Roll No.	1111		20 1075023	721125	
			Total No.	of Pages	:

Total No. of Questions: 9

B.Tech. (CE) (Sem.-4th) (2011 Batch)

STRUCTURAL ANALYSIS-I

Subject Code : BTCE-406 Paper ID : [A1176]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

l. Answer briefly :

- i) What is a conjugate beam? Discuss its utilities.
- ii) What are zero-force members? Why are they required?
- Differentiate the statically determinate structures and statically indeterminate structures.
- iv) What is meant by absolute maximum bending moment in a beam?
- v) State Maxwell-Betti's theorem.
- vi) What is a linear arch?
- vii) Give a relation between actual beam and the conjugate beam when the former has a fixed end.
- viii) What is electic curve?

- ix) Find the horizontal reaction for a
- x) What are the failures criteria criteria of a dam section?

SECTION

- A simply supported steel beam of spa of 50 kN at 3 m from the left su cross-section with the diameter of 100 steel is 200 GPa. Find the deflection theorem.
- Define Muller-Breslau principle. Use t for the moment at B of an overhang be

Fig.

- A three-hinged arch of 80 m-span ar load which varies uniformly from zero springing. Determine the equation of the normal thrust.
- A cable is used to support six equal ar 49 m. The central dip of the cable is 5 Find the length of the cable required tensile stress is 157.4 N/mm².
- A masonry dam 8 m high, 1.5 m wid base retains water to a depth of 7.5 m, stress intensities at the base. The wei weight of masonry is 22000 N/cum.

SECTION-C

7. Solve the continuous beam shown in Fig. 2 by Castigliano's theorem. Draw the SFD and BMD for the beam.

8. Determine the force in each member of the truss shown in Fig. 3 by using the method of joints.

9. A beam is simply supported over a span of 40 m and supports two point loads of 80 kN and 100 kN respectively and 10 m apart rolling over the span. Draw the influence lines for shear force and bending moment for a section 15 m from the left support and determine the maximum shear force and bending moment at that section.