\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE-SEMESTER-2nd ${ }^{\text {nd }}$ EXAMINATION - SUMMER 2018

Subject Code:110015
Subject Name: Vector Calculus and Linear Algebra
Time: 02:30 pm to 05:30 pm Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q-1

(a) 1

If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 5 & 2 & 0 \\ 12 & 15 & 3\end{array}\right]$ then find the eigen values of A and hence find eigen values of A^{5} and A^{-1}.

2
Prove that $A=\left[\begin{array}{ccc}1 & 3+4 i & -2 i \\ 3-4 i & 2 & 9-7 i \\ 2 i & 9+7 i & 3\end{array}\right]$ is a Hermitian matrix.
(b) 1 Solve the following system of equations

$$
\begin{aligned}
& \quad x+5 y=2 \\
& 11 x+y+2 z=3 \\
& x+5 y+2 z=1
\end{aligned}
$$

Using Gauss elimination method
2 Determine whether or not vectors $(1,-2,1),(2,1,-1),(7,-4,1)$ in R^{3} are 3 linearly independent.
Q-2
(a) 1 Investigate for what values of λ and μ the equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

have (i) a unique solution (ii) no solution

2 Obtain the reduced row echelon form of the matrix $A=\left[\begin{array}{cccc}1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8\end{array}\right]$

Prove that the set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right]$ with the operations defined as
$\left[\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right]+\left[\begin{array}{ll}c & 1 \\ 1 & d\end{array}\right]=\left[\begin{array}{cc}a+b & 1 \\ 1 & b+d\end{array}\right] \& \mathrm{k}\left[\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right]=\left[\begin{array}{cc}k a & 1 \\ 1 & k b\end{array}\right]$ is a vector space.

Q-3
(a) For the basis $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ of R^{3} where $v_{1}=(1,1,1), v_{2}=(1,1,0)$ and $v_{3}=$ $(1,0,0)$. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that $\left(v_{1}\right)=(2,-1,4)$, $T\left(v_{2}\right)=(3,0,1), T\left(v_{3}\right)=(-1,5,1)$. Find a formula for $T\left(x_{1}, x_{2}, x_{3}\right)$ and use it to find $T(2,4,-1)$.
(b) 1 (i) Find the Euclidean inner product u.v where

$$
u=(3,1,4,-5), \quad v=(2,2,-4,-3)
$$

(ii) For which values of k are $u=(2,1,3)$ and $v=(1,7, k)$ orthogonal?

2 For $u=(2,1,3), v=(2,-1,3)$ verify Cauchy-Schwarz inequality holds.

Q-4

(a) 1 Find eigen values and eigenvectors of the matrix $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$

2 Define Symmetric matrix and Skew-symmetric matrix by giving example.
(b) 1 Translate and rotate the coordinate axes, if necessary, to put the conic $9 x^{2}-$ $4 x y+6 y^{2}-10 x-20 y=5$ in standard position. Find the equation of the conic in the final coordinate system.
2
Use Cayley-Hamilton theorem to find A^{-1} fro $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$

Q-5

(a) 1 Using Gram-Schmidt process, construct an orthonormal basis for R^{3}, whose basis is the set $\{(1,1,1),(1,-2,1),(1,2,3)\}$

2 Show that $w=(9,2,7)$ is a linear combination of the vectors $u=(1,2,-1)$ and $v=(6,4,2)$ in R.
(b) 1 Find the least squares solution of the linear system $A x=b$, and find the orthogonal projection of b onto the column space of A.

$$
A=\left[\begin{array}{cc}
2 & -2 \\
1 & 1 \\
3 & 1
\end{array}\right], b=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

2 Which of the following are subspaces of R^{3} ?
(i) All the vectors of the form (a, b, c) where $b=a+c$
(ii) All the vectors of the form (a, b, c) where $b=a+c+1$

Q-6

(a)

Verify Green's theorem for the function $F=\left(x^{2}+y^{2}\right) \hat{\imath}-2 x y \hat{\jmath}$, where C is the rectangle in the $x y$-plane bounded by $y \in 0, y=b, x=0$ and $x=a$.
(b) 1 Verify Stoke's theorem for $F=\left(x^{2}-y^{2}\right) \hat{\imath}+2 x y \hat{\jmath}$ in the rectangular region $x=$ $0, y=0, x=a, y=b$.

2
Find A^{-1} using Gauss-Jordan method if $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$
(a) 1
(i) Find $\operatorname{grad}(\varnothing)=\log \left(x^{2}+y^{2}+z^{2}\right)$ at the point $(1,0,-2)$
(ii) Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$

2 Find the directional derivative of the divergence of $\bar{F}(x, y, z)=x y \hat{\imath}+x y^{2} \hat{\jmath}+\mathbf{3}$ $z^{2} \hat{k}$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere $x^{2}+$ $y^{2}+z^{2}=9$.
(b) 1 Show that $\bar{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$ is $\mathbf{4}$ both solenoidal and irrotational.

2 Evaluate $\iint_{S} \bar{F} \cdot d \bar{s}$, where $\bar{F}=(2 x+3 z) \hat{\imath}-(x z+y) \hat{\jmath}+\left(y^{2}+2 z\right) \hat{k}$ and S is $\mathbf{3}$ the surface of the sphere having center at $(3,-1,2)$ and radius 3 .

