Roll No.

Total No. of Pages: 03

Total No. of Questions : 09

B.Tech. (CE) (Sem.-7th & 8th) IRRIGATION ENGINEERING II

Subject Code : CE-410 Paper ID : [A0628]

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FQUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What is safe exit gradient enumerated by Khosla's theory of design of weirs and barrages?
- b) Why canal falls are necessary in canal design?
- c) Write characteristics of a good irrigation canal outlet.
- d) When an irrigation outlet is said to be proportional?
- e) Enumerate the conditions which govern the selection of type of canal fall.
- f) Enumerate the role of sensitivity and proportionality in canal outlets.
- g) What is super passage? Why it is required in canal?
- h) Why the alignment of canal over the watershed line is preferred?
- i) List the various functions of diversion head works.
- i) What is the use of energy dissipation devices in weir?

SECTIO

- Design a pipe outlet for full s watercourse = 90 lit/sec, FSL in dis course = 204 m.
- 3. Describe Lane's creep theory and Kh
- 4. Describe design principles of an aque
- Determine total floor length of unflum following given data;

Full supply Discharge:

Bed level U/S:

Bed level D/S

FSL U/S:

FSL D/S:

Bed width:

Canal drop:

Side slope of channel:

Explain the various steps involved permeable foundations using Khosla's

SECTION

Design a 1.5 m sarda type canal fall fo

L	Canal discharge = 12
	Bed level $U/S = 103 \text{ r}$
	Bed level $D/S = 101.5$
	FSL U/S = 104.5 m
	Bed width U/S and D/
	Soil type = loam
077	Side slope = 1H:1V
-	

Assume Blig's coefficie

- Describe the necessity and functioning of Distributary head regulator and Cross regulator in a canal project. Also discuss the procedure adopted in designing these regulation works.
- 9. Design a siphon aqueduct for the following data:

Canal	Drainage
Full Supply discharge = 40 cumecs	Maximum flood discharge = 450 cumecs
Bed level = 206.4 m	HFL = 207 m
Full Supply depth = 1.6 m	Average bed level = 204.5 m
Bed width = 30 m	Average ground level = 206.5 m
Side slope = 1.5H: IV	2 0 10101 200.5 111