

www.FirstRanker.com

Seat	No.:	
------	------	--

Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY BE-SEMESTER- 2nd • EXAMINATION – SUMMER 2018

Date: 17-05-2018 Subject Code:110015 Subject Name: Vector Calculus and Linear Algebra Time: 02:30 pm to 05:30 pm **Total Marks: 70 Instructions:** 1. Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 0-1 If $A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 12 & 15 & 3 \end{bmatrix}$ then find the eigen values of A and hence find eigen values 1 4 (a) of A^5 and A^{-1} . Prove that $A = \begin{bmatrix} 1 & 3+4i & -2i \\ 3-4i & 2 & 9-7i \\ 2i & 9+7i & 3 \end{bmatrix}$ is a Hermitian matrix. 2 3 Solve the following system of equations **(b)** 1 4 x + 5y = 2 11x + y + 2z = 3 x + 5y + 2z = 1Using Gauss elimination method Determine whether or not vectors (1, -2, 1), (2, 1, -1), (7, -4, 1) in \mathbb{R}^3 are 3 2 linearly independent. Q-2 Investigate for what values of λ and μ the equations 1 4 **(a)** x + y + z = 6x + 2y + 3z = 10

 $x + 2y + \lambda z = \mu$

have (i) a unique solution (ii) no solution

2 Obtain the reduced row echelon form of the matrix
$$A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}$$
 3

(b) Prove that the set of all 2x2 matrices of the form
$$\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$$
 with the operations 7
defined as
 $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+b & 1 \\ 1 & b+d \end{bmatrix}$ & $k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}$ is a vector space.

Q-3

(a) For the basis
$$B = \{v_1, v_2, v_3\}$$
 of R^3 where $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ and $v_3 = 7$
(1, 0, 0). Let $T: R^3 \to R^3$ be a linear transformation such that $(v_1) = (2, -1, 4),$
 $T(v_2) = (3, 0, 1), T(v_3) = (-1, 5, 1).$ Find a formula for $T(x_1, x_2, x_3)$
and use it to find $T(2, 4, -1).$
(b) 1 (i) Find the Euclidean inner product u.v where $u = (3, 1, 4, -5), v = (2, 2, -4, -3)$

(ii) For which values of k are
$$u = (2, 1, 3)$$
 and $v = (1, 7, k)$
orthogonal?

2 For
$$u = (2, 1, 3), v = (2, -1, 3)$$
 verify Cauchy-Schwarz inequality holds. 3

(a) 1
Find eigen values and eigenvectors of the matrix
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
 4

(b) 1 Translate and rotate the coordinate axes, if necessary, to put the conic
$$9x^2 - 4xy + 6y^2 - 10x - 20y = 5$$
 in standard position. Find the equation of the conic in the final coordinate system.

2
Use Cayley-Hamilton theorem to find
$$A^{-1}$$
 fro $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$

3

Q-5

- (a) 1 Using Gram-Schmidt process, construct an orthonormal basis for \mathbb{R}^3 , whose basis 4 is the set {(1, 1, 1), (1, -2, 1), (1, 2, 3)}
 - 2 Show that w = (9, 2, 7) is a linear combination of the vectors u = (1, 2, -1) and 3 v = (6, 4, 2) in *R*.
- (b) 1 Find the least squares solution of the linear system Ax = b, and find the orthogonal 4 projection of b onto the column space of A.

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

- 2 Which of the following are subspaces of R^3 ?
 - (i) All the vectors of the form (a, b, c) where b = a + c
 - (ii) All the vectors of the form (a, b, c) where b = a + c + 1

Q-6

- (a) Verify Green's theorem for the function $F = (x^2 + y^2)\hat{i} 2xy\hat{j}$, where *C* is the 7 rectangle in the *xy*-plane bounded by y = 0, y = b, x = 0 and x = a.
- (b) 1 Verify Stoke's theorem for $F = (x^2 y^2)\hat{i} + 2xy\hat{j}$ in the rectangular region x = 40, y = 0, x = a, y = b.

2
Find
$$A^{-1}$$
 using Gauss-Jordan method if $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Q-7

(a)

1

- (i) Find $grad(\emptyset) = \log(x^2 + y^2 + z^2)$ at the point (1, 0, -2)
 - (ii) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1)

2 Find the directional derivative of the divergence of $\overline{F}(x, y, z) = xy\hat{i} + xy^2\hat{j} + 3$ $z^2\hat{k}$ at the point (2, 1, 2) in the direction of the outer normal to the sphere $x^2 + y^2 + z^2 = 9$.

3

3

4

- (b) 1 Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy 2xz + 2z)\hat{k}$ is 4 both solenoidal and irrotational.
 - 2 Evaluate $\iint_S \overline{F} \cdot d\overline{s}$, where $\overline{F} = (2x + 3z)\hat{\iota} (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is 3 the surface of the sphere having center at (3, -1, 2) and radius 3.

www.firstRanker.com