

Su Su Tii	bject bject ne: 1	GUJA MCA – Code: 620 Name: Co 0.30 am to	RAT TH SEMESTI 005 mputer (1.00 pm	ECHN ER – II Drient	VOLO • EXAM ed Num	GICA IINAT nerica	AL U TION – nl Met	NIVER SUMME Date: hods Total	8I7 R 20 : 23-	ГҮ 18 •May-2018 urks: 70	Ì
Inst	tructio 1. 2. 3.	ns: Attempt all Make suita Figures to t	questions. ble assumpt he right ind	ions wh licate fu	erever ne ll marks.	cessar	у.				
Q.1	(a)	Find the root of the equation $x^3 - x - 4 = 0$ using the Bisection method.									07
	(b)	Perform iterations until the accuracy till four significant digit. Find the root of the equation $x^4 + 24x - 50 = 0$ correct up to three significant digits using Birge-Vieta method. Assume the initial value of the root = 1.5									
Q.2	(a)	(i) Explain total numerical error. How can one control numerical errors? 07									
	(ii) State Descartes rule of sign. Use it to determine the number of posit and negative roots of the polynomial equation : $x^4 - 3x^3 + 2x^2 + 20x - 2$ (b) Use secant method to find a root of the following equation $x^3 - 5x + 3 = 0$, correct up to three decimal places. OR										07
	(b)	Use Newton-Raphson method to find a root of the following equation $x^3 - 4x - 9 = 0$, correct up to three decimal places between 2.625 and 3.									
Q.3	(a)	From the following table, find y when $x = 0.4$ using Lagrange's interpolation formula.									07
		X	0.3		0.5		0.6	,	_		
	(b)	Fit a straigh	t line of the	form y	a = a + bx	, to the	e follow	- ving data :			07
		Х	0.1	0.2	0.3	•	0.4	0.5		0.6	
		у	5.1	5.3	5.6		5.7	5.9		6.1	
0.2	(-)	Compute value of v at $v=0.02$ wire switchle intermelating relevantial									
Q.3	(a)	x = 0.02 using suitable interpolating polynomial							$\frac{1}{1}$	07	
		Y 1.0000		1.1052		1.2214		1.3499		1.4918	
	(b)	Fit an exponential curve for the following data:								07	
		Х	500			400	35		50		
		у	10			26		61			
Q.4	(a)) Compute the second order derivative for the following set of data								lues at x=3	07
		X	0		1		2		3		
	(b)	F(x)-51925Evaluate $\int_{-2}^{2} e^{(-\frac{1}{2}x)} dx$ using trapezoidal rule for four intervals.									07
Q.4	(a)	The distance (s) covered by a car in a given time (t) is given in the following table :									07
		Time (minutes)		10	12	16	17	17		22	
		Distance (I	kms)	12	15	20	22			32	

Find speed of the car at t=14 minutes.

Evaluate $\int (x^2 + 2x) dx$ using Gauss Quadrature formula. www.FirstRanker.com⁰⁷

- Q.5 (a) Solve the following system of simultaneous linear equations using Gauss07 Elimination method: 2x+8y+2z=14 x+6y-z=13 2x-y+2z=5
 (b) Simultaneous linear equations using Gauss07 OF A state of the state of the
 - (b) Given $dy/dx = 1 + y^2$ with y(0)=0,y(0.2)=0.2027,y(0.4)=0.4228,y(0.6)=0.6841. 07 compute y(0.8) using Milne simpson's Predictor-Corrector method.

OR

- Q.5 (a) Solve the following system of simultaneous linear equations using GaussO7 Seidel method: 10x+y+2z = 44 2x+10y+z = 51 x+2y+10z = 61
 O7
 - (b) Given $dy/dx = 1 + y^2$ with y(0)=0,y(0.2)=0.2027,y(0.4)=0.4228,y(0.6)=0.6841. 07 compute y(0.8) using Adam-Bashforth Predictor-Corrector method.

www.FirstRanker.com