M.C.A. DEGREE EXAMINATION, MAY- 2018

First Year
DISCRETE MATHEMATICS
Time :3 Hours Maximum Marks :70

SECTION - A

Answer any three of the following questions.
($3 \times 15=45$)
Q1) a) Prove that, for any three propositions p, q, r, the compound proposition $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is tautology.
b) Obtain principle disjunctive normal form of the following.

$$
P \rightarrow\{(p \rightarrow q) \wedge \neg(\neg q \vee \neg q)\}
$$

Q2) a) Prove that $f^{-1} \circ g^{-1}=(g \circ f)^{-1}$, where $f: Q \rightarrow Q$ such that $f(x)=2 x$ and $g: Q \rightarrow Q$ such that $\mathrm{g}(x)=x+2$ are two functions.
b) On the set of integers, the relation R is defined by " $a \mathrm{R} b$ " if and only if " $(a-b)$ is even integer". Show that R is an equivalence relation.

Q3) Solve the following recurrence relations:
i) $a_{n+1}-2 a_{n}=2^{n}, n \geq 0, a_{0}=1$
ii) $a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 2$

Q4) a) A non-empty subset S of G is a sub group of ($\mathrm{G}, \mathrm{*}^{*}$) iff for any pair of elements $a, b \in \mathrm{~S}$.
b) Let G be the set of all nonzero real numbers, for $a^{*} b=a b / 2$, show that ($\mathrm{G},{ }^{*}$) is Abelian group.

Q5) What is partial order and partial order set? Draw Hasse diagram for poset $(\mathrm{P}(\mathrm{A}), \subset)$ where $\mathrm{A}=\{1,2,3,4\}$ is the power set of A .

SECTION - B
Answer any five of the following questions.

Q6) Prove that the logical equivalence of $[p \wedge(p \rightarrow q) \wedge r] \equiv[(p \vee q) \rightarrow r]$.
Q7) Show that $\forall x(P(x) \vee Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x)$.
Q8) In how many ways can 4 mathematics books, 3 history books, 3 chemistry books and 2 sociology books be arranged on the shelf so that all books of the same subject are together?

Q9) What are the reflexive, symmetric and transitive relations?
Q10) Let $f(x)=x+2, g(x)=x-2, h(x)=3 x$ for $x \in \mathrm{R}$ where R is set of real numbers. Find gof, hof.

Q11) Show that the semi group $(\mathrm{Z},+$) and ($\mathrm{E},-)$ where E is the set of even integers are isomorphic.

Q12) Solve the linear recurrence relation: $a_{0}=4 a_{\mathrm{n}-1}+5 a_{\mathrm{n}-2}$ with $a_{1}=2, a_{2}=6$.
Q13) Let G be group and let $a, b, c \in \mathrm{G}$, then show that:
i) $a b=b c \Rightarrow b=c$
ii) $(a b)^{-1}=b^{-1} a^{-1}$

SECTION - C

Answer all of the following questions. $(5 \times 1=5)$

Q14) Define monoid.
Q15)Define Lattice.
Q16) Define binary relation.
Q17) Define disjunctive normal form.
Q18) What is generating function.

$$
t+t+
$$

