

Thorce www.FirstRanker.com Enwww.#irstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII (NEW) - EXAMINATION - SUMMER 2018

Subject Code: 2180105 Date: 02/05/2018

Subject Name: High Speed Aerodynamics(Department Elective III)

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	What is Newtonian theory?	03
	(b)	What are the characteristics of hypersonic flow?	04
	(c)	Draw and explain shock wave & Mach wave patterns for Supersonic and Hypersonic flow for Airfoil.	07
Q.2	(a)	Differentiate subsonic, supersonic and transonic range of flows.	03
	(b)	How shock layer thickness is affected by Mach number? Explain.	04
	(c)	What is wind tunnel? Explain construction of subsonic open type wind tunnel with neat sketch.	07
		OR	
	(c)	Draw and explain entropy layer for airfoil in hypersonic flow.	07
Q.3	(a)	What is delta wing? Can it be used in hypersonic flow regimes	03
		explain?	
	(b)	Explain wind tunnel balances.	04
	(c)	Derive modified Newtonian equation for hypersonic flow.	07
		OR	
Q.3	(a)	Explain wind tunnel corrections in brief.	03
	(b)	Explain solid blockage in detail.	04
	(c)	Explain the components of wind tunnel along with their advantages.	07
Q.4	(a)	Explain wake blockage.	03
	(b)	Write a note on hypersonic wind tunnels.	04
	(c)	Write a note on flow visualization techniques.	07
		OR	
Q.4	(a)	Enlist the applications of hypersonic flow.	03
	(b)	Define shock layer, entropy layer and viscous retraction.	04
	(c)	Prove "Hypersonic limit for a slender wedge, the wave angle is only	07
		20% larger than the wedge angle.	
Q.5	(a)	Explain with neat sketch High temperature Flows.	03
	(b)	Using Oblique shock wave geometry, derive Temperature ratio	04
		relation for hypersonic case.	
	(c)	Write a short note on aerodynamic heating for hypersonic flow.	07
		OR	
Q.5	(a)	Explain with sketches viscous interactions.	03
	(b)	Write a note on shock expansion method.	04
	(c)	Explain Centrifugal force corrections to Newtonian theory with neat sketch.	07
