Date: 24-May-2018

Subject Code: 3610003

(5) linear search

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER - I • EXAMINATION - SUMMER 2018

	U	•	
Su	ıbject Name: Program Design techniques		
Ti	me: 02.30 pm to 5.00 pm	Total Marks: 70	
Ins	structions:		
	1. Attempt all questions.		
	2. Make suitable assumptions wherever necessary.		
	3. Figures to the right indicate full marks.		
Q.1	(a) Explain following terms.		07
	(1) algorithm		
	(2) recursion		
	(3) sorting		
	(4) modularity		

		(6) efficient algorithm (7) program verification		
	(b)	What is binary search? Explain the strategy for binary search algorithm.	07	
Q.2	(a) (b)	Design an algorithm to compute the average of n numbers. What are the qualities and capabilities of a good algorithm?	07 07	
OR				
	(b)	Explain about the worst and average case behavior of algorithm.	07	
Q.3	(a)	Devise an algorithm to generate and print the first n terms of the Fibonacci sequence where $n \ge 1$.	07	
	(b)	Design an algorithm to convert binary number to decimal. OR	07	
Q.3	(a)	Given a number n, devise an algorithm to compute its square root.	07	
· C	(b)	Given some integer X , compute the value of X^n where n is a positive integer considerably greater than 1.	07	
Q.4	(a)	Design an algorithm to find the maximum number in a set and the position where it first occurs.	07	

digits. For example, for Input: 18274, Output: 47281 **Q.4** (a) Find the position of number x (if it occurs) in an array of n elements. **07** Design and implement hash searching algorithm. **07** Explain about the types of recursive algorithms. 0.5 07 Which points should be considered for constructing loops? **07** (a) What are the general considerations for setting up data structures? 07 **Q.5** (b) Explain stepwise refinement strategy for algorithm design. **07**

(b) Design an algorithm that accepts a positive integer and reverses the order of its

07