CT Inst. of En

Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (EE/EEE) (Sem.-5)

ELECTROMAGNETIC FIELD THEORY

Subject Code: EE-303 Paper ID : [A0414]

Time: 3 Hrs.

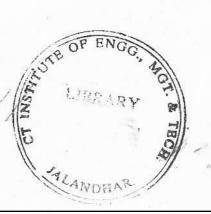
Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly:


- (a) Express the unit vector which is directed from the point (x, y, -4) to the origin.
- (b) State all the conditions for which A×B=0.
- (c) Define Electric scalar potential.
- (d) How is divergence of electric flux density defined?
- (e) How is the direction of a magnetic field around a conductor determined?
- (f) How is magnetic flux density varied if the electric current in a coil is doubled?
- (g) Discuss the concept of displacement current.
- (h) What is modified form of Ampere's law?
- (i) Show that a uniform plane wave passing in any direction does not have any component at that direction.
- (j) Define Poynting vector. What is the SI unit for-this vector?

SECTION-B

- Define curl of a vector field. Prove that ∇×(A×I
- 3. Derive an expression for electric field at a point infinite plane.
- 4. State and prove the boundary conditions for displa
- 5. Discuss the use of direction cosines.
- 6. List the properties of uniform plane wave.

SECTION-C

- 7. (a) Justify that the net Electric field within a cond
 - (b) Derive the equation of continuity for time vary
- 8. (a) State the Green's theorem. What is its physical
 - (b) Discuss the analogy between electric and mag
- 9. Give a mathematical representation of plane +Z direction in an infinite loss less dielectric m medium is characterized by propagation constant

