Roll No.	Total No. of Pages : 03
Total No. of Questions:09	
B.Tech.(CSE/IT) (201 ²	l Onwards) (Sem.–4)
OPERATINO	G SYSTEMS
Subject Cod	e:BTCS-401
Paper ID	: [A1183]
Time : 3 Hrs.	Max. Marks:60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :

- a. What is the difference between dynamic and static linking?
- b. What are the differences between load-time and run-time dynamic linking?
- c. What is software trap and how is it used in operating system design?
- d. What is difference between preemptive and non-preemptive scheduling?
- e. Describe terms long-term, medium-term and short-term thread scheduling.
- f. Describe the terms : internal and external fragmentation.
- g. What are consequences of choosing large page sizes, and what of small page sizes?
- h. Why the page size has to be a power of two?
- i. What is page replacement? List all page replacement policies you know.
- j. What is disk formatting and what basic information is stored with each disk sector.

SECTION- B

Five jobs are in the ready queue waiting to be processed. Their estimated CPU cycles are as follows : 10,3,5,6 and 2. Using SJF, in what order they should be processed to minimize average waiting time? (5)

- 3. a) Provide the solution for Reader/Writer problem using semaphores with no busy waiting. (3)
 - b) Describe bit map approach in free space management : Use block diagrams. List advantages and disadvantages. (2)
- 4. a) What is disk scheduling?
 - b) When is it used?
 - c) Why is it used?
 - d) Who is performing the disk scheduling?
 - e) What disk scheduling algorithms do you know?

(5)

5. Given the following information :

Job Number	Arrival time	CPU Cycle	Priority
1	0	75	3
2	10	40	1
3	10	25	4
4	80	20	5
5	85	45	2

Draw a timeline for each of the following scheduling algorithms and determine which Ranker one gives the best results.

- 1) FCFS
- 2) SJF
- 3) Round Robin (using a time quantum of 15)
- 4) Priority scheduling.

Assume a small integer means higher priority.

(5)

- 6. a) What causes a process/thread to change the state?
 - From running to ready? i.
 - ii. From ready to running?
 - iii. From running to blocked?
 - iv. From blocked to ready? (3)
 - b) Describe dynamic partitioning. What is the main problem in dynamic partitioning? How is it solved? (2)

SECTION-C

- 7 Consider a system consisting of m resources of the same type, being shared by n processes. Resources can be requested and released by processes only one at a time. Show that the system is deadlock-free if the following two conditions hold :
 - a) The maximum need of each process is between 1 and *m* resources
 - b) The sum of all maximum needs is less than m + n (10)
- 8 a) Consider the following snapshot of a system :

Allocation	Max	Available
ABCD	ABCD	ABCD
0012	0012	1520
1000	1750	
1354	2356	
0632	0652	
0014	0656	
	Allocation ABCD 0 0 1 2 1000 1354 0632 0014	AllocationMaxABCDABCD0 0 1 20 0 1 210001750135423560632065200140656

Answer the following question using the banker's algorithm :

- a) What is the content of the matrix *Need*? (5)
- b) Why are segmentation and paging sometimes combined into one scheme? (5)
- 9 a) Discuss Peterson's solution for critical section problem. What are the limitations of this solution and how it can be resolved? (5)
 - b) Consider the following segment table :

Segment	Base	Length	
0	219	600	
1	230	014	
2	90	100	
3	1327	580	
4	1952	96	

What are the physical addresses for the following logical addresses? Explain :

- a. 0,430
- b. 1,10
- c. 2,500
- d. 3,400
- e. 4,112

(5)