Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (CE) (Sem.-6th)

GEOTECHNICAL ENGINEERING

Subject Code : CE-304

Paper ID : [A0619]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

I. Answer briefly:

- (a) Difference between flocculated and dispersed structure
- (b) Assumptions in hydrometer analysis
- (c) Define zero air void line
- (d) Difference between primary consolidation and secondary consolidation
- (e) Define critical hydraulic gradient
- (f) Types of tri-axial shear test
- (g) Compare active earth pressure and passive earth pressure
- (h) List various field compaction methods
- (i) Define diffuse double layer
- (j) Define alluvial deposits and Aeolian deposits

(7)

SECTION -

- The volume and weight of a partially and 362gm respectively. After drying in If natural void ratio of soil was 0.5density, bulk density, degree of saturation
- A soil has a liquid limit of 50% and pla at its L.L. was dried, the % decrease volume. When it was dried from its P. 20% of its dry volume. Determine the shrinkage ratio.
- 4. In a falling head permeability test on a sin the stand pipe takes 5 sec to fall frowater level. When another soil of length the time taken for the head to fall bet. The permeameter has a x-sectional area of 130mm². Calculate the permeability.
- 5. At a site the subsoil consists of a (G = 2.65, e = 0.85, D_{to} = 0.14mm) v clay layer (G = 2.75, w = 22%) below the bed rock. The water table is located surface level. Plot the distribution of total contents.
- 6. What is effect of compaction on :
 - (i) soil structure
 - (ii) permeability
 - (iii) shear strength
 - (iv) compressibility and swelling of so

SECTION - C

7. An oedometer test was conducted on a specimen of saturated clay (G = 2.70) and the following dial gauge readings were obtained 24 hours after the application of each stress increment:

Stress(kN/m ²)	0	. 50	100	200	400	800	1600	3200	0
Dial	10	9.75	9.5	9.10	8.45	7.6	6.67	5.73	6.40
Reading(mm)									

The initial thickness of sample was 20mm and water content at the end of test was 20%.

- (a) Plot e-log σ curve.
- (b) The clay stratum in the field from where the soil sample was taken for laboratory testing, is 5m thick and is likely to be subjected to a stress increment of $1000-1500 kN/m^2$. What will be the settlement of clay stratum as computed from m_{ν} and C_c ?
- 8. The results of CU test on undisturbed samples of saturated clay were as below:

Cell Pressure (kN/m²)	150	300	450	600
Deviator Stress (kN/m²)	102	200	304	405
Pore Pressure at failure (kN/ m²)	80	164	264	325

Determine the shear strength parameters in terms of effective stress.

9. For a retaining wall, the following data was available: Height of wall = 7m, Density of backfill = 16kN/m³, Φ = 35°, δ = 20°, back of wall is inclined at 20° to vertical (+ve batter), backfill surface is sloping at 1:10. Determine the magnitude of active earth pressure by Rebann's graphical method.