

71736

-2-

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) i) Using Laplace transform, an infinitely long string one end at x = 0 is initially at rest on the x - axis. The end x = 0 undergoes a periodic transverse displacement described by A_0 sin ωt , t > 0. Find displacement of any point on the string at any time t.

ii) Find the inverse Laplace transform of $\frac{e^{-1/s}}{\sqrt{s}}$. (6)

b) i) Prove that $L[\delta(t-a)f(t)] = e^{-as}f(a)$.

ii) State and prove convolution theorem and hence find $L^{-1}\left[\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right]$ (10)

12. a) Solve the following potential problem in the semi-infinite strip described by

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < \infty,$ $0 < y < a$
 $u(x, a) = 0$ $0 < x < \infty$

$$u(x, y) = 0$$
 $0 < x < \infty$, $0 < y < a$ and $\frac{\partial u}{\partial x} \to 0$ as $x \to \infty$. (16)

b) i) Find the Fourier transform of the normal distribution $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$. (8)

ii) Find the Fourier transform of $\frac{\partial^n u}{\partial x^n}$ of the function u(x, t), assuming u and first (n-1) derivatives with respect to x vanish as $x \to \pm \infty$.

13. a) i) Using Ritz method, find an approximate solution of the problem of the minimum of the functional $v[y(x)] = \int_0^1 (y'^2 + y^2 + 2xy) dx$; y(0) = 0, y(2) = 0

and compare it with the exact solution.

(10)

(6)

ii) Find the extremals of the functional
$$v[y(x)] = \int_{x_1}^{x_2} (y'^2 + y^2 + 2ye^x) dx$$
.

(OR)

b) i) A curve C joining the points (x_1, y_1) and (x_2, y_2) is revolved about the x-axis. Find the shape of the curve so that the surface thus generated is a minimum. (6)

ii) Find the extremals of the functional

$$I(y, z) = \int_0^1 (y'^2 + z'^2 + 2yz) dx; \ y(0) = 0, \ y(\pi/2) = -1, \ z(0) = 0, \ z(\pi/2) = 1.$$
 (10)