management. Workflow scheduling discovers resources and allocates tasks on
suitable resources to meet users’ requirements, while data movement man-
ages data transfer between selected resources and fault management provides
mechanisms for failure handling during execution. In addition, the enactment
engine provides feedback to a monitor so that users can view the workflow
process status through a Grid workflow monitor. Workflow scheduling is one
of the key issues in the workflow management [59].

A scheduling is a process that maps and manages the execution of inter-
dependent tasks on the distributed resources. It allocates suitable resources
to workflow tasks so that the execution can be completed to satisfy objective
functions imposed by users. Proper scheduling can have significant impact on
the performance of the system. In general, the problem of mapping tasks on

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

5 Workflow Scheduling Algorithms for Grid Computing 111

distributed services belongs to a class of problems known as NP-hard prob-
lems [53]. For such problems, no known algorithms are able to generate the
optimal solution within polynomial time. Solutions based on exhaustive search
are impractical as the overhead of generating schedules is very high. In Grid
environments, scheduling decisions must be made in the shortest time pos-
sible, because there are many users competing for resources, and time slots
desired by one user could be taken up by another user at any moment.

Many heuristics and meta-heuristics based algorithms have been proposed
to schedule workflow applications in heterogeneous distributed system envi-
ronments. In this chapter, we discuss several existing workflow scheduling
algorithms developed and deployed in various Grid environments.

5.2 Workflow Scheduling Algorithms for Grid
Computing

Many heuristics [33] have been developed to schedule inter-dependent tasks
in homogenous and dedicated cluster environments. However, there are new
challenges for scheduling workflow applications in a Grid environment, such
as:

• Resources are shared on Grids and many users compete for resources.
• Resources are not under the control of the scheduler.
• Resources are heterogeneous and may not all perform identically for any

given task.
• Many workflow applications are data-intensive and large data sets are

required to be transferred between multiple sites.

Therefore, Grid workflow scheduling is required to consider non-dedicated
and heterogeneous execution environments. It also needs to address the issue
of large data transmission across various data communication links.

The input of workflow scheduling algorithms is normally an abstract work-
flow model which defines workflow tasks without specifying the physical lo-
cation of resources on which the tasks are executed. There are two types of
abstract workflow model, deterministic and non-deterministic. In a determin-
istic model, the dependencies of tasks and I/O data are known in advance,
whereas in a non-deterministic model, they are only known at run time.

The workflow scheduling algorithms presented in the following sections
are based on the deterministic type of the abstract workflow model and are
represented as a Directed Acyclic Graph (DAG). Let Γ be the finite set of
tasks Ti(1 ≤ i ≤ n). Let Λ be the set of directed edges. Each edge is denoted
by (Ti, Tj), corresponding to the data communication between task Ti and Tj ,
where Ti is called an immediate parent task of Tj , and Tj the immediate child
task of Ti. We assume that a child task cannot be executed until all of its
parent tasks are completed. Then, the workflow application can be described
as a tuple Ω(Γ,Λ).
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In a workflow graph, a task which does not have any parent task is called
an entry task, denoted as Tentry and a task which does not have any child
task is called an exit task, denoted as Texit. If a workflow scheduling algorithm
requires a single entry task or a single exit task, and a given workflow contains
more than one entry task or exit task in the workflow graph, we can produce
a new workflow by connecting entry points to a zero-cost pseudo entry and
exiting nodes to an exit task, without without affecting the schedule [45].

To date, there are two major types of workflow scheduling (see Fig. 5.2),
best-effort based and QoS constraint based scheduling. The best-effort based
scheduling attempts to minimize the execution time ignoring other factors
such as the monetary cost of accessing resources and various users’ QoS satis-
faction levels. On the other hand, QoS constraint based scheduling attempts
to minimize performance under most important QoS constraints, for exam-
ple time minimization under budget constraints or cost minimization under
deadline constraints.
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Fig. 5.2. A taxonomy of Grid workflow scheduling algorithms.

5.3 Best-effort based workflow scheduling

Best-effort based workflow scheduling algorithms are targeted towards Grids
in which resources are shared by different organizations, based on a community
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5 Workflow Scheduling Algorithms for Grid Computing 113

model (known as community Grid). In the community model based resource
allocation, monetary cost is not considered during resource access. Best-effort
based workflow scheduling algorithms attempt to complete execution at the
earliest time, or to minimize the makespan of the workflow application. The
makespan of an application is the time taken from the start of the application,
up until all outputs are available to the user [14].

In general, best-effort based scheduling algorithms are derived from either
heuristics based or meta-heuristics based approach. The heuristic based ap-
proach is to develop a scheduling algorithm which fit only a particular type of
problem, while the meta-heuristic based approach is to develop an algorithm
based on a meta-heuristic method which provides a general solution method
for developing a specific heuristic to fit a particular kind of problem [29].Table
5.1 5.2 show the overview of best-effort based scheduling algorithms.

Table 5.1. Overview of Best-effort Workflow Scheduling Algorithms (Heuristics).

Scheduling Method Algorithm Project Organization Application

Individual task scheduling Myopic Condor
DAG Man

University of
Wisconsin-
Madison,
USA.

N/A

L
is

t
sc

h
ed

u
li
n
g

Batch mode

Min-Min

vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Pegasus University
of Southern
California,
USA.

Montage as-
tronomy

Max-min vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Sufferage vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Dependency mode HEFT ASKALON University of
Innsbruck,
Austria.

WIEN2K
quantum
chemistry
& Invmod
hydrological

Dependency-batch mode Hybrid Sakellarious
& Zhao

University of
Manchester,
UK.

Randomly
generated
task graphs

THAN
Ranaweera &
Agrawal

University of
Cincinnati,
USA

Randomly
generated
task graphs

Cluster based scheduling
Duplication based scheduling
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Table 5.2. Overview of Best-effort Workflow Scheduling Algorithms (Meta-
heuristics).

Scheduling Method Project Organization Application

Greedy randomized adaptive
search procedure (GRASP)

Pegasus University of
Southern Califor-
nia, USA.

Montage astron-
omy

Genetic algorithms (GA) ASKALON University of Inns-
bruck, Austria.

WIEN2K quan-
tum chemistry

Simulated annealing (SA) ICENI London e-Science
Centre, UK.

Randomly gener-
ated task graphs

5.3.1 Heuristics

In general, there are four classes of scheduling heuristics for workflow ap-
plications, namely individual task scheduling, list scheduling, and cluster and
duplication based scheduling.

Individual task scheduling

The individual task scheduling is the simplest scheduling method for schedul-
ing workflow applications and it makes schedule decision based only on one
individual task. The Myopic algorithm [55] has been implemented in some
Grid systems such as Condor DAGMan [49]. The detail of the algorithm is
shown in Algorithm 4. The algorithm schedules an unmapped ready task to
the resource that is expected to complete the task earliest, until all tasks have
been scheduled.

Algorithm 4 Myopic scheduling algorithm.
1: while ∃t ∈ Γ is not completed do
2: task ← get a ready task whose parent tasks have been completed
3: r ← for t ∈ task, get a resource which can complete t at the earliest time
4: schedule t on r
5: end while

List scheduling

A list scheduling heuristic prioritizes workflow tasks and scheldules the tasks
based on their priorities. There are two major phases in a list scheduling
heuristic, the task prioritizing phase and the resource selection phase [33].
The task prioritizing phase sets the priority of each task with a rank value
and generates a scheduling list by sorting the tasks according to their rank
values. The resource selection phase selects tasks in the order of their priorities
and map each selected task on its optimal resource.
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5 Workflow Scheduling Algorithms for Grid Computing 115

Different list scheduling heuristics use different attributes and strategies
to decide the task priorities and the optimal resource for each task. We cat-
egorize workflow-based list scheduling algorithms as either batch, dependency
or dependency-batch mode.

The batch mode scheduling group workflow tasks into several independent
tasks and consider tasks only in the current group. The dependency mode
ranks workflow tasks based on its weight value and the rank value of its inter-
dependent tasks, while the dependency-batch mode further use a batch mode
algorithm to re-ranks the independent tasks with similar rank values.

Batch mode

Batch mode scheduling algorithms are initially designed for scheduling parallel
independent tasks, such as bag of tasks and parameter tasks, on a pool of
resources. Since the number of resources is much less than the number of
tasks, the tasks need to be scheduled on the resources in a certain order. A
batch mode algorithm intends to provide a strategy to order and map these
parallel tasks on the resources, in order to complete the execution of these
parallel tasks at earliest time. Even though batch mode scheduling algorithms
aim at the scheduling problem of independent tasks; they can also be applied
to optimize the execution time of a workflow application which consists of a
lot of independent parallel tasks with a limited number of resources.

Batch Mode Algorithms. Min-Min, Max-Min, Sufferage proposed by Ma-
heswaran et al. [39] are three major heuristics which have been employed
for scheduling workflow tasks in vGrADS [4] vGrADS [4] and pegasus [11].
The heuristics is based on the performance estimation for task execution and
I/O data transmission. The definition of each performance metric is given in
Table 5.3.

Table 5.3. Performance Matrices.

Symbol Definition

EET (t, r) Estimated Execution Time: the amount of time the resource
r will take to execute the task t, from the time the task starts to
execute on the resource.

EAT (t, r) Estimated Availability Time: the time at which the resource r
is available to execute task t.

FAT (t, r) File Available Time: the earliest time by which all the files re-
quired by the task t will be available at the resource r.

ECT (t, r) Estimated Completion Time: the estimated time by which task
t will complete execution at resource r: ECT (t, r) = EET (t, r) +
max(EAT (t, r), FAT (t, r))

MCT (t) Minimum Estimated Completion Time: minimum ECT for
task t over all available resources.
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The Min-Min heuristic schedules sets of independent tasks iteratively
(Algorithm 5: 1-4). For each iterative step, it computes ECTs(Early Com-
pletion Time) of each task on its every available resource and obtains the
MCT(Minimum Estimated Completion Time) for each task (Algorithm 5:
7-12). A task having minimum MCT value over all tasks is chosen to be
scheduled first at this iteration. It assigns the task on the resource which is
expected to complete it at earliest time.

Algorithm 5 Min-Min and Max-Min task scheduling algorithms.
1: while ∃t ∈ Γ is not scheduled do
2: availTasks ← get a set of unscheduled ready tasks whose parent tasks have

been completed
3: schedule(availTasks)
4: end while
5: PROCEDURE: schedule(availTasks)
6: while ∃t ∈ availTasks is not scheduled do
7: for all t ∈ availTasks do
8: availResources ← get available resources for t
9: for all r ∈ availResources do

10: compute ECT (t, r)
11: end for
12: // get MCT (t, r) for each resource

Rt ← min
r∈availResources

ECT (t, r)

13: end for
14: // Min-Min: get a task with minimum ECT (t, r) over tasks

T ← arg min
t∈availTasks

ECT (t, Rt)

// Max-Min: get a task with maximum ECT (t, r) over tasks
T ← arg min

t∈availTasks
ECT (t, Rt)

15: schedule T on RT

16: remove T from availTasks
17: update EAT (RT )
18: end while

The Max-Min heuristic is similar to the Min-Min heuristic. The only dif-
ference is the Max-Min heuristic sets the priority to the task that requires
longest execution time rather than shortest execution time. After obtaining
MCT values for each task (Algorithm 5: 7-13), a task having maximum MCT
is chosen to be scheduled on the resource which is expected to complete the
task at earliest time. Instead of using minimum MCT and maximum MCT,
the Sufferage heuristic sets priority to tasks based on their sufferage value.
The sufferage value of a task is the difference between its earliest completion
time and its second earliest completion time (Algorithm 6: 12-14).

Comparison of batch mode algorithms. The overview of three batch
mode algorithms are shown in Table 5.4. The Min-Min heuristic schedules
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5 Workflow Scheduling Algorithms for Grid Computing 117

tasks having shortest execution time first so that it results in the higher per-
centage of tasks assigned to their best choice (which can complete the tasks
at earlist time) than Max-Min heuristics [12]. Experimental results conducted
by Maheswaran et al. [39] and Casanova et al. [14] have proved that Min-Min
heuristic outperform Max-Min heuristic. However, since Max-min schedule
tasks with longest execution time first, a long execution execution task may
have more chance of being executed in parallel with shorter tasks. Therefore,
it might be expected that the Max-Min heuristic perform better than the
Min-Min heuristic in the cases where there are many more short tasks than
long tasks [12,39].

Algorithm 6 Sufferage task scheduling algorithm.
1: while ∃t ∈ Γ is not completed do
2: availTasks ← get a set of unscheduled ready tasks whose parent tasks have

been completed
3: schedule(availTasks)
4: end while
5: PROCEDURE: schedule(availTasks)
6: while ∃t ∈ availTasks is not scheduled do
7: for all t ∈ availTasks do
8: availResources ← get available resources for t
9: for all r ∈ availResources do

10: compute ECT (t, r)
11: end for
12: // compute earliest ECT

R1
t ← arg min

r∈availResources
ECT (t, r)

13: // compute second earliest ECT
R2

t ← arg min
r∈availResources&r 6=R1

t

ECT (t, r)

14: // compute sufferage value for task t
suft ← ECT (t, R2

t )− ECT (t, R1
t )

15: end for
16: T ← arg max

t∈availTasks
suft

17: schedule T on R1
T

18: remove T from availTasks
19: update EAT (RT )
20: end while

On the other hand, since the Sufferage heuristic consider the adverse effect
in the completion time of a task if it is not scheduled on the resource having
with minimum completion time [39], it is expected to perform better in the
cases where large performance difference between resources. The experimental
results conducted by Maheswaran et al. shows that the Sufferage heuristic
produced the shortest makespan in the high heterogeneity environment among
three heuristics discussion in this this section. However, Casanova et al. [14]
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argue argue that the Sufferage heuristic could perform worst in the case of
data-intensive applications in multiple cluster environments.

Table 5.4. Overview of batch mode algorithms.

Algorithm Features

Min−Min It sets high scheduling priority to tasks which have the shortest
execution time.

Max−Min It sets high scheduling priority to tasks which have long execution
time.

Sufferage It sets high scheduling priority to tasks whose completion time by
the second best resource is far from that of the best resource which
can complete the task at earliest time.

Extended batch mode algorithms. XSufferage is an extension of the Suf-
fereage heuristic. It computes the sufferage value on a cluster level with the
hope that the files presented in a cluster can be maximally reused. A modified
Min-Min heuristic, QoS guided Min-Min, is also proposed in [28]. In addition
to comparing the minimum completion time over tasks, it takes into account
different levels of quality of service (QoS) required by the tasks and provided
by Grid resources such as desirable bandwidth, memory and CPU speed. In
general, a task requiring low levels of QoS can be executed either on resources
with low QoS or resources with high QoS, whereas the task requiring high
levels of QoS can be processed only on resources with high QoS. Scheduling
tasks without considering QoS requirements of tasks may lead to poor perfor-
mance, since low QoS tasks may have higher priority on high QoS resources
than high QoS tasks, while resources with low QoS remain idle [28]. The QoS
guided Min-Min heuristic starts to map low QoS tasks until all high QoS tasks
have been mapped. The priorities of tasks with the same QoS level are set in
the same way of the Min-Min heuristic.

Dependency Mode

Dependency mode scheduling algorithms are derived from the algorithms for
scheduling a task graph with interdependent tasks on distributed computing
environments. It intends to provide a strategy to order and map workflow
tasks on heterogeneous resources based on analyzing the dependencies of the
entire task graph, in order to complete these interdependent tasks at earliest
time. Unlike batch mode algorithms, it ranks the priorities of all tasks in a
workflow application at one time.

Many dependency mode heuristics rank tasks are based on the weights
of task nodes and edges in a task graph. As illustrated in Fig. 5.3, a weight
wi is assigned to a task Ti and a weight wi,j is assigned to an edge (Ti, Tj).
Many list scheduling schemes [33] developed for scheduling task graphs on
homogenous systems set the weight of each task and edge to be equal to its
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estimation execution time and communication time, since in a homogenous
environment, the execution times of a task and data transmission time on all
available resources are identical. However, in a Grid environment, resources
are heterogeneous. The computation time varies from resource to resource and
the communication time varies from data link to data link between resources.
Therefore, it needs to consider processing speeds of different resources and
different transmission speeds of different data links and an approximation
approach to weight tasks and edges for computing the rank value.

Zhao and Sakellariou [62] proposed six possible approximation options,
mean value, median value, worst value, best value, simple worst value, and
simple best value. These approximation approaches assign a weight to each
task node and edge as either the average, median, maximum, or minimum
computation time and communication time of processing the task over all
possible resources. Instead of using approximation values of execution time
and transmission time, Shi time, Shi and Dongarra [46] assign a higher weight
task with less capable resources. Their motivation is quite similar to the QoS
guided min-min scheduling, i.e., it may cause longer delay if tasks with scarce
capable resources are not scheduled first, because there are less choices of
resources to process these tasks.

t1

w1

t2

t4

t3

w2 w3

t0

w0

t5

w4

w5

W3,5
W2,5

W4,5

W1,4

W0,3
W0,2

W0,1

Fig. 5.3. a weighted task graph example.

Dependency Mode Algorithm. The Heterogeneous-Earliest-Finish-Time
(HEFT) algorithm proposed by Topcuoglu et al. [51] has been applied by
the ASKALON project [18, 55] to provide scheduling for a quantum chem-
istry application, WIEN2K [10], and a a quantum chemistry application,
WIEN2K [10], and a hydrological application, Invmod [43], on the

As shown in Algorithm 7, the algorithm first calculates average execution
time for each task and average communication time between resources of two
successive tasks. Let time(Ti, r) be the execution time of task Ti on resource
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r and let Ri be the set of all available resources for processing Ti. The average
execution time of a task Ti is defined as

$i =

∑

r∈Ri

time(Ti, r)

|Ri| (5.1)

Let time(eij , ri, rj) be the data transfer time between resources ri and rj

which process the task Ti and task Tj respectively. Let Ri and Rj be the set
of all available resources for processing Ti and Tj respectively. The average
transmission time from Ti to Tj is defined by:

cij =

∑

riεRirjεRj

time(eij , ri, rj)

|Ri||Rj | (5.2)

Then tasks in the workflow are ordered in HEFT based on a rank fuction.
For a exit task Ti, the rank value is:

rank(Ti) = $i (5.3)

The rank values of other tasks are computed recursively based on 5.15.25.3
as shown in 5.4.

rank(Ti) = $i + max
Tjεsucc(Ti)

(cij + rank(Tj)) (5.4)

where succ(Ti) is the set of immediate successors of task Ti. The algorithm
then sorts the tasks by decreasing order of their rank values. The task with
higher rank value is given higher priority. In the resource selection phase, tasks
are scheduled in the order of their priorities and each task is assigned to the
resource that can complete the task at the earliest time.

Algorithm 7 Heterogeneous-Earliest-Finish-Time (HEFT) algorithm.
1: compute the average execution time for each task t ∈ Γ according to equation

5.1
2: compute the average data transfer time between tasks and their successors ac-

cording to equation 5.2
3: compute rank value for each task according to equations 5.3 and 5.4
4: sort the tasks in a scheduling list Q by decreasing order of task rank value
5: while Q is not empty do
6: t ← remove the first task from Q
7: r ← find a resource which can complete t at earliest time
8: schedule t to r
9: end while
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Even though original HEFT proposed by Topcuoglu et al. [51] computes
the rank value for each task using the mean value of the task execution time
and communication time over all resources, Zhao time over all resources, Zhao
and Sakellariou [62] performances of the HEFT algorithm produced by other
different approximation methods on different cases. The results of the expeir-
ments showed that the mean value method is not the most effiecient choice,
and the performance could differ significantly from one application to an-
other [62].

Dependency-Batch Mode

Sakellariou and Zhao [45] proposed a hybrid heuristic for scheduling DAG on
heterogeneous systems. The heuristic combines dependency mode and batch
mode. As described in Algorithm 8, the heuristic first compute rank values
of each task and ranks all tasks in the decreasing order of their rank values
(Algorithm 8:line 1-3). And then it creates groups of independent tasks (Al-
gorithm 8:line 4-11). In the grouping phase, it processes tasks in the order of
their rank values and add tasks into the current group. Once it finds a task
which has a dependency with any task within the group, it creates another
new group. As a result, a number of groups of independent tasks are gener-
ated. And the group number is assigned based on the order of rank values of
their tasks, i.e., if m > n, the ranking value of tasks in group m is higher than
that of the tasks in group n. Then it schedules tasks group by group and uses
a batch mode algorithm to reprioritize the tasks in the group.

Algorithm 8 Hybrid heuristic.
1: compute the weight of each task node and edge according to equations 5.1 and

5.2
2: compute the rank value of each task according to equations 5.3 and 5.4
3: sort the tasks in a scheduling list Q by decreasing order of task rank value
4: create a new group Gi and i = 0
5: while Q is not empty do
6: t ← remove the first task from Q
7: if t has a dependence with a task in Gi then
8: i + +; create a new group Gi

9: end if
10: add t to Gi

11: end while
12: j = 0
13: while j <= i do
14: scheduling tasks in Gi by using a batch mode algorithm
15: j + +
16: end while
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Cluster based and Duplication based scheduling

Both cluster based scheduling and duplication based scheduling are designed
to avoid the transmission time of results between data interdependent tasks,
such that it is able to reduce the overall execution time. The cluster based
scheduling clusters tasks and assign tasks in the same cluster into the same
resource, while the duplication based scheduling use the idling time of a re-
source to duplicate some parent tasks, which are also being scheduled on other
resources.

Bajai and Agrawal [3] proposed a task duplication based scheduling algo-
rithm for network of heterogeneous systems(TANH) . The algorithm combine
cluster based scheduling and duplication based scheduling and the overview
of the algorithm is shown in Algorithm 9. It first traverses the task graph
to compute parameters of each node including earliest start and completion
time, latest start and completion time, critical immediate parent task, best
resource and the level of the task. After that it clusters tasks based on these
parameters. The tasks in a same cluster are supposed to be scheduled on a
same resource. If the number of the cluster is greater than the number of
resources, it scales down the number of clusters to the number of resources
by merging some clusters. Otherwise, it utilizes the idle times of resources to
duplicate tasks and rearrange tasks in order to decrease the overall execution
time.

Algorithm 9 TANH algorithm.
1: compute parameters for each task node
2: cluster workflow tasks
3: if the number of clusters greater than the number of available resources then
4: reducing the number of clusters to the number of available resources
5: else
6: perform duplication of tasks
7: end if

5.3.2 Meta-heuristics

Meta-heuristics provide both a general structure and strategy guidelines for
devoping a heuristic for solving computational problems. They are generally
applied to a large and complicated problem. They provide an efficient way of
moving quickly toward a very good solution. Many metahuristics have been
applied for solving workflow scheduling problmes, including GRASP, Genetic
Algorithms and Simulated Annealing. The details of these algorithms are pre-
sented in the sub-sections that follow.
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Greedy Randomized Adaptive Search Procedure (GRASP)

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative
randomized search technique. Feo and Resende [19] proposed guidelines for
developing heuristics to solve combinatorial optimization problems based on
the GRASP concept. Binato et al. [8] have shown that the GRASP can solve
job-shop scheduling problems effectively. Recently, the GRASP has been in-
vestigated by Blythe et al. [11] for workflow scheduling on Grids by comparing
with the Min-Min heuristic on both computational- and data-intensive appli-
caitons.

Algorithm 10 GRASP algorithm.
1: while stopping criterion not satisfied do
2: schedule ← createSchedule(workflow)
3: if schedule is better than bestSchedule then
4: bestSchedule ← schedule
5: end if
6: end while
7: PROCEDURE: createSchedule(workflow)
8: solution ← constructSolution(workflow)
9: nSolution ← localSearch(solution)

10: if nSolution is better than solution then
11: return nSolution
12: end if
13: return solution
14: END createSchedule
15: PROCEDURE: constructSolution(workflow)
16: while schedule is not completed do
17: T ← get all unmapped ready tasks
18: make a RCL for each t ∈ T
19: subSolution ← select a resource randomly for each t ∈ T from its RCL
20: solution ← solution

⋃
subSolution

21: update information for further RCL making
22: end while
23: return solution
24: END constructSolution
25: PROCEDURE: localSearch(solution)
26: nSolution ← find a optimal local solution
27: return nSolution
28: END localSearch

Algorithm 10 describes a GRASP. In a GRASP, a number of iterations
are conducted to search a possible optimal solution for scheduling tasks on
resources. A solution is generated at each iterative step and the best solution
is kept as the final schedule (Algorithm 10:line 1-6). A GRASP is terminated
when the specified termination criterion is satisfied, for example, after com-
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pleting a certain number of interations. In general, there are two phases in
each interation: construction phase and local search phase.

The construction phase (Algorithm 10:line 8 and line 15-24) generates a
feasible solution. A feasible solution for the workflow scheduling problem is
required to meet the following conditions: a task must be started after all its
predecessors have been completed; every task appears once and only once in
the schedule. In the construction phase, a restricted candidate list (RCL) is
used to record the best candidates, but not necessarily the top candidate of
the resources for processing each task. There are two major mechanisms that
can be used to generate the RCL, cardinality-based RCL and value-based RCL.

Algorithm 11 Construction phase procedure for workflow scheduling.
1: PROCEDURE: constructSolution(Ω)
2: while schedule is not completed do
3: availTasks ← get unmapped ready tasks
4: subSolution ← schedule(availTasks)
5: solution ← solution

⋃
subSolution

6: end while
7: return solution
8: END constructSolution
9: PROCEDURE: schedule(tasks)

10: availTasks ← tasks
11: pairs ←
12: while ∃t ∈ tasks not scheduled do
13: for all t ∈ availTasks do
14: availResources ← get available resources for t
15: for all r ∈ availResources do
16: compute increaseMakespan(t, r)
17: pairs ← pairs

⋃
(t, r)

18: end for
19: end for
20: minI ← minimum makespan increase over availPairs
21: maxI ← maximum makespan increase over availPairs
22: availPairs ← select pairs whose makespan increase is less than minI +

α(maxI −minI)
23: (t′, r′) ← select a pair at random from availPairs
24: remove t′ from availTasks
25: solution ← solution

⋃
(t′, r′)

26: end while
27: return solution
28: END schedule

The cardinality-based RCL records the k best rated solution components,
while the value-based RCL records all solution components whose performance
evaluated values are better than a better than a given threshold [31]. In the
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GRASP, resource allocated to each task is randomly selected from its RCL
(Algorithm 10: line 19). After allocating a resource to a task, the resource
information is updated and the scheduler continues to process other unmapped
tasks.

Algorithm 11 shows the detailed implementation of the construction phase
for workflow scheduling presented by Blythe et al. [11] which uses a value-
based RCL method. The scheduler estimates the makespan increase for each
unmapped ready task (Algorithm 11: line 3-4 and line 13-19) on each resource
that is able to process the task. A makespan increase of a task t on a resource
r is the increase of the execution length to the current completion length
(makespan) if r is allocated to t. Let minI and maxI be the lowest and highest
makespan increase found respectively. The scheduler selects a task assignment
randomly from the task and resource pair whose makespan increase is less
than minI + α(maxI −minI), where is a parameter to determine how much
variation is allowed for creating RCL for each task and 0 ≤ α ≤ 1.

Once a feasible solution is constructed, a local search is applied into the
solution to improve it. The local search process searches local optima in the
neighborhood of the current solution and generates a new solution. The new
solution will replace the current constructed solution if its overall performance
is better (i.e. its makespan is shorter than that of the solution generated) in
the in the construction phase. Binato et al. [8] implementation of the local
search phase for job-shop scheduling. It identifies the critical path in the dis-
junctive graph of the solution generated in the construction phase and swaps
two consecutive operations in the critical path on the same machine. If the
exchange improves the performance, it is accepted.

Genetic Algorithms (GAs)

Genetic Algorithms (GAs) [25] provide robust search techniques that allow
a high-quality solution to be derived from a large search space in polyno-
mial time by applying the principle of evolution. Using genetic algorithms
to schedule task graphs in homogeneous and dedicated multiprocessor sys-
tems have been proposed in [31, 56, 64]. Wang et al. [54] have developed a
genetic-algorithm-based scheduling to map and schedule task graphs on het-
erogeneous envoriments. Prodan and Fahringer [42] have employed GAs to
schedule WIEN2k workflow [10] on Grids. Spooner et al. [47] have employed
GAs to schedule sub-workflows in a local Grid site.

A genetic algorithm combines exploitation of best solutions from past
searches with the exploration of new regions of the solution space. Any solution
in the search space of the problem is represented by an individual (chromo-
some). A genetic algorithm maintains a population of individuals that evolves
over generations. The quality of an individual in the population is determined
by a fitness function . The fitness value indicates how good the individual is
compared to others in the population.
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A typical genetic algorithm is illustrated in Fig. 5.4. It first creates an
initial population consisting of randomly generated solutions. After applying
genetic operators, namely selection, crossover and mutation, one after the
other, new offspring are generated. Then the evaluation of the fitness of each
individual in the population is conducted. The fittest individuals are selected
to be carried over next generation. The above steps are repeated until the
termination condition is satisfied. Typically, a GA is terminated after a certain
number of iterations, or if a certain level of fitness value has been reached [64].

The construction of a genetic algorithm for the scheduling problem can
be divided into four parts [32]: the choice of representation of individual in
the population; the determination of the fitness function; the design of genetic
operators; the determination of probabilities controlling the genetic operators.

As genetic algorithms manipulate the code of the parameter set rather than
the parameters themselves, an encoding mechanism is required to represent
individuals in the population. Wang et al. [54] encoded each chromosome with
two separated parts: the matching string and the scheduling string. Matching
string represents the assignment of tasks on machines while scheduling string
represents the execution order of the tasks (Fig. 5.5a.). However, a more intu-
itive scheme, two-dimensional coding scheme is employed by many [32,56,64]
for scheduling tasks in distributed systems. As illustrated in Fig. 5.5c, each
schedule is simplified by representing it as a 2D string. One dimension repre-
sents the numbers of resources while the other dimension shows the order of
tasks on each resource.

A fitness function is used to measure the quality of the individuals in
the population. The fitness function should encourage the formation of the
solution to achieve the objective function. For example, the fitness function
developed in [32] is Cmax − FT (I), where Cmax is the maximum completion
time observed so far and FT (I) is the completion time of the individual I. As
the objective function is to minimize the execution time, an individual with
a large value of fitness is fitter than the one with a small value of fitness.

After the fitness evaluation process, the new individuals are compared
with the previous generation. The selection process is then conducted to re-
tain the fittest individuals in the population, as successive generations evolve.
Many methods for selecting the fittest individuals have been used for solving
task scheduling problems such as roulette wheel selection, rank selection and
elitism.

The roulette wheel selection assigns each individual to a slot of a roulette
wheel and the slot size occupied by each individual is determined by its fitness
value. For example, there are four individuals (see Table 5.5) and their fitness
values are 0.45, 0.30, 0.25 and 0.78, respectively. The slot size of an individual
is calculated by dividing its fitness value by the sum of all individual fitness
in the population. As illustrated in Fig. 5.6, individual 1 is placed in the slot
ranging from 0−0.25 while individual 2 is in the slot ranging from 0.26−0.42.
After that, a random number is generated between 0 and 1, which is used to
determine which individuals will be preserved to the next generation. The
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Fig. 5.4. Genetic Algorithms.

individuals with a higher fitness value are more likely to be selected since
they occupy a larger slot range.

Table 5.5. Fitness Values and Slots for Roulette Wheel Selection.

Individual Fitness value Slot Size Slot

1 0.45 0.25 0.25
2 0.30 0.17 0.42
3 0.25 0.14 0.56
4 0.78 0.44 1
Total 1.78 1

The roulette wheel selection will have problems when there are large dif-
ferences between the fitness values of individuals in the population [41]. For
example, if the best fitness value is 95of all slots of the roulette wheel, other
individuals will have very few chances to be selected. Unlike the roulette wheel
selection in which the slot size of an individual is proportional to its fitness
value, a rank selection process firstly sorts all individuals from best to worst
according to their fitness values and then assigns slots based on their rank. For
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Fig. 5.5. (a) workflow application and schedule. (b) seperated machine string and
scheduling string. (c) two-dimensional string.

Table 5.6. Fitness Values and Slots for Rank Selection.

Individual Fitness value Rank Slot Size Slot

1 0.45 3 0.3 0.3
2 0.30 2 0.2 0.5
3 0.25 1 0.1 0.6
4 0.78 4 0.4 1

example, the size of slots for each individual implemented by DOǦAN and
Özgüner [16] is proportional to their rank value. As shown in Table 5.6, the
size of the slot for individual I is defined as PI = R(I)∑n

i=1 R(i) , where R(I) is the
rank value of I and n is the number of all individuals. Both the roulette wheel
selection and the rank selection select individuals according to their fitness
value. The higher the fitness value, the higher the chance it will be selected
into the next generation. However, this does not guarantee that the individual
with the highest value goes to the next generation for reproduction. Elitism
can be incorporated into these two selection methods, by first copying the
fittest individual into the next generation and then using the rank selection
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or roulette wheel selection to construct the rest of the population. Hou et
al. [32] showed that the elitism method can improve the performance of the
genetic algorithm.

Roulette Wheel Selection 

Individual 1, 0.25

Individual 2, 0.42

Individual 3, 0.56

Individual 4, 1
Individual 1

Individual 2

Individual 3

Individual 4

Fig. 5.6. Roulette Wheel Selection Example.

In addition to selection, crossover and mutation are two other major ge-
netic operators. Crossovers are used to create new individuals in the current
population by combining and rearranging parts of the existing individuals.
The idea behind the crossover is that it may result in an even better indi-
vidual by combining two fittest two fittest individuals [32]. Mutations allow
a certain child to obtain features that are not possessed by either parent.
It helps a genetic algorithm to explore new and potentially better genetic
material than was previously considered. The frequency of mutation opera-
tion occurrence is controlled by the mutation rate whose value is determined
experimentally [32].

Simulated Annealing (SA)

Simulated Annealing (SA) [38] derives from the Monte Carlo method for sta-
tistically searching the global. The concept is originally from the way in which
crystalline structures can be formed into a more ordered state by use of the
annealing process, which repeats the heating and slowly cooling a structure.
SA has been used by YarKhan and Dongarra [57] to select a suitable size of
a set of machines for scheduling a ScaLAPACK applicaton [9] in a Grid envi-
ronment. Young et al. [58] have investigated performances of SA algorithms
for scheduling workflow applications in a Grid envrionment.

A typical SA algorithm is illustrated in Fig. 5.7. The input of the al-
gorithm is an initial solution which is constructed by assigning a resource
to each task at random. There are several steps that the simulated anneal-
ing algorithm needs to go through while the temperature is decreased by a
specified rate. The annealing process runs through a number of iterations at
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Fig. 5.7. Simulated Annealing.

each temperature to sample the search space. At each cycle, it generates a
new solution by applying random change on the current solution. Young et
al. [58] implemented this randomization by moving one task onto a different
resource. Whether or not the new solution is accepted as a current solution
is determined by the Metropolis algorithm [38,58] shown in Algorithm 12. In
the Metropolis algorithm, the new solution and the current solution are com-
pared and the new solution is unconditionally accepted if it is better than the
current one. In the case of the minimization problem of workflow scheduling,
the better solution is one which has a lower execution time and the improved
value is denoted as dβ. In other cases, the new solution is accepted with the
Boltzmann probability e

−dβ
T [38] where T is the current temperature. Once a
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specified number of cycles have been completed, the temperature is decreased.
The process is repeated until the lowest allowed temperature has been reached.
During this process, the algorithm keeps the best solution so far, and returns
this solution at termination as the final optimal solution.

Algorithm 12 Metropolis algorithm.
1: if dβ then
2: return true
3: else if a random number less than e

−dβ
T then

4: return true
5: else
6: return false
7: end if

5.3.3 Comparison of best-effort scheduling algorithms

The overview of the best effort scheduling is presented in Table 5.7 and 5.8.
In general, the heuristic based algorithms can produce a reasonable good
solution in a polynomial time. Among the heuristic algorithms, individual task
scheduling is simplest and only suitable for simple workflow structures such
as a pipeline in which several tasks are required to be executed in sequential.
Unlike individual task scheduling, list scheduling algorithms set the priorities
of tasks in order to make an efficient schedule in the situation of many tasks
compete for limited number of resources. The priority of the tasks determines
their execution order. The batch mode approach orders the tasks required to
be executed in parallel based on their execution time whereas the dependency
mode approach orders the tasks based on the length of their critical path. The
advantage of the dependency mode approach is that it intent to complete tasks
earlier whose interdependent tasks required longer time in order to reduce the
overall execution time. However, its complexity is higher since it is required to
compute the critical path of all tasks. Another drawback of the dependency
mode approach is that it cannot efficiently solve resource competition problem
for a workflow consisting of many parallel tasks having the same length of their
critical path. The dependency-batch mode approach can take advantage of
both approaches, and Sakellariou and Zhao [45] shows that it outperforms the
dependency mode approach in most cases. However, computing task priorities
based on both batch mode and dependency mode approach results in higher
scheduling time.

Even though data transmission time has been considered in the list
scheduling approach, it still may not provide an efficient schedule for data
intensive workflow applications, in which the majority of computing time is
used for transferring data of results between the inter-dependent tasks. The
main focus of the list scheduling is to find an efficient execution order of
a set of parallel tasks and the determination of the best execution resource
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Table 5.7. Comparison of Best-effort Workflow Scheduling Algorithms (Heuristics).

Scheduling Method Algorithm Complexity* Features

Individual task scheduling Myopic O(vm) Decision is based on one
task.

L
is

t
sc

h
ed

u
li
n
g

Batch mode Min-min O(vgm) Decision based on a set
of parallel independent
tasks.

Dependency mode HEFT O(v2m) Decision based on the
critical path of the task.

Dependency-batch mode Hybrid O(v2m + vgm) Ranking tasks based on
their critical path and
re-ranking adjacent inde-
pendent tasks by using a
batch mode algorithm.

THAN O(v2)

Replicating tasks to
more than one resources
in order to reduce
transmission time.

Cluster based scheduling
Duplication based scheduling

*where v is the number of tasks in the workflow, m is the number of resources and
g is the number of tasks in a group of tasks for the batch mode scheduling.

Table 5.8. Comparison of Best-effort Workflow Scheduling Algorithms (Meta-
heuristics).

Scheduling Method Features

Greedy randomized adaptive
search procedure (GRASP)

Global solution obtained by comparing differences be-
tween randomized schedules over a number of iteration.

Genetic algorithms (GA) Global solution obtained by combining current best so-
lutions and exploiting new search region over genera-
tions.

Simulated annealing (SA) Global solution obtained by comparing differences be-
tween schedules which are generated based on current
accepted solutions over a number of iterations, while
the acceptance rate is decreased.

for each task is based only on the information of current task. Therefore,
it may not assign data inter-dependent tasks on resources among which an
optimized data transmission path is provided. Both cluster based and du-
plication based scheduling approach focus on reducing communication delay
among interdependent tasks. The clustering based approach minimizes the
data transmission time by grouping heavily communicating tasks to a same
task cluster and assigns all tasks in the cluster to one resource, in order to
minimize the data transmission time, while duplication based approach du-
plicates data-interdependent tasks to avoid data transmission. However, the
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restriction of the algorithms based on these two approaches up to date may
not be suitable for all Grid workflow applications, since it assumes that heav-
ily communicating tasks can be executed on a same resource. Tasks in Grid
workflow applications can be highly heterogeneous and require different type
of resources.

The meta-heuristics based workflow scheduling use guided random search
techniques and exploit the feasible solution space iteratively. The GRASP
generates a randomized schedule at each iteration and keeps the best solution
as the final solution. The SA and GAs share the same fundamental assumption
that an even better solution is more probably derived from good solutions.
Instead of creating a new solution by randomized search, SA and GAs generate
new solutions by randomly modifying current already know good solutions.
The SA uses a point-to-point method, where only one solution is modified in
each iteration, whereas GAs manipulate a population of solutions in parallel
which reduce the probability of trapping into a local optimum [65]. Another
benefit of producing a collection of solutions at each iteration is the search
time can be significantly decreased by using some parallelism techniques.

Compared with the heuristics based scheduling approaches, the advan-
tage of the meta-heuristics based approaches is that it produces an optimized
scheduling solution based on the performance of entire workflow, rather than
the partial of the workflow as considered by heuristics based approach. Thus,
unlike heuristics based approach designed for a specified type of workflow
application, it can produce good quality solutions for different types of work-
flow applications (e.g. different workflow structure, data- and computational-
intensive workflows, etc). However, the scheduling time used for producing a
good quality solution required by meta-heuristics based algorithms is signifi-
cantly higher. Therefore, the heuristics based scheduling algorithms are well
suited for a workflow with a simple structure, while the meta-heuristics based
approaches have a lot of potential for solving large and complex structure
workflows. It is also common to incorporate these two types of scheduling
approaches by using a solution generated by a heuristic based algorithm as
a start search point for the meta-heuristics based algorithms to generate a
satisfactory solution in shorter time.

5.3.4 Dynamic Scheduling Techniques

The heuristics presented in last section assume that the estimation of the
performance of task execution and data communication is accurate. However,
it is difficult to predict accurately execution performance in community Grid
environments due to its dynamic nature. In a community Grid, the utiliza-
tion and availability of resources varies over time and a better resource can
join at any time. Constructing a schedule for entire workflow before the ex-
ecution may result in a poor schedule. If a resource is allocated to each task
at the beginning of workflow execution, the execution environment may be
very different at the time of task execution. A ‘best’ resource may become a
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‘worst’ resource. Therefore, the workflow scheduler must be able to adapt the
resource dynamics and update the schedule using up-to-date system informa-
tion. Several approaches have been proposed to address these problems. In
this section, we focus on the approaches which can apply the algorithms into
dynamic environments.

For individual task and batch mode based scheduling, it is easy for the
scheduler to use the most up-to-date information, since it takes into account
only the current task or a group of independent tasks. The scheduler could
map tasks only after their parent tasks become to be executed.

For dependency mode and metahueristics based scheduling, the schedul-
ing decision is based on the entire workflow. In other words, scheduling cur-
rent tasks require information about its successive tasks. However, it is very
difficult to estimate execution performance accurately, since the execution
environment may change a lot for the tasks which are late executed. The
problems appear more significant for a long lasting workflow. In general, two
approaches, task partitioning and iterative re-computing, have been proposed
to allow these scheduling approaches to allocate resources more efficiently in
a dynamic environment.

Task partitioning is proposed by Deelman et al. [17]. It partitions a work-
flow into multiple sub-workflows which are executed sequentially. Rather than
mapping the entire workflow on Grids, allocates resources to tasks in one sub-
workflow at a time. A new sub-workflow mapping is started only after the last
mapped sub-workflow has begun to be executed. For each sub-workflow, the
scheduler applies a workflow scheduling algorithm to generate an optimized
schedule based on more up-to-date information.

Iterative re-computing keeps applying the scheduling algorithm on the re-
maining unexecuted partial workflow during the workflow execution. It does
not use the initial assignment to schedule all workflow tasks but reschedule
unexecuted tasks when the environment changes. A low-cost rescheduling pol-
icy has been developed by developed by Sakellariou and Zhao [44]. It overhead
produced by rescheduling by conducting rescheduling only when the delay of
a task execution impacts on the entire workflow execution.

In addition to mapping tasks before execution using up-to-date informa-
tion, task migration [4, 42] has been widely employed to reschedule a task to
another resource after it has been executed. The task will be migrated when
the task execution is timed out or a better resource is found to improve the
performance.

5.4 QoS-constraint based workflow scheduling

Many workflow applications require some assurances of quality of services
(QoS) . For example, a workflow application for maxillo-facial surgery plan-
ning [16] needs results to be delivered before a certain time. For thus ap-
plications, workflow scheduling is required to be able to analyze users’ QoS
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requirements and map workflows on suitable resources such that the workflow
execution can be completed to satisfy users’ QoS constraints.

However, whether the execution can be completed within a required QoS
not only depend on the global scheduling decision of the workflow scheduler
but also depend on the local resource allocation model of each execution site.
If the execution of every single task in the workflow cannot be completed as
what the scheduler expects, it is impossible to guarantee the entire workflow
execution. Instead of scheduling tasks on community Grids, QoS-constraint
based schedulers should be able to interact with service-oriented Grid services
to ensure resource availability and QoS levels. It is required that the sched-
uler can negotiate with service providers to establish a service level agreement
(SLA) which is a contract specifying the minimum expectations and obliga-
tions between service providers and consumers. Users normally would like to
specify a QoS constraint for entire workflow. The scheduler needs to determine
a QoS constraint for each task in the workflow, such that the QoS of entire
workflow is satisfied.

In general, service-oriented Grid services are based on utility computing
models. Users need to pay for resource access and service pricing is based
on the QoS level and current market supply and demand. Therefore, unlike
the scheduling strategy deployed in community Grids, QoS constraint based
scheduling may not always need to complete the execution at earliest time.
They sometimes may prefer to use cheaper services with a lower QoS that is
sufficient to meet their requirements.

To date, supporting QoS in scheduling of workflow applications is at a very
preliminary stage. Most QoS constraint based workflow scheduling heuristics
are based on either time or cost constraints. Time is the total execution time
of the workflow (known as deadline). Cost is the total expense for executing
workflow execution including the usage charges by accessing remote resources
and data transfer cost (known as budget). In this section, we present schedul-
ing algorithms based on these two constraints, called Deadline constrained
scheduling and Budget constrained scheduling . Table 5.9 and 5.10 presents
the overview of QoS constrained workflow scheduling algorithms.

5.4.1 Deadline constrained scheduling

Some workflow applications are time critical and require the execution can
be completed within a certain timeframe. Deadline constrained scheduling
is designed for these applications to deliver results before the deadline. The
distinction between the deadline constrained scheduling and the best-effort
scheduling is that the deadline constrained scheduling also need to consider
monetary cost when it schedules tasks. In general, users need to pay for ser-
vice assess. The price is based on their usages and QoS levels. For example,
services which can process faster may charges higher price. Scheduling the
tasks based on the best-effort based scheduling algorithms presented in the
previous sections, attempting to minimize the execution time will results in
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Table 5.9. Overview of deadline constrained workflow scheduling algorithms.

Algorithm Project Organization Application

Back-tracking Menascé& Casalicchio George Mason
University, USA
Univ. Roma
“Tor Vergata”,
Italy

N/A

Deadline distribution Gridbus University of
Melbourne,
Australia

Randomly gen-
erated task
graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gen-
erated task
graphs

Table 5.10. Overview of budget constrained workflow scheduling algorithms.

Algorithm Project Organization Application

LOSS and GAIN CoreGrid University of
Cyprus, Cyprus
University of
Manchester, UK

Randomly gen-
erated task
graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gen-
erated task
graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gen-
erated task
graphs

high and unnecessary cost. Therefore, a deadline constrained scheduling al-
gorithm intends to minimize the execution cost while meeting the specified
deadline constraint.

Two heuristics have been developed to minimize the cost while meeting
a specified time constraint. One is proposed by Menascé and Casalicchio [37]
denoted as Back-tracking, and the other is proposed by Yu et al. [60] denoted
as Deadline Distribution.

Back-tracking

The heuristic developed by Menascè and Casalicchio assigns available tasks to
least expensive computing resources. An available task is an unmapped task
whose parent tasks have been scheduled. If there is more than one available
task, the algorithm assigns the task with the largest computational demand
to the fastest resources in its available resource list. The heuristic repeats
the procedure until all tasks have been mapped. After each iterative step,
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the execution time of current assignment is computed. If the execution time
exceeds the time constraint, the heuristic back-tracks the previous step and
remove the least expensive resource from its resource list and reassigns tasks
with the reduced resource set. If the resource list is empty the heuristic keep
back-tracking to the previous step, reduces corresponding resource list and
reassign the tasks.

Deadline/Time Distribution (TD)

Instead of back-tracking and repairing the initial schedule, the TD heuristic
partitions a workflow and distributes overall deadline into each task based
on their workload and dependencies. After deadline distribution, the entire
workflow scheduling problem has been divided into several sub-task scheduling
problems.

As shown in Fig. 5.8, in workflow task partitioning, workflow tasks are
categorized as either synchronization tasks or simple tasks. A synchronization
task is defined as a task which has more than one parent or child task. For
example, T1, T10 and T14 are synchronization tasks. Other tasks which have
only one parent task and child task are simple tasks. For example, T2−T9 and
T11 − T13 are simple tasks. Simple tasks are then clustered into a branch. A
branch is a set of interdependent simple tasks that are executed sequentially
between two synchronization tasks. For example, the branches in the example
are {T2, T3, T4} and {T5, T6}, {T7}, {T8, T9}, {T11} and {T12, T13}.

T8 T9

T2 T3

T5 T6

T4

T7

T10

T14T0

Simple task Branch

Synchronization task

T8

T5 T6

T7

T13

T10

T14T0

a) Before partitioning b) After partitioning

T11

T12

T2 T3

T9 T13T12

T11

T4

V0

V1

V2

V3

V5

V4

V6

V7

V8

Fig. 5.8. Workflow Task Partition.

After task partitioning, workflow tasks Γ are then clustered into parti-
tions and the overall deadline is distributed over each partition. The deadline
assignment strategy considers the following facts:

• The cumulative expected execution time of a simple path between two
synchronization tasks is same.
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• The cumulative expected execution time of any path from an entry task
to an exit task is equal to the overall deadline.

• The overall deadline is divided over task partitions in proportion to their
minimum processing time.

After distributing overall deadline into task partitions, each task parti-
tion is assigned a deadline. There are three attributes associated with a task
partition Vi : deadline(dl[Vi]), ready time (rt[Vi]), and expected execution
time(eet[Vi] ). The ready time of is the earliest time when its first task can be
executed. It can be computed according to its parent partitions and defined
by:

rt[Vi] =

{
0 , Tentry ∈ Vi

max
Vj∈PVi

dl[Vj ] , otherwise (5.5)

where PVi is the set of parent task partitions of Vi. The relation between
three attributes of a task partition Vi follows that:

eet[Vi] = dl[Vi]− rt[Vi] (5.6)

A sub-deadline can be also assigned to each task based on the deadline
of its task partition. If the task is a synchronization task, its sub-deadline is
equal to the deadline of its task partition. However, if a task is a simple task of
a branch, its sub-deadline is assigned by dividing the deadline of its partition
based on its processing time. Let Pi be the set of parent tasks of Ti and Si is
the set of resources that are capable to execute Ti. tji is the sum of input data
transmission time and execution time of executing Ti on Si. The sub-deadline
of task in partition is defined by:

dl[Ti] = eet[Ti] + rt[V ] (5.6)

where

eet[Ti] =
min

1≤j≤|Si|
tji

∑

Tk∈V

min
1≤l≤|Sk|

tlk
eet[V ]

rt[Ti] =

{
0, Ti = Tentry

max
Tj∈Pi

dl[Tj ], otherwise

Once each task has its own sub-deadline, a local optimal schedule can
be generated for each task. If each local schedule guarantees that their task
execution can be completed within their sub-deadline, the whole workflow
execution will be completed within the overall deadline. Similarly, the result
of the cost minimization solution for each task leads to an optimized cost
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solution for the entire workflow. Therefore, an optimized workflow schedule
can be constructed from all local optimal schedules. The schedule allocates
every workflow task to a selected service such that they can meet its assigned
sub-deadline at low execution cost.

5.4.2 Budget constrained scheduling

As the QoS guaranteed resources charges access cost, users would like to
execute workflows based on the budget they available. Budget constrained
scheduling intends to minimize workflow execution time while meeting users’
specified budgets. Tsiakkouri et al. [52] present budget constrained scheduling
called LOSS and GAIN.

LOSS and GAIN

LOSS and GAIN scheduling approach adjusts a schedule which is generated by
a time optimized heuristic and a cost optimized heuristic to meet users’ budget
constraints, respectively. A time optimized heuristic attempts to minimize
execution time while a cost optimization attempts to minimize execution cost.

If the total execution cost generated by time optimized schedule is not
greater than the budget, the schedule can be used as the final assignment;
otherwise, the LOSS approach is applied. The idea behinds LOSS is to gain
a minimum loss in execution time for the maximum money savings, while
amending the schedule to satisfy the budget. The algorithm repeats to re-
assign the tasks with smallest values of the LossWeight until the budget
constraint is satisfied. The LossWeight value for each task to each available
resource is computed and it is defined by:

LossWeight(i, r) =
Tnew − Told

Cold − Cnew
(5.3)

where Told and Cold are the execution time and corresponding cost of task
Ti on the original resource assigned by the time optimized scheduling, Tnew

and Cnew are the execution time of task Ti on resource r respectively. If Cold
is not greater than Cnew, the value of LossWeight is set to zero.

If the total execution cost generated by a cost optimized scheduler is less
than the budget, the GAIN approach is applied to uses surplus to decrease
the execution time. The idea behinds GAIN is to gain the maximum ben-
efit in execution time for the minimum monetary cost, while amending the
schedule. The algorithm repeats to re-assign the tasks with biggest value of
the GainWeight until the cost exceeds the budget. The GainWeight value for
each task to each available resource is computed and it is defined by:

GainWeight(i, r) =
Told − Tnew

Cnew − Cold
(5.3)
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where Tnew, Told, Cnew and Cold have the same meaning as in the LOSS
approach. If Tnew is greater than Told or Cnew is equal to Cold, the value of
GainWeight is set to zero.

5.4.3 Meta-heuristic based constrained workflow scheduling

A genetic algorithm [61] is also developed to solve the deadline and budget
constrained scheduling problem. It defines a fitness function which consists
of two components, cost-fitness and time-fitness. For the budget constrained
scheduling, the cost-fitness component encourages the formation of the solu-
tions that satisfy the budget constraint. For the deadline constrained schedul-
ing, it encourages the genetic algorithm to choose individuals with less cost.
The cost fitness function of an individual I is defined by:

Fcost(I) =
c(I)

Bα(maxCost(1−α))
, α = {0, 1} (5.3)

where c(I) is the sum of the task execution cost and data transmission cost
of I, maxCost is the most expensive solution of the current population and B
is the budget constraint. α is a binary variable and α = 1 if users specify the
budget constraint, otherwise α = 0.

For the budget constrained scheduling, the time-fitness component is de-
signed to encourage the genetic algorithm to choose individuals with earliest
completion time from the current population. For the deadline constrained
scheduling, it encourages the formation of individuals that satisfy the dead-
line constraint. The time fitness function of an individual I is defined by:

Ftime(I) = t(I)
Dβ(maxTime(1−β))

, β = {0, 1} (5.3)

where t(I) is the completion time of I, maxTime is the largest completion
time of the current population and D is the deadline constraint. β is a binary
variable and β = 1 if users specify the deadline constraint, otherwise β = 0.

For the deadline constrained scheduling problem, the final fitness function
combines two parts and it is expressed as:

F (I) =
{

Ftime(I), ifFtime(I) > 1
Fcost(I), otherwise

(5.3)

For the budget constrained scheduling problem, the final fitness function
combines two parts and it is expressed as:

F (I) =
{

Fcost(I), ifFcost(I) > 1
Ftime(I), otherwise

(5.3)

In order to applying mutation operators in Grid environment, it developed
two types of mutation operations, swapping mutation and replacing mutation.
Swapping mutation aims to change the execution order of tasks in an indi-
vidual that compete for a same time slot. It randomly selects a resource and
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swaps the positions of two randomly selected tasks on the resource. Replac-
ing mutation re-allocates an alternative resource to a task in an individual.
It randomly selects a task and replaces its current resource assignment with
a resource randomly selected in the resources which are able to execute the
task.

5.4.4 Comparison of QoS constrained scheduling algorithms

The overview of QoS constrained scheduling is presented in Table 5.11 5.12.
Comparing two heuristics for the deadline constrained problem, the back-
tracking approach is more näıve. It is like a constrained based myopic algo-
rithm since it makes a greedy decision for each ready task without planning
in the view of entire workflow. It is required to track back to the assigned
tasks once it finds the deadline constraint cannot be satisfied by the current
assignments. It is restricted to many situations such as data flow and the
distribution of execution time and cost of workflow tasks. It may be required
to go through many iterations to modify the assigned schedule in order to
satisfy the deadline constraint. In contrast, the deadline distribution makes
a scheduling decision for each tasks based on a planned sub-deadline accord-
ing to the workflow dependencies and overall deadline. Therefore, it has a
better plan while scheduling current tasks and does not require tracing back
the assigned schedule. However, different deadline distribution strategies may
affect the performance of the schedule produced from one workflow structure
to another.

Table 5.11. Comparison of deadline constrained workflow scheduling algorithms.

Algorithm Features

Back-tracking It assigns ready tasks whose parent tasks have
been mapped to the least expensive computing re-
sources and back-tracks to previous assignment if
the current aggregative execution time exceeds the
deadline.

Deadline distribution It distributes the deadline over task partitions in
workflows and optimizes execution cost for each
task partition while meeting their sub-deadlines.

Genetic algorithms It uses genetic algorithms to search a solution
which has minimum execution cost within the
deadline.

To date, the LOSS and GAIN approach is the only heuristic that addresses
the budget constrained scheduling problem for Grid workflow applications. It
takes advantage of heuristics designed for a single criteria optimization prob-
lem such as time optimization and cost optimization scheduling problem to
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Table 5.12. Comparison of budget constrained workflow scheduling algorithms.

Algorithm Features

LOSS and GAIN It iteratively adjusts a schedule which is generated by
a time optimized heuristic or a cost optimized heuristic
based on its corresponding LOSS or GAIN weight rate
of each task-resource pair, until the total execution cost
meets users’ budget constraint.

Genetic algorithms It uses genetic algorithms to search a solution which
has minimum execution time within the budget.

solve a multi-criteria optimization problem. It amends the schedule optimized
for one factor to satisfy the other factor in the way that it can gain maximum
benefit or minimum loss. Even though the original heuristics are targeted at
the budget-constrained scheduling problem, such concept is easy to apply to
other constrained scheduling. However, there exist some limitations. It relies
on the results generated by an optimization heuristics for a single objective.
Even though time optimization based heuristics have been developed over two
decades, there is a lack of workflow optimization heuristics for other factors
such as monitory cost based on different workflow application scenarios. In
addition, large scheduling computation time could occur for data-intensive ap-
plications due to the weight re-computation for each pair of task and resource
after amending a task assignment.

Unlike best-effort scheduling in which only one single objective (either op-
timizing time or system utilization) is considered, QoS constrained scheduling
needs to consider more factors such as monetary cost and reliability. It needs
to optimize multiple objectives among which some objectives are conflicting.
However, with the increase of the number of factors and objectives required
to be considered, it becomes infeasible to develop a heuristic to solve QoS
constrained scheduling optimization problems. For this reason, we can believe
that metahueristics based scheduling approach such as genetic algorithms will
play more important role for the multi-objective and multi-constraint based
workflow scheduling.

5.5 Simulation Results

In this section, we show an example of experimental comparisons for workflow
scheduling algorithms. Basically, we compares deadline constrained scheduling
heuristics which are presented in previous section.

5.5.1 Workflow Applications

Given that different workflow applications may have a different impact on the
performance of the scheduling algorithms, a task graph generator is developed
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to automatically generate a workflow based on the specified workflow struc-
ture, and the range of task workload and the I/O data. Since the execution
requirements for tasks in scientific workflows are heterogeneous, the service
type attribute is used to represent different types of services. The range of
service types in the workflow can be specified. The width and depth of the
workflow can also be adjusted in order to generate workflow graphs of different
sizes.

a) balanced-structure application b) unbalanced-structure application

task

Fig. 5.9. Small portion of workflow applications.

According to many Grid workflow projects [11, 35, 55], workflow applica-
tion structures can be categorized as either balanced structure or unbalanced
structure. Examples of balanced structure include Neuro-Science application
workflows [63] and EMAN refinement workflows [35], while the examples of
unbalanced structure include protein annotation workflows [40] and Montage
workflows [11]. Fig. 5.9 shows two workflow structures, a balanced-structure
application and an unbalanced-structure application, used in our experiments.
As shown in Fig. 5.9a, the balanced-structure application consists of sev-
eral parallel pipelines, which require the same types of services but process
different data sets. In Fig. 5.9b, the structure of the unbalanced-structure ap-
plication is more complex. Unlike the balanced-structure application, many
parallel tasks in the unbalanced structure require different types of services,
and their workload and I/O data varies significantly.

5.5.2 Experiment Setting

GridSim [48] is used to simulate a Grid environment for experiments. Fig. 5.10
shows the simulation environment, in which simulated services are discovered
by querying the GridSim Index Service (GIS). Every service is able to provide
free slot query, and handle reservation request and reservation commitment.
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GIS

Workflow 

System

Grid 

Service

Grid 

Service

1. register (service type)

1. register (service type)

4. availableSlotQuery(duration)

5. slots

3. service list

2. query(type A)

6. makeReservation(task)

Fig. 5.10. Simulation environment.

There are 15 types of services with various price rates in the simulated Grid
testbed, each of which was supported by 10 service providers with various
processing capability. The topology of the system is such that all services
are connected to one another, and the available network bandwidths between
services are 100Mbps, 200Mbps, 512Mbps and 1024Mbps.

Table 5.13. Service speed and corresponding price for executing a task.

Service ID Processing Time(sec) Cost($/sec)

1 1200 300
2 600 600
3 400 900
4 300 1200

Table 5.14. Transmission bandwidth and corresponding price.

Bandwidth(Mbps) Cost ($/sec)

100 1
200 2
512 5.12
1024 10.24

For the experiments, the cost that a user needs to pay for a workflow
execution comprises of two parts: processing cost and data transmission cost.
Table 5.13 shows an example of processing cost, while Table 5.14 shows an
example of data transmission cost. It can be seen that the processing cost
and transmission cost are inversely proportional to the processing time and
transmission time respectively.

In order to evaluate algorithms on a reasonable deadline constraint we
also implemented a time optimization algorithm, HEFT, and a cost optimiza-
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tion algorithm, Greedy Cost(GC). The HEFT algorithm is a list scheduling
algorithm which attempts to schedule DAG tasks at minimum execution time
on a heterogeneous environment. The GC approach is to minimize workflow
execution cost by assigning tasks to services of lowest cost. The deadline used
for the experiments are based on the results of these two algorithms. Let Tmax

and Tmin be the total execution time produced by GC and HEFT respectively.
Deadline D is defined by:

D = Tmin + k(Tmax − Tmin) (5.3)

The value of k varies between 0 and 10 to evaluate the algorithm perfor-
mance from tight constraint to relaxed constraint. As k increases, the con-
straint is more relaxed.

5.5.3 Backtracing(BT) vs. Deadline/Time Distribution (TD)

In this section, TD is compared with BackTracking denoted as BT on the two
workflow applications, balanced and unbalanced. In order to show the results
more clearly, we normalize the execution time and cost. Let Cvalue and Tvalue

be the execution time and the monetary cost generated by the algorithms
in the experiments respectively. The execution time is normalized by using
Tvalue/D, and the execution cost by using Cvalue/Cmin, where Cmin is the
minimum cost achieved Greedy Cost. The normalized values of the execution
time should be no greater than one, if the algorithms meet their deadline
constraints.

A comparison of the execution time and cost results of the two deadline
constrained scheduling methods for the balanced-structure application and
unbalanced-structure application is shown in Fig. 5.11 and Fig. 5.12 respec-
tively. From Fig. 5.11, we can see that TD slightly exceeds deadline at k = 0,
while BT can satisfy deadlines each time. For execution cost required by the
two approaches shown in Fig. 5.12, TD significantly outperforms BT. TD
saves almost 50execution cost when deadlines are relatively low. However, the
two approaches produce similar results when deadline is greatly relaxed.

Fig. 5.13 shows the comparison of scheduling running time for two ap-
proaches. The scheduling time required by TD is much lower than BT. As the
deadline varies, BT requires more running time when deadlines are relatively
tight. For example, scheduling times at k = 0, 2, 4 are much longer than at
k = 6, 8, 10 . This is because it needs to back-track for more iterations to
adjust previous task assignments in order to meet tight deadlines.

5.5.4 TD vs. Genetic Algorithms

In this section, the deadline constrained genetic algorithm is compared with
the non-GA heuristics (i.e. TD) on the two workflow structures, balanced and
unbalanced workflows.
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Fig. 5.11. Execution time for scheduling balanced- and unbalanced-structure ap-
plications.
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Fig. 5.12. Execution cost for scheduling balanced- and unbalanced-structure appli-
cations.
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Fig. 5.13. Scheduling overhead for deadline constrained scheduling.

Table 5.15. Default settings.

Parameter Value/Type

Population size 10
Maximum generation 100
Crossover probability 0.9
Reordering mutation probability 0.5
Replacing mutation probability 0.5
Selection scheme elitism-rank selection
Initial individuals randomly generated

The genetic algorithm is investigated by starting with two different initial
populations. One initial population consists of randomly generated solutions,
while the other initial population consists of a solution produced by TD to-
gether with other randomly generated solutions. In the result presentation,
the results generated by GA with a completely random initial population is
denoted by GA, while the results generated by GA which include an initial
individual produced by the TD heuristic are denoted as GA+TD. The pa-
rameter settings used as the default configuration for the proposed genetic
algorithm are listed in Table 5.15.

Fig. 5.14 and Fig. 5.15 compare the execution time and cost of using three
scheduling approaches for scheduling the balanced-structure application and
unbalanced-structure application with various deadlines respectively.

We can see that it is hard for both GA and TD to successfully meet the
low deadline individually. As shown in Fig. 5.14a and 5.15a, the normalized
execution times produced by TD and GA exceed 1 at tight deadline (k = 0),
and GA performs worse than TD since its values is higher than TD, especially
for balanced-structure application. However, the results are improved when
incorporating GA and TD together by putting the solution produced by TD
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Fig. 5.14. Normalized Execution Time and Cost for Scheduling Balanced-structure
Application.
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Fig. 5.15. Normalized Execution Time and Cost for Scheduling Unbalanced-
structure Application.

into the initial population of GA. As shown in Fig. 5.15a, the value of GA+TD
is much lower than that of GA and TD at the tight deadline.

As the deadline increases, both GA and TD can meet the deadline (see
Fig. 5.14a and 5.15a) and GA can outperform TD. For example, execution
time (see Fig. 5.14a) and cost (see Fig. 5.14b) generated by GA at k = 2 are
lower than that of TD. However, as shown in Fig. 5.14b) the performance of
GA is reduced and TD can perform better, when the deadline becomes very
large (k = 8 and 10). In general, GA+TD performs best. This shows that the
genetic algorithm can improve the results returned by other simple heuristics
by employing these heuristic results as individuals in its initial population.
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5.6 Conclusions

In this chapter, we have presented a survey of workflow scheduling algorithms
for Grid computing. We have categorized current existing Grid workflow
scheduling algorithms as either best-effort based scheduling or QoS constraint
based scheduling.

Best-effort scheduling algorithms target on community Grids in which re-
source providers provide free access. Several heuristics and metahueristics
based algorithms which intend to optimize workflow execution times on com-
munity Grids have been presented. The comparison of these algorithms in
terms of computing time, applications and resources scenarios has also been
examined in detail. Since service provisioning model of the community Grids
is based on best effort, the quality of service and service availability cannot
be guaranteed. Therefore, we have also discussed several techniques on how
to employ the scheduling algorithms in dynamic Grid environments.

QoS constraint based scheduling algorithms target on utility Grids in
which service level agreements are established between service providers and
consumers. In general, users are charged for service access based on the usage
and QoS levels. The objective functions of QoS constraint based scheduling
algorithms are determined by QoS requirements of workflow applications. In
this chapter, we have focused on examining scheduling algorithms which in-
tend to solve performance optimization problems based on two typical QoS
constraints, deadline and budget.
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