CT Inst. of Eng

SECTION-B

- 2. A vertical isosceles triangular gate is immerse up. The base width of gate is 2 m and height 1 1 m below the free water surface. Determine the its location.
- 3. The stream function in two-dimensional flow Verify whether the flow is irrotational and det the potential function. Also, determine the di point (1, -1).
- 4. Derive Bernoulli's equation for flow along a stre
- 5. Due to sudden enlargement of a horizontal pipe 600 m diameter, hydraulic gradient line rise discharge.
- 6. A venturimeter is used for the measurement o pipe. The ratio of upstream pipe diameter to diameter being 300 mm. If differential pressure and throat is equal to 3 m head of water and meter is one-eight of the throat velocity head, pipe.

SECTION-C

7. A conical thrust bearing idealized as a cone of cone diameter 200 mm, rests and revolves ab fluid layer of thickness 1 mm at 600 rpm. If v calculate the power lost in overcoming the vis-

Two pipes each 300 m long are available for from which a flow of 0.085 m³/s is required pipes are 300 mm and 150 mm respectively, of lost when the pipes are connected in serie connected in parallel. Neglect minor losses.

A fluid flow situation depends upon velocity Δp , gravity g, length l, diameter d, viscosity bulk modulus of elasticity K. Find a set of dir π -theorem method of dimensional analysis.

[N-2-279

1

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (ME) (Sem.-4) (2011 Batch)

FLUID MECHANICS

Subject Code: BTME-403 Paper ID : [A1213]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly:

[N-2-279

1

- (i) Differentiate solids and fluids.
- (ii) What is Pascal's law and what are its engineering applications?
- (iii) Discuss metacentric height with respect to stability and comfort.
- (iv) What are the various ways of describing a flow pattern?
- (v) Define circulation and vorticity.
- (vi) What is momentum correction factor and what is its significance?
- (vii) Write a note on model studies.
- (viii) What are the flow regimes envisaged by Reynolds?
- (ix) Explain the concept of equivalent pipe.
- What are the characteristics of a steady free water jet discharging from an orifice fitted in a tank?

www.FirstRanker.com