

www.FirstRanker.com

Enrolment FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-1st / 2nd • EXAMINATION – SUMMER 2018

Subject Code:110014Date: 21-0Subject Name: Calculus				
	Time: 02:30 pm to 05:30 pm Total Marks			
1115	1. 2.	s: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (1)	Evaluate $\lim_{x \to 1} \left(\frac{1}{\log x} - \frac{x}{x-1} \right)$	03	
	(2)	Show that the sequence $\left\{\frac{n}{n^2+1}\right\}$ is monotonic decreasing and bounded. Is it	04	
	(b)	convergent? Find expansion of $\tan\left(x + \frac{\pi}{4}\right)$ is ascending powers of x upto terms in x^4 and	07	
		find approximately the value of $tan(43°)$		
Q.2	(a)(1)	Find expansion of $\log(1 + x)$.	03	
C	(2)	Test the convergence of the series $1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \dots$	04	
	(b)	Determine absolute or conditional convergence of the series. $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$	07	
Q.3	(a) (1)	Evaluate $\int_{1}^{\infty} \frac{1}{x^2} dx$	03	
	(2)	Find the linearization of $f(x, y, z) = xy + yz + xz$ at the point (1,0,0)	04	
	(b)	Trace the curve $r = a(1 - \cos \theta), a > 0$	07	
Q.4	(a)(1)	Show that $f(x, y) = x^2 + 2y$ is continuous at (1,2).	03	
	(2)	If $u = \tan^{-1}\left(\frac{x}{y}\right)$ where $x^2 + y^2 = a^2$ find $\frac{du}{dx}$.	04	
	(b)	State Euler's theorem. If $u = tan^{-1} \left(\frac{x^2 + y^2}{x + y}\right)$, prove that	07	
		$x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x\partial y} + y^{2}\frac{\partial^{2}u}{\partial z^{2}} = -2sin^{3}ucosu$		
Q.5	(a) (1)	If $u = x^2 y^3$, $x = \log t$, $y = e^t$ find $\frac{du}{dt}$	03	
	(2)	Find the equation of the tangent plane and normal line to the surface $x^{2} + y^{2} + z^{2} = 3$ at the point (1,1,1).	04	
	(b)	Change the order of integration and Evaluate for $\int_{0}^{4a^{2}\sqrt{ax}} \int_{\frac{x^{2}}{4a}}^{xy} dydx$	07	

1

FirstR	anker.com	
δigstragke	Canker.comr's choicer's choiceEvaluate $\int \int \int (xz - y) dz dy dx$ www.FirstRanker.comwww.FirstRanker.com	n ⁰³
(1)	State fundamental theorem of calculus. Use first fundamental theorem of	04
	calculus to find area under the curve $f(x)$ given as an integrand. $\int_{1}^{2} \log x dx$	
(b)	Find the extreme values of the function $x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$	07
Q.7 (a) (1)	Evaluate $\int_{1}^{2} \int_{0}^{1} (1 + 3xy) dxdy$	03
(2)	If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$	04

(b) Find the volume generated by revolving the area bounded by 07 $2y = x^2$, x = 4, y = 0 about x -axis.

www.firstRanker.com