FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018

Subject Code: 2163203 Date: 01/05/2018

Subject Name: Engineering Electromagnetics & wave Progogation

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

0.1	(a)	Transform the given vector $\mathbf{A} = 10 \mathbf{a}$ into spherical coordinates at Point	03
¥	(4)	P (r=4 β =110° β =120°)	ŰĽ
	(b)	Explain cross product and dot product in detail.	04
	(c)	Explain cylindrical coordinate systems	07
0.2	(e) (a)	Define volume surface and line charge density.	03
Q.2	(b)	Explain coulombs law and field intensity.	04
	(~) (c)	Given the field D = $60\sin(\omega/2)$ a.+ 1 $50\cos(\omega/2)$ a. C/m ²	07
	(t)	Evaluate both sides of the divergence theorem for the region bounded	07
		by $o=2$, $0 < o < 180^\circ$, $0 < z < 5$	
		OR	
	(c)	Find E at P (1, 5, 2) in free space if a point charge of 6 μ C is located at	07
	(0)	O(0, 0, 1) a uniform line charge of 180 nC/m lies along the z axis and a	07
		uniform sheet charge 25 nC/m ² lies in the plane $z = -1$	
Q.3	(a)	What do you mean by equipotential surface?	03
	(b)	State and prove maxwell's first law in integral form.	04
	(c)	Derive the equation to find energy stored in the field of a system of	07
		charges.	
		OR	
Q.3	(a)	Find the gradient of the following scalar field = $e^{-z} \sin 2x \cosh y$.	03
	(b)	If $V = 2$ volts at $x = 1$ mm and $V = 0$ volts at $x = 0$. Find Ex at $x = 1$ mm	04
		in free space for the volume charge density $-3 \times 10^8 \varepsilon_0 \text{ x C/m}^3$.	
	(c)	Write short note on boundary condition for perfect dielectric.	07
Q.4	(a)	Derive the expression of following capacitor: 1) coaxial 2) Spherical	03
	(b)	Derive Poission's and Laplace's equation.	04
	(c)	Write short note on magnetic boundary conditions	07
		OR	
Q.4	(a)	Explain biot-savart law.	03
	(b)	Explain ampere's circuital law	04
	(c)	Verify Stoke's theorem for the field $\mathbf{H} = 6xy\mathbf{a}_x - 3y^2 \mathbf{a}_y$ and the	07
		rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$ and $z = 0$. Let the	
		positive direction of ds be a_z .	
Q.5	(a)	Derive an equation of force on moving charge under effect of EM field.	03
	(b)	Explain wave motion in free space.	04
	(c)	Explain point and integral form of Maxwell's equations.	07
0.5	()		0.2
Q.5	(a)	Define with respect to plane EM waves: 1) Phase 2) Phase constant 3)	03
	(L)	Phase velocity	Λ4
	(D)	Explain skill effect.	04
	(C)	State and prove pointing vector medfelli.	U/