CT Inst. of E

Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B. Tech. (ME) (Sem.-6th) MACHINE DESIGN-II Subject Code: ME-302 Paper ID: [A0819]

Time: 4 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each:
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write short notes on:

- (a) In case of flywheel the stress in rim is $\frac{3}{4}ft + \frac{1}{2}fb$. How do you consider flexibility of arms w.r.t. rim to calculate 'ft' and 'fb'?
- (b) Differentiate between L_{10} and L_{50} as applicable to rolling contact bearings.
- (c) How do you ensure hydrodynamic lubrication in case of sliding contact bearings?
- (d) How do you designate chains and V-belts ?
- (e) Differentiate between closed coil and open coil helical springs. Give one usage of each.
- (f) Where do you find installed block, band and band and block brakes?
- (g) Name all the forces/loads that wire rope encounters in mine hoisting.
- (h) We take average value of B.H.N. of gear pair in calculating wear load on gear/pinion teeth pair. Why?

www.FirstRanker.com

- (i) In case of gears $\in = \frac{\text{Arc of Action}}{p_c} > 1$. We by this?
- (j) Name any two CAD softwares. Write very ve

SECTION-B

Design a helical spring for a spring loaded safet data:

Diameter of the valve seat = 65 mm; operating pressure when the valve blows off = 0.75 MPa; rises from 0.7 to 0.75 MPa = 3.5 mm. fs = 55 rigidity = 84×10^3 N/mm² for spring material. S

- 3. For differential brake shown in fig. Angle of la friction $\mu = 0.4$ find :
 - (i) Max. and Minimum force in the band whe 450 Nm is applied to the drum.
 - (ii) The max, torque that the brake may sustain rotation of the drum.

 Discuss any design software w.r.t. its basic theo philosophy.

piniosophy.

- 5. Derive relations for stresses in the flywheel rim when
 - (a) Arms are completely flexible.
 - (b) Arms are completely rigid.
- 6. Select a single row deep groove ball bearing for a radial load of 4000 N and an axial load of 5000 N, operating at a speed of 1600 r.p.m. for an average life of 5 years at 10 hours per day. Assume steady and uniform load.

SECTION-C

- 7. Give general design procedure for sliding contact bearings. (10)
- 8. Design a bevel gear drive between two shafts, whose axes are at right angle pinion speed = 240 r.p.m. gear speed = 120 r.p.m. No. of teeth on pinion = 21 with involute profile. Module = 20 mm; ϕ = 20°. The material of gear may be cast iron and for pinion cast steel. P = 75 kW. Design gear shaft also.
- 9. (a) Initial tension in case of flate belts (T_0) is $T_0 = \frac{T_1 + T_2 + 2T_C}{2}$. Derive this expression; symbols have their usual meaning. (03)
 - (b) An overhung pulley transmits 35 kW at 240 r.p.m. The belt drive is vertical and angle of wrap = 180° . The distance of the pulley centre from the nearest bearing = 350 mm. $\mu = 0.25$. Determine :
 - (i) Diameter of pulley
 - (ii) Width of the belt when its thickness is 10 mm.
 - (iii) Diameter of the shaft.
 - (iv) Dimensions of the key.
 - (v) Size of arms if they are six in number; the X-section of arm is elliptical with major axis = $2 \times \text{minor axis}$. For shaft & key material ft = fc = 80 MPa; fs = 50 MPa. For belt material ft = 2.5 MPa for pulley rim ft = 4.5 MPa; for pulley arms = 15 MPa.