GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER - II • EXAMINATION - SUMMER 2018

Subject Code: $\mathbf{6 2 0 0 0 5}$
Date: 23-May-2018

Subject Name: Computer Oriented Numerical Methods

Time: $\mathbf{1 0 . 3 0}$ am to 1.00 pm Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find the root of the equation $x^{3}-x-4=0$ using the Bisection method.

Perform iterations until the accuracy till four significant digit.
(b) Find the root of the equation $\mathrm{x}^{4}+24 \mathrm{x}-50=0$ correct up to three significant digits using Birge-Vieta method. Assume the initial value of the root $=1.5$
Q. 2 (a) (i) Explain total numerical error. How can one control numerical errors ?
(ii) State Descartes rule of sign. Use it to determine the number of positive and negative roots of the polynomial equation : $x^{4}-3 x^{3}+2 x^{2}+20 x-20=0$
(b) Use secant method to find a root of the following equation $x^{3}-5 \mathrm{x}+3=0$, correct up to three decimal places.

OR
(b) Use Newton-Raphson method to find a root of the following
equation $x^{3}-4 \mathrm{x}-9=0$, correct up to three decimal places between 2.625 and 3 .
Q. 3 (a) From the following table, find y when $x=0.4$ using Lagrange's interpolation
formula.

X	0.3	0.5	0.6
y	0.61	0.69	0.72

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{b} x$, to the following data :

x	0.1	0.2	0.3	0.4	0.5	0.6
y	5.1	5.3	5.6	5.7	5.9	6.1

OR
Q. 3 (a) Compute value of y at $\mathrm{x}=0.02$ using suitable interpolating polynomial

X	0.0	0.1	0.2	0.3	0.4
Y	1.0000	1.1052	1.2214	1.3499	1.4918

(b) Fit an exponential curve for the following data:

x	600	500	400	350
y	2	10	26	61

Q. 4 (a) Compute the second order derivative for the following set of data values at $\mathbf{x}=\mathbf{3}$

X	0	1	2	3
$\mathrm{~F}(\mathrm{x})$	-5	1	9	25

(b) Evaluate $\int_{1}^{2} e^{\left(-\frac{1}{2} x\right)} d x$ using trapezoidal rule for four intervals.

OR

Q. 4 (a) The distance (s) covered by a car in a given time (t) is given in the
following table :

Time (minutes)	10	12	16	17	22
Distance (kms)	12	15	20	22	32

Find speed of the car at $\mathrm{t}=14$ minutes.

Evaluate $\int_{2}\left(x^{2}+2 x\right) d x$ www. FirstRanker.com $\begin{gathered}\text { using Gauss Quadrature formula. }\end{gathered}$
Q. 5 (a) Solve the following system of simultaneous linear equations using Gauss-

Elimination method:
$2 x+8 y+2 z=14$
$x+6 y-z=13$
$2 x-y+2 z=5$
(b) Given $d y / d x=1+y^{2}$ with $\mathrm{y}(0)=0, \mathrm{y}(0.2)=0.2027, \mathrm{y}(0.4)=0.4228, \mathrm{y}(0.6)=0.6841$.
compute $\mathrm{y}(0.8)$ using Milne simpson's Predictor-Corrector method.
OR
Q. 5 (a) Solve the following system of simultaneous linear equations using Gauss-

Seidel method:
$10 x+y+2 z=44$
$2 x+10 y+z=51$
$x+2 y+10 z=61$
(b) Given $d y / d x=1+y^{2}$ with $\mathrm{y}(0)=0, \mathrm{y}(0.2)=0.2027, \mathrm{y}(0.4)=0.4228, \mathrm{y}(0.6)=0.6841$.
compute $\mathrm{y}(0.8)$ using Adam-Bashforth Predictor-Corrector method.

