CT Inst. of Engg.,

Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (ME) (Sem.-7th/8th)

OPERATIONS RESEARCH

Subject Code: ME-406 Paper ID : [A0840]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

I. Write briefly:

- (a) Basic and Non Basic Variables
- (b) Slack variables
- (c) North West Corner Method
- (d) PERT
- (e) Unbalanced Assignment Problem
- (f) Carrying Cost
- (g) Dummy Activity
- (h) Critical Path
- (i) What is saddle point?
- (j) What is unbounded solution?

SECTION-B

- II. A particular item has a demand of 9000 units per year. The cost of ordering is Rs. 100 per order. The carrying cost is Rs. 2.40/- per unit per year. Determine
 - (a) The economic order quantity.
 - (b) Number of orders per year.
 - (c) Time between orders.
 - (d) Total cost per year if the cost of one unit is Re. 1.

III. Solve the following assignment problem:

	П	Ш	IV	
1	17	8	16	
2	7	12	6	L
3	16	15	12	
4	24	17	28	

IV. Solve the following game problem and find t A and the optimal strategies of the two player

			Player B	
		BI	BII	
	AI	-2	0	
Player A	AII	3	2	
	AIII	-4	-3	
	AIV	5	3	

- V. Explain deterministic dynamic programmin programming.
- VI. How would you deal with replacement of iter

SECTION - C

VII. What are the different phases of project man of activity, event, network diagram and criti management.

II. Solve the foll	owing linear programming p
	$Z = 5X_1 + 4X_2$
Maximize Subject to	$2X_1 - 4X_2 \le 1$
/	$2X_1 + 4X_2 \ge 3$
-	$X_1, X_2 > 0$

IX. Define OR. Give objectives of OR. Explain