

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA – SEMESTER – II • EXAMINATION – SUMMER 2018

Subject Code: 2620004

Date: 23-May-2018

Subject Name: Computer-Oriented Numerical Methods

Time: 10.30 am to 1.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the concept of successive approximation method used to find root of equation. Discuss the convergence of the method using graphical techniques.
 - (b) Find the root of the polynomial, $g(x) = x^3 5 + 3x$ using bisection method. 07 Where m = 1 and n = 2?
- **Q.2** (a) Solve $2x^3-2.5x-5=0$ for the root in [1,2] by Newton Raphson method.
 - (b) Consider finding the root of $f(x) = x^2 3$. Let ε step = 0.01, ε abs = 0.01 and start 07 with the interval [1, 2].

OR

(b) Find the root of $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$ Using Birge- vieta Method. 07

Q.3 (a) Given the following data, estimate F(1.83) using Newton-Gregory forward 07 difference interpolation.

i	0	1	2	3	4
xi	1	3	5	7	9
fi	0	1.0986	1.6094	1.9459	2.1972

(b) Derive an expression for Newton's backward difference interpolation formula.

OR

Q.3 (a) Find f(0.25) for Using langrage interpolation.

Х	0.1	0.2	0.3	0.4	0.5
f	9.9833	4.9667	3.2836	2.4339	1.9177
		4.7007	3.2030	2.4337	1.7177

(b) Evaluate f (15), given the following table of values:

Х	10	20	30	40	50
f(x)	46	66	81	93	101

- Q.4 (a) Derive Newton cotes' general quadrature formula. Using it obtain Trapazodial 07 formula for numerical integration.
 - (b) Solve the following system of equations using Gaussian elimination.

$$-3x + 2y - 6z = 6$$

$$5x + 7y - 5z = 6$$

$$x + 4y - 2z = 8$$

OR

- Q.4 (a) Derive Newton's Backward Difference interpolation formula of first order 07 differentiation
 - (b) Solve the linear system by Gauss elimination method.

$$y + z = 2$$

$$2x + 3z = 5$$

$$x + y + z=3$$

07

07

07

07

07

07

method. $12x_1 + 3x_2 - 5x_3 = 1$ $x_1 + 5x_2 + 3x_3 = 28$ $3x_1 + 7x_2 + 13x_3 = 76$ Use $x_1 = 1$ $X_2 \quad 0$ X₃ 1

as the initial guess and conduct two iterations. Use Runge-Kutta Method of Order 4 to solve the following, using a 07 **(b)** du/dx = -2u+x+4, u(0) = 1,

to obtain u(0.2) using $\Delta x = 0.2$

OR

Q.5	(a)	Define the following terms: Absolute Error, Relative Error, and Blunders.	07
	(b)	Derive Newton Raphson method formula.	07

(b) Derive Newton Raphson method formula.

www.firstRanker.com