CT Inst. of E

Roll No.

Total No. of Questions: 09

Total No. of Pages: 02

B.Tech.(EE/EEE) (Sem.-4th)

ELECTRICAL ENGINEERING MATERIALS

Subject Code: EE-208

Paper ID : [A0410]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

I. Write briefly:

- a. Justify the presence of μ_r in the equation, $B = \mu_0 \mu_r H$.
- b. Define the quantity expressed by $\alpha_o = \frac{p_p^2}{3kT}$.
- Write the relationship for combined polarization as function of \in_r and atomic constant α_e , α_i , α_o .
- d. Write an expression for the current through the capacitor considering, complex dielectric.
- e. Explain the term "Debye Temperature".
- f. Give the expression for Curie-Weiss rule, explain.
- Give the material composition of soft solder rods.
- h. Draw arrangement of dipole moments in different magnetic materials.
- Draw B-H curves for transformer core and resistance filament materials.
- Derive Electric flux density 'D' from Coulomb's law

SECTION-B

- 2. What do you mean by polarization of dielectric n to static fields?
- 3. Explain electrical conductivity of metal. Explai materials.
- 4. Explain the term superconductivity. Explain the magnetic flux.
- 5. Explain the characteristics of magnetic materials use
- 6. Explain why, Curie Law was modified to Curie-W

SECTION-C

- 7. Derive the Clausius-Mosotti relation for dielect deduce Lorentz-Lorenz equation.
- 8. A conduction wire has a resistivity of 2.04 × temperature. The Fermi energy for such a condu 5.8×10^{28} conduction electrons per m³. Calculate
 - (i) the mobility and relaxation time of the electron
 - (ii) the average drift velocity of the electrons applied to the conductor is 1.1 V per m.
 - (iii) velocity of an electron with the Fermi energy.
 - (iv) the mean free path of the electrons.

Explain ferromagnetic domains. Explain B-H curve and induction motor design.

