CT Inst. of E

Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(ANE)/(IE-2008/09 Batch)/ME) (Sem.-3rd) STRENGTH OF MATERIALS-I

> Subject Code : ME-201 Paper ID : [A0801]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-8 contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Answer briefly :

- (a) What are 'normal' and 'shear' stresses ?
- (b) What are 'compound' stresses?
- (c) What are 'sagging' and 'hogging' moments?
- (d) Write down relations between shear force and
 - (i) load distribution
 - (ii) bending moment in case of beam subjected to continuous loading.
- (e) What is bending stress? What is the difference between bending stress and direct stress?
- (f) What is meant by:
 - (i) 'polar' modulus
 - (ii) 'torsional' rigidity
- (g) Give at least three practical applications of thin cylinders in industry.
- (h) Differentiate between 'column' and 'strut

- (i) Name various methods to determine slope an
- (j) What are the assumptions in Euler's theory of

SECTION-B

- Explain the 'normal' and 'actual' stress-strain mild steel. Describe various points and regions.
- Define 'principal stresses' and 'principal planes the principal stresses in case of a general biaxia
- 4. A hollow shaft with a diameter ratio 0.7 is requal 300 rpm with a uniform twisting moment. All material is 65 N/mm² and twist in a length of 2 degree. Calculate the minimum external diamethese conditions. Modulus of rigidity = 8.2 × 16
- A cylindrical vessel 2 meters long, 500 mm extensions in ade of steel. The vessel is subjected 1 MPa. Calculate the change in external diamagnetic in the steel E = 200 GPa and y = 0.3 (Poisson's ratio
- Find the Euler's buckling load for a steel column 2 m long. Both ends of the column can be taken maximum lateral deflection at buckling. Τ
 τ_o (yield stress) = 240 MPa for steel.

SECTION-C

A simply supported beam (as shown in Fig. u.d.l. of 30 KN/m throughout the length an 20 KN at 3 m from either support. Use moment the deflection at the mid span and under loads.
 Take E = 205 GPa and I = 2.8 × 10⁻⁴ m⁴.

3m 3m 3m

www.FirstRanker.com

8. Draw the shear force and bending moment diagrams for the cantilever beam shown in Fig. below.

9. Two beams A and B are made of same material. Beam A is of solid circular section while beam B is of hollow circular section whose inner diameter is 60% of the outer diameter. Compare the weight of beams if these are of same strength.