JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

I Year - I Semester		\mathbf{L}	\mathbf{T}	P	C
	ENGINEERING DRAWING (ES1103)	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2 . 5}$

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.
Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.
Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents \& normals for the curves.
Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points \& simple lines. To make the students draw the projections of the lines inclined to both the planes.
Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.
Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.
Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.
Projections of Solids - Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
 KAKINADA - 533 003, Andhra Pradesh, India
 DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.
Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.
Computer Aided Design, Drawing practice using Auto CAD, Creating 2D\&3D drawings of objects using Auto CAD

Note:In the End Examination there will be no question from CAD.

TEXT BOOKS:

1. Engineering Drawing by N.D. Butt, Chariot Publications
2. Engineering Drawing by Agarwal \& Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

1. Engineering Drawing by K.L.Narayana \& P. Kannaiah, Scitech Publishers
2. Engineering Graphics for Degree by K.C. John, PHI Publishers
3. Engineering Graphics by PI Varghese, McGrawHill Publishers
4. Engineering Drawing + AutoCad $-K$ Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student willearn how to visualize 2D \& 3D objects.

Unit-I

Regular Polygons,

Ellipse and Scales

Steps:
Draw a line Mo at any convenient angle (preferably an acute
angle) from point M.
From M and along Mo, cut off with a divider equal divisions
(say three) of any convenient length.
Draw a line joining RN.
Draw lines parallel to RN through the remaining points on line
Mo. The intersection of these lines with line MN will divide the
line into (three) equal parts.
Planar tangent condition exists when two
geometric forms meet at a single point and do
not intersect.

given point on the line
Drawing an arc tangent to a

Locate the center of the
arc by making the radius
on the perpendicular
line. Put the point of the
compass at the center of
the arc, set the compass
for the radius of the arc,
and draw the arc which
will be tangent to the line
through the point T .

əu!|
" pue

$$
\begin{array}{r}
\text { AB } \\
\text { point }
\end{array}
$$

line Given
tangent
Constru
perpend
and thro
Steps
Given line AB and
tangent point
Construct a line
perpendicular to line AB
and through point T .
Locate the center of the
arc by making the radius
on the perpendicular
line. Put the point of the
compass at the center of
the arc, set the compass
for the radius of the arc,
and draw the arc which
will be tangent to the line
through the point T .

Drawing an arc, tangent to two lines

4
\oplus

©
line and an arc
(b) that intersect

Drawing
(a) that do not intersect

ENGINEERING DRAW

Contents

1. Scales

2. Engineering Curves - I
3. Engineering Curves - II
4. Loci of Points
5. Orthographic Projections - Basics
6. Conversion of Pictorial View into Orthographic Views
7. Projections of Points and Lines
8. Projection of Planes
9. Projection of Solids
10. Sections \& Development
11. Intersection of Surfaces
12. Isometric Projections
13.
14. Exercisens - Applications of Lines

Scales

1. Basic Information
2. Types and important units
3. Plain Scales (3 Problems)
4. Diagonal Scales - information
5. Diagonal Scales (3 Problems)
6. Comparative Scales (3 Problems)
7. Vernier Scales - information
8. Vernier Scales (2 Problems)
9. Scales of Cords - construction
10. Scales of Cords (2 Problems)

Engineering Curves - I

1. Classification
2. Conic sections -
explanation
3. Common

Definition
4. Ellipse - (six methods of construction)
5. Parabola - (Three methods of construction)
6. Hyperbola - (Three methods of construction)
7. Methods of drawing Tangents \& Normals (four cases)

Engineering Curves - II

1.

B. Classificatio
3. Involutes - (five cases)
4. Cycloid
5. Trochoids - (Superior and Inferior)
6. Epic cycloid and Hypo - cycloid
7. Spiral (Two cases)
8. Helix - on cylinder \& on cone
9. Methods of drawing Tangents and Normals (Three cases)

Loci of Points

1. Definitions - Classifications
2. Basic locus cases (six problems)
3. Oscillating links (two problems)
4. Rotating Links (two problems)
Orthographic Projections - Basics
5. Drawing - The fact about
6. Drawings - Types
7. Orthographic (Definitions and Important terms)
8. Planes-Classifications
9. Pattern of planes \& views
10. Methods of orthographic projections
11.

$1^{\text {st }}$ angle and $3^{\text {rd }}$ angle method - two illustrations

Conversion of pictorial views in to orthographic

1. Explanation of various terms
2. 1 st angle method-illustration
3. 3rd angle method - illustration
4. To recognize colored surfaces and to draw three Views
5. Seven illustrations (no. 1 to 7) draw different orthographic views
6. Total nineteen illustrations (no. 8 to 26)

Projection of Points and Lines

1.
2.
3.
4.
5.
6.
7. Lines - Objective \& Types.
8. Lines inclined to one plane.
9. Lines inclined to both planes.
10. Imp. Observations for solution
11. Important Diagram \& Tips.
12. Group A problems 1 to 5
13. Traces of Line (HT \& VT)
14. To locate Traces.
15. Group B problems: No. 6 to 8
16. HT-VT additional information.
17. Group B1 problems: No. 9 to 11
18. Group B1 problems: No. 9 to 1
19. Lines in profile plane
20. Group C problems: No. 12 \& 13
21. Applications of Lines:: Information
22. Group D: Application Problems: 14 to 23

Projections of Planes:

1. About the topic:
2. Illustration of surface \& side inclination.
3. Procedure to solve problem \& tips:
4. Problems:1 to 5: Direct inclinations:
5. Problems:6 to 11: Indirect inclinations:
6. Freely suspended cases: Info:
7. Problems: 12 \& 13
8. Determination of True Shape: Info:
9. Problems: 14 to 17
Projections of Solids:
10. Classification of Solids:
11. Important parameters:
12. Positions with Hp \& Vp: Info:
13. Pattern of Standard Solution.
14. Problem no 1,2,3,4: General cases:
15. Problem no 5 \& 6 (cube \& tetrahedron)
16. Problem no 7 : Freely suspended:
17. Problem no 8 : Side view case:
18. Problem no 9 : True length case:
19. Problem no 10 \& 11 Composite solids:
20. Problem no 12 : Frustum \& auxiliary plane:

Section \& Development

1. Applications of solids:
2. Sectioning a solid: Information:
3. Sectioning a solid: Illustration Terms:
4. Typical shapes of sections \& planes:
5. Development: Information:
6. Development of diff. solids:
7. Development of Frustums:
8. Problems: Standing Prism \& Cone: no. 1 \& 2
9. Problems: Lying Prism \& Cone: no. 3 \& 4
10. Problem: Composite Solid no. 5
11. Problem: Typical cases no. 6 to 9
Intersection of Surfaces:
12. Essential Information:
13. Display of Engineering Applications:
14. Solution Steps to solve Problem:
15. Case 1: Cylinder to Cylinder:
16. Case 2: Prism to Cylinder:
17. Case 3: Cone to Cylinder
18. Case 4: Prism to Prism: Axis Intersecting.
19. Case 5: Triangular Prism to Cylinder
20. Case 6: Prism to Prism: Axis Skew
21. Case 7 Prism to Cone: from top:
22. Case 8: Cylinder to Cone:

Isometric Projections

1. Definitions and explanation
2. Important Terms
3. Types.
4. Isometric of plain shapes-1.
5. Isometric of circle
6. Isometric of a part of circle
7. Isometric of plain shapes-2
8. Isometric of solids \& frustums (no. 5 to 16)
9. Isometric of sphere \& hemi-sphere (no.17 \& 18)
10. Isometric of Section of solid.(no.19)
11. Illustrated nineteen Problem (no. 20 to 38)

OBJECTIVE OF THIS CD

Sky is the limit for vision.
Vision and memory are close relatives.
Anything in the jurisdiction of vision can be memorized for a 10
We may not remember what we hear for a long time, but we can easily remember and even visualize what we have set So vision helps visualization and both help in memorizing an even

Video effects are far more effective, is now an established Every effort has been done in this CD, to bring various planes, objects in-front of observer, so that he/she can further visualize in propel and reach to the correct solution, himself.

Off-course this all will assist \& give good results only when one will practice all these methods and techni by drawing on sheets with his/her own hands, other wise

So observe each illustration carefully note proper notes given everywhere
Go through the Tips given \& solution steps carefully Discuss your doubts with your teacher and make practice yol Then success is yours !!

Go ahead confidently! Dream Team wishes you best luck!

SCALES

DIMENSIONS OF LARGE OBJECTS MUST BE REDUCED TO ACCOMMODATE ON STANDARD SIZE DRAWING SHEET.THIS REDUCTION CREATES A SCALE OF THAT REDUCTION RATIO, WHICH IS GENERALLY A FRACTION..

SUCH A SCALE IS CALLED REDUCING SCALE AND THAT RATIO IS CALLED REPRESENTATIVE FACTOR.

SIMILARLY IN CASE OF TINY OBJECTS DIMENSIONS MUST BE INCREASED FOR ABOVE PURPOSE. HENCE THIS SCALE IS CALLED ENLARGING SCALE. HERE THE RATIO CALLED REPRESENTATIVE FACTOR IS MORE THAN UNITY.

USE FOLLOWING FORMULAS FOR THE CALCULATIONS IN THIS TOPIC.

(A) REPRESENTATIVE FACTOR (R.F.) $=\frac{\text { DIMENSION OF DRAWING }}{\text { DIMENSION OF OBJECT }}$ $=\frac{\text { LENGTH OF DRAWING }}{\text { ACTUAL LENGTH }}$ $=\sqrt{\frac{\text { AREA OF DRAWING }}{\text { ACTUAL AREA }}}$ $=\sqrt[3]{\frac{\text { VOLUME AS PER DRWG. }}{\text { ACTUAL VOLUME }}}$

B LENGTH OF SCALE $=$ R.F. X MAX. LENGTH TO BE MEASURED.

BE FRIENDLY WITH
 $1 \mathrm{KILOMETRE}=10 \mathrm{H}$
 1 HECTOMETRE 10 D
 1 DECAMETRE $=10 \mathrm{M}$
 $1 \mathrm{METRE}=10 \mathrm{D}$
 1 DECIMETRE $=10 \mathrm{Cl}$
 1 CENTIMETRE $=10 \mathrm{M}$

TYPES OF SCALES:

1. PLAIN SCALES
2. DIAGONAL SCALES
3. VERNIER SCALES
4. COMPARATIVE SCALES (FOR COMPARING TWO DIFFERI
5. SCALE OF CORDS (FOR MEASURING/CONSTRUCT
(FOR DIMENSIONS UP TO SINGI (FOR DIMENSIONS UP TO TWO (FOR DIMENSIONS UP TO TWO

PLAIN SCALE:- This type of scale represents two units or a unit and it's sub-divisi PROBLEM NO.1:- Draw a scale $1 \mathrm{~cm}=1 \mathrm{~m}$ to read decimeters, to measure maxim Show on it a distance of 4 m and 6 dm .

CONSTRUCTION:- DIMENSION OF DRAWING
a) Calculate R.F.=
DIMENSION OF OBJECT

$$
\begin{aligned}
\text { R.F. } & =1 \mathrm{~cm} / 1 \mathrm{~m}=1 / 100 \\
\text { Length of scale } & =\text { R.F. } X \text { max. distance } \\
& =1 / 100 \times 600 \mathrm{~cm} \\
& =6 \mathrm{cms}
\end{aligned}
$$

b) Draw a line 6 cm long and divide it in 6 equal parts. Each part will represent larg
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and sub on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of so
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 4 m 6 dm on it as shown.

DECIMETERS

$$
\begin{aligned}
& \text { R.F. }=1 / 100 \\
& \text { PLANE SCALE SHOWING METERS AND DECIMETERS. }
\end{aligned}
$$

PROBLEM NO.2:- In a map a 36 km distance is shown by a line 45 cms long. Calculat a plain scale to read kilometers and hectometers, for max. 12 km . Show a distance of ε

CONSTRUCTION:-

a) Calculate R.F.

$$
\text { R.F. }=45 \mathrm{~cm} / 36 \mathrm{~km}=45 / 36 \cdot 1000 \cdot 100=1 / 80,000
$$

Length of scale $=$ R.F. X max. distance

$$
\begin{aligned}
& =1 / 80000 \times 12 \mathrm{~km} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

b) Draw a line 15 cm long and divide it in 12 equal parts. Each part will represent large
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivis on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of scale.
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 8.3 km on it as shown.

HECTOMETERS
R.F. $=1 / 80,000$

PLANE SCALE SHOWING KILOMETERS AND HECTOMETERS

PROBLEM NO.3:- The distance between two stations is 210 km . A passenger train cove in 7 hours. Construct a plain scale to measure time up to a single minute. RF is $1 / 200,00$ traveled by train in 29 minutes.

CONSTRUCTION:-

a) 210 km in 7 hours. Means speed of the train is 30 km per hour (60 minutes)

Length of scale $=$ R.F. X max. distance per hour

$$
\begin{aligned}
& =1 / 2,00,000 \times 30 \mathrm{~km} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

b) 15 cm length will represent 30 km and 1 hour i.e. 60 minutes.

Draw a line 15 cm long and divide it in 6 equal parts. Each part will represent 5 km an
c) Sub divide the first part in 10 equal parts, which will represent second unit or fraction ot Each smaller part will represent distance traveled in one minute.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisic on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a proper look of s
e) Show km on upper side and time in minutes on lower side of the scale as shown.

After construction of scale mention it's RF and name of scale as shown.
f) Show the distance traveled in 29 minutes, which is 14.5 km , on it as shown.

[^0]We have seen that the plain scales give only two dimensions, such as a unit and it's subunit or it's fraction.

The diagonal scales give us three successive dimensions that is a unit, a subunit and a subdivision of a subunit.

The principle of construction of a diagonal scale is as follows.
Let the $X Y$ in figure be a subunit.
From Y draw a perpendicular $Y Z$ to a suitable height. Join XZ. Divide YZ in to 10 equal parts.
Draw parallel lines to XY from all these divisions and number them as shown.
From geometry we know that similar triangles have their like sides proportional.

Consider two similar triangles XYZ and $7^{\prime} 7 Z$,
we have $7 Z / Y Z=7 ' 7 / X Y$ (each part being one unit)
Means 7 ' $7=7 / 10 . \times X Y=0.7 \mathrm{XY}$
:.
Similarly

$$
\begin{aligned}
& 1 '-1=0.1 X Y \\
& 2 '-2=0.2 X Y
\end{aligned}
$$

Thus, it is very clear that, the sides of small triangles, which are parallel to divided lines, become progressively shorter in length by 0.1 XY .

The solved examples ON NEXT PAGES will make the principles of diagonal scales clear.

PROBLEM NO. 4 : The distance between Delhi and Agra is 200 km . In a railway map it is represented by a line 5 cm long. Find it's R.F. Draw a diagonal scale to show single km. And maximum 600 km . Indicate on it following distances. 1) 222 km 2) 336 km 3) $459 \mathrm{~km} \mathrm{4)} 569 \mathrm{~km}$

SOLUTION STEPS:

$$
\begin{aligned}
& \mathrm{RF}=5 \mathrm{~cm} / 200 \mathrm{~km}=1 / 40,00,000 \\
& \text { Length of scale }=1 / 40,00,000 \times 600 \times 10^{5}=15 \mathrm{~cm}
\end{aligned}
$$

Draw a line 15 cm long. It will represent 600 km .Divide it in six equal parts.(each will repre Divide first division in ten equal parts. Each will represent 10 km . Draw a line upward from 1 mark 10 parts on it of any distance. Name those parts 0 to 10 as shown. Join $9^{\text {th }}$ sub-divisic with $10^{\text {th }}$ division of the vertical divisions. Then draw parallel lines to this line from remaini complete diagonal scale.

$$
459 \mathrm{~km}
$$

336 km
222 km

$$
\text { R.F. }=1 / 40,00,000
$$

DIAGONAL SCALE SHOWING KILOMETERS.

PROBLEM NO.5: A rectangular plot of land measuring 1.28 hectors is represented on a map by of 8 sq . cm . Calculate RF of the scale. Draw a diagonal scale to read single meter. Show a distan

SOLUTION :

1 hector $=10,000$ sq. meters
1.28 hectors $=1.28 \times 10,000$ sq. meters

$$
=1.28 \times 10^{4} \times 10^{4} \mathrm{sq} . \mathrm{cm}
$$

8 sq. cm area on map represents

$$
=1.28 \times 10^{4} \times 10^{4} \text { sq. } \mathrm{cm} \text { on land }
$$

1 cm sq. on map represents

$$
=1.28 \times 10^{4} \times 10^{4} / 8 \mathrm{sq} \mathrm{~cm} \text { on land }
$$

1 cm on map represent

$$
\begin{aligned}
& =\sqrt{1.28 \times 10^{4} \times 10^{4}} / 8 \mathrm{~cm} \\
& =4.000 \mathrm{~cm}
\end{aligned}
$$

1 cm on drawing represent $4,000 \mathrm{~cm}$, Means RF=1/4000 Assuming length of scale 15 cm , it will represent 600 m .

Draw a line 15 cm long.
It will represent 600 m .Divide it in six equa (each will represent 100 m .)
Divide first division in ten equal parts.Each represent 10 m .
Draw a line upward from left end and mark 10 parts on it of any distance.
Name those parts 0 to 10 as shown.Join 9 of horizontal scale with $10^{\text {th }}$ division of the Then draw parallel lines to this line from re and complete diagonal scale.

438 meters

DIAGONAL SCALE SHOWING METERS.

PROBLEM NO.6:. Draw a diagonal scale of R.F. $1: 2.5$, showing centimeters and millimeters and long enough to measure up to 20 centimeters.

SOLUTION STEPS:

R.F. $=1 / 2.5$

Length of scale $=1 / 2.5 \times 20 \mathrm{~cm}$.

$$
=8 \mathrm{~cm}
$$

1.Draw a line 8 cm long and divide it in to 4 equal parts.
(Each part will represent a length of 5 cm .)
2. Divide the first part into 5 equal divisions.
(Each will show 1 cm .)
3.At the left hand end of the line, draw a vertical line and on it step-off 10 equal divisions of any length.
4.Complete the scale as explained in previous problems.

Show the distance 13.4 cm on it.

R.F. $=1 / 2.5$

DIAGONAL SCALE SHOWING CENTIMETERS.

Vernier Scales:

These scales, like diagonal scales, are used to read to a very small unit with great ac It consists of two parts - a primary scale and a vernier. The primary scale is a plain sc divided into minor divisions.
As it would be difficult to sub-divide the minor divisions in ordinary way, it is done with The graduations on vernier are derived from those on the primary scale.

Figure to the right shows a part of a plain scale in which length $A-O$ represents 10 cm . If we divide A-O
into ten equal parts, each will be of 1 cm . Now it would

not be easy to divide each of these parts into ten equal
divisions to get measurements in millimeters.
Now if we take a length $B O$ equal to $10+1=11$ such equal parts, thus representing 11 cm , and divide it into ten equal divisions, each of these divisions will represent $11 / 10-1.1 \mathrm{~cm}$.

The difference between one part of $A O$ and one division of $B O$ will be equal $1.1-1.0=0.1 \mathrm{~cm}$ or 1 mm .

Example 10:

Draw a Vernier scale of RF $=1 / 25$ to read centimeters upto
4 meters and on it, show lengths 2.39 m and 0.91 m

SOLUTION:
Length of scale $=$ RF X max. Distance

$$
=1 / 25 \times 4 \times 100
$$

$$
=16 \mathrm{~cm}
$$

CONSTRUCTION: (Main scale)
Draw a line 16 cm long.
Divide it in 4 equal parts. (each will represent meter)
Sub-divide each part in 10 equal parts (each will represent decimeter)
Name those properly.

CONSTRUCTION: (Vernier)
Take 11 parts of Dm length and divide it in 10 equ Each will show 0.11 m or 1.1 dm or 11 cm and col Covering these parts of Vernier.

TO MEASURE GIVEN LENGTHS:

(1) For 2.39 m : Subtract 0.99 from 2.39 i.e. 2.

The distance between 0.99 (left of Zero) and 1.4
(2) For 0.91 m : Subtract 0.11 from 0.91 i.e. 0.91

The distance between 0.11 and 0.80 (both left sic
2.39 m

Example 11: A map of size $500 \mathrm{~cm} \times 50 \mathrm{~cm}$ wide represents an area of $6250 \mathrm{sq} . \mathrm{Kms}$. Construct a vernier scaleto measure kilometers, hectometers and decameters and long enough to measure upto 7 km . Indicate on it a) $5.33 \mathrm{~km} \mathrm{b)} 59$ decameters.

SOLUTION:

$$
\begin{aligned}
\text { RF } & =\sqrt{\frac{\text { AREA OF DRAWING }}{\text { ACTUAL AREA }}} \\
& =\sqrt{\frac{500 \times 50 \mathrm{~cm} \mathrm{sq}}{6250 \mathrm{~km} \mathrm{sq} .}} \\
& =2 / 10^{5}
\end{aligned}
$$

Length of
 scale $=$ RF X max. Distance
 $$
\begin{aligned} & =2 / 10^{5} \times 7 \mathrm{kms} \\ & =14 \mathrm{~cm} \end{aligned}
$$

CONSTRUCTION: (Main scale)
Draw a line 14 cm long.
Divide it in 7 equal parts.
(each will represent km)
Sub-divide each part in 10 equal parts.
(each will represent hectometer)
Name those properly.

CONSTRUCTION: (Vernier)

Take 11 parts of hectometer part length and divide it in 10 equal parts.
Each will show 1.1 hm m or 11 dm and
Covering in a rectangle complete scale.

TO ME
a) For 5

Subtrac
i.e. 5.3

The dis
(left of 5.00 (ric
(b) For Subtrac
i.e. 0.5
(- ve si
The dis
$-.4 \mathrm{~km}$
(both le

CONIC SECTIONS

ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SE BECAUSE

THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOMF TYPICAL CUTTING PLANES.

OBSERVE
ILLUSTRATIONS

Section Plane
Through Generators

Ellipse

Section Plane Parallel to end generator.

COMMON DEFINATION OF ELLIPSE, PARABOLA \& HYPERBOLA:

 These are the loci of points moving in a plane such that the ratio from a fixed point And a fixed line always remains con The Ratio is called ECCENTRICITY. (E)A) For Ellipse $E<1$
B) For Parabola $\mathrm{E}=1$
C) For Hyperbola E>1

Refer Problem nos. 6. 9 \& 12

SECOND DEFINATION OF AN ELLIPSE:

It is a locus of a point moving in a plane such that the SUM of it's distances from TWO fixe always remains constant.
\{And this sum equals to the length of major ax These TWO fixed points are FOCUS $1 \&$ FOCL

Refer Problem no. 4
Ellipse by Arcs of Circles Method.

Steps:
1 Draw a rectangle taking major and minor axes as sides.
2. In this rectangle draw both axes as perpendicular bisectors of each other..
3. For construction, select upper left part of rectangle. Divide vertical small side and horizontal long side into same number of equal parts.(here divided in four parts)
4. Name those as shown..
5. Now join all vertical points $1,2,3,4$, to the upper end of minor axis. And all horizontal points i.e. $1,2,3,4$ to the lower end of minor axis.
6. Then extend C-1 line upto D-1 and mark that point. Similarly extend C-2, C-3, C-4 lines up to D-2, D-3, \& D-4 lines.
7. Mark all these points properly and join all along with ends A and D in smooth possible curve. Do similar construction in right side part.along with lower half of the rectangle.Join all points in smooth curve.
It is required ellipse.

Problem 3:-
Draw ellipse by Oblong method.
Draw a parallelogram of 100 mm and 70 mm long sides with included angle of 75°. Inscribe STEPS ARE SIMILAR TO
THE PREVIOUS CASE (RECTANGLE METHOD)
ONLY IN PLACE OF RECTANGLE, HERE IS A PARALLELOGRAM.

PROBLEM 4.

MAJOR AXIS AB \& MINOR AXIS CD ARE
100 AMD 70MM LONG RESPECTIVELY
.DRAW ELLIPSE BY ARCS OF CIRLES
METHOD.

STEPS:

1.Draw both axes as usual.Name the ends \& intersecting point
2. Taking AO distance I.e.half major axis, from C, mark $F_{1} \& F_{2} O n A B$ (focus 1 and 2.)
3.On line $\mathrm{F}_{1}-\mathrm{O}$ taking any distance, mark points $1,2,3, \& 4$
4. Taking F_{1} center, with distance $\mathrm{A}-1$ draw an arc above AB and taking F_{2} center, with $\mathrm{B}-1$ distance cut this arc. Name the point p_{1}
5.Repeat this step with same centers but taking now A-2 \& B-2 distances for drawing arcs. Name the point p_{2}
6. Similarly get all other P points.

With same steps positions of P can be located below AB .
7.Join all points by smooth curve to get an ellipse/

As per the definition Ellipse is locus of poin a plane such that the SUM of it's distances points ($F_{1} \& F_{2}$) remains constant and equa of major axis AB. (Note A.1+B.1=A.2+B.

PROBLEM 5.
 DRAW RHOMBUS OF 100 MM \& 70 MM LONG
 DIAGONALS AND INSCRIBE AN ELLIPSE IN IT.

STEPS:

1. Draw rhombus of given 2 dimensions.
2. Mark mid points of all sides \& name Those A,B,C,\& D
3. Join these points to the ends of smaller diagonals.
4. Mark points $1,2,3,4$ as four centers.
5. Taking 1 as center and $1-\mathrm{A}$ radius draw an arc AB .
6. Take 2 as center draw an arc CD.
7. Similarly taking $3 \& 4$ as centers and 3-D radius draw arcs DA \& BC.

Problem 13:

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT

1. JOIN POINT Q TO $F_{1} \& F_{2}$
2. BISECT ANGLE $\mathrm{F}_{1} \mathrm{Q} \mathrm{F}_{2}$ THE ANGLE BISECTOR IS NORMA
3. A PERPENDICULAR LINE DRAWN TO IT IS TANGENT TO THE C

Unit.

Projections of Points \& Lines

ORTHOGRAPHIC PROJECTION OF POINTS, LINES, PLANES, AND SOLIDS

TO DRAW PROJECTIONS OF ANY OBJE ONE MUST HAVE FOLLOWING INFORMA

 A) OBJECT \{ WITH IT'S DESCRIPTION, WELL DEFINED.\} B) OBSERVER \{ ALWAYS OBSERVING PERPENDICULAR TO RESP. F C) LOCATION OF OBJECT, \{ MEANS IT'S POSITION WITH REFFERENCE TO H.P.TERMS 'ABOVE' \& 'BELOW' WITH RESPECTIVE TO AND TERMS 'INFRONT' \& 'BEHIND' WITH RESPECTIVE FORM 4 QUADRANTS. OBJECTS CAN BE PLACED IN ANY ONE OF THESE 4 QU

IT IS INTERESTING TO LEARN THE EFFECT ON THE POSITIONS IF THE OBJECT WITH RESP. TO X-Y LINE, WHEN PLACED IN DIFFI STUDY ILLUSTRATIONS GIVEN ON HEXT PAGES AND NOTE THE RESULTS.T HFRF A POINT A IS TAKFN AS AN OBJFCT BFCAUSFIT'S AlI VIFWS ARE

NOTATIONS

FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIO

\author{

OBJECT
 POINT A
 LINE AB
 | IT'S TOP VIEW | a | a b |
| :--- | :--- | :--- |
| IT'S FRONT VIEW | a' | $a^{\prime} b^{\prime}$ |
| IT'S SIDE VIEW | a" | $a^{\prime \prime} b^{\prime \prime}$ |
 IT'S SIDE VIEW
 a"
 a" b"
 \section*{SAME SYSTEM OF NOTATIONS SHOULD BE FOLLOWED INCASE NUMBERS, LIKE 1, 2,}

}

THIS QUADRANT PATTERN, IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIREC WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE ANL IT IS FURTHER USED TO UNDERSTAND ILLUSTRATION

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT SHOWING CLEARLY THE NATURE OF FV δ OF LINES LISTED ABOVE AND NOTE RESL

Orthographic Projections
Means Fv \& Tv of Line AB are shown below,
with their apparent Inclinations
$\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV a'b' is not showing True Length \&
True Inclination with Hp.

Note the procedure
When Fv \& Tv known, How to find True Length.
(Views are rotated to determine True Length \& it's inclinations with Hp \& Vp).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding FV a'b ${ }_{1}$ 'Is showing

True Length \&
True Inclination with Hp .

No
When T How (Compon whic to
V.P
H.P

Here
of TL a Hence Locus o to get p Similar of other TI

The most important diagram showing graphical relations among all important parameters of this topic. Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

1) True Length (TL) $-a^{\prime} b_{1}^{\prime} \&$
2) Angle of $T L$ with $\mathrm{Hp}-\theta$
3) Angle of TL with $V p-\varnothing$
4) Angle of FV with $x y-\alpha$
5) Angle of TV with $x y-\beta$
6) LTV (length of FV) - Comp
7) LFV (length of TV) - Comp
8) Position of A- Distances of
9) Position of B- Distances of
10) Distance between End Pr

NOTE this
θ \& α Construct wi \varnothing \& β Construct wi
$b^{\prime} \& b_{1}^{\prime}$ on same locı b \& b_{1} on same locu:

Also Remember

True Length is never rotated. It drawn \& it is further rot

Views are always rotated, ma extended to locate

PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to Hp \& Vp respectively. End A is 12 mm above Hp and 10 mm in front of $V p$.
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw $x y$ line and one projector.
2) Locate a' 12 mm above $x y$ line \& a 10 mm below $x y$ line.
3) Take 30° angle from a' \& 40° from a and mark TLI.e. 75 mm on both lines. Name those points b_{1}^{\prime} and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL $a b_{1}$ from point b_{1} and name it 1 . (the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a' and rotating a' as center locate b' as shown. Join a'b' as Fv.
8) From b' drop a projector down ward \& get point b. Join a \& b l.e. Tv.

PROBLEM 2:

Line AB 75 mm long makes 45° inclination with Vp while it's Fv mak End A is 10 mm above Hp and 15 mm in front of Vp .ff line is in $1^{\text {st }} \mathrm{q}$ draw it's projections and find it's inclination with Hp.

Solution Steps:-

1.Draw x-y line.
2.Draw one projector for a' \& a
3.Locate a' 10 mm above $\mathrm{x}-\mathrm{y}$ \&

Tv a 15 mm below xy .
4.Draw a line 45° inclined to $x y$ from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{1}
5. Take 55° angle from a'for Fv above xy line.
6. Draw a vertical line from b_{1} up to locus of a and name it 1 . It is horizontal component of TL \& is LFV.
7. Continue it to locus of a' and rotate upward up to the line of Fv and name it b^{\prime}. This $a^{\prime} b^{\prime}$ line is Fv.
8. Drop a projector from b' on locus from point b_{1} and name intersecting point b. Line $a b$ is Tv of line AB.
9.Draw locus from b'and from a^{\prime} with TL distance cut point $b_{1}{ }^{\text {' }}$
10.Join $a^{\prime} b_{1}$ ' as TL and measure it's angle at a '.
It will be true angle of line with HP.

PROBLEM 3:

Fv of line AB is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of Vp , draw it's projections,find TL, inclinations of line with SOLPAOKPBTEPS:
1.Draw xy line and one projector.
2. Locate a' 10 mm above xy and a 15 mm below $x y$ line.
3. Draw locus from these points.
4. Draw Fv 50° to xy from a' and mark b' Cutting 55 mm on it.
5. Similarly draw Tv 60° to $x y$
from a \& drawing projector from b'
Locate point b and join $a b$.
6. Then rotating views as shown, locate True Lengths ab_{1} \& $\mathrm{a}^{\prime} \mathrm{b}_{1}{ }^{\prime}$ and their angles with Hp and Vp .

PROBLEM 4:-

Line $A B$ is 75 mm long . It's Fv and Tv measure 50 mm \& 60 mm long respectively. End A is 10 mm above Hp and 15 mm in front of Vp . Draw projections of line $A B$ if end B is in first quadrant. Find angle with $H p$ and $V p$.

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate a' 10 mm above xy and a 15 mm below xy line.
3. Draw locus from these points.
4. Cut 60 mm distance on locus of a' \& mark 1' on it as it is LTV.
5.Similarly Similarly cut 50 mm on locus of a and mark point 1 as it is LFV.
6.From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark b' ${ }_{1}$ point on it. Join a' b' points.
7. Draw locus from b_{1}^{\prime}
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. a-1 locate b' and join a' with it to get Fv.
10. Locate tv similarly and measure

Angles θ \& Φ

PROBLEM 5:-

T.V. of a 75 mm long Line CD, measures 50 mm .

End C is in Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of CD and find angles with Hp and ${ }^{d} / \mathrm{p}$.

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate c' on $x y$ and c 50 mm below xy line.
3.Draw locus from these points.
4. Draw locus of d 15 mm below xy
5. Cut $50 \mathrm{~mm} \& 75 \mathrm{~mm}$ distances on locus of d from c and mark points $d \& d_{1}$ as these are Tv and line CD lengths resp.\& join both with c.
6 . From d_{1} draw a vertical line upward up to xy l.e. up to locus of c' and draw an arc as shown.
7 Then draw one projector from d to meet this arc in d' point \& join c' d'
8. Draw locus of d' and cut 75 mm on it from c' as TL
9.Measure Angles θ \& Φ

Unif: III

Projections of Lines

(Inclined to Both The Planes)

GROUP (B)
PROBLEMS INVOLVING TRACES OF THE LINE.

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS OF A LINE (OR WITH RESPECTIVE REFFERENCE PLANES.

A LINEITSELF ORITS EXIENSION, WHERE EVER TOUCHES THAT POINT IS CALLED TRAGE OF THE LINE ON HIP. (IT IS CAL

SIMILARLY, A LINEITSELF OR IT'S EXTENSION, WHERE EVER THAT POINT IS CALLED TRACE OF THE LINE ON VP. (IT IS CAL
V.T:- It is a point on $V p$.

Hence it is called Fv of a point in Vp.
Hence it's Tv comes on XY line. (Here onward named as V
H. T.:- It is a point on Hp .

Hence it is called Tv of a point in Hp .
Hence it's Fv comes on XY line. (Here onward named as 'l

PROBLEM 6:- Fv of line AB makes 45° angle with XY line and measures 60 mm . Line's Tv makes 30° with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB, determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-

Draw xy line, one projector and locate fv a' 15 mm above xy . Take 45° angle from a' and marking 60 mm on it locate point b'. Draw locus of VT, 10 mm below xy \& extending Fv to this locus locate VT. as fv - h^{\prime} - vt ' lie on one st.line.
Draw projector from vt, locate v on $x y$.
From v take 30° angle downward as
Tv and it's inclination can begin with v.
Draw projector from b' and locate b I.e.Tv point.
Now rotating views as usual TL and
it's inclinations can be found.
Name extension of Fv, touching xy as h' and below it, on extension of Tv, locate HT.

PROBLEM 7:

One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp . It's Fv is 45° inclined to $x y$ while it's HT \& VT are 45 mm and 30 mm below xy respecti Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-
Draw xy line, one projector and locate a' 10 mm above xy .
Draw locus 100 mm below $x y$ for points $b \& b_{1}$ Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h' and VT, \& Locate v on xy above VT. Locate HT below h' as shown.
Then join $v-H T$ - and extend to get top view end b.
Draw projector upward and locate b' Make a b \& a'b' dark.
 Now as usual rotating views find TL and it's inclinations.

PROBLEM 8 :- Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart.
End A is 10 mm above Hp , VT is 35 mm below Hp while it's HT is 45 mm in front of Vp. Draw projections, locate traces and find TL of line \& inclinations with Hp and Vp .

SOLUTION STEPS:-

1.Draw xy line and two projectors, 80 mm apart and locate HT \& VT, 35 mm below xy and 55 mm above xy respectively on these projectors. 2.Locate h ' and v on xy as usual.
3.Now just like previous two problems, Extending certain lines complete Fv \& Tv And as usual find TL and it's inclinations.

Instead of considering a \& a' as projections of first poir if v \& $V T^{\prime}$ are considered as first point, then true inclinations O $H p$ \& Vp i.e. angles θ \& Φ can be constructed with points VT' \& V

PROBLEM 9 :-

Line AB 100 mm long is 30° and 45° inclined to $\mathrm{Hp} \& \mathrm{Vp}$ respectively.
End A is 10 mm above Hp and it's VT is 20 mm below Hp
.Draw projections of the line and it's HT.

SOLUTION STEPS:-
Draw xy, one projector and locate on it VT and V.
Draw locus of a' 10 mm above xy . Take 30° from VT and draw a line. Where it intersects with locus of a' name it $\mathrm{a}_{1}{ }^{\prime}$ as it is TL of that part.
From $\mathrm{a}_{1}{ }^{\prime}$ cut $100 \mathrm{~mm}(\mathrm{TL})$ on it and locate point $\mathrm{b}_{1}{ }^{\prime}$ Now from v take 45° and draw a line downwards \& Mark on it distance VT-a a_{1} ' I.e.TL of extension \& name it a_{1} Extend this line by 100 mm and mark point b_{1}. Draw it's component on locus of VT' \& further rotate to get other end of Fv i.e.b' Join it with VT' and mark intersection point (with locus of $\mathrm{a}_{1}{ }^{\prime}$) and name it a' Now as usual locate points a and b and h' and HT.

PROBLEM 10 :-

A line $A B$ is 75 mm long. It's Fv \& Tv make 45° and 60° inclinations with $X-Y$ line resp End A is 15 mm above Hp and VT is 20 mm below Xy line. Line is in first quadrant.
Draw projections, find inclinations with Hp \& Vp. Also locate HT.

SOLUTION STEPS:-
Similar to the previous only change is instead of line's inclinations, views inclinations are given.
So first take those angles from VT \& v Properly, construct Fv \& Tv of extension, then determine it's TL(V-a a_{1}) and on it's extension mark TL of line and proceed and complete it.

PROBLEM 11 :- The projectors drawn from VT \& end A of line AB are 40 mm apart End A is 15 mm above Hp and 25 mm in front of Vp . VT of line is 20 mm below Hp . If line is 75 mm long, draw it's projections, find inclinations with HP \& Vp

Draw two projectors for VT \& end A
 Locate these points and then

YES! YOU CAN COMPLETEIT.

Results:-

1. TV \& FV both are vertical, hence arrive on
2. It's Side View shows True Length (TL)
3. Sum of it's inclinations with HP \& VP equa
4. It's HT \& VT arrive on same projector and From Side View.

PROBLEM 12 :- Line AB 80 mm long, makes 30° angle with Hp and lies in an Aux.Vertical Plane 45° inclined to Vp.
End A is 15 mm above Hp and VT is 10 mm below X-y line.
Draw projections, fine angle with Vp and Ht .

You sure can complete it as previous problems! Go ahead!!

PROBLEM 13 :- A line $\mathrm{AB}, 75 \mathrm{~mm}$ long, has one end A in Vp . Other end B is 15 mm at and 50 mm in front of Vp.Draw the projections of the line when sum of it's Inclinations with HP \& Vp is 90°, means it is lying in a profile plane.
Find true angles with ref.planes and it's traces.

SOLUTION STEPS:-
After drawing xy line and one projector Locate top view of A I.e point a on $x y$ as It is in Vp ,
Locate Fv of B i.e.b'15 mm above $x y$ as it is above Hp.and Tv of B i.e. b, 50 mm below xy asit is 50 mm in front of Vp Draw side view structure of Vp and Hp and locate S.V. of point B i.e. b"
From this point cut 75 mm distance on $V p$ and Mark a" as A is in Vp. (This is also VT of line.) From this point draw locus to left \& get a' Extend SV up to Hp. It will be HT. As it is a Tv

Rotate it and bring it on projector of b.
Now as discussed earlier SV gives TL of line and at the same time on extension up to Hp \& Vp gives inclinations with those panes.

Unit. |||

Projection of Planes

PROJECTIONS OF PLANES

In this topic various plane figures are the objects

What is usually asked in the problem?

To draw their projections means F.V, T.V

What will be given in the problem?

1. Description of the plane figure 1. It's position with HP and VP.

In which manner it's position with HP \& VP will be de

1. Inclination of it's SURFACE with one of the reference planes will be 8 2. Inclination of one of it's EDGES with other reference plane will b
(Hence this will be a case of an object inclined to both ref
Study the illustration showing surface \& side inclination given on next page.

CASE OF A RECTANGLE - OBSERVE AND NOTE ALL STEPS

SURFACE PARALLEL TO HP
PICTORIAL PRESENTATION

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

FV- Line // to $x y$

TV- Reduced Shape

PROCEDURE OF SOLVING THE PROBLEM:

in three steps each problem can be solved:(As Shown In Previc STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial pos STEP 2. Now consider surface inclination \& draw $2^{\text {nd }} \mathrm{Fv}$ \& Tv. STEP 3. After this, consider side/edge inclination and draw $3^{\text {rd }}$ (fi

ASSUMPTIONS FOR INITIAL POSITION:
(Initial Position means assuming surface // to HP or VP)

1. If in problem surface is inclined to HP - assume it // HP Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Sha And If surface is assumed // to VP - It's FV will show True Sh
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape -
keep one side/edge (which is making inclination) perpendicul (similar to pair no. A on previous page illustration).
low Complete STEP 2. By making surface inclined to the resp plane \& (Ref. 2nd pair B_{-}on previous page illustration Jow Complete STEP 3. By making side inclined to the resp plane \& pr (Ref. $3^{\text {nd }}$ pair \underline{C} on previous page illustration)
APPLY SAME STEPS TO SOLVE NEXT ELEVEN

Problem 1:
Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP, while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer follow 1. Surface inclined to which plane
2. Assumption for initial position?
3. So which view will show True
4. Which side will be vertical?

Hence begin with TV, draw recta drawing one small side ve

Surface // to Hp
 Surface inclined to Hp

Problem 2:
A $30^{\circ}-60^{\circ}$ set square of longest side
100 mm long, is in VP and 30° inclined
to HP while it's surface is 45°
inclined
to VP.Draw it's projections

Surface // to Vp Surface inclined to Vp

Problem 3:
A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45^{0} inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections
(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer follo questions
1.Surface inclined to which pla VP
2. Assumption for initial positior VP
3. So which view will show True FV
4. Which side will be vertical? sidst sidet the manner in which side inclin End $A 35 \mathrm{~mm}$ above Hp \& End B is Henceabegin wittor irdo, rdrawctria \underline{Y} c'keeping longest side v
C

Problem 4:
A regular pentagon of 30 mm sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to HP.
Draw it's projections when the side in HP makess $30_{\text {AND }}^{0}$ angle with VIP $_{\text {INTIONS }}$ ARE DIRECTLY GIVEN.

Read problem and answer fol 1. Surface inclined to which 1
2. Assumption for initial posi
3. So which view will show 7
4. Which side will be vertical

Hence begin with TV,draw
$X-Y$ line, taking one side

Problem 5:
A regular pentagon of 30 mm sides is resting
on HP on one of it's sides while it's opposite
vertex (corner) is 30 mm above HP.
 inclined to VP.

ONLY CHANGE is
the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp .
Hence redraw $1^{\text {st }} F v$ as a $2^{\text {nd }} \mathrm{Fv}$ making above arrangement. Keep a'b' on xy \& d' 30 mm above xy.

Read problem and answer f 1. Surface inclined to which
2. Assumption for initial po
3. So which view will show
4. Which side will be vertic Hence begin with TV,dra
X-Y line, taking one side

Problem 6: A rhombus of diagonals 40 mm and 70 mm long respectively has one end of it's longer diagonal in HP while that diagonal is 35° inclined to HP. If the topview of the same diagonal makes 40° inclination with VP, draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --TV
4. Problem 7 Arnombus of diaghals 40 mm and fo mmang respectively naving one

The difference in these two proble In problem no. 6 inclination of Tvo given, It could be drawn directly as While in no. 7 angle of diagonal its given. Hence here angle of TL is t Is drawn and then LTV I.e. a1 c1 i: final TV was completed. Study illus

Lokisf $6 f$ it's longer diagonal in HP while that
 40° inclination with VP. Draw it's pooject Blis. $^{\text {Iaking loinger diagonal }}$

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

 questions

1. Surface inclined to which plane? HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --TV
4. Which dianginde h6fozmedilameteris----

The difference in these two proble In problem no. 8 inclination of Tv given, It could be drawn directly a While in no. 9 angle of AC itself i. given. Hence here angle of TL is Is drawn and then LTV I.e. $a_{1} c_{1}$ i final TV was completed. Study ill
$A C$ resting on Hp on end A of it's diameter AC
which is 30° inclined to Hp while it makes

$X-Y$ line, taking longer dian aI' to $X-Y$
Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

Problem 10: End A of diameter $A B$ of a circle is in HP A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is $30^{\circ} \& 60^{\circ}$ inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer f questions

1. Surface inclined to which HP
2. Assumption for initial po HP
3. So which view will show The problem is similar to previous problem of circle - no. TV
But in the $3^{\text {rd }}$ step there is one more change.
4. Which diameter horizont Like ${ }^{\text {gh }}$ problem True Length inclination of dia. AB is defintely
but if you carefully note - the the SUM of it's inclinations $A B H P \& V P$ is 90°. Means Line AB lies in a Profile Plane.

Hence begin with TV,dra Hence it's both Tv \& Fv must arrive on one single projector. So do the construction accordingly AND note the case X carelinultfaking DIA. AB

SOLVE ON DRA GIVING POINTS AS THE

Problem 11:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections. Take side of hexagon 30 mm long.

Read problem and answ questions

1. Surface inclined to wl HP
2. Assumption for initial HP

ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp .

Keep a'b' on xy \& d'e' 25 mm above xy . TV
3. So which view will sł
4. Which diameter horiz

Hence begin with TV,

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:
An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side. It's plane is 45° inclined to Vp. Draw it's projections.

First draw a given triangle With given dimensions, Locate it's centroid position And
join it with point of suspension.

1.In this case the plane of the figure always rem 2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE 4.Assuming surface // to Vp , draw true shape in (Here keep line joining point of contact \& centroid 5.Always begin with FV as a True Shape but in AS shown in $1^{\text {st }} \mathrm{FV}$.
\square

Similarly solve next proble of Semi-circle

IMPORTANT POINTS

Problem 13

:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP. Draw its projections.
1.In this case the plane of the figure always ren 2.It may remain parallel or inclined to V p.
3. Hence $T V$ in this case will be always a LINE 4.Assuming surface // to Vp, draw true shape ir (Here keep line joining point of contact \& centroi 5.Always begin with FV as a True Shape but in AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given semicircle
With given diameter,
Locate it's centroid position And

join it with point of suspension.

To determine true shape of plane figure when it's projections are BY USING AUXILIARY PLANE METHOD

WHAT WILL BE THE PROBLEM?
 Description of final Fv \& Tv will be gi
 You are supposed to determine true

Follow the below given steps:

1. Draw the given Fv \& Tv as per the given information in problem.
2. Then among all lines of Fv \& Tv select a line showing True Length (T.L.) (It's other view must be // to xy)
3. Draw $x_{1}-y_{1}$ perpendicular to this line showing T.L.
4. Project view on $x_{1}-y_{1}$ (it must be a line view)
5. Draw $x_{2}-y_{2} / /$ to this line view \& project new view on it. It will be the required answer i.e. True Shape.

The facts you must know:-
If you carefully study and observe the solutions of all You will find
IF ONE VIEW IS A LINE VIEW \& THAT TOO PARAL
THEN AND THEN IT'S OTHER VIEW WILL SHOV

[^1]Problem 14 Tv is a triangle abc . Ab is 50 mm long, angle cab is 300 and angle cba $\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}$ is a Fv . a' is 25 mm , b' is 40 mm and c' is 10 mm above Hp respectively. Draw pre of that figure and find it's true shape.
As per the procedure-

1. First draw Fv \& Tv as per the data.
2. In Tv line $a b$ is // to $x y$ hence it's other view a 'b' is TL. So draw $x_{1} y_{1}$ perpendicular to it. 3.Project view on $x 1 y 1$.
a) First draw projectors from a 'b' \& c' on $x_{1} y_{1}$.
b) from xy take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name po
c) This line view is an Aux. Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it. for that from $x_{1} y_{1}$ take distances of $a^{\prime} b^{\prime} \& c^{\prime}$ and mark from $x_{2} y=$ on new projectors. 4. Name points $a_{1}^{\prime} b^{\prime}{ }_{1} \& c_{1}^{\prime}$ and join them. This will be the required true shape.

Problem 15: Fv \& Tv of a triangular plate are shown. Determine it's true shape.

USE SAME PROCEDURE STEPS OF PREVIOUS PROBLEM: BUT THERE IS ONE DIFFICULTY

NO LINE IS // TO XY IN ANY VIEW. MEANS NO TL IS AVAILABLE.

IN SUCH CASES DRAW ONE LINE // TO XY IN ANY VIEW \& IT'S OTHER VIEW CAN BE CONSIDERED AS TL FOR THE PURPOSE.

HERE a' 1' line in Fv is drawn // to $x y$. HENCE it's Tv a-1 becomes TL.

THEN FOLLOW SAME STEPS AND DETERMINE TRUE SHAPE.
(STUDY THE ILLUSTRATION)

$$
2=\frac{1}{2}+\sqrt{4}
$$

PROBLEM 16: Fv \& Tv both are circles of 50 mm diameter. Determine true shap

ADOPT SAME PROCEDURE.

a c is considered as line // to $x y$.
Then a'c' becomes TL for the purpose.
Using steps properly true shape can be Easily determined.

Study the illustration.

Problem 17 : Draw a regular pentagon of 30 mm sides with one side 30° inclined to xy . This figure is Tv of some plane whose Fv is A line 45° inclined to $x y$. Determine it's true shape.

IN THIS CASE ALSO TRUE LENGTH IS NOT AVAILABLE IN ANY VIEW.

BUT ACTUALLY WE DONOT REQUIRE TL TO FIND IT'S TRUE SHAPE, AS ONE VIEW (FV) IS ALREADY A LINE VIEW. SO JUST BY DRAWING X1Y1 // TO THIS VIEW WE CAN PROJECT VIEW ON IT AND GET TRUE SHAPE:

STUDY THE ILLUSTRATION..

REMEMBER!!

Unitr IV

To understand and remember various solids in this subj those are classified \& arranged in to two major gi

Group A

Solids having top and base of same shape

Solids having base of and just a point as a to

SOLIDS

Dimensional parameters of different solid

X While observing Tv , $\mathrm{x}-\mathrm{y}$ line represents Vertical Plane. (Vp)

STANDING ON V.P
On it's base.
Axis perpendicular to Vp
And // to Hp
T.V.

RESTING ON V.P
On one point of base circle.
Axis inclined to Vp And // to Hp
T.V.

LYING ON V.I On one generato Axis inclined to And // to Hp

STEPS TO SOLVE PROBLEMS IN SOLIDS

Problem is solved in three steps:
STEP 1: ASSUME SOLID STANDING ON THE PLANE WITH WHICH IT IS MAKING II (IF IT IS INCLINED TO HP, ASSUME IT STANDING ON HP) (IF IT IS INCLINED TO VP, ASSUME IT STANDING ON VP)

IF STANDING ON HP - IT'S TV WILL BE TRUE SHAPE OF IT'S BASE OR IF STANDING ON VP - IT'S FV WILL BE TRUE SHAPE OF IT'S BASE OR BEGIN WITH THIS VIEW:
IT'S OTHER VIEW WILL BE A RECTANGLE (IF SOLID IS CYLINDER OR ON IT'S OTHER VIEW WILL BE A TRIANGLE (IF SOLID IS CONE OR ONE OF DRAW FV \& TV OF THAT SOLID IN STANDING POSITION:
STEP 2: CONSIDERING SOLID'S INCLINATION (AXIS POSITION) DRAW IT'S FV \& STEP 3: IN LAST STEP, CONSIDERING REMAINING INCLINATION, DRAW IT'S FIN,

PROBLEM NO. $1,2,3,4$	GENERAL CASES OF SOLIDS INCLINED TO
PROBLEM NO. $5 \& 6$	CASES OF CUBE \& TETRAHEDRON
PROBLEM NO. 7	CASE
PROBLEM NO. 8	CASE OF CUBE (WITH SIDE VIEW)
PROBLEM NO. 9	CASE OF TRUE LENGTH INCLINATION W
PROBLEM NO. $10 \& 11$	CASES OF COMPOSITE SOLIDS. (AUXILIAI
PROBLEM NO. 12	CASE OF A FRUSTUM (AUXILIARY PLAN)

Problem 1. A square pyramid, 4 mm base sides and axis 60 mr long, has a triangular face on th ground and the vertical plan containing the axis makes a angle of 45° with the VP. Draw it projections. Take apex nearer t VP

Solution Steps:
Triangular face on Hp , means it is lying on Hp 1.Assume it standing on Hp .
2.It's Tv will show True Shape of base(square 3.Draw square of 40 mm sides with one side ve taking 50 mm axis project Fv . (a triangle)
4. Name all points as shown in illustration.
5. Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position l.e.o'c'd' face or
6. Make visible lines dark and hidden dotted, as
7.Then construct remaining inclination with Vp ($V p$ containing axis ic the center line of $2^{\text {nd }} T$ shown take apex near to xy , as it is nearer tc

3. Select nearest point to observer and draw all lines starting from it-dark.

Problem 2:
A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp which makes 30° inclination with Vp Draw it's projections.

For dark and dotted lines

1.Draw proper outline of new vie DARK.
2. Decide direction of an observer.
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining) from it- dotted.

Solution Steps:
Resting on Hp on one genera 1. Assume it standing on Hp . 2.It's Tv will show True Shape 3. Draw 40 mm dia. Circle as T taking 50 mm axis project F 4. Name all points as shown in 5. Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position project it's Tv below xy.
6. Make visible lines dark and as per the procedure.
7. Then construct remaining in (generator $\mathrm{o}_{1} \mathrm{e}_{1} 30^{\circ}$ to xy as

Problem 3:

A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on Vp while it's axis makes 45° with Vp and Fv of the axis 35° with Hp . Draw projections..

Solution Steps:
Resting on Vp on one point of base, mean 1. Assume it standing on Vp
2. It's Fv will show True Shape of base \& t 3. Draw 40 mm dia. Circle as Fr \& taking 5 (a Rectangle)
4. Name all points as shown in illustration. 5. Draw $2^{\text {nd }}$ Tv making axis 45° to wy And F 6. Make visible lines dark and hidden date
7. Then construct remaining inclination wit
(Fo of axis le. center line of view to wy a Tv.

www.FirstRanker.com

Problem 4:A square pyramid 30 mm base side and 50 mm long axis is resting on it's apex on Hf such that it's one slant edge is vertical and a triangular face through it is perpendicular to Vp . Draw it's projections.

Solution Steps:
1.Assume it standing on Hp but as said on an 2.It's Tv will show True Shape of base(squa 3.Draw a corner case square of 30 mm sides Showing all slant edges dotted, as those will 4.taking 50 mm axis project Fv . (a triangle) 5.Name all points as shown in illustration.
6. Draw $2^{\text {nd }}$ Fv keeping o'a' slant edge vertica 7.Make visible lines dark and hidden dotted,
8. Then redrew $2^{\text {nd }} T v$ as final Tv keeping $a_{1} 0$ perpendicular to Vp I.e.xy. Then as usual p

Problem 5: A cube of 50 mm long edges is so placed on Hp on one corner that a body diagonal is parallel to Hp and perpendicular to Vp Draw it's projections.

Solution Steps:
1.Assuming standing on Hp , begin with Tv , a squar equally inclined to xy .Project Fv and name all poin 2.Draw a body-diagonal joining c' with 3^{\prime} (This ca 3.From 1' drop a perpendicular on this and name it 4.Draw $2^{\text {nd }} \mathrm{Fv}$ in which 1'-p' line is vertical means must be horizontal. .Now as usual project Tv..
6.In final Tv draw same diagonal is perpendicular t Then as usual project final FV.

Problem 6:A tetrahedron of 50 mm long edges is resting on one edge on Hp while one triangular face containing this edge is vertical and 450 inclined to Vo. Draw p IMPORTANT:

Tetrahedron is a special type
of triangular
pyramid in which base sides \& slant edges are equal in length. Solid of four faces. Like cube it is also described by One dimension only..
Axis length generally not given.

Solution Steps
As it is resting assume it standing on Begin with Tv , an equilateral triang shown:
First project base points of Fv on xy line.
From a' with TL of edge, 50 mm , cu mark o'
(as axis is not known, o^{\prime} is finalized length)
Then complete Fv.

Problem 7: A pentagonal pyramid 30 mm base sides \& 60 mm long axis, is freely suspended from one corner of base so that a plane containing it's axis remains parallel to Vp .
Draw it's three views.

Solution Steps:

In all suspended cases axis shows inclination with H 1. Hence assuming it standing on Hp , drew Tv - a res 2. Project Tv \& locate CG position on axis - ($1 / 4 \mathrm{H} \mathrm{fr}$ Join it with corner d'
3. As $2^{\text {nd }} \mathrm{Fv}$, redraw first keeping line $\mathrm{g}^{\prime} \mathrm{d}^{\prime}$ vertical.
4. As usual project corresponding Tv and then Side V

LINE d'g' VERTICAL

IMPORTANT:

When a solid is freely suspended from a corner, then line joining point of contact \& C.G. remains vertical. (Here axis shows inclination with Hp.
So in all such cases, assume solid standing on Hp initially.)

Solution Steps:
1.Assuming it standing on Hp begin with Tv , a square of corner case.
2.Project corresponding Fv.\& name all points as usual in both views.
3.Join a' 1 ' as body diagonal and draw $2^{\text {nd }} \mathrm{Fv}$ making it vertical (I' on xy)
4.Project it's Tv drawing dark and dotted lines as per the procedure.
5.With standard method construct Left-hand side view.

Problem 8:

A cube of 50 mm long on Hp on one corner t through this corner is and parallel to Vp Dra

(Draw a 45° inclined Line in Tv region (below xy).
 Project horizontally all points of Tv on this line and reflect vertically upward, above xy.After this, draw horizontal lines, from all points of Fv , to meet these lines. Name points of intersections and join properly.
 For dark \& dotted lines
 locate observer on left side of Fv as shown.)

www.FirstRanker.com

Problem 9: A right circular cone, 40 mm base diameter and 60 mm long axis is resting on Hp on one point of base circle such that it's axis makes 45° inclination with Hp and 40° inclination with Vp . Draw it's projections.

This case resembles to problem no. 7 \& 9 from projec In previous all cases $2^{\text {nd }}$ inclination was done by a parame Tv of axis is inclined to Vp etc. But here it is clearly said tl to Vp. Means here TL inclination is expected. So the same Problems is done here also. See carefully the final Tv an So assuming it standing on HP begin as

Problem 10: A triangular prism, 40 mm base side 60 mm axis is lying on Hp on one rectangular face with axis perpendicular to Vp . One square pyramid is leaning on it's face centrally with axis // to vp. It's base side is 30 mm \& axis is 60 mm long resting on Hp on one edge of base. Draw FV \& TV of both solids. Project another FV on an AVP 45^{0} inclined to VP.

Steps :

Draw Fv of lying prism (an equilateral Triangle)
And Fv of a leaning pyramid.
Project Tv of both solids.
Draw $\mathrm{x}_{1} \mathrm{y}_{1} 45^{0}$ inclined to xy and project aux.Fv on it. Mark the distances of first FV from first $x y$ for the distances of aux. Fv from $x_{1} y_{1}$ line.
Note the observer's directions Shown by arrows and further steps carefully.

\qquad

Problem 11:A hexagonal prism of base side 30 mm longand axis 40 mm long, is standing on Hp on it's base with one base edge // to Vp.
A tetrahedron is placed centrally on the top of it.The base of tetrahedron is a triangle formed by joining alternate corners of top of prism..Draw projections of both solids. Project an auxiliary Tv on AIP 45° inclined to Hp.

STEPS:

Draw a regular hexagon as Tv of standing prism With one side // to xy and name the top points.Project it's Fv a rectangle and name it's top. Now join it's alternate corners a-c-e and the triangle formed is base of a tetrahedron as said.
Locate center of this triangle \& locate apex $\underline{0}$
Extending it's axis line upward mark apex o'
By cutting TL of edge of tetrahedron equal to a-c. and complete Fv of tetrahedron.
Draw an AIP (xly1) 45° inclined to xy And project Aux.Tv on it by using similar Steps like previous problem.

Problem 12: A frustum of regular hexagonal pyramid is standing on it's larger base On Hp with one base side perpendicular to Vp.Draw it's Fv \& Tv.
Project it's Aux.Tv on an AIP parallel to one of the slant edges showing TL.
Base side is 50 mm long, top side is 30 mm long and 50 mm is height of frustum.

Unit-V
 Orthographic and Isometric: Fiojections

DRAWMNCS:
 (A Graphical Representation)

The Fact about:

If compared with Verbal or Written Description, Drawings offer far better idea about the Shape, Size \& Appe any object or situation or location, that too in quite a less

Hence it has become the Best Media of Communicatio not only in Engineering but in almost all Fields.

Drawings
 (Some Types)

ORTHOGRAPHIC PROJECTIONS:

IT IS A TECHNICAL DRAWING IN WHICH DIFFERENT VIEWS OF
ARE PROJECTED ON DIFFERENT REFERENCE PLANE OBSERVING PERPENDICULAR TO RESPECTIVE REFERENCI

Different Reference planes are
Horizontal Plane (HP),
Vertical Frontal Plane (VP)
Side Or Profile Plane (PP)
And
Different Views are Front View (FV), Top View (TV) and Side View FV is a view projected on VP. TV is a view projected on HP. SV is a view projected on PP.

IMPORTANT TERMS OF ORTHOGRAPHIC PROJECTI (1) Planes.

Pattern of planes \& Pattern of views
Methods of drawing Orthographic Projectior

AUXILIARY PLANES

www.FirstRanker.com

Methods of Drawing Orthographic Projections

First Angle Projections Method Here views are drawn
by placing object in $1^{\text {st }}$ Quadrant

SYMBOLIC PRESENTATION OF BOTH METHODS WITH AN OBJECT STANDING ON HP (GROUND) ON IT'S BASE.

NOTE:-
HP term is used in $1^{\text {st }}$ Angle method \&
For the same

Third Angle Projec Here views are by placing o in $3^{\text {rd }}$ Qua
(Fv above $X-y$, Tv below $X-y$)

FIRST ANGLE PROJECTION

IN THIS METHOD, THE OBJECT IS ASSUMED TO BE SITUATED IN FIRST QUADRANT MEANS
ABOVE HP \& INFRONT OF VP.

OBJECT IS INBETWEEN OBSERVER \& PLANE.

ACTUAL PATTERN OF PLANES \& VIEWS

THIRD ANGLE
 IN THIS METHOD, THE OBJECT IS ASSUMED TO BE SITUATED IN THIRD QUADRANT (BELOW HP \& BEHIND OF VP.)
 PLANES BEING TRANSPERENT AND INBETWEEN OBSERVER \& OBJECT.

ACTUAL PATTERN OF PLANES \& VIEWS

THIRD ANGLE PROJECTIONS

ORTHOGRAPHIC PROJECTIONS \{ MACHINE ELEMENTS \}

OBJECT IS OBSERVED IN THREE DIRECTIONS. THE DIRECTIONS SHOULD BE NORMAL TO THE RESPECTIVE PLANES.
AND NOW PROJECT THREE DIFFERENT VIEWS ON THOSE THESE VEWS ARE FRONT VIEW, TOP VIEW AND SIDE
 TOP VIEW IS A VIEW PROJECTED ON HORIZONTAL PLAN SIDE VIEW IS A VIEW PROJECTED ON PROF\|LE PLANE

FIRST STUDY THE CONCEPT OF $1^{\text {ST }}$ AND $3^{\text {RD }}$ AN PROJECTION METHODS

```
AND THEN STUDY NEXT 26 ILLUSTRATED CASES CA TRY TO RECOGNIZE SURFACES PERPENDICULAR TOTHEEARROW DIRECTIONS



\section*{PICTORIAL PRESENTATION IS GIVEN}


\section*{PICTORIAL PRESENTATION IS GIVEN}

\section*{DRAW THREE VIEWS OF THIS OBJECT}

BY FIRST ANGLE PRQuNw.FTrstianker:comHOD

\section*{FOR T.V.}


ORTHOGRAPHIC PF


FRONT VIEW
\(\underline{L}\).


TOP VIEW

\section*{PICTORIAL PRESENTATION IS GIVEN}

DRAW THREE VIEWS OF THIS OBJECT



FOR T.V.


PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD


PICTORIAL PRESENTATION IS GIVEN

\section*{STUDY} ILLUSTRATIONS

FOR T.V.


\section*{ORTHOGRAPHIC PROJEC}


TOP VIEW

\section*{ORTHOGRAPHIC PROJEC}


PICTORIAL PRESENTATION IS GIVEN
TOP VIEW
-DRAW THREE VIEWS OF THIS OBJECT



PICTORIAL PRESENTATION IS GIVEN
TOP VIEW

\section*{DRAW THREE VIEWS OF THIS OBJECT \\ BY FIRST ANGLE PROJECTION METHOD}


ORTHOGRAPHIC PROJECI


PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROWUNOFiFsBAAkAREDHOD


\section*{ORTHOGRAPHIC PR}


\section*{STUDY}

FOR T.V.


\section*{ORTHOGRAPHIC PR} FV
\(|\leftarrow 30 \rightarrow| 10 \leftarrow 30 \rightarrow\)


ALL VIE

PICTORIAL PRESENTATION IS GIVEN
-DRAW THREE VIEWS OF THIS OBJECT


\section*{ORTHOGRAPHIC PROJE}

FOR T.V.
ALL VIEWS IDENTIC


PICTORIAL PRESENTATION IS GIVEN
-DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROWUNOFiFsBAAkAREDTHOD



PICTORIAL PRESENTATION IS GIVEN
DRAW FV AND SV OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

\section*{ORTHOGRAPHIC PROJECTIONS}



PICTORIAL PRESENTATIO DRAW FV AND TV OF THI BY FIRST ANGLE PROJECTI

\section*{ORTHOGRAPHIC PROJECTIONS}

\begin{tabular}{l} 
PICTORIAL PRESENTATION \\
\hline DRAW FV AND TV OF THIS O \\
BY FIRST ANGLE PROJECTION
\end{tabular}


F.V.

PICTORIAL PRESENTATION IS GIVEN

\section*{ORTHOGRAPHIC PROJE}


PICTORIAL PRESENTATION IS GIVEN DRAW FV AND TV OF THIS OBJECT



FOR T.V.

\section*{ORTHOGRAPHIC PROJE}


PICTORIAL PRESENTATION IS GIVEN

\section*{ORTHOGRAPHIC PROJECTIONS}


FV
LSV


PICTORIAL PRESENTATION IS DRAW FV AND LSV OF THIS OB BY FIRST ANGLE PROJECTION M


\section*{ISOMETRIC DRAWING}

IT IS A TYPE OF PICTORIAL PROJECTION IN WHICH ALL THREE DIMENSIONS OF AN OBJECT ARE SHOWN IN ONE VIEW AND IF REQUIRED, THEIR ACTUAL SIZES CAN BE MEASURED DIRECTLY FROM IT.

TYPICAL CONDI IN THIS 3-D DRAWING OF A ALL THREE DIMENSIONAL MENTAINED AT EQUAL INC WITH EACH OTHER.(

3-D DRAWINGS CAN BE DRAWN IN NUMEROUS WAYS AS SHOWN BELOW. ALL THESE DRAWINGS MAY BE CALLED 3-DIMENSIONAL DRAWINGS, OR PHOTOGRAPHIC OR PICTORIAL DRAWINGS.
HERE NO SPECIFIC RELATION AMONG H, L \& D AXES IS MENTAINED.


NOW OBSERVE BELOW GIVEN ONE CAN NOTE SPECIFIC IN AMONG H, L \& D AXE ISO MEANS SAME, SIMILAR

HERE ONE CAN FIN EDUAL INCLINATION AMONG H EACH IS \(120^{\circ}\) INCLINED WITH C HENCE IT IS CALLED ISOMETR


PURPOSE OFwhwatsfranker.bomAWING IS TO UNDERSTAND OVERALL SHAPE, SIZE \& APPEARANCE OF AN OBJECT PRIOR TO IT'S PR

The three lines AL, AD and AH, meeting at point A and making \(120^{\circ}\) angles with each other are termed Isometric Axes.

The lines parallel to these axes are called Isometric Lines.
The planes representing the faces of of the cube as well as other planes parallel to these planes are called Isometric Planes.

ISOMETRIC SCALE:
When one holds the object in such a way that all three dimensions are visible then in the process all dimensions become proportionally inclined to observer's eye sight and hence appear apparent in lengths.

This reduction is 0.815 or 9 / 11 ( approx.) It forms a reducing scale which Is used to draw isometric drawings and is called Isometric scale.

In practice, while drawing isometric projection, it is necessary to convert true lengths into isometric lengths for measuring and marking the sizes. This is conveniently done by constructing an isometric scale as described on next page.

\section*{TYPES OF ISOMETRIC DRAWINGS}



\section*{STUDY}

DRAW ISOMETRIC VIEW OF A CIRCLE IF IT IS A TV OR FV.

FIRST ENCLOSE IT IN A SQUARE. IT'S ISOMETRIC IS A RHOMBUS WITH D \& L AXES FOR TOP VIEW.
THEN USE H \& L AXES FOR ISOMETRIC WHEN IT IS FRONT VIEW.
FOR CONSTRUCTION USE RHOMBUS METHOD SHOWN HERE. STUDY IT.


DRAW ISOMETRIC VIEW OF THE FIGURE SHOWN WITH DIMENTIONS (ON RIGHT SIDE) CONSIDERING IT FIRST AS F.V. AND THEN T.V.

IF FRONT VIEW


\section*{ISOMETRIC
OF
PLANE FIGURES}

AS THESE ALL ARE 2-D FIGURES WE REQUIRE ONLY TWO ISOMETRIC AXES.

IF THE FIGURE IS FRONT VIEW, H \& L AXES ARE REQUIRED.

\section*{IF THE FIGURE IS} TOP VIEW, D \& L AXES ARE REQUIRED.

\section*{SHAPE}

IF F.V.


CIRCLE


For Isometric of Circle/Semicircle use Rhombus method. C of sides equal to Diameter of circle always. (Ref. topic EN

SEMI CIRCLE

www.FirstRanker.com

\title{
ISOMETRIC VIEW O PENTAGONAL PYRA STANDING ON H.P. \\ (Height is added from center of
}

ISOMETRIC VIEW OF BASE OF PENTAGONAL PYRAMID STANDING ON H.P.


\section*{STUDY}

ILLUSTRATIONS


ISOMETRIC VIEW OI PENTAGONALL PRI LYING ON H.P.


ISOMETRIC VIEW OF

\section*{HEXAGONAL PRISM}

\section*{STUDY}

ILLUSTRATIONS

\section*{CYLINDER STANDING 0}


\section*{CYLINDER LYING ON H.P.}

\section*{STUDY}

ILLUSTRATIONS

\section*{HALF CYLINDE STANDING ON H ( ON IT'S SEMICIRCULAF}


\section*{HALF CYLINDER \\ LYING ON H.P.}


TV
ISOMETRIC VIEW OF A FRUSTOM OF SQUARE PYR STANDING ON H.P. ON IT'S LARGEI

PROJECTIONS OF FRUSTOM OF PENTAGONAL PYRAMID ARE GIVEN.

ISOMETRIC V
OF
DRAW IT'S ISOMETRIC VIEW.


SOLUTION STEPS:
FIRST DRAW ISOMETRIC OF IT'S BASE.

THEN DRAWSAME SHAPE AS TOP, 60 MM ABOVE THE BASE PENTAGON CENTER.

THEN REDUCE THE TOP TO 20 MM SIDES AND JOIN WITH THE PROPER BASE CORNERS.


ISOMETRIC VIEW OF A FRUSTOM OF CON STANDING ON H.P. ON IT'S LAR

PROBLEM: A SQUARE PYRAMID OF 30 MM BASE SIDES A 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP C CUBE OF 50 MM LONG EDGES.DRAW ISOMETRIC VIEW O

PROBLEM: A TRIANGULAR PYRAMID OF 30 MM BASE SIDES AND 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES.
DRAW ISOMETRIC VIEW OF THE PAIR.


SOLUTION HINTS.
TO DRAW ISOMETRIC OF A CUBE IS SIMPLE. DRAW IT AS USUAL.

BUT FOR PYRAMID AS IT'S BASE IS AN EQUILATERAL TRIANGLE, IT CAN NOT BE DRAWN DIRECTLY.SUPPORT OF IT'S TV IS REQUIRED.

PROBLEM:
A SQUARE PLATE IS PIERCED THROUGH CENTRALLY BY A CYLINDER WHICH COMES OUT EQUALLY FROM BO OF PLATE. IT'S FV \& TV ARE SHOWN. DRAW ISOMETRIC


TV


\section*{STUDY ILLUSTRATIONS}
F.V. \& T.V. of an object are given. Draw it's isometri



C = Center of Sphere.
\(\mathbf{P}=\) Point of contact
R = True Radius of Sphere \(\mathbf{r}=\) Isometric Radius.


TO DRAW ISOMETRIC PF OF A HEMISPHE
\begin{tabular}{|c} 
Adopt \\
Draw lov \\
Then ar \\
Rhombu \\
Ison \\
For th
\end{tabular}

TO DRAW ISOMETRIC PROJECTION OF A SPHERE
1. FIRST DRAW ISOMETRIC OF SQUARE PLATE.
2. LOCATE IT'S CENTER. NAME IT P.
3. FROM PDRAW VERTICAL LINE UPWARD, LENGTH ' \(r\) mm' AND LOCATE CENTER OF SPHERE "C"
4. 'C’ AS CENTER, WITH RADIUS ‘R’ DRAW CIRCLE.


PROBLEM:
A HEMI-SPHERE IS CENTRALLY PLACED
ON THE TOP OF A FRUSTOM OF CONE.
DRAW ISOMETRIC PROJECTIONS OF THE ASSEMBLY.


FIRST CONSTRUCT ISOMETRIC SCALE. USE THIS SCALE FOR ALL DIMENSIONS IN THIS PROBLEM.


A SQUARE PYRAMID OF 40 MM BASE SIDES AND 60 IS CUT BY AN INCLINED SECTION PLANE THROUGH TH OF AXIS AS SHOWN.DRAW ISOMETRIC VIEW OF SECTION


\section*{STUDY} ILLUSTRATIONS
F.V. \& T.V. of an object are given. Draw it's isom


F.V. \& T.V. of an object are given. Draw it's isometri





FV

F.V. \& T.V. and S.V.of an object are given. Draw it's isometric view.

\section*{ORTHOGRAPHIC PROJECTIONS}


TOP VIEW

\section*{STUDY}

ILLUSTRATIONS
F.V. and S.V.of an object are gi Draw it's isometric view.

F.V. \& T.V. of an object are given. Draw it's isometric vien


\section*{TV}

F.V. \& T.V. of an object are given. Draw it's isometric vie


F.V.
F.V. \& T.V. of an object are given. Draw it's isometric vi


F.V. \& T.V. of an object are given. Draw it's isometric vi

F.V. and S.V.of an object are given. Draw it's isometric view.


NOTE THE SMALL CHZNGE IN \(2^{\text {ND }}\) FV \& SV. DRAW ISOMETRIC ACCORDINGLY.



\section*{F.V. and S.V.of an object are gi Draw it's isometric view.}


\title{
University Question
} -

\section*{Subject Code: R13109/R13}

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw the Isometric view assuming suitable data: fig. 1


Fig. 1
(b) A pentagonal prism is resting on a corner of its base on the ground with a longer edge containing that corner inclined at 450 to the HP and the vertical plane containing that edge and the axis inclined at 300 to the VP. Draw its projections. Base 40 mm side, height 65 mm .

\section*{PART-B}
2.(a) Construct a regular hexagon of side 28 mm when one side is horizontal.
(b) An area of 144 sq cm on a map represents an area of 36 sq km on the field. Find the RF of the scale for this map and draw a diagonal scale to show kilometers, hectameters and decameters and to measure up to 10 km . Indicate on the scale a distance of \(7 \mathrm{~km}, 5\) hectameters and 6 decameters.

\section*{Subject Code: R13109/R13}

\section*{Set No - 1}
3.(a) The Top view of a 75 mm long line measures 55 mm . The line is in the VP, its one end being 25 mm above the HP. Draw its projections.
(b) Draw the projections of the following points on the same ground line, keeping the projectors 25 mm apart.
(i) 40 mm above the HP and 25 mm in front of the VP
(ii) In the VP and 40 mm above the HP
(iii) 15 mm above the HP and 50 mm behind the VP
4. The projectors drawn from the HT and the VT of a straight line AB are 80 mm apart while those drawn from its ends are 50 mm apart. The HT is 35 mm in front of the VP, the VT is 55 mm above the HP and the end A is 10 mm above the HP . Draw the projections of AB and determine its length and inclinations with the reference planes.
5. A semicircular plate of 80 mm diameter has its straight edge in the VP and inclined at \(45^{\circ}\) to the HP. The surface of the plate makes an angle of \(30^{\circ}\) with the VP. Draw its projections.
6. A square headed bolt 25 mm diameter, 125 mm long and having a square neck has its axis parallel to the ground and inclined at \(45^{\circ}\) to the VP.
7. Draw (i) Front View (ii) Top View (iii) Side View fig. 2


Fig. 2

\section*{Subject Code: R13109/R13}

Set No - 2
I B. Tech I Semester Regular/Supplementary Examinations Jan./Feb. - 2015 ENGINEERING DRAWING (EEE)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

\section*{PART-A}
1.(a) Draw
(i) Front View
(ii) Top View
(iii) Left Hand Side View
fig. 1


Fig. 1
(b) A square pyramid, base 40 mm side and axis 90 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of \(45^{\circ}\) with the VP. Draw its projections.

\section*{PART-B}
2.(a) Construct a Vernier scale of \(\mathrm{RF}=1 / 80\) to read inches and to measure up to 15 yards.
(b) A car is running at a speed of \(50 \mathrm{~km} /\) hour. Construct a diagonal scale to show 1 Kilometer by 3 cm and to measure up to 6 kilometers. Mark also on the scale the distance covered by the car in 5 minutes 28 seconds.

\section*{Subject Code: R13109/R13}

\section*{Set No - 2}
3.(a) Two points A and B are in the HP. The point A is 30 mm in front of the VP; While B is behind the VP. The distance between their projectors is 75 mm and the line joining their top views makes an angle of \(45^{0}\) with \(x y\). Find the distance of the point B from the VP.
(b) A line AB 25 mm long is parallel to VP and perpendicular to HP. Point A is 35 mm above HP and 20 mm in front of VP. Point B is 10 mm above HP. Draw the projections of the line \(A B\).
4. A line PQ 100 mm long is inclined at \(30^{\circ}\) to the HP and at \(45^{\circ}\) to the VP. Its midpoint is in the VP and 20 mm above the HP. Draw its projections, if its end P is in the third quadrant and Q in the first quadrant.
5. Draw an equilateral triangle of 75 mm side and inscribe a circle in it. Draw the projection of the figure, when its plane is vertical and inclined at \(30^{\circ}\) to the VP and one of the sides of the triangle is inclined at \(45^{\circ}\) to the HP.
6. Draw the projections of a cylinder, base 30 mm diameter and axis 40 mm long, resting with a point of its base circle on HP such that the axis is making an angle of \(30^{\circ}\) with HP and parallel to VP.
7. Draw the Isometric view: fig. 2


Fig. 2

\section*{Subject Code: R13109/R13}

Time: \(\mathbf{3}\) hours
Max. Marks: 70

\section*{Question Paper Consists of Part-A and Part-B} Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw the Isometric view: fig. 1


Fig. 1
(b) A cylindrical block, 75 mm diameter and 25 mm thick, has a hexagonal hole of 25 mm side, cut centrally through its flat faces. Draw three views of the block when it has its flat faces vertical and inclined at \(30^{\circ}\) to the VP and two faces of the hole parallel to the HP.
[14+8]

\section*{PART-B}
2.(a) Construct a regular polygon of any number of sides, given the length of its sides equal to 25 mm .
(b) The actual length of 500 m is represented by a line of 15 cm on a drawing. Construct a vernier scale to read upto 600 m . Mark on the scale a length of 549 m .
3.(a) A vertical line \(A B, 75 \mathrm{~mm}\) long, has its end \(A\) in the \(H P\) and 25 mm in front of the VP. A line AC, 100 mm long, is in the HP and parallel to the VP. Draw the projections of the line joining \(B\) and \(C\), and determine its inclination with the HP.
(b) A line CD 30 mm long is parallel to both the planes. The line is 40 mm above HP and 25 mm in front of VP. Draw its projections.

\section*{Subject Code: R13109/R13}

\section*{Set No - 3}
4. A line \(\mathrm{AB}, 65 \mathrm{~mm}\) long, has its end A in the HP and 15 mm in front of the VP. The end B is in the third quadrant. The line is inclined at \(35^{\circ}\) to the HP and at \(60^{\circ}\) to the VP. Draw its projections.
5. A \(60^{\circ}\) Set-square of 125 mm longest side is so kept that the longest side is in the HP making an angle of \(30^{\circ}\) with the VP and set square itself inclined at \(45^{\circ}\) to the HP. Draw the projections of the Set-square.
6. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has on edge of its base on the ground. Its axis is inclined at \(30^{\circ}\) to the ground and parallel to the VP. Draw its projections.
7. Draw (i) Front View (ii) Top View (iii) Side View fig. 2


Fig. 2

\section*{Subject Code: R13109/R13}

\section*{PART-A}
1.(a) Draw
(i) Front View
(ii) Top View
(iii) Left Hand Side View
fig. 1


Fig. 1
(b) The top view of a plate, the surface of which is perpendicular to the VP and inclined at \(60^{\circ}\) to the HP is a circle of 60 mm diameter. Draw its three views.

\section*{PART-B}
2.(a) Draw an Octagon given the length of side 25 mm .
(b) The major axis of an ellipse is 100 mm and the minor axis 55 mm . Find the foci and construct the ellipse by Intersecting Arcs method.
3.(a) A point 30 mm above xy line is the plan view of two points P and Q . The elevation of P is 45 mm above the HP. While that of the point Q is 35 mm below the HP. Draw the projections of the points and state their position with reference to the principle planes and the quadrant in which they lie.

\section*{Subject Code: R13109/R13}

\section*{Set No - 4}
3.(b) A line PQ 40 mm long is parallel to VP and inclined at an angle of \(30^{\circ}\) to HP . The lower end \(P\) is 15 mm above HP and 20 mm in front of VP. Draw the projections of the line.
[8+8]
4. The top view of a 75 mm long line AB measures 65 mm , while the length of its front view is 50 mm . It's one end A is in the HP and 12 mm in front of the VP. Draw the projections of the AB and determine its inclinations with the HP and the VP.
5. A thin circular plate of 70 mm diameter is resting on its circumference such that its plane is inclined 600 to the HP and 300 to the VP. Draw the projections of the plane.
6. A right circular cone of base diameter 50 mm and height 60 mm is placed such that one diameter AB of the base is inclined at 450 to HP and the other diameter CD of the base is parallel to both HP and VP. The diameters AB and CD are perpendicular to each other. Draw the projections of the cone.
7. Draw the Isometric view: fig. 2


Fig. 2

\section*{Subject Code: R13109/R13}

\title{
ENGINEERING DRAWING
}
(Common to ECE, EIE, Bio-Tech, EComE, Agri.E)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw the Isometric view of fig.1:


Fig. 1
(b) Draw the projections of a circle of 50 mm diameter resting in the HP on a point A on the circumference, its plane inclined at \(45^{\circ}\) to the HP and (i) the top view of the diameter AB making \(30^{\circ}\) angle with the VP (ii) the diameter AB making \(30^{\circ}\) angle with the VP.

\section*{PART-B}
2.(a) Construct a regular pentagon of 30 mm side.
(b) The area of a field is \(50,000 \mathrm{sq} . \mathrm{m}\). The length and the breadth of the field, on the map are 10 cm and 8 cm respectively. Construct a diagonal scale which can read up to 1 m . Mark the length of 235 m on the scale. What is the RF of the scale?
3.(a) The front view of a line, inclined at \(30^{\circ}\) to the VP is 65 mm long. Draw the projections of the line, when it is parallel to and 40 mm above the HP , its one end being 30 mm in front of the VP.

\section*{Subject Code: R13109/R13}

\section*{Set No - 1}
3.(b) Draw the projections of a straight line AB of 60 mm long, in the following positions:
(i) Perpendicular to HP and in VP and one end on HP
(ii) Parallel to and 30 mm in front of VP and on HP
(iii) Inclined at \(30^{\circ}\) to VP , in HP and one end on VP
4. Two oranges on a tree are respectively 1.8 m and 3 m above the ground and, 1.2 m and 2.1 m from a 0.3 m thick wall, but on the opposite sides of it. The distance between the oranges, measured along the ground and parallel to the wall is 2.7 m . Determine the real distance between the oranges.
5. Draw the projections of a regular pentagonal of 40 mm side, having its surface inclined at \(30^{\circ}\) to the HP and a side parallel to the HP and inclined at an angle of \(60^{\circ}\) to the VP.
6. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the ground with the axis inclined at \(45^{0}\) to the VP.
7.

Draw fig. 2 (i) Front View
(ii) Top View
(iii) Side View from the right


Fig. 2

Page 2 of 2

\section*{Subject Code: R13109/R13}

Set No - 2
I B. Tech I Semester Regular/Supplementary Examinations Jan./Feb. - 2015 ENGINEERING DRAWING
(Common to ECE, EIE, Bio-Tech, EComE, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory,
Three Questions should be answered from Part-B
*****

\section*{PART-A}
1.(a) Draw fig. 1 (i) Front View (ii) Top View (iii) Side View

Fig. 1
(b) A plate having shape of an isosceles triangle has base 50 mm long and altitude 70 mm . It is so placed that in the front view it is seen as an equilateral triangle of 50 mm sides and one side inclined at \(45^{0}\) to xy. Draw its top view.

\section*{PART-B}
2.(a) The major axis of an ellipse is 150 mm long and the minor axis is 100 mm long. Find the foci and draw the ellipse by arcs of circle method. Draw a tangent to the ellipse at a point on it 25 mm above the major axis.

\section*{Subject Code: R13109/R13}

\section*{Set No - 2}
2.(b) Draw a Vernier scale of \(\mathrm{RF}=1 / 25\) to read centimeters up to 4 metres and on it, shown lengths representing 2.39 m and 0.91 m .
3.(a) A point P is 20 mm below HP and lies in the third quadrant. Its shortest distance from xy is 40 mm . Draw its projections.
(b) A line AB which is perpendicular to HP and 80 mm long has its end \(\mathrm{B}, 20 \mathrm{~mm}\) below HP and 30 mm in front of VP. Another line AC, which is 60 mm long, is parallel to both HP and VP. The midpoint D of the line AC is joined to B . Draw the projections and determine the inclination of the line BD with HP.
4. A line AB , inclined at \(40^{\circ}\) to the VP , has its ends 50 mm and 20 mm above the HP . The length of its front view is 65 mm and its VT is 10 mm above the HP. Determine the true length of AB , its inclination with the HP and its HT.
5. An hexagonal lamina of 20 mm side rests on one of its corners on HP. The diagonal passing through this corner is inclined at \(45^{0}\) to HP. The lamina is then rotated through \(90^{\circ}\) such that the top view of this diagonal is perpendicular to VP and the surface is still inclined at \(45^{0}\) to HP. Draw the projections of the lamina.
6. A tetrahedron of 40 mm side rests with one of its edges on HP and perpendicular to VP. The triangular face containing that edge is inclined at \(30^{\circ}\) to HP. Draw its projections.
7. Draw the Isometric view fig.2:


Fig. 2
Page 2 of 2

\section*{Subject Code: R13109/R13}

\title{
ENGINEERING DRAWING
}
(Common to ECE, EIE, Bio-Tech, EComE, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

\section*{PART-A}
1.(a) Draw the Isometric view assuming suitable data: fig. 1


Fig. 1
(b) A thin \(30-60^{\circ}\) set square has its longest edge in VP and inclined at \(30^{\circ}\) to HP. Its surface makes \(45^{\circ}\) with VP. Draw its projections.

\section*{PART-B}
2.(a) An underpass of a flyover has a size of \(270 \mathrm{~m} \times 10 \mathrm{~m} \times 10 \mathrm{~m}\). It is represented on a model by a volume of \(8 \mathrm{cu} . \mathrm{cm}\). What is the R.F? Construct a diagonal scale to read up to 300 m . Mark the distances 199 m and 8 m on the scale.
(b) Construct an ellipse when the major axis is 120 mm and the distance between the foci is 108 mm . Determine the length of the minor axis.
3.(a) Two pegs fixed on a wall are 4.5 m apart. The distance between the pegs measured parallel to the floor is 3.6 m . If one peg is 1.5 m above the floor, find the height of the second peg and the inclination of the line joining the two pegs, with the floor.
(b) A point P is 50 mm from both the reference planes. Draw its projections in all possible positions.

\section*{Subject Code: R13109/R13}

\section*{Set No - 3}
4. The guy ropes of two poles 12 m apart, are attached to a point 15 m above the ground on the corner of a building. The points of attachment on the poles are 7.5 m and 4.5 m above the ground and the ropes make \(45^{\circ}\) and \(30^{\circ}\) respectively with the ground. Draw the projections and find the distance of the poles from the building and the lengths of the guy ropes.
5. Draw the projections of a circle of 75 mm diameter having the end A of the diameter AB in the HP, the end B in the VP, and the surface inclined at \(30^{\circ}\) to the HP and at \(60^{\circ}\) to the VP.
6. Draw the projection of a cone, base 75 mm diameter and axis 100 mm long and lying on the ground on one of its generators with the axis parallel to the VP.
7.

Draw fig. 2 (i) Front View (ii) Top View (iii) Side View


Fig. 2

\section*{Subject Code: R13109/R13}

\section*{Question Paper Consists of Part-A and Part-B} Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw fig. 1 (i) Front View
(ii) Top View (iii) Both Side Views


Fig. 1
(b) A thin circular metal plate of 54 mm diameter has a square hole of 27 mm side, cut centrally through it. Draw its projections when the plate is resting on HP with its surface inclined at \(30^{\circ}\) to HP and an edge of the square hole perpendicular to VP.

\section*{PART-B}
2.(a) A plot of a ground is in the shape of a rectangle \(110 \mathrm{~m} \times 50 \mathrm{~m}\). Inscribe an elliptical lawn in it. Take a suitable scale.
(b) Construct a diagonal scale of \(\mathrm{RF}=1: 32,00,000\) to show kilometers and long enough to measure upto 400 kilometers. Show distance of 257 km and 333 km on your scale.
3.(a) A point A is situated in the first quadrant. Its shortest distance from the intersection point of HP, VP and auxiliary plane is 60 mm and it is equidistant from the principal planes. Draw the projections of the points and determine its distance from the principal planes.

Page 1 of 2

\section*{Subject Code: R13109/R13}

\section*{Set No - 4}
3.(b) The length of the top view of a line parallel to the VP and inclined at \(45^{\circ}\) to the HP is 5 cm . One end of the line is 1.2 cm above the HP and 2.5 cm in front of the VP. Draw the projections of the line and determine its true length.
4. The projectors of the ends of a line AB are 5 cm apart. The end A is 2 cm above the HP and 3 cm in front of the VP. The end B is 1 cm below the HP and 4 cm behind the VP. Determine the true length and traces of AB , and its inclinations with the two planes.
5. A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.
6. An hexagonal prism, side of base 25 mm and axis 50 mm long rests with one of its base corners on HP such that its base makes an angle of \(60^{\circ}\) to HP and its axis is parallel to VP. Draw its projections.
7. Draw the Isometric view fig.2:


Fig. 2

\section*{Subject Code: R13209/R13}

Set No - 1

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}
(Mechanical Engineering)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw the isometric view of the following orthographic projections?

(b) A straight line \(\mathrm{AB}, 60 \mathrm{~mm}\) long, makes an angle of \(30^{\circ}\) to the HP and \(60^{\circ}\) to the VP. The end \(A\) is in the VP and 20mm above the HP. Draw the projections of the line \(A B\) ?

\section*{PART-B}
2.(a) Inscribe an ellipse in a parallelogram having sides 150 mm and 100 mm long and an included angle of \(120^{0}\) ?
(b) Draw a full size diagonal scale to show 0.1 millimeters long enough to measure up to 5 centimeters Show on this scale the following distances.
2.35 centimeters

\section*{Subject Code: R13209/R13}

\section*{Set No - 1}
3.(a) Draw the projections of a line EF 40 mm long parallel to the HP and inclined at \(35^{\circ}\) to the VP. E is 20 mm above the HP and 15 mm in front of the VP?
(b) Draw the projections of a 60 mm long straight line in the following positions:
(i) Parallel to both the HP and the VP and 25 mm from each.
(ii) Perpendicular to the VP, 25 mm above the HP and its one end in the VP.
(iii) Inclined at \(45^{\circ}\) to the VP, in the HP and its one end in the VP.
4. The end \(A\) of line \(A B\) is 10 mm above the HP and 30 mm in front of the VP. The end \(B\) is 50 mm below the HP and 15 mm behind the VP. The length of the line is 80 mm . Draw the projection and locate the traces. What are the inclinations of the line with the reference planes?
5. A thin hexagonal plate of 35 mm side has a central equilateral hole of side equal to that of the plate. The plate is kept in such a way that one of its edges is parallel to the ground and inclined at \(30^{\circ}\) to the VP. The plate makes \(45^{\circ}\) with ground. Draw the projections of the plate and the hole. A side of the hole is parallel to the ground?
6. Draw the projection of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the HP, with the axis inclined at \(45^{\circ}\) to the VP.
7. Draw (i) Front view (ii) Top view and (iii) Side view of the following pictorial projections?


Page 2 of 2

\section*{Subject Code: R13209/R13}

Set No - 2

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}
(Mechanical Engineering)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw (i) Front view (ii) Top view and (iii) Side view of the pictorial drawing shown below?

(b) A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.

\section*{PART-B}
2.(a) A plot of ground is in the shape of a rectangle \(110 \mathrm{~m} \times 50 \mathrm{~m}\). Inscribe an elliptical lawn in it. Take a suitable scale?
(b) Construct a regular hexagon of 40 mm side. Using general method?

\section*{Subject Code: R13209/R13}

Set No - 2
3.(a) Draw the FV, TV of the following points:
(i) Point P lies in the HP and 20 mm behind the VP
(ii) Point Q lies in the VP and 30 mm below the HP
(iii) Point R lies 35 mm below the HP and 25 mm behind the VP
(b) Two points M and N lie in the VP. The point M is above the HP and the point N is 40 mm below the HP. The perpendicular distance between their projectors is 60 mm . The line joining M and N makes \(60^{\circ}\) with XY. Draw the projections of the points. Find the height of point M from the HP?
4. FV of a line measures 70 mm and makes an angle of \(30^{\circ}\) with XY . The end A is in the HP and the VT of the line is 10 mm below XY. The line is inclined at \(45^{\circ}\) to the VP. Draw the projections of the line and find its TL and true inclinations with the HP and locate the HT?
5. A regular pentagonal lamina of 30 mm sides has one edge in the HP and inclined at an angle of \(30^{\circ}\) to the VP. Draw its projections when its surface is inclined at \(45^{\circ}\) to the HP?
6. A cone of diameter 60 mm and height 60 mm is resting on the HP on one of its generators. Draw its projections if its axis is parallel to the VP?
7. Draw the isometric view of the orthographic projections shown below?


\section*{Subject Code: R13209/R13}

Set No - 3

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}

\author{
(Mechanical Engineering)
}

Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

\section*{PART-A}
1.(a) Draw the isometric view of the following orthographic views?

(b) A plate having shape of an isosceles triangle has base 50 mm long and altitude 70 mm . It is so placed that in the front view it is seen as an equilateral triangle of 50 mm sides and one side inclined at \(45^{0}\) to xy. Draw its top view?

\section*{PART-B}
2.(a) On a map, the distance between two points is 14 cm . The real distance between them is 20 km . Draw a diagonal scale of this map to read kilometres and hectametres, and to measure up to 25 km . Show a distance of 17.6 km on this scale?
(b) The major axis of an ellipse is 150 mm long and the minor axis is 100 mm long. Find the foci and draw the ellipse by Arcs of circles method. Draw a tangent to the ellipse at a point on it 25 mm above the major axis?

\section*{Subject Code: R13209/R13}

\section*{Set No - 3}
3.(a) The front view of a line, inclined at \(30^{\circ}\) to the VP is 65 mm long. Draw the projections of the line, when it is parallel to and 40 mm above the HP , its one end being 30 mm in front of the VP?
(b) A stick is struck in the ground making an angle of \(30^{\circ}\) to the ground. Draw the projections of the free end of the stick if the end of the stick above the ground is 1.5 m and the distance of the end from a wall is 2.5 m .?
4. The end P of a line PQ 130 mm long is 55 mm in front of the VP. The HT of the line is 40 mm in front of the VP and the VT is 50 mm above the HP. The distance between HT and VT is 110 mm . Draw the projections of the line PQ and determine its angles with the HP and the VP.
5. A triangular plane ABC has a 60 mm long base AB and is on the ground inclined to the VP at \(30^{\circ}\). Its altitude length is 80 mm . the plane is lifted on \(A B\) such that \(A C\) lies on a plane perpendicular to both the HP and the VP. Draw the projections of the plane. Find out the angles of inclination of the plane with the HP and the VP?
6. Draw the projection of a cylinder 75 mm diameter and 100 mm long, lying on one of its generator on the ground with its axis inclined at \(30^{\circ}\) to the VP and parallel to the ground.
7. Draw (i) Front view (ii) Top view and (iii) Side view of the pictorial projection shown below?


\section*{Subject Code: R13209/R13}

\section*{Set No - 4}

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}
(Mechanical Engineering)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{*****}

\section*{PART-A}
1.(a) Draw (i) Front view (ii) Top view and (iii) Side view of the pictorial projection shown below?

(b) A thin \(30^{\circ}-60^{\circ}\) set square has its longest edge in the VP and inclined at \(30^{\circ}\) to the HP. Its surface makes \(45^{0}\) with the VP. Draw its projections?

\section*{PART-B}
2.(a) Construct a vernier scale of \(\mathrm{RF}=2\) to show \(\mathrm{cm}, 1 / 10^{\text {th }}\) of cm and \(1 / 100^{\text {th }}\) of cm to read up to 9 cm .Mark on the scale the lengths 7.02 cm .?
(b) Inscribe a regular octagon in a circle of diameter 80 mm .?

\section*{Subject Code: R13209/R13}

\section*{Set No - 4}
3.(a) A line GH 45 mm long is in the HP and inclined to the VP. The end G is 15 mm in front of the VP. Length of front view is 35 mm . Draw the projections of the line. Determine its inclination with the VP?
(b) The electric pole is 10 m height. A mighty storm bent it in such a way that its tip is now at a distance of half of its original distance from the ground. Draw the projections of the pole tip if it is 3 m from a wall of a building?
4. The midpoint M of a straight line AB is 60 mm above the HP and 50 mm in front of the VP. The line measures 80 mm long and inclined at an angle of \(30^{\circ}\) to the HP and \(45^{\circ}\) to the VP. Draw its projections?
5. A rhombus having diagonals 150 mm and 60 mm is so placed that its smaller diagonal is parallel to both the reference planes and the larger diagonal is inclined at \(40^{\circ}\) to the HP. Draw its projections. Also, find the angles made by the plane with the HP and the VP?
6. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis is inclined at \(30^{\circ}\) to the ground and parallel to the VP. Draw its projections.
7. Draw the isometric view of the orthographic projections shown below?


\section*{Subject Code: R13209/R13}

Set No - 1

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}
(Computer Science Engineering)
Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

\section*{PART-A}
1.(a) Draw
(i) Front view
(ii) Top view (iii) Right side view of the following pictorial projection.

(b) The projections of a line AB are on the same projector. A is 10 mm above the HP and 20 mm in front of the VP. B is 35 mm below the HP and 25 mm behind the VP. Draw the projections of the line \(A B\) and determine its true length, inclinations with the HP and the VP?
[16+6]

\section*{PART-B}
2.(a) Construct an ellipse of 120 mm major axis and 80 mm minor axis using concentric circle methods?
(b) Draw an octagon given the length of side 25 mm . using general method?
3.(a) A line EF 40 mm long is in the VP and inclined to the HP. The top view measures 30 mm . The end E is 10 mm above the HP. Draw the projections of the line. Determine its inclination with the HP?
(b) A line RS 40 mm long is parallel to both the planes. It is 20 mm above the HP and 15 mm in front of the VP. Draw the projections of the line?

\section*{Subject Code: R13209/R13}

\section*{Set No - 1}
4. The front view of a line AB is 50 mm long and it makes an angle of \(35^{\circ}\) with xy . The point A lies 10 mm above the HP and 25 mm behind the VP. The difference between the distance of A and B from the VP is 25 mm . The line AB is in second quadrant. Draw the projections of the line; determine its true length and inclinations with the HP and the VP?
5. An equilateral triangle ABC having side length as 50 mm is suspended from a point O on the side AB 15 mm from A in such a way that the plane of the triangle makes an angle of \(60^{\circ}\) with the VP. The point O is 20 mm below the HP and 40 mm behind the VP. Draw the projections of the triangle?
6. Draw the top and front view of the cone of base diameter 46 mm and height 65 mm lying with one of its generators on the HP. The axis is parallel to the VP?
7. Draw the isometric view of orthographic drawing shown below ?


\section*{Subject Code: R13209/R13}

Set No - 2

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}

\author{
(Computer Science Engineering)
}

Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

\section*{PART-A}
1.(a) Draw the isometric view of the following orthographic views?

(b) A square prism of side of base 30 mm and axis 55 mm long lies on one of its generator in the HP and its faces equally inclined to the HP. Draw its projections when its axis is inclined at an angle of \(60^{\circ}\) to the VP?

\section*{PART-B}
2.(a) Construct a regular hexagonal of side 25 mm when one of its side is horizontal?
(b) A truck is moving at the rate of 1.2 km per min. Construct a diagonal scale with RF value of \(1 / 25000\), showing minutes and seconds. Mark the distance moved by the truck in 4 minutes and 27 seconds?
3.(a) Draw the projections of the following, keeping the distance between the projectors as 25 mm on the same reference line:
(i) A- 25 mm above HP and 50 mm behind the VP
(ii) B- 40 mm below HP and 45 mm in front of the VP
(iii) C - on HP and 25 mm behind VP
(b) A line CD is parallel to the VP and inclined at \(45^{\circ}\) to the HP . C is in the HP and 25 mm in front of the VP. Top view is 50 mm long. Find its true length?

Page 1 of 2

\section*{Subject Code: R13209/R13}

\section*{Set No - 2}
4. A line AB inclined \(30^{\circ}\) to the VP , has its ends 50 mm and 20 mm above the HP. The length of its front view is 65 mm and its VT is 10 mm above the HP. Determine the true length of AB , its inclination with the HP and its HT?
5. The circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal?
6. A equilateral triangle of 60 mm side represents the front view of a cone standing on its base. It is tilted until its axis makes \(30^{\circ}\) with the HP and top view of the axis is parallel to the VP in this position. Draw the projections of cone?
7. Draw (i) Front view (ii) Top view (iii) Side view of the following pictorial projection?


\section*{Subject Code: R13209/R13}

Set No - 3

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}

\author{
(Computer Science Engineering)
}

Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

\section*{PART-A}
1.(a) Draw the isometric view of the following orthographic projections?

(b) A point A is 15 mm above the HP and 20 mm in front of the VP. Another point B is 25 mm behind the VP and 40mm below the HP. Draw the projections of A and B, keeping the distance between the projectors equal to 90 mm . Draw straight lines joining (i) the top views (ii) the front views.

\section*{PART-B}
2.(a) Inscribe a regular hexagon in a circle of diameter 80 mm .?
(b) Construct an ellipse of 120 mm major axis and 80 mm minor axis using arcs of circle method?
3.(a) A point A is 20 mm above the HP and in the first quadrant. Its shortest distance from the reference line XY is 40 mm . Draw the projections of the point and determine its distance from the VP.
(b) Draw the projections of line LM 40 mm long, parallel to the HP and inclined at \(30^{\circ}\) to the VP. The L is 20 mm above the HP and 15 mm in front of the VP. Find its traces.

\section*{Page 1 of 2}

\section*{Subject Code: R13209/R13}

\section*{Set No - 3}
4. A line \(\mathrm{AB}, 65 \mathrm{~mm}\) long, has its end A 20 mm above the HP and 25 mm in front of the VP. The end B is 40 mm above the HP and 65 mm in front of the VP. Draw the projections of AB and show its inclinations with the HP and the VP?
5. A \(30^{\circ}-60^{\circ}\) set square has its shortest side 50 mm long and is in the HP. The top view of the setsquare is an isosceles triangle. The hypotenuse of the set-square is inclined at an angle of \(45^{0}\) with the VP. Draw its projections Determine its inclination with the HP?
6. Draw the projections of a cylinder, base 30 mm diameter and axis 50 mm long, resting with a point on the peripheri of its base circle on the HP such that the axis is making an angle of \(30^{\circ}\) with the HP and parallel to the VP?
7. Draw (i) Front view (ii) Top view of the following pictorial view?


\section*{Subject Code: R13209/R13}

Set No - 4

\section*{I B. Tech II Semester Regular Examinations August - 2014 ENGINEERING DRAWING}

\author{
(Computer Science Engineering)
}

Time: \(\mathbf{3}\) hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

\section*{PART-A}
1.(a) Draw (i) Front view (ii) Top view (iii) Right side view of the pictorial view shown
below?

(b) A mirror of size \(560 \mathrm{~mm} \times 320 \mathrm{~mm}\) is fixed on a wall on one of its shorter edges. The mirror is so fixed that it appears as a square in the front view. Draw the projections of the mirror Find its inclinations with the wall and the ground?
[16+6]

\section*{PART-B}
2.(a) Construct a Vernier scale of \(\mathrm{RF}=1: 25\) to show decimeters, centimeters and millimeters. The scale should be capable of reading up to 4 decimeters. Mark on your scale the following distances: (a) 3.23 dm ?
(b) Construct a hexagon of side 30 mm when one side is vertical?

\section*{Subject Code: R13209/R13}

\section*{Set No - 4}
3.(a) The top view of a 75 mm long line measures 55 mm . The line is in the VP, its one end being 25 mm above the HP. Draw its projections?
(b) Mark the projections of the following points on a common reference line, keeping the projectors 35 mm apart.
(i) 25 mm above the HP and 40 mm behind the VP
(ii) 20 mm above the HP and on the VP
(iii) 30 mm below the HP and 45 mm in front of the VP
4. A line PQ 100 mm long is inclined at \(30^{\circ}\) to the HP and at \(45^{\circ}\) to the VP. Its midpoint is in the VP and 20 mm above the HP. Draw its projections, if its end P is in the third quadrant and Q is in the first quadrant.
5. ABCD is a symmetrical trapezium with \(\mathrm{AB}=40 \mathrm{~mm}\) and \(\mathrm{CD}=64 \mathrm{~mm}\) as its parallel sides are 50 mm height. The plane has its side AB in the VP and CD 25 mm away from it. The front view of BC makes an angle of \(30^{\circ}\) with the HP. Obtain the projections of the plane. Find its angle with the VP?
6. Draw the projections of a pentagonal prism of base side 30 mm and axis length 60 mm rests on the HP on one of the base corners with the base edges containing it being equally inclined to the HP. The axis is inclined at \(45^{\circ}\) to the HP and parallel to the VP?
7. Draw the isometric view of the following orthographic views?


\title{
Internal Question
}


\section*{V.S.M. COLLEGE OF ENGINEERING, RAMACHANDRAPURAM \\ (AFFILIATED TO JNTU-K) \\ I/IV B.TECH. SEMESTER-II MID-II(Regular R-13)}

SUBJECT: ENGINEERING DRAWING (Computer Science Engineering)
TIME: 1H. 30MIN.
MARKS: 30
Answer all Questions
1. A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is \(30^{\circ}\) inclined to Hp while it's Tv is \(45^{\circ}\) inclined to Vp. Draw it's projections. ?
2. Draw the projections of a pentagonal prism , base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P. with the axis inclined at 450 to the V.P?
3. Draw the orthographic projections of the following structure


\section*{V.S.M. COLLEGE OF ENGINEERING, RAMACHANDRAPURAM (AFFILIATED TO JNTU-K)}

I/IV B.TECH. SEMESTER-IIMID-II(Regular R-13)
SUBJECT: ENGINEERING DRAWING (Computer Science Engineering)
TIME: 1H. 30MIN.
MARKS: 30
Answer all Questions
1. A circle of 50 mm diameter is resting on Hp on end \(A\) of it's diameter \(A C\) which is \(30^{\circ}\) inclined to Hp while it's Tv is \(45^{\circ}\) inclined to Vp. Draw it's projections. ?
2. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P. with the axis inclined at 450 to the V.P?
3. Draw the orthographic projections of the following structure


\title{
VSM COLLEGE OF ENGINEERING RAMACHANDRA PURAM - 533255
}

INTERNAL ASSESSMENT TEST QUESTION PAPER
DEPARTMENT :MECHANICAL ENGG.

\section*{2015/DDD/TL/EVL/INT/IATQP}

DATE:21-09-2015
Max. Time : 90 Min
Max. Marks: 30

\section*{Branch:ECE-B}

Academic Year: 2015-2016
Subject: ENGG. DRAWING

\section*{Answer all the following questions}
1. The distance between Delhi and Agra is 200 km .In a railway map it is represented by a line 5 cm long. Find it's R.F.Draw a diagonal scale to show single km. And maximum 600 km . Indicate on it following distances. 1) 222 km 2) \(336 \mathrm{~km} \mathrm{3)} 459 \mathrm{~km} \mathrm{4)} 569 \mathrm{~km}\)
2. A point \(P\) is 20 mm below HP \& lies in third quadrant.It's shortest distance from \(X Y\) is 40 mm .Draw its projections and find the distance of TV from XY line.
3. Line AB 75 mm long makes \(45^{0}\) inclination with Vp while it's Fv makes \(55^{0}\). End A is 10 mm above Hp and 15 mm in front of Vp.If line is in \(1^{\text {st }}\) quadrant draw it's projections and find it's inclination with Hp .


INTERNAL ASSESSMENT TEST QUESTION PAPER
DEPARTMENT :MECHANICAL ENGG.

2015/DDD/TL/EVL/INT/IATQP
DATE:21-09-2015

IYEAR I SEMESTER I MID
Branch:ECE-B

Academic Year: 2015-2016
Subject: ENGG. DRAWING

Max. Time : 90 Min
Max. Marks : 30

Answer all the following questions
1. The distance between Delhi and Agra is 200 km .In a railway map it is represented by a line 5 cm long. Find it's R.F.Draw a diagonal scale to show single km. And maximum 600 km . Indicate on it following distances. 1) \(222 \mathrm{~km} \mathrm{2)} 336 \mathrm{~km} \mathrm{3)} 459 \mathrm{~km} \mathrm{4)} 569 \mathrm{~km}\)
2. A point \(P\) is 20 mm below HP \& lies in third quadrant.It's shortest distance from \(X Y\) is 40 mm .Draw its projections and find the distance of TV from XY line.
3. Line AB 75 mm long makes \(45^{0}\) inclination with Vp while it's Fv makes \(55^{\circ}\). End A is 10 mm above Hp and 15 mm in front of Vp.If line is in \(1^{\text {st }}\) quadrant draw it's projections and find it's inclination with Hp .

\title{
VSM COLLEGE OF ENGINEERING RAMACHANDRA PURAM - 533255
}

\section*{INTERNAL ASSESSMENT TEST QUESTION PAPER} DEPARTMENT :MECHANICAL ENGG.

Academic Year: 2015-2016
Branch:EEE

2015/DDD/TL/EVL/INT/IATQP
DATE:21-09-2015
Max. Time : 90 Min
Max. Marks : \(\mathbf{3 0}\)

\section*{Answer all the following questions}
1. Draw a Vernier scale of \(\mathrm{RF}=1 / 25\) to read centimeters upto 4 meters and on it, show lengths 2.39 m and 0.91 m
2. Mark the projections of following points n a comman reference line,keeping the projections 35 mm apart. i.A, 25 mm above HP and 35 mm in front of VP
ii. \(\mathrm{B}, 25 \mathrm{~mm}\) below HP and 40 mm behind VP
iii.C, 35 mm below HP and on VP
iv.D, 20 mm behind VP and on HP.
3. Line AB is 75 mm long and it is \(30^{\circ} \& 40^{\circ}\) Inclined to \(\mathrm{Hp} \& \mathrm{~V}\) p respectively. End A is 12 mm above Hp and 10 mm in front of Vp .Draw projections. Line is in \(1^{\text {st }}\) quadrant.


INTERNAL ASSESSMENT TEST QUESTION PAPER DEPARTMENT :MECHANICAL ENGG.

IYEAR I SEMESTER I MID Branch:EEE

Academic Year: 2015-2016
Subject: ENGG. DRAWING

\section*{2015/DDD/TL/EVL/INT/IATQP}

DATE:21-09-2015
Max. Time : 90 Min
Max. Marks : \(\mathbf{3 0}\)

\section*{Answer all the following questions}
1. Draw a Vernier scale of \(\mathrm{RF}=1 / 25\) to read centimeters upto 4 meters and on it, show lengths 2.39 m and 0.91 m
2. Mark the projections of following points n a comman reference line,keeping the projections 35 mm apart.
i.A, 25 mm above HP and 35 mm in front of VP
ii.B, 25 mm below HP and 40 mm behind VP
iii.C, 35 mm below HP and on VP
iv.D, 20 mm behind VP and on HP.
3. Line AB is 75 mm long and it is \(30^{\circ} \& 40^{\circ}\) Inclined to \(\mathrm{Hp} \& \mathrm{Vp}\) respectively. End A is 12 mm above Hp and 10 mm in front of Vp .Draw projections. Line is in \(1^{\text {st }}\) quadrant.

\title{
V.S.M COLLEGE OF ENGINEERING RAMACHANDRAPURAM DEPARTMENT OF MECHANICAL ENGINEERING \\ I B.TECH II SEM MID-I EXAMINATIONS
}

SUBJECT: ENGINEERING DRAWING
BRANCH: CSE
DATE: 11/04/2015

\section*{ANSWER THE FOLLOWING QUESTIONS:}

Max Marks: 30 Marks
1) Draw a vernier scale of \(R . F=1 / 25\) to read centimeters up to 4 metres and on it, show lengths representing 2.39 m and 0.91 m .
2) a) Draw the projections of following points on the same ground line, keeping the projectors 25 mm apart.
i) A, in the H.P and 25 mm in front of V.P
ii) B, 40 mm above the \(\mathrm{H} . \mathrm{P}\) and 25 mm in front of the V.P
iii) C, 25 mm below the H.P and 25 mm behind the V.P
b) A point A is 20 mm below HP and lies in third quadrant. It's shortest distance from XY is 40 mm .Draw its projections?
3) A line \(A B, 75 \mathrm{~mm}\) long is inclined at 45 degrees to the H.P. and 30 to the V.P. its end \(B\) is in the H.P and 40 mm in front of the V.P. draw its projections?

\title{
V.S.M COLLEGE OF ENGINEERING \\ RAMACHANDRAPURAM DEPARTMENT OF MEGHANICAL ENGINEERING \\ I B.TECH II SEM MID-I EXAMINATIONS
}

\section*{SUBJECT: ENGINEERING DRAWING}

BRANCH: CSE
DATE: 11/04/2015
ANSWER THE FOLLOWING QUESTIONS:
Max Marks: 30 Marks
4) Draw a vernier scale of R.F \(=1 / 25\) to read centimeters up to 4 metres and on it, show lengths representing 2.39 m and 0.91 m .
5) a) Draw the projections of following points on the same ground line, keeping the projectors 25 mm apart.
i) A, in the H.P and 25 mm in front of V.P
ii) B, 40 mm above the H.P and 25 mm in front of the V.P
iii) C, 25 mm below the H.P and 25 mm behind the V.P
b) A point A is 20 mm below HP and lies in third quadrant. It's shortest distance from XY is 40 mm .Draw its projections?
6) A line \(A B, 75 \mathrm{~mm}\) long is inclined at 45 degrees to the H.P. and 30 to the V.P. its end \(B\) is in the H.P and 40 mm in front of the V.P. draw its projections?

\title{
VSM COLLEGE OF ENGINEERING RAMACHANDRA PURAM - 533255
}

INTERNAL ASSESSMENT TEST QUESTION PAPER DEPARTMENT :MECHANICAL ENGG.

IYEAR I SEMESTER I MID
Branch: ECE -A

Academic Year: 2015-2016
Subject: ENGG. DRAWING

2015/MED/TL/EVL/INT/IATQP
DATE:21-09-2015
Max. Time : 90 Min
Max. Marks : 30

\section*{Answer all the following questions}
1. Construct a diagonal scale of \(R . F=3: 200\), showing meters, decimeters and centimeters \(\&\) to measure upto 6 meters. To show a distances of 1) 4.56 m 2) \(2.24 \mathrm{~m} \mathrm{3)} 1.17 \mathrm{~m}\)
2. Construct a regular polygon of any number of sides, given the length of its sides equal to 30 mm .
3. Mark the projections of the following points on a same reference line, keeping the projectors 35 mm apart.
a) A, 25 mm above HP and 35 mm in front of VP
b) B 25 mm below HP and 40 mm behind VP
c) C, 30 mm above HP and 45 mm behind VP
d) D, on the HP and 30 mm in front of VP e) E, 40 mm below HP and in the VP.

VSM COLLEGE OF ENGINEERING RAMACHANDRA PURAM - 533255

INTERNAL ASSESSMENT TEST QUESTION PAPER DEPARTMENT :MECHANICAL ENGG.

IYEAR I SEMESTER I MID
Branch: ECE -A

Academic Year: 2015-2016
Subject: ENGG.DRAWING

2015/MED/TL/EVL/INT/IATQP DATE:21-09-2015

Max. Time : 90 Min
Max. Marks : 30

Answer all the following questions
1. Construct a diagonal scale of R.F \(=3: 200\), showing meters, decimeters and centimeters \& to measure upto 6 meters. To show a distances of 1) 4.56 m 2) \(2.24 \mathrm{~m} \mathrm{3)} 1.17 \mathrm{~m}\)
2. Construct a regular polygon of any number of sides, given the length of its sides equal to 30 mm .
3. Mark the projections of the following points on a same reference line, keeping the projectors 35 mm apart.
a) A, 25 mm above HP and 35 mm in front of VP
b) B 25 mm below HP and 40 mm behind VP
c) C, 30 mm above HP and 45 mm behind VP
d) D, on the HP and 30 mm in front of VP
e) E, 40 mm below HP and in the VP.```


[^0]:    R.F. $=1 / 100$

    PLANE SCALE SHOWING METERS AND DECIMETERS.

[^1]:    NOW FINAL VIEWS ARE ALWAYS SOME SHAPE, NOT LINE VIEWS: SO APPLYING ABOVE METHOD:
    WE FIRST CONVERT ONE VIEW IN INCLINED LINE VIEW .(By using x1y1 aux.plane) THEN BY MAKING IT // TO X2-Y2 WE GET TRUE SHAPE.

