

EnweiwertinstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018

Subject Code:2160405

Subject Name: Principles of Process Engineering-III

Total Marks: 70

Date:01/05/2018

Instructions:

1. Attempt all questions.

Time:10:30 AM to 01:00 PM

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- **Q.1** (a) State assumptions of McCabe Thiele method to calculate number of stages. 03 (b) i. What is the effect of temperature and pressure on adsorption equillibria for gas-04 solid adsorption? ii. Mention Frieundlich- Adsorption isotherm. Define: 07 (c) i. Bound Moisture
 - ii. Unbound Moisture
 - iii. Free Moisture
 - iv. Supersaturation
 - v. Nucleation

(a) Explain Adsorption Hysteresis. 03 **O.2** (b) Explain Clausius- Clapeyron Equation and state its usefulness. 04 Explain the following terms for air- water system: 07 (c) ankerci

- Absolute Humidty i.
- ii. Dew point
- Dry bulb temperature iii.
- Wet bulb iv.
- Humid volume v.
- Humid heat vi.
- vii. Saturated and unsaturated mixture.

OR

- Explain multi- stage cross current adsorption operation with neat sketch and 07 (c) also determine the equation for intermediate concentration of liquid stream for minimum total adsorbent in case of 2- stage cross- current operation.
- 0.3 (a) Compare Azeotropic and Extractive distillation.
 - Outline the McCabe-Thiele design method for obtaining number of theoretical **(b)** 04 trays by graphical method.
 - A feed solution contains 100 moles of Benzene- Toluene mixture having 70 mol % 07 (c) benzene. One third of feed is vaporized. The total pressure is 1 atmosphere. Calculate the distillate and bottom composition by using flash distillation. Average relative volatility of solution mixture is 2.5.

OR

- What is reflux ratio? Write a note on different types of reflux ratio used in 03 0.3 (a) distillation?
 - 04 Define following: (1)Distillation (2) Adsorption (3) Ion Exchange (4) Drying **(b)**

03

FirstRanker.com First Contract temperature of air in a room if 40.2% and the total pressure is 101.325 kBrahs lute.com 07 The air contains water vapor with a partial pressure of 3.74 kPa. The vapor pressure of water at this temperature is 7.415 kPa. Calculate the humidity, the saturation humidity, percentage humidity and the percentage relative humidity.

- 0.4 (a) Explain Tray Dryers in brief.
 - (b) Explain rate of drying curve with a diagram.
 - (c) A batch of solid is to be dried from initial moisture of 25% to final moisture of 6% under the conditions of constant and falling rate of drying. The initial weight of wet solid is 160 kg, and the drying surface is $1 \text{ m}^2/40 \text{ kg}$ dry weight. Determine the time of drying. Note: The equilibrium moisture to be considered is: $x^* = 0.05$ kg moisture/ kg dry solid. Table 1:

x (kg	0.333	0.20	0.18	0.16	0.14	0.12	0.10	0.09	0.08	0.07	0.064
moisture/											
kg dry											
solid.)											
N *10 ³	0.300	0.300	0.266	0.239	0.208	0.180	0.150	0.097	0.070	0.043	0.025
1/N * 10-	3.33	3.33	3.76	4.18	4.80	5.55	6.67	10.3	14.3	23.3	40.0
3											
OR											

Explain Freeze Drying in brief. 0.4 (a)

- Explain Rotary Dryers. **(b)**
- Derive the relation to determine the time needed for constant & falling rate period of **(c)** 07 the batch drying operations.
- Q.5 03 **(a)** Compare adiabetic saturation theory and wet bulb temperature theory.
 - State various types of cooling towers and their arrangements. **(b)**
 - Explain differential distillation and derive Rayleigh equation. (c)

OR

Q.5	(a)	Explain the stages of Crystallization in brief.						
-	(b)	Explain Swenson- Walker Crystallizer in brief.						
	(c)	e) Derive Fenske's equation for the minimum number of theoretical stages.						
		Ye						
		HIS ROLL AND A ROLL AN						
		and a second sec						

03

04

07

03

04

04

07