CT Inst. of E

Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech (ME) (Sem.-5th)

NUMERICAL METHODS IN ENGINEERING

Subject Code: ME-309 Paper ID: [A0818]

Time : 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write short notes on :

- (a) Discuss various types of errors that occur while performing numerical computations. What measures can be taken to improve the accuracy in the numerical computations?
- (b) Write formulae for the Runge-Kutta method of order 4.

(c) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 by using Trapezoidal rule.

- (d) Write Newton-Cote's quadrature formula.
- (e) Solve the equations by matrix inversion method x + y + 2z = 1, x + 2y + 3z = 1, 2x + 3y + z = 2.
- (f) Evaluate $\left(\frac{\Delta^2}{E}\right) x^3$.

(g) Find the root of $x^4 - x - 10 = 0$ nearer to 2 of decimal.

- (h) Find the cubic polynomial which takes the va y(2) = 1, y(3) = 10.
- Write briefly the comparison between Bisect falsi method.
- (j) Find the least square line y = a + bx for the c

x	- 2	- 1	0	
y	1	2	3	

SECTION-B

2. Find the maximum value of f(x) using the following

id the inc				_
X	-1	1	2	
f(x)	- 21	15	12	

- 3. Find a real root of the equation $f(x) = x^3 + x^2$ method.
- Find the number of terms of the exponential segives the value of e^x correct to eight decimal pla
- 5. Find the largest eigen value of the matrix :

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$$

5. The distance in nautical miles of the visible hor

in feet above	the earth	r's surfac	e are giv	en as	
x (height)	100	150	200	250	
y (distance)	10.63	13.03	15.04	16.81	

Find the value of y when x = 410 ft

[N-(S-2) 1027]

SECTION-C

7. Solve the initial value problem:

$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$ for $x = .1$ by Euler's method.

8. Solve the equation $u_{xx} + u_{yy} = 0$ in the domain of the following figure by Jacobi's method.

9. Find the least square polynomial of degree two for the following data:

x	0.78	1.56	2.34	3.12	3.81
<i>y</i> .	2.50	1.20	1.12	2.25	4.28