GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER - II • EXAMINATION - SUMMER 2018

Subject Code: 2620004
Date: 23-May-2018
Subject Name: Computer-Oriented Numerical Methods
Time: 10.30 am to $1.00 \mathbf{~ p m}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain the concept of successive approximation method used to find root of equation. Discuss the convergence of the method using graphical techniques.
(b) Find the root of the polynomial, $g(x)=x 3-5+3 x$ using bisection method.

Where $\mathrm{m}=1$ and $\mathrm{n}=2$?
Q. 2 (a) Solve $2 x^{3}-2.5 x-5=0$ for the root in [1,2] by Newton Raphson method.
(b) Consider finding the root of $f(x)=x^{2}-3$. Let $\varepsilon s t e p=0.01$, $\varepsilon a b s=0.01$ and start with the interval [1, 2].

OR

(b) Find the root of $x^{4}-3 x^{3}+3 x^{2}-3 x+2=0$ Using Birge- vieta Method.
Q. 3 (a) Given the following data, estimate $\mathrm{F}(1.83$) using Newton-Gregory forward difference interpolation.

i	0	1	2	3	4
xi	1	3	5	7	9
fi	0	1.0986	1.6094	1.9459	2.1972

(b) Derive an expression for Newton's backward difference interpolation formula.
Q. 3 (a) Find $\mathrm{f}(0.25)$ for Using langrage interpolation.

x	0.1	0.2	0.3	0.4	0.5
f	9.9833	4.9667	3.2836	2.4339	1.9177

(b) Evaluate f (15), given the following table of values:

x	10	20	30	40	50
$\mathrm{f}(\mathrm{x})$	46	66	81	93	101

Q. 4 (a) Derive Newton cotes' general quadrature formula. Using it obtain Trapazodial
formula for numerical integration.
(b) Solve the following system of equations using Gaussian elimination.

$$
\begin{gathered}
-3 x+2 y-6 z=6 \\
5 x+7 y-5 z=6 \\
x+4 y-2 z=8
\end{gathered}
$$

OR

Q. 4 (a) Derive Newton's Backward Difference interpolation formula of first order $\mathbf{0 7}$ differentiation
(b) Solve the linear system by Gauss elimination method.

$$
\begin{gathered}
y+z=2 \\
2 x+3 z=5 \\
x+y+z=3
\end{gathered}
$$

 method.
$12 \mathrm{x}_{1}+3 \mathrm{x}_{2}-5 \mathrm{x}_{3}=1$
$\mathrm{x}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{3}=28$
$3 \mathrm{x}_{1}+7 \mathrm{x}_{2}+13 \mathrm{x}_{3}=76$
Use $\mathrm{x}_{1} 1$
$\mathrm{X}_{2} \quad 0$
$\mathrm{X}_{3} 1$
as the initial guess and conduct two iterations.
(b) Use Runge-Kutta Method of Order 4 to solve the following, using a
du/dx $=-2 u+x+4, u(0)=1$,
to obtain $u(0.2)$ using $\Delta x=0.2$

OR

Q. 5 (a) Define the following terms: Absolute Error, Relative Error, and Blunders.
(b) Derive Newton Raphson method formula.

