LECTURE NOTES

ON

ENGINEERING DRAWING

I B.TECH. JNTU (R16)

All INTU World

Get The Most Out Of Imagineering

ENGINEERING DRAWING

I Semester: AE / CE / ME										
Course Code		Category	Hours / Week			Credits C	Maximum Marks			
AME00		Foundation	L	T	P		CIA	SEE	Total	
		2		3	4	30	70	100		
Contact	asses: 30		Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 75		
OBJECTIVES: The course should enable the students to: I. Understand the basic principles of engineering drawing and construction of curves used in engineering field. II. Apply the knowledge of interpretation of projection in different quadrants. III. Understand the projections of solids, when it is inclined to both planes simultaneously. IV. Convert the pictorial views into orthographic view and vice versa. V. Create intricate details of components through sections and develop its surfaces.										
UNIT-I	$\begin{aligned} & \text { FUNDA } \\ & \text { CURVI } \end{aligned}$	NTALS OF ENGII				SCAL			es: 09	
Introduction to engineering drawing: Drawing instruments and accessories, types of line, lettering practice and rules of dimensioning, geometrical constructions, basic geometrical shapes; Scales: Types of scales, units of length and their conversion, construction of scales, plain scale, diagonal scale, vernier scale; Curves used in engineering practice and their constructions; Conic sections, construction of ellipse parabola and hyperbola, special curves, construction of cycloid, epicycloids, hypocycloid and involutes.										
UNIT-II	ORTH	RAPHIC PROJECT				OF PLA			ses: 09	
Orthographic projection: Principles of orthographic projections, conventions, first and third angle projections, projection of points, projection of lines, lines inclined to single plane, lines inclined to both the planes, true lengths and traces; Projection of planes: Projection of regular planes, planes inclined to one plane, planes inclined to both planes, projection of planes by auxiliary plane projection method.										
UNIT-III	PROJEC	IION OF SOLIDS							ses: 09	
Projection of solids: Projections of regular solid, prisms, cylinders, pyramids, cones. Solids inclined to one plane, solids inclined to both planes, projection of solid by auxiliary plane projection method.										
UNIT-IV	DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS								ses: 09	
Development of surfaces: Development of lateral surface of right regular solids, prisms, cylinders, pyramids and cones; Isometric projections: Principle of isometric projection, isometric scale, isometric projections and isometric views, isometric projections of planes, prisms, cylinders, pyramids, and cones.										
UNIT-V	TRANSFORMATION OF PROJECTIONS								ses: 09	
Transformation of projections: Conversion of isometric views to orthographic views and conversion of orthographic views to isometric views.										

Scales

Basic Information

2. Types and important units
3. Diagonal Scales - information
4. Diagonal Scales (3 Problems)
5. Vernier Scales - information
6.

Vernier Scales (2 Problems)

SCALES

$$
\begin{gathered}
\text { DIMENSIONS OF LARGE OBJECTS MUST BE REDUCED TO ACCOMMODATE } \\
\text { ON STANDARD SIZE DRAWING SHEET.THIS REDUCTION CREATES A SCALE } \\
\text { OF THAT REDUCTION RATIO, WHICH IS GENERALLY A FRACTION.. } \\
\text { SUCH A SCALE IS CALLED REDUCING SCALE } \\
\text { AND } \\
\text { THAT RATIO IS CALLED REPRESENTATIVE FACTOR. } \\
\hline \text { SIMILARLY IN CASE OF TINY OBJECTS DIMENSIONS MUST BE INCREASED } \\
\text { FOR ABOVE PURPOSE. HENCE THIS SCALE IS CALLED ENLARGING SCALE. } \\
\text { HERE THE RATIO CALLED REPRESENTATIVE FACTOR IS MORE THAN UNITY. }
\end{gathered}
$$

USE FOLLOWING FORMULAS FOR THE CALCULATIONS IN THIS TOPIC.
(A) REPRESENTATIVE FACTOR (R.F.) = DIMENSION OF DRAWING DIMENSION OF OBJECT

$$
\begin{aligned}
& =\frac{\text { LENGTH OF DRAWING }}{\text { ACTUAL LENGTH }} \\
& =\sqrt{\frac{\text { AREA OF DRAWING }}{\text { ACTUAL AREA }}} \\
& =\sqrt[3]{\frac{\text { VOLUME AS PER DRWG. }}{\text { ACTUAL VOLUME }}}
\end{aligned}
$$

BE FRIENDLY WITH THES

1 KILOMETRE $=10$ HECTO 1 HECTOMETRE $=10$ DECAM 1 DECAMETRE $=10$ METRE 1 METRE $=10$ DECIME 1 DECIMETRE $=10$ CENTIM 1 CENTIMETRE = 10 MILIME

TYPES OF SCALES:

1.	PLAIN SCALES	(FOR DIMENSIONS UP TO SINGLE
2.	DIAGONAL SCALES	(FOR DIMENSIONS UP TO TWO DE
3.	VERNIER SCALES	(FOR DIMENSIONS UP TO TWO DE
4.	COMPARATIVE SCALES (FOR COMPARING TWO DIFFERENT	
5.	SCALE OF CORDS	(FOR MEASURING/CONSTRUCTING

PLAIN SCALE:-This type of scale represents two units or a unit and it's sub-divisi PROBLEM NO.1:- Draw a scale $1 \mathrm{~cm}=1 \mathrm{~m}$ to read decimeters, to measure maximum dis Show on it a distance of 4 m and 6 dm .

CONSTRUCTION:- DIMENSION OF DRAWING
a) Calculate R.F.=

DIMENSION OF OBJECT

PLAIN

$$
\begin{aligned}
\text { R.F. } & =1 \mathrm{~cm} / 1 \mathrm{~m}=1 / 100 \\
\text { Length of scale } & =\text { R.F. } X \text { max. distance } \\
& =1 / 100 \times 600 \mathrm{~cm} \\
& =6 \mathrm{cms}
\end{aligned}
$$

b) Draw a line 6 cm long and divide it in 6 equal parts. Each part will represent larger divi
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisic on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of scale.
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 4 m 6 dm on it as shown.

PROBLEM NO.2:- In a map a 36 km distance is shown by a line 45 cms long. Calculate the a plain scale to read kilometers and hectometers, for max. 12 km . Show a distance of 8.3 km

CONSTRUCTION:-

a) Calculate R.F.

$$
\text { R.F. }=45 \mathrm{~cm} / 36 \mathrm{~km}=45 / 36 \cdot 1000 \cdot 100=1 / 80,000
$$

Length of scale $=$ R.F. \times max. distance

$$
\begin{aligned}
& =1 / 80000 \times 12 \mathrm{~km} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

b) Draw a line 15 cm long and divide it in 12 equal parts. Each part will represent larger divisi
c) Sub divide the first part which will represent second unit or fraction of first unit.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisions on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a look of scale.
e) After construction of scale mention it's RF and name of scale as shown.
f) Show the distance 8.3 km on it as shown.

HECTOMETERS

R.F. $=\mathbf{1 / 8 0 , 0 0 0}$

PLANE SCALE SHOWING KILOMETERS AND HECTOMETERS

PROBLEM NO.3:- The distance between two stations is 210 km . A passenger train covers this in 7 hours. Construct a plain scale to measure time up to a single minute. RF is $1 / 200,000$ Indir traveled by train in 29 minutes.

CONSTRUCTION:-

a) 210 km in 7 hours. Means speed of the train is 30 km per hour (60 minutes)

Length of scale $=$ R.F. \times max. distance per hour

$$
\begin{aligned}
& =1 / 2,00,000 \times 30 \mathrm{~km} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

b) 15 cm length will represent 30 km and 1 hour i.e. 60 minutes.

Draw a line 15 cm long and divide it in 6 equal parts. Each part will represent 5 km and 10 r
c) Sub divide the first part in 10 equal parts, which will represent second unit or fraction of first $ᄂ$ Each smaller part will represent distance traveled in one minute.
d) Place (0) at the end of first unit. Number the units on right side of Zero and subdivisions on left-hand side of Zero. Take height of scale 5 to 10 mm for getting a proper look of scale.
e) Show km on upper side and time in minutes on lower side of the scale as shown. After construction of scale mention it's RF and name of scale as shown.
f) Show the distance traveled in 29 minutes, which is 14.5 km , on it as shown.

PLANE SCALE SHOWING METERS AND DECIMETERS.

We have seen that the plain scales give only two dimensions, such as a unit and it's subunit or it's fraction.

The diagonal scales give us three successive dimensions that is a unit, a subunit and a subdivision of a subunit.

The principle of construction of a diagonal scale is as follows. Let the $X Y$ in figure be a subunit.
From Y draw a perpendicular YZ to a suitable height. Join XZ. Divide YZ in to 10 equal parts.
Draw parallel lines to $X Y$ from all these divisions and number them as shown.
From geometry we know that similar triangles have their like sides proportional.

Consider two similar triangles $X Y Z$ and $7^{\prime} 7 Z$, we have $7 \mathrm{Z} / \mathrm{YZ}=7{ }^{\prime} 7 / \mathrm{XY}$ (each part being one unit) Means 7' $7=7 / 10 . \mathrm{x} X Y=0.7 \mathrm{XY}$
\therefore
Similarly

$$
1^{\prime}-1=0.1 \mathrm{XY}
$$

$$
2^{\prime}-2=0.2 \mathrm{XY}
$$

Thus, it is very clear that, the sides of small triangles, which are parallel to divided lines, become progressively shorter in length by 0.1 XY.

PROBLEM NO. 4 : The distance between Delhi and Agra is 200 km. In a railway map it is represented by a line 5 cm long. Find it's R.F. Draw a diagonal scale to show single km. And maximum 600 km .
Indicate on it following distances. 1) 222 km 2) 336 km 3) $459 \mathrm{~km} \mathrm{4)} 569 \mathrm{~km}$

SOLUTION STEPS:

$$
\mathrm{RF}=5 \mathrm{~cm} / 200 \mathrm{~km}=1 / 40,00,000
$$

Length of scale $=1 / 40,00,000 \times 600 \times 10^{5}=15 \mathrm{~cm}$
Draw a line 15 cm long. It will represent 600 km .Divide it in six equal parts.(each will represent 1 Divide first division in ten equal parts.Each will represent 10 km .Draw a line upward from left enc mark 10 parts on it of any distance. Name those parts 0 to 10 as shown.Join $9^{\text {th }}$ sub-division of he with $10^{\text {th }}$ division of the vertical divisions. Then draw parallel lines to this line from remaining sub complete diagonal scale.

SOLUTION :

1 hector $=10,000$ sq. meters
1.28 hectors $=1.28 \times 10,000$ sq. meters

$$
=1.28 \times 10^{4} \times \quad 10^{4} \text { sq. } \mathrm{cm}
$$

$8 \mathrm{sq} . \mathrm{cm}$ area on map represents

$$
=1.28 \times 10^{4} \times \quad 10^{4} \mathrm{sq} . \mathrm{cm} \text { on land }
$$

1 cm sq. on map represents
$=1.28 \times 10^{4} \times 10^{4} / 8 \mathrm{sq} \mathrm{cm}$ on land
1 cm on map represent

$$
\begin{aligned}
& =\sqrt{1.28 \times 10^{4} \times 10^{4} / 8 \mathrm{~cm}} \\
& =4,000 \mathrm{~cm}
\end{aligned}
$$

1 cm on drawing represent $4,000 \mathrm{~cm}$, Means $R F=1 / 4000$ Assuming length of scale 15 cm , it will represent 600 m .

Draw a line 15 cm long.
It will represent 600 m .Divide it in six equal parts (each will represent 100 m .)
Divide first division in ten equal parts.Each will represent 10 m .
Draw a line upward from left end and mark 10 parts on it of any distance.
Name those parts 0 to 10 as shown.Join $9^{\text {th }}$ subof horizontal scale with $10^{\text {th }}$ division of the vertic: Then draw parallel lines to this line from remaini and complete diagonal scale.

438 meters

PROBLEM NO.6:. Draw a diagonal scale of R.F. 1: 2.5 , showing centimeters and millimeters and long enough to measure up to 20 centimeters.

SOLUTION STEPS:

R.F. = 1 / 2.5

Length of scale $=1 / 2.5 \times 20 \mathrm{~cm}$.

$$
=8 \mathrm{~cm} \text {. }
$$

1.Draw a line 8 cm long and divide it in to 4 equal parts.
(Each part will represent a length of 5 cm .)
2. Divide the first part into 5 equal divisions.
(Each will show 1 cm .)
3.At the left hand end of the line, draw a vertical line and on it step-off 10 equal divisions of any length.
4.Complete the scale as explained in previous problems. Show the distance 13.4 cm on it.

R.F. $=1 / 2.5$

DIAGONAL SCALE SHOWING CENTIMETERS.

Vernier Scales:

These scales, like diagonal scales , are used to read to a very small unit with great accurac It consists of two parts - a primary scale and a vernier. The primary scale is a plain scale ful divided into minor divisions.
As it would be difficult to sub-divide the minor divisions in ordinary way, it is done with the he The graduations on vernier are derived from those on the primary scale.

Figure to the right shows a part of a plain scale in which length $\mathrm{A}-\mathrm{O}$ represents 10 cm . If we divide $\mathrm{A}-\mathrm{O}$ into ten equal parts, each will be of 1 cm . Now it would not be easy to divide each of these parts into ten equal divisions to get measurements in millimeters.

Now if we take a length $B O$ equal to $10+1=11$ such equal parts, thus representing 11 cm , and divide it into ten equal divisions, each of these divisions will represent 11/10-1.1 cm.

The difference between one part olAO and one division of BO will be equal $1.1-1.0=0.1 \mathrm{~cm}$ or 1 mm .

This difference is called Least Count of the scale.

Minimum this distance can be measured by this scale.
The upper scale BO is the vernier. The combination of plain scale and the vernier is vernier scale.

Example 10:

Draw a vernier scale of $R F=1 / 25$ to read centimeters upto 4 meters and on it, show lengths 2.39 m and 0.91 m

Vernier

SOLUTION:

Length of scale $=$ RF X max. Distance

$$
=1 / 25 \times 4 \times 100
$$

$$
=16 \mathrm{~cm}
$$

CONSTRUCTION: (Main scale)
Draw a line 16 cm long.
Divide it in 4 equal parts.
(each will represent meter)
Sub-divide each part in 10 equal parts. (each will represent decimeter)
Name those properly.

CONSTRUCTION: (vernier)

Take 11 parts of Dm length and divide it in 10 equal pa Each will show 0.11 m or 1.1 dm or 11 cm and construc Covering these parts of vernier.

TO MEASURE GIVEN LENGTHS:

(1) For 2.39 m : Subtract 0.99 from 2.39 i.e. 2.39 The distance between 0.99 (left of Zero) and 1.4 (righ (2) For 0.91 m : Subtract 0.11 from 0.91 i.e. $0.91-0$. The distance between 0.11 and 0.80 (both left side of

Example 11: A map of size 500 cm X 50 cm wide represents an area of 6250 sq. Kms. Construct a vernier scaleto measure kilometers, hectometers and decameters and long enough to measure upto 7 km . Indicate on it a) 5.33 km b) 59 decameters.

SOLUTION:

$$
\begin{aligned}
\text { RF } & =\sqrt{\frac{\text { AREA OF DRAWING }}{\text { ACTUAL AREA }}} \\
& =\sqrt{\frac{500 \times 50 \mathrm{~cm} \mathrm{sq.}}{6250 \mathrm{~km} \mathrm{sq} .}} \\
& =2 / 10^{5}
\end{aligned}
$$

Length of

scale $=$ RF X max. Distance
$=2 / 10^{5} \times 7 \mathrm{kms}$
$=14 \mathrm{~cm}$

CONSTRUCTION: (Main scale)
Draw a line 14 cm long.
Divide it in 7 equal parts.
(each will represent km)
Sub-divide each part in 10 equal parts. (each will represent hectometer) Name those properly.

CONSTRUCTION: (vernier)
Take 11 parts of hectometer part length and divide it in 10 equal parts.
Each will show 1.1 hm m or 11 dm and Covering in a rectangle complete scale.

TO MEASURE
a) For 5.33 km

Subtract 0.33
i.e. 5.33-0.3!

The distance (left of Zero) 5.00 (right of Z (b) For 59 dm Subtract 0.99 i.e. $0.59-0.9$ (- ve sign mea The distance -.4 km is 59 (both left side

ENGINEERING CURVES Part- I \{Conic Sections\}

ELLIPSE

1.Concentric Circle Method
2.Rectangle Method
3.Oblong Method
4.Arcs of Circle Method
5.Rhombus Metho
6.Basic Locus Method (Directrix - focus)

PARABOLA

1.Rectangle Method

2 Method of Tangents
(Triangle Method)

3.Basic Locus Method

 (Directrix - focus)
HYPERBOLA

1.Rectangular Hyp (coordinates given

2 Rectangular Hyp (P-V diagram - Eq
3.Basic Locus Meth (Directrix - focus

CONIC SECTIONS

ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SEC BECAUSE
 THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES.

Section Plane Parallel to Axis.

COMMON DEFINATION OF ELLIPSE, PARABOLA \& HYP

These are the loci of points moving in a plane such that the ratio of it'
from a fixed point And a fixed line always remains constan The Ratio is called ECCENTRICITY. (E)
$\begin{array}{lll}\text { A) } & \text { For Ellipse } & \text { E }<1 \\ \text { B) } & \text { For Parabola } & \text { E=1 } \\ \text { C) } & \text { For Hyperbola } & \text { E }>1\end{array}$

Refer Problem nos. 6. 9 \& 12

SECOND DEFINATION OF AN ELLIPSE:-

It is a locus of a point moving in a plane such that the SUM of it's distances from TWO fixed po always remains constant.
\{And this sum equals to the length of major axis.\} These TWO fixed points are FOCUS $1 \&$ FOCUS 2

Problem 1 :-

Draw ellipse by concentric circle method.
Take major axis 100 mm and minor axis 70 mm long.
Steps:

1. Draw both axes as perpendicular bisectors of each other \& name their ends as shown.
2. Taking their intersecting point as a center, draw two concentric circles considering both as respective diameters.
3. Divide both circles in 12 equal parts \& name as shown.
4. From all points of outer circle draw vertical lines downwards and upwards respectively.
5.From all points of inner circle draw horizontal lines to intersect those vertical lines.
5. Mark all intersecting points properly as those are the points on ellipse.
6. Join all these points along with the ends of both axes in smooth possible curve. It is required ellipse.

Steps:

1 Draw a rectangle taking major and minor axes as sides.
2. In this rectangle draw both axes as perpendicular bisectors of each other..
3. For construction, select upper left part of rectangle. Divide vertical small side and horizontal long side into same number of equal parts.(here divided in four parts)
4. Name those as shown..
5. Now join all vertical points $1,2,3,4$, to the upper end of minor axis. And all horizontal points i.e. $1,2,3,4$ to the lower end of minor axis.
6. Then extend C-1 line upto D-1 and mark that point. Similarly extend C-2, C-3, C-4 lines up to D-2, D-3, \& D-4 lines.
7. Mark all these points properly and join all along with ends A and D in smooth possible curve. Do similar construction in right side part.along with lower half of the rectangle.Join all points in smooth curve.
It is required ellipse.

Problem 3:-
Draw ellipse by Oblong method.
Draw a parallelogram of 100 mm and 70 mm long sides with included angle of 75° Inscribe Ellipse in it.

STEPS ARE SIMILAR TO THE PREVIOUS CASE (RECTANGLE METHOD) ONLY IN PLACE OF RECTANGLE, HERE IS A PARALLELOGRAM.

PROBLEM 4.

MAJOR AXIS AB \& MINOR AXIS CD ARE 100 AMD 70MM LONG RESPECTIVELY .DRAW ELLIPSE BY ARCS OF CIRLES METHOD.

STEPS:

1.Draw both axes as usual.Name the ends \& intersecting point
2. Taking AO distance I.e.half major axis, from C, mark $F_{1} \& F_{2} O n A B$ (focus 1 and 2.)
3.On line $\mathrm{F}_{1}-\mathrm{O}$ taking any distance, mark points $1,2,3, \& 4$
4.Taking F_{1} center, with distance $\mathrm{A}-1$ draw an arc above AB and taking F_{2} center, with $\mathrm{B}-1$ distance cut this arc. Name the point p_{1}
5.Repeat this step with same centers but taking now A-2 \& B-2 distances for drawing arcs. Name the point p_{2}
6.Similarly get all other P points.

With same steps positions of P can be located below AB.
7.Join all points by smooth curve to get an ellipse/

As per the definition Ellipse is locus of point a plane such that the SUM of it's distances fr points ($F_{1} \& F_{2}$) remains constant and equals of major axis AB.(Note A. $1+$ B.1=A. $2+B \cdot 2=$

D

PROBLEM 5.

DRAW RHOMBUS OF $100 \mathrm{MM} \& 70 \mathrm{MM}$ LONG DIAGONALS AND INSCRIBE AN ELLIPSE IN IT.

STEPS:

1. Draw rhombus of given dimensions.
2. Mark mid points of all sides \&
name Those A,B,C,\& D
3. Join these points to the ends of smaller diagonals.
4. Mark points $1,2,3,4$ as four centers.
5. Taking 1 as center and $1-\mathrm{A}$ radius draw an arc AB .
6. Take 2 as center draw an arc CD.
7. Similarly taking $3 \& 4$ as centers and 3-D radius draw arcs DA \& BC

STEPS:

1 .Draw a vertical line AB and point F 50 mm from it.
2 .Divide 50 mm distance in 5 parts.
3 .Name $2^{\text {nd }}$ part from F as V. It is 20 mm and 30 mm from F and AB line resp. It is first point giving ratio of it's distances from F and AB 2/3 i.e 20/30
4 Form more points giving same ratio such as $30 / 45,40 / 60$, $50 / 75$ etc.
5.Taking 45,60 and 75 mm distances from line AB , draw three vertical lines to the right side of it.
6. Now with 30,40 and 50 mm distances in compass cut these lines above and below, with F as center.
7. Join these points through V in smooth curve.
This is required locus of P.It is an ELLIPSE.
ELLIPSE
A

B

STEPS:

1.Draw rectangle of above size and divide it in two equal vertical parts 2. Consider left part for construction. Divide height and length in equal number of parts and name those 1,2,3,4,5\& 6
3. Join vertical $1,2,3,4,5 \& 6$ to the top center of rectangle
4.Similarly draw upward vertical lines from horizontal $1,2,3,4,5$ And wherever these lines intersect previously drawn inclined lines in sequence Mark those points and further join in smooth possible curve. 5.Repeat the construction on right side rectangle also.Join all in sequence. This locus is Parabola.

PROBLEM 9: Point F is 50 mm from a vertical straight line AB . Draw locus of point P , moving in a plane such that it always remains equidistant from point F and line $A B$.

SOLUTION STEPS:

1.Locate center of line, perpendicular to AB from point F . This will be initial point P and also the vertex.
2. Mark 5 mm distance to its right side, name those points 1,2,3,4 and from those
draw lines parallel to AB .
3.Mark 5 mm distance to its left of P and name it 1 .
4.Take $\mathrm{O}-1$ distance as radius and F as center draw an arc
cutting first parallel line to AB . Name upper point P_{1} and lower point P_{2}. ($\mathrm{FP}_{1}=\mathrm{O} 1$)
5.Similarly repeat this process by taking again 5 mm to right and left and locate $\mathrm{P}_{3} \mathrm{P}_{4}$.

PARABOLA

Problem No.10: Point P is 40 mm and 30 mm from horizontal and vertical axes respectively.Draw Hyperbola through it.

Solution Steps:

1) Extend horizontal line from P to right side.
2) Extend vertical line from P upward.
3) On horizontal line from P, mark some points taking any distance and name them after $\mathrm{P}-1$, 2,3,4 etc.
4) Join 1-2-3-4 points to pole O. Let them cut part [P-B] also at $1,2,3,4$ points.
5) From horizontal 1,2,3,4 draw vertical lines downwards and
6) From vertical $1,2,3,4$ points [from P-B] draw horizontal lines.
7) Line from 1
 horizontal and line from 1 vertical will meet at P_{1}.Similarly mark $\mathrm{P}_{2}, \mathrm{P}_{3}$, P_{4} points.
8) Repeat the procedure by marking four points
,

Problem no.11: A sample of gas is expanded in a cylinder
from 10 unit pressure to 1 unit pressure.Expansion follows law $\mathrm{PV}=$ Constant. If initial volume being 1 unit, draw the curve of expansion. Also Name the curve.

Form a table giving few more values of $\mathbf{P} \& \mathbf{V}$

$\mathrm{P} \times \mathrm{V}=\mathrm{C}$
$10 \times 1=10$
$5 \times 2=10$
$4 \times 2.5=10$
$2.5 \times 4=10$
$2 \times 5=10$
$1 \times 10=10$

Now draw a Graph of Pressure against Volume. It is a PV Diagram and it is Hyperbola. Take pressure on vertical axis and Volume on horizontal axis.

PROBLEM 12:- POINT F IS 50 MM FROM A LINE AB.A POINT P IS MOVING IN A PLANE SUCH THAT THE RATIO OF IT'S DISTANCES FROM F AND LINE AB REMAINS CONSTANT AND EQUALS TO 2/3 DRAW LOCUS OF POINT P. \{ ECCENTRICITY = $2 / 3\}$

STEPS:

1. Draw a vertical line $A B$ and point F 50 mm from it.
2 .Divide 50 mm distance in 5 parts.
3 .Name $2^{\text {nd }}$ part from F as V. It is 20 mm and 30 mm from F and $A B$ line resp. It is first point giving ratio of it's distances from F and $\mathrm{AB} 2 / 3$ i.e 20/30
4 Form more points giving same ratio such as $30 / 45,40 / 60,50 / 75$ etc.
5.Taking 45,60 and 75 mm distances from line $A B$, draw three vertical lines to the right side of it.
2. Now with 30,40 and 50 mm distances in compass cut these lines above and below, with F as center.
3. Join these points through V in smooth curve.
This is required locus of P.It is an ELLIPSE.

Problem 13:

TO DRAW TANGENT \& NORMAL

 TO THE CURVE FROM A GIVEN POINT1. JOIN POINT Q TO $F_{1} \& F_{2}$
2. BISECT ANGLE $F_{1} Q F_{2}$ THE ANGLE BISECTOR IS NORMAL
3. A PERPENDICULAR LINE DRAWN TO IT IS TANGENT TO THE CURV

1.JOIN POINT Q TO F.
2.CONSTRUCT 900 ANGLE WITH THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO ELLIPSE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

Problem 15:

TANGENT

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1.JOIN POINT Q TO F.
2.CONSTRUCT 900 ANGLE WITH

THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO THE CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

Problem 16

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1.JOIN POINT Q TO F.
2.CONSTRUCT 90° ANGLE WITH THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T 4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

ENGINEERING CURVES Part-II

(Point undergoing two types of displacem

INVOLUTE

1. Involute of a circle
a)String Length $=\pi \mathrm{D}$
b)String Length $>\pi \mathrm{D}$
c)String Length $<\pi \mathrm{D}$
2. Pole having Composite shape.
3. Rod Rolling over a Semicircular Pole.

CYCLOID

1. General Cycloid
2. Trochoid (superior)
3. Trochoid (Inferior)
4. Epi-Cycloid
5. Hypo-Cycloid
6. Trochoid

\author{

1. Spiral of One Convolution.
}
2. Spiral of Two Convolutions.
3. 0
4. C

DEFINITIONS

CYCLOID:

IT IS A LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A STRAIGHT LINE PATH.

INVOLUTE:

IT IS A LOCUS OF A FREE END OF A STRING WHEN IT IS WOUND ROUND A CIRCULAR POLE

SPIRAL:

IT IS A CURVE GENERATED BY A POINT WHICH REVOLVES AROUND A FIXED POINT AND AT THE SAME MOVES TOWARDS IT.

HELIX:

IT IS A CURVE GENERATED BY A POINT WHICH MOVES AROUND THE SURFACE OF A RIGHT CIRCULAR CYLINDER / CONE AND AT THE SAME TIME ADVANCES IN AXIAL DIRECT:
 (for problems refer topic Development of surfaces)

Problem: Draw involute of an equilateral triangle of 35 mm sides.

Problem: Draw involute of a square of 25 mm sides

Problem no 17: Draw Involute of a circle.

Solution Steps:

1) Point or end P of string $A P$ is exactly πD distance away from A. Means if this string is wound round the circle, it will completely cover given circle. B will meet A after winding.
2) Divide $\pi \mathrm{D}(\mathrm{AP})$ distance into 8 number of equal parts.
3) Divide circle also into 8 number of equal parts.
4) Name after A, 1, 2, 3, 4, etc. up to 8 on $\pi \mathrm{D}$ line AP as well as on circle (in anticlockwise direction). 5) To radius $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ up to $\mathrm{C}-8$ draw tangents (from 1,2,3,4,etc to circle).
5) Take distance 1 to P in compass and mark it on tangent from point 1 on circle (means one division less than distance AP).
6) Name this point P1
7) Take 2-P distance in compass and mark it on the tangent from point 2. Name it point P2.
8) Similarly take 3 to $P, 4$ to $P, 5$ to P up to 7 to P distance in compass and mark on respective tangents and locate P3, P4, P5 up to P8 (i.e.
A) points and join them in smooth curve it is an INVOLUTE of a given

Problem 18: Draw Involute of a circle. String length is MORE than the circumference of circle.

Solution Steps:

In this case string length is more than Π D.

But remember

Whatever may be the length of string, mark Π D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

Problem 19: Draw Involute of a circle. String length is LESS than the circumference of circle.

INVOLUTE

Solution Steps:

In this case string length is Less than Π D.

But remember!

Whatever may be the length of string, mark П D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

PROBLEM 21 : Rod AB 85 mm long rolls over a semicircular pole without slipping from it's initially vertical position till it becomes up-side-down vertical.
Draw locus of both ends A \& B.

Solution Steps?

If you have studied previous problems properly, you can surely solve this also. Simply remember that this being a rod, it will roll over the surface of pole. Means when one end is approaching, other end will move away from poll. OBSERVE ILLUSTRATION CAREFULLY!

Problem 22: Draw locus of a point on the periphery of a circle which rolls on straight line path. Take circle diameter as $\mathbf{5 0} \mathbf{~ m m}$. Draw normal and tangent on the curve at a point 40 mm above the directing line.

Solution Steps:

1) From center C draw a horizontal line equal to $\pi \mathrm{D}$ distance.
2) Divide $\pi \mathrm{D}$ distance into 12 number of equal parts and name them $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ _ etc.
3) Divide the circle also into 12 number of equal parts and in anticlockwise direction, after P nam
4) From all these points on circle draw horizontal lines. (parallel to locus of C)
5) With a fixed distance $C-P$ in compass, C_{1} as center, mark a point on horizontal line from 1. Nan
6) Repeat this procedure from C_{2}, C_{3}, C_{4} up to C_{12} as centers. Mark points $P_{2}, P_{3}, P_{4}, P_{5}$ up to P_{12} horizontal lines drawn from $1,2,3,4,5,6,7$ respectively.
7) Join all these points by curve. It is Cycisid.

PROBLEM 25: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A CURVED P of rolling Circle 50 mm And radius of directing circle i.e. curved path, $\mathbf{7 5} \mathbf{~ m m}$.

Solution Steps:

1) When smaller circle will roll on larger circle for one revolution it will cover $\pi \mathrm{D}$ distance on arc and it will be decided by included arc angle θ.
2) Calculate θ by formula $\theta=(r / R)$ $\times 3600$.
3) Construct angle θ with radius OC and draw an arc by taking O as center OC as radius and form sector of angle θ.
4) Divide this sector into 12 number of equal angular parts. And from C onward name them C_{1}, C_{2}, C_{3} up to C_{12}.
5) Divide smaller circle (Generating circle) also in 12 number of equal parts. And next to P in anticlockwise direction name those $1,2,3$, up to 12 .
6) With O as center, $\mathrm{O}-1$ as radius draw an arc in the sector. Take 0-2, 0-3, 0-4, 0-5 up to 0-12 distances with center O , draw all concentric arcs in sector. Take fixed distance CP in compass, C_{1} center, cut arc of 1 at P_{1}.
Repeat procedure and locate P_{2}, P_{3} P_{4}, P_{5} unto P_{12} (as in cycloid) and join them by smooth curve. This is EPI - CYCLOID.

PROBLEM 26: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS FROM THE INSIDE OF A CURVED PATH. Take diameter of rolling circle 50 mm and radius of directing circle (curved path) $\mathbf{7 5} \mathbf{~ m m}$.

Solution Steps:

1) Smaller circle is rolling here, inside the larger circle. It has to rotate anticlockwise to move ahead.
2) Same steps should be taken as in case of EPI CYCLOID. Only change is in numbering direction of 12 number of equal parts on the smaller circle.
3) From next to P in clockwise direction, name $1,2,3,4,5,6,7,8,9,10,11,12$
4) Further all steps are that of epi - cycloid. This is called
HYPO - CYCLOID.

STEPS:
DRAW INVOLUTE AS USUAL.

MARK POINT Q ON IT AS DIRECTED.
JOIN Q TO THE CENTER OF CIRCLE C. CONSIDERING CQ DIAMETER, DRAW A SEMICIRCLE AS SHOWN.

MARK POINT OF INTERSECTION OF THIS SEMICIRCLE AND POLE CIRCLE AND JOIN IT TO Q.

THIS WILL BE NORMAL TO INVOLUTE.
DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO INVOLUTE.

INVOLUTE OF A CIRCLE
Metho
Tange

STEPS:
DRAW CYCLOID AS USUAL.
MARK POINT Q ON IT AS DIRECTED.
WITH CP DISTANCE, FROM Q. CUT THE
POINT ON LOCUS OF C AND JOIN IT TO Q.
FROM THIS POINT DROP A PERPENDICULAR ON GROUND LINE AND NAME IT N

JOIN N WITH Q.THIS WILL BE NORMAL TO CYCLOID.

DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO CYCLOID.

CYCLOID

ORTHOGRAPHIC PROJECTIONS OF POINTS, LINES, PLANES, AND SOLIDS

TO DRAW PROJECTIONS OF ANY OBJECT

 ONE MUST HAVE FOLLOWING INFORMATI A) OBJECT\{ WITH IT'S DESCRIPTION, WELL DEFINED.\}
B) OBSERVER
\{ ALWAYS OBSERVING PERPENDICULAR TO RESP. REF
C) LOCATION OF OBJECT,
\{ MEANS IT'S POSITIONWITH REFFERENCE TO H.P. \& I

TERMS ‘ABOVE’ \& 'BELOW' WITH RESPECTIVE TO H.P. AND TERMS 'INFRONT’ \& 'BEHIND’ WITH RESPECTIVE TO V.F FORM 4 QUADRANTS. OBJECTS CAN BE PLACED IN ANY ONE OF THESE 4 QUADRAN

IT IS INTERESTING TO LEARN THE EFFECT ON THE POSITIONS OF VIEV OF THE OBJEGT WITH RESP. TO X-Y LINE, WHEN PLACED IN DIFFERENT

NOTATIONS

FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAN DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS.

OBJECT	POINT A	LINE AB
IT'S TOP VIEW	\mathbf{a}	$\mathbf{a} \mathbf{b}$
IT'S FRONT VIEW	a'	$\mathbf{a}^{\prime} \mathbf{b}^{\prime}$
IT'S SIDE VIEW	a"	a" b"

SAME SYSTEM OF NOTATIONS SHOULD BE FOLLOWED INCASE NUMBERS, LIKE 1, 2, 3 -

THIS QUADRANT PATTERN,
IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIRECTIO WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE AND H

Point A is Placed In different quadrants and it's Fv \& Tv are brought in same plane for Observer to see clearly.
Fv is visible as it is a view on VP. But as Tv is is a view on Hp , it is rotated downward 90°, In clockwise direction.The In front part of Hp comes below xy line and the part behind Vp comes above.

Observe and note the process.

POINT A IN

$3^{\text {RD }}$ QUADRANT

Basic concepts for drawing projection of point

FV \& TV of a point always lie in the same vertical lii
FV of a point ' P ' is represented by p '. It shows position of the with respect to HP.

If the point lies above $\mathrm{HP}, \mathrm{p}^{\prime}$ lies above the XY line.
If the point lies in the HP, p' lies on the XY line.
If the point lies below the HP, p' lies below the XY line.
TV of a point ' P ' is represented by p. It shows position of the point w respect to VP.

If the point lies in front of VP, p lies below the XY line.
If the point lies in the VP, plies on the XY line.
If the point lies behind the VP, p lies above the XY line.

PROJECTIONS OF A POINT IN FIRST QUADRA

POINT A ABOVE HP
\& INFRONT OF VP

ORTHOGRAPHIC PRESENTATIONS OF ALL ABOVE CASES.

Fv above $x y$,
Fv on
Fv above $x y$, Tv below $x y$.

POINT A IN \& INFRONT O

POINT A ABOVE HP \& IN VP

For Tv

PROJECTIONS OF STRAIGHT LINE

INFORMATION REGARDING A LINE IT'S LENGTH, POSITION OF IT'S ENDS WITH HP \& VP IT'S INCLINATIONS WITH HP \& VP WILL BE GIVEN.

SIMPLE CASES OF THE LINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT PAC SHOWING CLEARLY THE NATURE OF FV \& TV OFINES HISTED ABOVE AND NOTE RESULT

Orthographic Projections Means Fv \& Tv of Line AB are shown below, with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV a' b' is not showing

True Length \&
True Inclination with Hp

Note the procedure When Fv \& Tv known, How to find True Length. (Views are rotated to determine True Length \& it's inclinations with $\mathrm{Hp} \& \mathrm{Vp}$).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding
FV a' b_{1} 'ls showing True Length

Note the When True Le

How to loc (Component a'b which is fur to deter
V.P.

H.P.

Here $a^{\prime} b_{1}{ }^{\prime} i$ of $T L a b_{1}$ give Hence it is t Locus of a' an to get point b' Similarly drav

The most important diagram showing graphical relations among all important parameters of this topic. Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

1) True Length (TL) - a' $b_{1}{ }^{\prime} \& a b_{2}$
2) Angle of $T L$ with $\mathrm{Hp}-\theta$
3) Angle of $T L$ with $V p-\varnothing$
4) Angle of FV with $x y-\alpha$
5) Angle of TV with $x y-\beta$
6) LTV (length of FV) - Component
7) LFV (length of TV) - Componen
8) Position of A- Distances of a \&
9) Position of B- Distances of b \&
10) Distance between End Projectc

NOTE this

$\theta_{\&} \alpha$ Construct with a^{\prime} \emptyset \& β Construct with a $b^{\prime} \& b_{1}$ on same locus. b \& b_{1} on same locus.
 is drawn \& it is further rotated

GROUP (A)

GENERAL CASES OF THE LINE INCLINED TO BOTH H (based on 10 parameters).

PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to Hp \& Vp respectively. End A is 12 mm above Hp and 10 mm in front of Vp .
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw xy line and one projector.
2) Locate a' 12 mm above $x y$ line \& a 10mm below xy line.
3) Take 30° angle from a' \& 40° from a and mark TL I.e. 75 mm on both lines. Name those points b_{1} ' and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL a b_{1} from point b_{1} and name it 1 . (the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a' and rotating a' as center locate b' as shown. Join a' b' as Fv.

8) From b' drop a projector down
ward \& get point b. Join a \& b
I.e. Tv.

PROBLEM 2:

Line AB 75 mm long makes 45° inclination with Vp while it's Fv makes 55°. End A is 10 mm above Hp and 15 mm in front of V p. If line is in $1^{\text {st }}$ quadrant draw it's projections and find it's inclination with Hp .

Solution Steps:-

1.Draw $x-y$ line.
2. Draw one projector for a' \& a 3.Locate a' 10 mm above $\mathrm{x}-\mathrm{y}$ \& Tv a 15 mm below xy .
4.Draw a line 45° inclined to $x y$ from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{1}
5.Take 55° angle from a' for Fv above xy line.
6. Draw a vertical line from b_{1} up to locus of a and name it 1. It is horizontal component of TL \& is LFV.
7.Continue it to locus of a' and rotate upward up to the line of Fv and name it b^{\prime}.This $a^{\prime} b^{\prime}$ line is Fv .
8. Drop a projector from b' on locus from point b_{1} and name intersecting point b. Line $\boldsymbol{a} \boldsymbol{b}$ is Tv of line AB.
9. Draw locus from b^{\prime} and from a^{\prime} with TL distance cut point $b_{1}{ }^{\text {' }}$
10. Join $a^{\prime} b_{i}$ ' as TL and measure it's angle at a^{\prime}.
It will be true angle of line with HP. Www.FirstRanker.com
a

b

PROBLEM 3:

Fv of line $A B$ is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of $\vee p$, draw it's projections, find TL, inclinations of line with Hp \& Vp .

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below $x y$ line.
3.Draw locus from these points.
4.Draw Fv 50° to xy from a' and mark b' Cutting 55 mm on it.
5. Similarly draw Tv 60° to $x y$ from a \& drawing projector from b' Locate point b and join ab.
6. Then rotating views as shown, locate True Lengths $a b_{1} \& a^{\prime} b_{1}{ }^{\prime}$ and their angles with Hp and Vp .

PROBLEM 4 :-
Line $A B$ is 75 mm long . It's Fv and Tv measure 50 mm \& 60 mm long respectively. End A is 10 mm above Hp and 15 mm in front of Vp. Draw projections of line $A B$ if end B is in first quadrant. Find angle with Hp and Vp.

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below xy line.
3.Draw locus from these points.
4.Cut 60 mm distance on locus of a' \& mark 1' on it as it is LTV.
5.Similarly Similarly cut 50 mm on locus of a and mark point 1 as it is LFV.
6.From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark b' 1 point on it. Join a' b' ${ }_{1}$ points.
7. Draw locus from b' ${ }_{1}$
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. a-1 locate b' and join a' with it to get Fv.
10. Locate tv similarly and measure Angles - \& \& Φ
b

PROBLEMS INVOLVING TRACES OF THE LINE

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS QFA LINE (OR IT'S WITH RESPECTIVE REFFERENCE PLANES.

A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES H.P., THAT POINT IS CALLED TRACE OF THE LINE ON H.P.(IT IS CALLE
H.T.:

1. Begin with FV. Extend FV up to XY line.
2. Name this point \mathbf{h}^{\prime} (as it is a Fv of a point in $\mathbf{H p}$)
3. Draw one projector from h^{\prime}.
4. Now extend Tv to meet this projector. This point is HT

STEPS TO LOCATE VT.

 (WHEN PROJECTIONS ARE GIVEN.)
* $7 \rightarrow$

STEPS TO LOCATE HT.
 (WHEN PROJECTIONS ARE GIVEN.)

1. Begin with TV. Extend TV up to XY ine.
2. Name this point \mathbf{V} (as it is a Tv of a point in $\mathbf{V p}$)
3. Draw one projector from \mathbf{v}.
4. Now extend Fv to meet this projector.

This point is VT

Observe \& note :-
| 1. Points h'\& v always on $x-y$ lin
3. HT \& h' always on one project
4. FV-h'- VT always co-linear.
5. TV - v - HT always co-linear.

PROBLEM 6 :- Fv of line AB makes 45° angle with XY line and measures 60 mm . Line's Tv makes 30° with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB,determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-
Draw xy line, one projector and locate fv a' 15 mm above xy . Take 45° angle from a' and marking 60 mm on it locate point b'. Draw locus of VT, 10 mm below xy \& extending Fv to this locus locate VT. as fv-h'-vt'lie on one st.line.
Draw projector from vt, locate v on xy.
From v take 30° angle downward as
Tv and it's inclination can begin with v.
Draw projector from b' and locate b I.e.Tv point.
Now rotating views as usual TL and
it's inclinations can be found.
Name extension of Fv, touching xy as h
and below it, on extension of Tv, locakewl-firstRanker.com

PROBLEM 7:

One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp . It's Fv is 45° inclined to $x y$ while it's HT \& VT are 45 mm and 30 mm below xy respecti Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-
Draw xy line, one projector and locate a' 10 mm above xy .
Draw locus 100 mm below xy for points b \& b_{1} Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h ' and VT, \& Locate v on xy above VT.
Locate HT below h' as shown.
Then join v - HT - and extend to get top view end b .
Draw projector upward and locate b' Make a b \& a'b' dark.

Now as usual rotating views find TL and it's inclinations.

PROBLEM 8 :- Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart. End A is 10 mm above Hp , VT is 35 mm below Hp while it's HT is 45 mm in front of Vp . Draw projections, locate traces and find TL of line \& inclinations with Hp and Vp.

SOLUTION STEPS:-

1.Draw xy line and two projectors, 80 mm apart and locate HT \& VT, 35 mm below xy and 55 mm above xy respectively on these projectors. 2.Locate h' and von xy as usual.
3.Now just like previous two problems, Extending certain lines complete Fv \& Tv And as usual find TL and it's inclinations.

Instead of considering a \& a' as projections of first point, if $v \& V T^{\prime}$ are considered as first point, then true inclinations of Hp \& Vp i,e, angles θ \& Φ can be constructed with points VT' \& V ré

PROBLEM 9 :-

Line AB 100 mm long is 30^{0} and 45^{0} inclined to Hp \& Vp respectively.
End A is 10 mm above Hp and it's VT is 20 mm below Hp
.Draw projections of the line and it's HT.

SOLUTION STEPS:-
Draw xy, one projector and locate on it VT and V .
Draw locus of a' 10 mm above xy . Take 30° from VT and draw a line. Where it intersects with locus of a' name it $\mathrm{a}_{1}{ }^{\prime}$ as it is TL of that part.
From $\mathrm{a}_{1}{ }^{\prime}$ cut $100 \mathrm{~mm}(\mathrm{TL})$ on it and locate point $\mathrm{b}_{1}{ }^{\prime}$ Now from v take 45° and draw a line downwards \& Mark on it distance VT-a a_{1} ' I.e.TL of extension \& name it a_{1} Extend this line by 100 mm and mark point b_{1}.
Draw it's component on locus of VT '
\& further rotate to get other end of Fvi.e.b' Join it with VT' and mark intersection point (with locus of $a_{1}{ }^{\prime}$) and name it a' Now as usual locate points a and b and h' and HT.

PROBLEM 10 :-
A line AB is 75 mm long. It's $\mathrm{Fv} \& \mathrm{Tv}$ make 45^{0} and 60° inclinations with $\mathrm{X}-\mathrm{Y}$ line resp End A is 15 mm above Hp and VT is 20 mm below Xy line. Line is in first quadrant.
Draw projections, find inclinations with Hp \& Vp. Also locate HT.

SOLUTION STEPS:-

Similar to the previous only change is instead of line's inclinations, views inclinations are given.
So first take those angles from VT \& V Properly, construct Fv \& Tv of extension, then determine it's TL(V - a_{1}) and on it's extension mark TL of line and proceed and complete it.

PROBLEM 11 :- The projectors drawn from VT \& end A of line $A B$ are 40 mm apart. End A is 15 mm above Hp and 25 mm in front of Vp . VT of line is 20 mm below Hp . If line is 75 mm long, draw it's projections, find inclinations with HP \& Vp

GROUP (C)

CASES OF THE LINES IN A.V.P., A.I.P. \& PROFILE PLAN

LINE IN A PROFILE PLANE (MEANS IN A PLANE PERPENDICULAR To bc

1. TV \& FV both are vertical, hence arrive on one s
2. It's Side View shows True Length (TL)
3. Sum of it's inclinations with HP \& VP equals to 9
4. It's HT \& VT arrive on same projector and can be From Side View.

PROBLEM 12 :- Line AB 80 mm long, makes 30° angle with Hp and lies in an Aux.Vertical Plane 45° inclined to Vp. End A is 15 mm above Hp and VT is 10 mm below X-y line. Draw projections, fine angle with Vp and Ht .

PROBLEM 13 :- A line $\mathrm{AB}, 75 \mathrm{~mm}$ long, has one end A in V . Other end B is 15 mm above F and 50 mm in front of Vp.Draw the projections of the line when sum of it's Inclinations with HP \& Vp is 90°, means it is lying in a profile plane. Find true angles with ref.planes and it's traces.

SOLUTION STEPS:-
After drawing xy line and one projector Locate top view of A l.e point a on xy as It is in Vp ,
Locate Fv of B i.e.b' 15 mm above xy as it is above Hp.and Tv of B i.e. b, 50 mm below xy asit is 50 mm in front of Vp Draw side view structure of Vp and Hp and locate S.V. of point B i.e. b"
From this point cut 75 mm distance on Vp and Mark a" as A is in Vp. (This is also VT of line.) From this point draw locus to left \& get a' Extend SV up to Hp. It will be HT. As it is a Tv Rotate it and bring it on projector of b.
Now as discussed earlier SV gives TL of line and at the same time on extension up to Hp \& Vp gives inclinations with those pakyw. FirstRanker.com

APPLICATIONS OF PRINCIPLES OF PROJECTIONS OF LINE in Solving cases of different practical situations.

In these types of problems some situation in the field or
some object will be described It's relation with Ground (HP) And a Wall or some vertical object (VP) will be given.

Indirectly information regarding Fv \& Tv of some line or lines, inclined to both reference Planes will be given and
you are supposed to draw it's projections and
further to determine it's true Length and it's inclinations with groun

Here various problems along with actual pictures of those situations are given for you to understand those clearly. Now looking for views in given ARROW directions, YOU are supposed to draw projections \& find answers, Off course you must visualize the situation properly.

PROBLEM 14:-Two objects, a flower (A) and an orange (B) are within a rectangular compoun whose P \& Q are walls meeting at 90°. Flower A is $1 \mathrm{M} \& 5.5 \mathrm{M}$ from walls P \& Q respectivel Orange B is 4 M \& 1.5 M from walls P \& Q respectively. Drawing projection, find distance betw If flower is 1.5 M and orange is 3.5 M above the ground. Consider suitable scale..

PROBLEM 15 :- Two mangos on a tree $A \& B$ are 1.5 m and 3.00 m above ground and those are 1.2 m \& 1.5 m from a 0.3 m thick wall but on opposite sides of it. If the distance measured between them along the ground and parallel to wall is 2.6 m , Then find real distance between them by drawing their projections.

PROBLEM 16 :- oa, ob \& oc are three lines, $25 \mathrm{~mm}, 45 \mathrm{~mm}$ and 65 mm long respectively.All equally inclined and the shortest is vertical.This fig. is TV of three rods OA, OB and OC whose ends $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are on ground and end O is 100 mm above ground. Draw their projections and find length of each along with their angles with ground.

PROBLEM 17:- A pipe line from point \mathbf{A} has a downward gradient 1:5 and it runs due Ea: Another Point B is 12 M from \mathbf{A} and due East of \mathbf{A} and in same level of \mathbf{A}. Pipe line from 20° Due East of South and meets pipe line from \mathbf{A} at point \mathbf{C}.
Draw projections and find length of pipe line from B and it's inclination with ground.

PROBLEM 18: A person observes two objects, A \& B, on the ground, from a tower, 15 M hi At the angles of depression $30^{\circ} \& 45^{\circ}$. Object A is is due North-West direction of observer : object B is due West direction. Draw projections of situation and find distance of objects fro observer and from tower also.

PROBLEM 19:-Guy ropes of two poles fixed at 4.5 m and 7.5 m above ground, are attached to a corner of a building 15 M high, make 300 and 450 inclinations with ground respectively. The poles are 10 M apart. Determine by drawing their projections,Length of each rope and distance of poles from building.

PROBLEM 20:- A tank of 4 M height is to be strengthened by four stay rods from each corne by fixing their other ends to the flooring, at a point 1.2 M and 0.7 M from two adjacent walls as shown. Determine graphically length and angle of each rod with flooring.

PROBLEM 21:- A horizontal wooden platform 2 M long and 1.5 M wide is supported by fc from it's corners and chains are attached to a hook 5 M above the center of the platform. Draw projections of the objects and determine length of each chain along with it's inclinat

PROBLEM 22.

A room is of size $6.5 \mathrm{~mL}, 5 \mathrm{mD}, 3.5 \mathrm{~m}$ high.
An electric bulb hangs 1 m below the center of ceiling.
A switch is placed in one of the corners of the room, 1.5 m above the flooring. Draw the projections an determine real distance between the bulb and switch

PROBLEM 23:-

A PICTURE FRAME 2 M WIDE AND 1 M TALL IS RESTING ON HORIZONTAL WALL RAILING MAKES 35° INCLINATION WITH WALL. IT IS ATTAACHED TO A HOOK IN THE WALL BY TWO STRINGs THE HOOK IS 1.5 M ABOVE WALL RAILING. DETERMINE LENGTH OF EACH CHAIN AND TRUE ANGLE

SOME CASES OF THE LINE IN DIFFERENT QUADRANTS.

REMEMBER:
BELOW HP- Means- Fv below xy BEHIND V p- Means- Tv above xy.

PROBLEM NO. 24
T.V. of a 75 mm long Line CD, measures End C is 15 mm below Hp and 50 mm in End D is 15 mm in front of Vp and it is a Draw projections of CD and find angles

PROBLEM NO. 25

End A of line AB is in Hp and 25 mm behind Vp .
End B in Vp.and 50mm above Hp.
Distance between projectors is 70 mm .
Draw projections and find it's inclinations with Ht , Vt.

PROBLEM NO. 26

End A of a line AB is 25 mm below Hp and 35 mm behind Vp. Line is 300 inclined to Hp .
There is a point P on AB contained by both HP \& VP.
Draw projections, find inclination with Vp and traces.

PROBLEM NO. 27

End A of a line $A B$ is 25 mm above Hp and end B is 55 mm behind V p.
The distance between end projectors is 75 mm . If both it's HT \& VT coincide on xy in a point, 35 mm from projector of A and within two projectors, Draw projections, find TL and angles and HT, VT.

PROJECTIONS OF PLANES

In this topic various plane figures are tho object

What is usually asked in the problem?

To draw their projections means F.V, T.
What will be given in the problem?

1. Description of the plane figure.
2. It's position with HP and VP.

In which manner it's position with HP \& VP will be des

1. Inclination of it's SURFACE with one of the reference planes
2. Inclination of one of it's EDGES with other reference plane will
(Hence this will be a case of an object inclined to both referer
Study the illustration showing
surface \& side iwwin.firstRanker.côm? next page.

SURFACE PARALLEL TO HP PICTORIAL PRESENTATION

FV- Line // to $x y$

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

ONE SMALL SIDE PICTORIAL PRI

ORTHOGRA
FV- Apparent
TV-Reduced Shape

TV-Previous S

A www.FirstRanker.com
HP

PROCEDURE OF SOLVING THE PROBLEM:

in three steps each problem can be solved:(As Shown In Previou: STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial position STEP 2. Now consider surface inclination \& draw $2^{\text {nd }}$ Fv \& Tv. STEP 3. After this,consider side/edge inclination and draw $3^{\text {rd }}$ (final)

ASSUMPTIONS FOR INITIAL POSITION:

(Initial Position means assuming surface // to HP or VP)

1. If in problem surface is inclined to HP - assume it $/ /$ HP Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Shape.

And If surface is assumed // to VP - It's FV will show True Shape.
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape-
keep one side/edge (which is making inclination) perpendicular to (similar to pair no. A on previous page illustration).

Now Complete STEP 2. By making surface inclined to the resp plane \& projec (Ref. $2^{\text {nd }}$ pair (B on previous page illustration)

Now Complete STEP 3. By making side inclined to the resp plane \& project (Ref. $3^{\text {nd }}$ pair C on previous page illustration)

[^0]Q12.4: A regular pentagon of 25 mm side has one side on the ground. Its plane 45 to the HP and perpendicular to the VP. Draw its projections and show its

Hint: As the plane is inclined to HP, it should be kept parallel to HP with one edge perpendicular to VP

Q.12.5:Draw the projections of a circle of 5 cm diameter having its plane verti inclined at 30° to the V.P. Its centre is 3 cm above the H.P. and 2 cm in front of t also its traces

Problem 5 : draw a regular hexagon of 40 mm sides, with its two sides vertical. D of 40 mm diameter in its centre. The figure represents a hexagonal plate with a ho having its surfacre parallel to the VP. Draw its projections when the surface is ver inclined at 30° to the VP.

Problem 1 : Draw an equilateral triangle of 75 mm sides and inscribe a circle in it projections of the figure, when its plane is vertical and inclined at 30° to the VP ar sides of the triangle is inclined at 45° to the HP.

Q12.7: Draw the projections of a regular hexagon of 25 mm sides, haviag side in the H.P. and inclined at 60 to the V.P. and its surface making an ant with the H.P.

Plane inclined to HP at 45° and \perp to VP

Side on the H.P. making with the VP.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of AC as inclination of the plane)

Incline AC at 30° to the H.P. i.e. incline the edge view (FV) at 30° to the HP

Q: Draw a rhombus of 100 mm and 60 mm long diagonals with longer diagonal hovizo is the top view of a square having 100 mm long diagonals. Draw its front view.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of AC as inclination of the plane and inclination of BD as inclination of edge)

Incline AC at 30° to the H.P. Make BD para

\%

Q 2:A regular hexagon of 40 mm side has a corner in the HP. Its surface incli the HP and the top view of the diagonal through the corner which is in the \vdash angle of 60° with the VP. Draw its projections.

Q7:A semicircular plate of 80 mm diameter has its straight edge in the VP and to HP.The surface of the plate makes an angle of 30 with the VP. Draw its proje

Plane in the V.P. with straight edge \perp to H.P

Plane inclined at 30° to the V.P. and straight edge in the H.P.

St.edge in V.P. and inclined at $45 \circ$ to the H .

Problem 12.8 : Draw the projections of a circle of 50 mm diameter resting on the on the circumference. Its plane inclined at 45° to the HP and (a) The top view of tl making 30° angle with the $\mathrm{VP}(\mathrm{b})$ The the diameter AB making 30° angle with the

A rectangle can be seen as a square in the F.V. only when its surface is inclined to VP. So for the first view keep the plane // to VP \& shorter edge \perp^{\perp} to HP

Incline $\mathrm{a}_{1}{ }^{\prime} \mathrm{b}_{1}$ H.P

F.V. (square) is drawn first

A circle can be seen as a ellipse in the F.V. only when its surface is inclined to VP. So for the first view keep the plane // to VP.

Problem 9 : A plate having shape of an isosceles triangle has base 50 mm altitude 70 mm . It is so placed that in the front view it is seen as an equilat 50 mm sides an done side inclined at 45° to xy . Draw its top view

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP,while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following 1. Surface inclined to which plane?
2. Assumption for initial position?
3. So which view will show True shape
4. Which side will be vertical? ---One Hence begin with TV, draw rectangle drawing one small side vertica

Surface // to Hp

The top view of a plate, the surface of which is inclined at 60° to the HP is a circle diameter. Draw its three views.

Problem 12.9:
A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45° inclined to VP.Draw it's projections
(Surface \& Side inclinations directly given)

Read problem and answer followin
1 .Surface inclined to which plane?
2. Assumption for initial position?
3. So which view will show True sh
4. Which side will be vertical?

Hence begin with FV, draw tria
keeping longest side v
side inclined to Hp

Problem 3:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45^{0} inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections
(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer following que 1 .Surface inclined to which plane?
2. Assumption for initial position?
3. So which view will show True shape?
4. Which side will be vertical? long

Hence begin with FV, draw triangle a

 keeping longest side verticaFirst TWO steps are similar to previous Note the manner in which side inclinati End A 35 mm above Hp \& End B is 10 So redraw $2^{\text {nd }} \mathrm{Fv}$ as final Fv placing the

Problem 4:

A regular pentagon of $\mathbf{3 0} \mathbf{~ m m}$ sides is resting on HP on one of it's sides with it's surface 45° inclined to HP.
Draw it's projections when the side in HP makes 30^{0} angle with VP

SURFACE AND SIDE INCLINATIONS ARE DIRECTLY GIVEN.

Read problem and answer follo

1. Surface inclined to which plane?
2. Assumption for initial position?
3. So which view will show True shap
4. Which side will be vertical?

Hence begin with TV,draw pentago
X-Y line, taking one side vertical.

Problem 5:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP.
Draw projections when side in HP is 30° inclined to VP.

SURFACE INCLINATION INDIRECTLY GIVEN SIDE INCLINATION DIRECTLY GIVEN:

Read problem and answer following

1. Surface inclined to which plane?
2. Assumption for initial position?
3. So which view will show True sha
4. Which side will be vertical?

Hence begin with TV,draw pentas
X-Y line, taking one side vertical

ONLY CHANGE is

the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp . Keep a'b' on xy \& d' 30 mm above xy .

Problem 8: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it's Tv is 45° inclined to Vp.Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? \qquad
2. Assumption for initial position?
3. So which view will show True shape? --- TV
4. Which diameter horizontal?

AC
Hence begin with TV,draw rhombus below $X-Y$ line, taking longer diagonal // to $X-Y$

Problem 9: A circle of 50 mm diameter is

The difference in these two problems In problem no.8 inclination of Tv of t given,lt could be drawn directly as s While in no. 9 angle of AC itself i.e. it given. Hence here angle of TL is tak Is drawn and then LTV I.e. $a_{1} c_{1}$ is ma final TV was completed.Study illustr resting on Hp on end A of it's diameter $A C$ which is 30° inclined to Hp while it makes 45° inclined to Vp. Draw it's projections.

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

Problem 10: End A of diameter AB of a circle is in HP A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is $30^{\circ} \& 60^{\circ}$ inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer following 1. Surface inclined to which plane?
2. Assumption for initial position? -
3. So which view will show True sha
4. Which diameter horizontal?

Hence begin with TV,draw CIRC X-Y line, taking DIA. AB // to X

The problem is similar to previous problem of circle - no.9.
But in the $3^{\text {rd }}$ step there is one more change.
Like $9^{\text {th }}$ problem True Length inclination of dia.AB is definitely expected
but if you carefully note - the the SUM of it's inclinations with HP \& VP is 90°.
Means Line AB lies in a Profile Plane.
Hence it's both Tv \& Fv must arrive on one single projector.
So do the construction accordingly AND note the case carefully.

Problem 11:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.
ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp.
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arrangement. Keep a'b' on xy \& d'e' 25 mm above xy .

Read problem and answer follow 1. Surface inclined to which plan 2. Assumption for initial position 3. So which view will show True 4. Which diameter horizontal? Hence begin with TV,draw rh X-Y line, taking longer diago

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side. It's plane is 45° inclined to Vp. Draw it's projections.
1.In this case the plane of the figure always remains \boldsymbol{p} 2.It may remain parallel or inclined to Vp. 3. Hence $T V$ in this case will be always a LINE view. 4.Assuming surface // to Vp , draw true shape in suspe (Here keep line joining point of contact \& centroic 5.Always begin with FV as a True Shape but in a susp AS shown in $1^{\text {st }} \mathrm{FV}$.

IMPORTANT POINTS

Problem 13

:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP.
Draw its projections.
1.In this case the plane of the figure always remains p
2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspe (Here keep line joining point of contact \& centroic 5.Always begin with FV as a True Shape but in a susp AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given semicircle With given diameter,
Locate it's centroid position

To determine true shape of plane figure when it's projections are gi BY USING AUXILIARY PLANE METHOD

WHAT WILL BE THE PROBLEM?
Description of final Fv \& Tv will be given.
You are supposed to determine true shape of

Follow the below given steps:

1. Draw the given Fv \& Tv as per the given information in problem.
2. Then among all lines of $F v$ \& Tv select a line showing True Length (T.L.) (It's other view must be // to xy)
3. Draw $\mathrm{x}_{1}-\mathrm{y}_{1}$ perpendicular to this line showing T.L.
4. Project view on $x_{1}-y_{1}$ (it must be a line view)
5. Draw $x_{2}-y_{2} / /$ to this line view $\&$ project new view on it.

It will be the required answer i.e. True Shape.

The facts you must know:-
If you carefully study and observe the solutions of al You will find IF ONE VIEW IS A LINE VIEW \& THAT TOO PARA THEN AND THEN IT'S OTHER VIEW WILL SHO

NOW FINAL VIEWS ARE ALWAYS SOME SHAPE, NOT LINE VIEWS: SO APPLYING ABOVE METHOD:

Problem 14 Tv is a triangle abc . Ab is 50 mm long, angle cab is 300 and angle cba is $a^{\prime} b^{\prime} c^{\prime}$ is a $F v$. a' is 25 mm , b^{\prime} is 40 mm and c^{\prime} is 10 mm above Hp respectively. Draw pro of that figure and find it's true shape.

As per the procedure-

1.First draw Fv \& Tv as per the data.
2.In Tv line $a b$ is // to $x y$ hence it's other view $a^{\prime} b$ ' is TL. So draw $x_{1} y_{1}$ perpendicular to it 3.Project view on x1y1.
a) First draw projectors from $a^{\prime} b^{\prime} \& c^{\prime}$ on $x_{1} y_{1}$.
b) from $x y$ take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name po
c) This line view is an Aux.Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it. for that from $x_{1} y_{1}$ take distances of a'b' \& c' and mark from $x_{2} y=$ on new projectors.
4.Name points $a^{\prime}{ }_{1} \mathbf{b}^{\prime}{ }_{1} \& c^{\prime}{ }_{1}$ and join them. This will be the required true shape.

Problem 15: Fv \& Tv of a triangular plate are shown. Determine it's true shape.

USE SAME PROCEDURE STEPS OF PREVIOUS PROBLEM:
BUT THERE IS ONE DIFFICULTY:
NO LINE IS // TO XY IN ANY VIEW. MEANS NO TL IS AVAILABLE.

IN SUCH CASES DRAW ONE LINE // TO XY IN ANY VIEW \& IT'S OTHER VIEW CAN BE CONSIDERED AS TL FOR THE PURPOSE.

HERE a' 1' line in Fv is drawn // to xy. HENCE it's Tv a-1 becomes TL.

THEN FOLLOW SAME STEPS AND DETERMINE TRUE SHAPE. (STUDY THE ILLUSTRATION)

PROBLEM 16: Fv \& Tv both are circles of 50 mm diameter. Determine true shape of a

ADOPT SAME PROCEDURE.

ac is considered as line // to xy .
Then a'c' becomes TL for the purpose.
Using steps properly true shape can be Easily determined.

Study the illustration.

[^1]

Problem 17: Draw a regular pentagon of 30 mm sides with one side 30° inclined to xy . This figure is Tv of some plane whose Fv is A line 45° inclined to $x y$.
Determine it's true shape.

IN THIS CASE ALSO TRUE LENGTH IS NOT AVAILABLE IN ANY VIEW.

BUT ACTUALLY WE DONOT REQUIRE TL TO FIND IT'S TRUE SHAPE, AS ONE VIEW (FV) IS ALREADY A LINE VIEW. SO JUST BY DRAWING X1Y1 // TO THIS VIEW WE CAN PROJECT VIEW ON IT AND GET TRUE SHAPE:

STUDY THE ILLUSTRATION..

[^2]
SOLIDS

To understand and remember various solids in this subject those are classified \& arranged in to two major group

Group A
Solids having top and base of same shape

Group B
Solids having base of some and just a point as a top, cal

SOLIDS

Dimensional parameters of different solids.

STANDING ON H.P
On it's base.
(Axis perpendicular to Hp And // to Vp.)

RESTING ON H.P
On one point of base circle. (Axis inclined to Hp And // to Vp)

LYING ON H.P On one generator (Axis inclined to Hp And// to Vp) F.V.

While observing Fv, x-y line represents Horizontal Plane. (Hp)

X While observing Tv, x-y line represents Vertical Plane. (Vp)
T.V.
T.V.

LYING ON V.P
On one generator.

RESTING ON V.P

On one point of base circle.

Axis perpendicular to Vp Axis inclined to Vp And // to Hp www.FirstRankerigomo Hp

STEPS TO SOLVE PROBLEMS IN SOLIDS

Problem is solved in three steps:
STEP 1: ASSUME SOLID STANDING ON THE PLANE WITH WHICH IT IS MAKING INCLII (IF IT IS INCLINED TO HP, ASSUME IT STANDING ON HP) (IF IT IS INCLINED TO VP, ASSUME IT STANDING ON VP)

IF STANDING ON HP - IT'S TV WILL BE TRUE SHAPE OF IT'S BASE OR TOP: IF STANDING ON VP - IT'S FV WILL BE TRUE SHAPE OF IT'S BASE OR TOP. BEGIN WITH THIS VIEW:
IT'S OTHER VIEW WILL BE A RECTANGLE (IF SOLID IS CYLINDER OR ONE OF IT'S OTHER VIEW WILL BE A TRIANGLE (IF SOLID IS CONE OR ONE OF THE DRAW FV \& TV OF THAT SOLID IN STANDING POSITION:
STEP 2: CONSIDERING SOLID'S INCLINATION (AXIS POSITION) DRAW IT'S FV \& TV. STEP 3: IN LAST STEP, CONSIDERING REMAINING INCLINATION, DRAW IT'S FINAL FV

GENERAL PATTERN (THREE STEPS) OF SOLUTION:

CATEGORIES OF ILLUSTRATED PROBLEM:

PROBLEM NO. $1,2,3,4$ GENERAL CASES OF SOLIDS INCLINED TO H PROBLEM NO. 5 \& 6 CASES OF CUBE \& TETRAHEDRON PROBLEM NO. 7 PROBLEM NO. 8 PROBLEM NO. 9 PROBLEM NO. 10 \& 11 PROBLEM NO. 12

Q Draw the projections of a pentagonal prism, base 25 mm side and axis 50 r resting on one of its rectangular faces on the H.P. with the axis inclined at 45°

As the axis is to be inclined with the V p, in the first view it must be kept pexoe Vpi.e. true shape of the base will be drawn in the FV with one side on k line

Problem 13.19: Draw the projections of a cone, base 45 mm diameter and axis 50 mm long, when it is resting on the ground on a point on its base circle with (a) the axis making an angle of 30° with the HP and 45° with the VP (b) the axis making an angle of 30° with the HP and its top view making 45° with the VP

Steps
(1) Draw the TV \& FV of the cone assuming its
(2) To incline axis at 30° with the HP , incline th and draw the FV and then the TV.
(3) For part (a), to find β, draw a line at 45° wit mm length. Draw the locus of the end of axis. T length equal to TV of the axis when it is inclined redraw the TV, keeping the axis at new position. FV
(4) For part (b), draw a line at 45° with XY in th the TV, keeping the axis at new position. Again

Q13.22: A hexagonal pyramid base 25 mm side and axis 55 mm long has one of its slant edge on the containing that edge and the axis is perpendicular to the H.P. and inclined at 45° to the V.P. Draw i the apex is nearer to the V.P. than the base.

The inclination of the axis is given indirectly in this problem. When the slant edge of a pyramid rests on t inclined with the HP so while deciding first view the axis of the solid must be kept perpendicular to HP i. base will be seen in the TV. Secondly when drawing hexagon in the TV we have to keep the corners at th

The vertical plane containing the slant edge on the HP and the axis is seen in the TV as $\mathrm{o}_{1} \mathrm{~d}_{1}$ for drawing an auxiliary plane $X_{1} Y_{1}$ at 45° from $d_{1} \mathrm{o}_{1}$ extended. Then draw projectors from each point i.e. a_{1} to f_{1} per and mark the points measuring their distances in the FV from old XY line.

Problem 5: A cube of 50 mm long edges is so placed on HP on one corner that a body diagonal is parallel to HP and perpendicular to VP Draw it's projections.

Solution Steps:

1.Assuming standing on HP , begin with TV ,a square with all sides equally inclined to XY. Project FV and name all points of FV \& TV.
2.Draw a body-diagonal joining c' with 1^{\prime} (This can become // to xy)
3.From 3' drop a perpendicular on this and name it p'
4.Draw $2^{\text {nd }} \mathrm{Fv}$ in which 3'p' line is vertical means $\mathrm{c}^{\prime}-1$ ' diagonal must be horizontal. .Now as usual project TV..
6.In final TV draw same diagonal is perpendicular to VP as said in pr Then as usual project final FV.

Problem 6:A tetrahedron of 50 mm long edges is resting on one edge on Hp while one triangular face containing this edge is vertical and 45° inclined to Vp. Draw projections.

IMPORTANT:

Tetrahedron is a special type of triangular pyramid in which base sides \& slant edges are equal in length. Solid of four faces. Like cube it is also described by One dimension only.. Axis length generally not given.

Problem 1. A square pyramid, 40 mm base sides and axis 60 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the VP. Draw its projections. Take apex nearer to VP

Solution Steps :

Triangular face on Hp , means it is lying on Hp :
1.Assume it standing on Hp .
2.It's Tv will show True Shape of base(square)
3.Draw square of 40 mm sides with one side vertical T taking 50 mm axis project Fv . (a triangle)
4.Name all points as shown in illustration.
5. Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o'c'd' face on xy . An 6.Make visible lines dark and hidden dotted, as per th
7.Then construct remaining inclination with $\mathrm{V} p$ (Vp containing axis ic the center line of $2^{\text {nd }}$ Tv.Make shown take apex near to xy , as it is nearer to Vp) \&

3. Select nearest point to observer and dwawalfistRankericomom it-dark.
4. Select farthest point to observer and draw all lines (remaining)from it- dotted.

Problem 13.20:A pentagonal pyramid base 25 mm side and axis 50 mm long has triangular faces in the VP and the edge of the base contained by that face makes a with the HP. Draw its projections.
Step 1. Here the inclination of the axis is given indirectly. As one triangular face of the pyramid is in the inclined with the VP. So for drawing the first view keep the axis perpendicular to the VP. So the true shap seen in the FV. Secondly when drawing true shape of the base in the FV, one edge of the base (which is to the HP) must be kept perpendicular to the HP.
Step 2. In the TV side aeo represents a triangular face. So for drawing the TV in the second stage, keep th that the triangular face will lie on the VP and reproduce the TV. Then draw the new FV with help of TV
Step 3. Now the edge of the base $\mathrm{a}_{1}{ }^{\prime} \mathrm{e}_{1}{ }^{\prime}$ which is perpendicular to the HP must be in clined at 30° to the HI FV till al' e '' is inclined at 30° with the HP. Then draw the TV.

Problem 2:

A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp which makes 30° inclination with VP Draw it's projections.

For dark and dotted lines
1.Draw proper outline of new vie DARK.
2. Decide direction of an observer.
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining) from it- dotted.

Solution Steps:

Resting on Hp on one generator, me 1.Assume it standing on Hp .
2.It's Tv will show True Shape of be
3.Draw 40 mm dia. Circle as Tv \& taking 50 mm axis project Fv . (a 4.Name all points as shown in illustr
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o' project it's Tv below $x y$.
6.Make visible lines dark and hidder as per the procedure.
7.Then construct remaining inclinati (generator $\mathrm{o}_{1} \mathrm{e}_{1} 30^{\circ}$ to xy as showr

Problem 3:

A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on Vp while it's axis makes 45^{0} with Vp and Fv of the axis 35^{0} with Hp . Draw projections..

Solution Steps:

Resting on Vp on one point of base, means incli 1.Assume it standing on Vp
2.It's Fv will show True Shape of base \& top(cir
3.Draw 40 mm dia. Circle as Fv \& taking 50 mm (a Rectangle)
4.Name all points as shown in illustration.
5.Draw $2^{\text {nd }}$ Tv making axis 45° to xy And project
6.Make visible lines dark and hidden dotted, as
7.Then construct remaining inclination with Hp
(Fv of axis l.e. center line of view to xy as shou

Problem 4:A square pyramid 30 mm base side and 50 mm long axis is resting on it's apex on Hp, such that it's one slant edge is vertical and a triangular face through it is perpendicular to Vp . Draw it's projections.

Solution Steps :

1.Assume it standing on Hp but as said on apex.
2.It's Tv will show True Shape of base(square)
3.Draw a corner case square of 30 mm sides as Showing all slant edges dotted, as those will not 4.taking 50 mm axis project Fv. (a triangle)
5. Name all points as shown in illustration.
6. Draw $2^{\text {nd }} \mathrm{Fv}$ keeping o'a' slant edge vertical \& 7.Make visible lines dark and hidden dotted, as p
8. Then redrew $2^{\text {nd }} T v$ as final Tv keeping $a_{1} o_{1} d_{1}$ perpendicular to Vp I.e.xy. Then as usual proje

FREELY SUSPENDED SOLIDS:

Positions of CG, on axis, from base, for different solids are shown bel

GROUP A SOLIDS
(Cylinder \& Prisms)

GROUP B SOLIDS (Cone \& Pyramids)

Problem 7: A pentagonal pyramid 30 mm base sides \& 60 mm long axis, is freely suspended from one corner of base so that a plane containing it's axis remains parallel to Vp .
Draw it's three views.

Solution Steps:

In all suspended cases axis shows inclination with Hp .

1. Hence assuming it standing on Hp , drew Tv - a regular p 2. Project Fv \& locate CG position on axis - ($1 / 4 \mathrm{H}$ from ba: Join it with corner d'
3.As $2^{\text {nd }} \mathrm{Fv}$, redraw first keeping line g'd' vertical.
4.As usual project corresponding Tv and then Side View lo

IMPORTANT:

When a solid is freely suspended from a corner, then line joining point of contact \& C.G. remains vertical. (Here axis shows inclination with Hp.) So in all such cases, assume solid standing
on Hp initially.)

Solution Steps:

1.Assuming it standing on Hp begin with Tv , a square of corner case.
2.Project corresponding Fv.\& name all points as usual in both views.
3. Join a' 1 ' as body diagonal and draw $2^{\text {nd }} \mathrm{Fv}$ making it vertical (I' on xy)
4.Project it's Tv drawing dark and dotted lines as per the procedure.
5.With standard method construct Left-hand side view.
(Draw a 45° inclined Line in Ty region (below xy). Project horizontally all points of Tv on this line and reflect vertically upward, above xy.After this, draw horizontal lines, from all points of Fv , to meet these lines. Name points of intersections and join properly. For dark \& dotted lines

Problem 8:

A cube of $\mathbf{5 0} \mathbf{~ m m}$ long er on Hp on one corner th through this corner is p and parallel to Vp Drav

locate observer on left side of Fv as shown.)

Problem 9: A right circular cone, 40 mm base diameter and 60 mm long axis is resting on Hp on one point of base circle such that it's axis makes 45° inclination with Hp and 40° inclination with Vp.

This case resembles to problem no. 7 \& 9 from projections 0 In previous all cases $2^{\text {nd }}$ inclination was done by a parameter not Tv of axis is inclined to Vp etc. But here it is clearly said that the to Vp. Means here TL inclination is expected. So the same constru Problems is done here also. See carefully the final Tv_{v} and inclina So assuming it standing on HP begin as usual. Draw it's projections.

Problem 10: A triangular prism, 40 mm base side 60 mm axis is lying on Hp on one rectangular face with axis perpendicular to Vp. One square pyramid is leaning on it's face centrally with axis // to vp. It's base side is $30 \mathrm{~mm} \&$ axis is 60 mm long resting on Hp on one edge of base. Draw FV \& TV of both solids.Project another FV on an AVP 45° inclined to VP.

Steps :

Draw Fv of lying prism (an equilateral Triangle)
And Fv of a leaning pyramid. Project Tv of both solids.
Draw $\mathrm{x}_{1} \mathrm{y}_{1} 45^{0}$ inclined to xy and project aux.Fv on it.
Mark the distances of first FV from first xy for the distances of aux. Fv from $x_{1} y_{1}$ line.
Note the observer's directions Shown by arrows and further steps carefully.

Problem 11:A hexagonal prism of base side 30 mm longand axis 40 mm long, is standing on Hp on it's base with one base edge // to Vp.
A tetrahedron is placed centrally on the top of it.The base of tetrahedron is a triangle formed by joining alternate corners of top of prism..Draw projections of both solids. Project an auxiliary Tv on AIP 45° inclined to Hp.

STEPS:

Draw a regular hexagon as Tv of standing prism With one side // to xy and name the top points.Project it's Fv a rectangle and name it's top. Now join it's alternate corners a-c-e and the triangle formed is base of a tetrahedron as said.
Locate center of this triangle \& locate apex o Extending it's axis line upward mark apex o'
By cutting TL of edge of tetrahedron equal to a-c. and complete Fv of tetrahedron.
Draw an AIP (x1y1) 45^{0} inclined to xy And project Aux.Tv on it by using similar Steps like previous problem.

Problem 12: A frustum of regular hexagonal pyrami is standing on it's larger base On Hp with one base side perpendicular to Vp.Draw it's Fv \& Tv.
Project it's Aux.Tv on an AIP parallel to one of the slant edges showing TL. Base side is 50 mm long, top side is 30 mm long and 50 mm is height of frustum.

DEVELOPMENT OF SURFACES OF SOLIDS.

MEANING:-
ASSUME OBJECT HOLLOW AND MADE-UP OF THIN SHEET. CUT OPEN IT FROM ON UNFOLD THE SHEET COMPLETELY. THEN THE SHAPE OF THAT UNFOLDED SHEET DEVELOPMENT OF LATERLAL SUEFACES OF THAT OBJECT OR SOLID.

LATERLAL SURFACE IS THE SURFACE EXCLUDING SOLID'S TOP \& BASE.

ENGINEERING APLICATION:

THERE ARE SO MANY PRODUCTS OR OBJECTS WHICH ARE DIFFICULT TO MANUF CONVENTIONAL MANUFACTURING PROCESSES, BECAUSE OF THEIR SHAPES ANL THOSE ARE FABRICATED IN SHEET METAL INDUSTRY BY USING
DEVELOPMENT TECHNIQUE. THERE IS A VAST RANGE OF SUCH OBJECTS,
EXAMPLES:-
Boiler Shells \& chimneys, Pressure Vessels, Shovels, Trays, Boxes \& Cartons, Feeding Hopper: Large Pipe sections, Body \& Parts of automotives, Ships, Aeroplanes and many more.

WHAT IS
 OUR OBJECTIVE IN THIS TOPIC?

To learn methods of development of surfaces of different solids, their sections and frustums.

1. Development is different drawing than PROJECTIONS.

But before going ahead, note following
Important points.
2. It is a shape showing AREA, means it's a 2-D plain draw
3. Hence all dimensions of it must be TRUE dimensions.
4. As it is representing shape of an un-folded sheet, no edg And hence DOTTED LINES are never shown on develo

Development of lateral surfaces of different solids. (Lateral surface is the surface excluding top \& base)

Cylinder: A Rectangle

Cone: (Sector of circle)

$\mathrm{R}=$ Base circle radius.
$\mathrm{L}=$ Slant height.

$$
\theta=\frac{\mathrm{R}}{\mathrm{~L}} \times 360^{0}
$$

Pyramids:

L= Slant e
S = Edge o

Cube: Six Squares.

Tetrahedron: Four Equilateral Triangles

equalin length

FRUSTUMS

DEVELOPMENT OF FRUSTUM OF CONE

DEVELOPMENT OF
FRUSTUM OF SQUARE PYRAM

$\mathrm{R}=$ Base circle radius of cone
$\mathrm{L}=$ Slant height of cone
$\mathrm{L}_{1}=$ Slant height of cut part.

$\mathrm{L}=$ Slant edge of pyramid $\mathrm{L}_{1}=$ Slant edge of cut part.

Problem 7:Draw a semicircle of 100 mm diameter and inscribe in it a largest rhombus.If the semicircle is development of a cone and rhombus is some curve on it, then draw the projections of cone showing that curve.

TO DRA
VIEWS DEVE

$\mathrm{R}=$ Base circle radius.
$\mathrm{L}=$ Slant height.
$\theta=\frac{\mathrm{R}}{\mathrm{L}} \times 360^{\circ}$

Problem 8: A half cone of 50 mm base diameter, 70 mm axis, is standing on it's half base on HP with it parallel and nearer to VP.An inextensible string is wound round it's surface from one point of base circl brought back to the same point.If the string is of shortest length, find it and show it on the projections c

TO DRAW A CURVE ON PRINCIPAL VIEWS FROM DEVELOPMENT.

Concept: from a point Point, of sh Must appea Developme Solution st Hence dran Name it as A to A This Length of th Further step On dev. Naı Intersection Different ge Those on F by smooth Draw 4' a'p As it is on b

Q 15.26: draw the projections of a cone resting on the ground on its base and show on them by which a point P , starting from a point on the circumference of the base and moving arous return to the same point. Base ofn cone 65 mm diameter ; axis 75 mm long.

Q.15.11: A right circular cylinder, base 50 mm diameter and axis 60 mm long, is standi base. It has a square hole of size 25 in it. The axis of the hole bisects the axis of the eyli perpendicular to the VP. The faces of the square hole are equally inclined with the GPP projections and develop lateral surface of the cylinder.

Q.15.21: A frustum of square pyramid has its base 50 mm side, top 25 mm side and axi the development of its lateral surface. Also draw the projections of the frustum (when and a side of its base is parallel to the VP), showing the line joining the mid point of a face with the mid point of the bottom edge of the opposite face, by the shortest distanc

Q: A square prism of 40 mm edge of the base and 65 mm height stands on its base vertical faces inclined at 45° with the VP. A horizontal hole of 40 mm diameter is through the prism such that the hole passes through the opposite verticaledges of the development og the surfaces of the prism.

DRAWINGS:
 (A Graphical Representation)

The Fact about:

If compared with Verbal or Written Description, Drawings offer far better idea about the Shape, Size \& Appe any object or situation or location, that too in quite a less

Hence it has become the Best Media of Communicatio not only in Engineering but in almost all Fields.

Drawings (Some Types)

Isometric projection

Projection on a plane such that mutually perpendicular edges appear at 12 each other.

Iso (same) angle between the axes.
Example shown for a cube tilted on its corner (like the photograph taken of cube such that its edges appear at 120° to each other).

Isometric projection is often constructed using isometric scale wi dimensions smaller than the true dimensions.

However, to obtain isometric lengths from the isometric scale is cumbersome task.

Therefore, the standard practice is to keep all dimensions as it is.
The view thus obtained is called isometric view or isometric drawi isometric view utilizes actual dimensions, the isometric view of the seen larger than its isometric projection.

Isometric View

It is a drawing showing the 3 dimensional view of object.
\square The perpendicular edges of an object are drawn o axes at 120° to each other.
\square ACTUAL distances are drawn on the axes.

Earlier an isometric scale used to be used as shown below
This is because the relative distances get shortened in the isometric projection Now a days, TRUE LENGTHS are drawn on the axes

Isometric scale $=($ Isometric length $/$ True length $)=\frac{\cos 45^{\circ}}{\cos 30^{\circ}}=\frac{1}{\sqrt{2}} \div \frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{\sqrt{2}}$

F.V. \& T.V. and S.V.of an object are given. Draw it's isometric view.

Isometric view of polygons

- Polygons are first enclosed in a rectangle
- The corners lie on the sides of the rectangle
- The distances from the corner of the rectangle to corners of the polygon are measured
- These distances are plotted on the isometric axes

All corners of polygon not on edges rectangle

Draw a rectangle covering as many polygon corners as possible. In this exam point i does not lie on the rectangle

From the edges of the rectangle, measure distances $\mathrm{ki}=\mathrm{cl}$ and $\mathrm{li}=\mathrm{ck}$
Mark points f, g, h, j, and e in the isometric view similar to the previous exar
Mark distances ck and ki on the isometric view to get point i

1) ISOMETRIC OF
PLANE FIGURES

F.V. \& T.V. of an object are given. Draw it's isometric view.

ISOMETRIC VIEW OF FRUSTOM OF SQUARE PYRA STANDING ON H.P. ON IT'S LARGEF

TV

ORTHOGRAPHIC PROJECTIONS:

IT IS A TECHNICAL DRAWING IN WHICH DIFFERENT VIEWS OF
ARE PROJECTED ON DIFFERENT REFERENCE PLANE OBSERVING PERPENDICULAR TO RESPECTIVE REFERENCI

Different Reference planes are
Horizontal Plane (HP),
Vertical Frontal Plane (VP)
Side Or Profile Plane (PP)
And
Different Views are Front View (FV), Top View (TV) and Side View
FV is a view projected on VP.
TV is a view projected on HP.
SV is a view projected on PP.
IMPORTANT TERMS OF ORTHOGRAPHIC PROJECTI (1) Planes.

Pattern of planes \& Pattern of views
Methods of drawing Orthographic Projectior

PROCEDURE TO SOLVE ABOVE PROBLEM:-

TO MAKE THOSE PLANES ALSO VISIBLE FROM THE ARROW
A) HP IS ROTATED 90° DOUNWARD
B) PP, 90^{0} IN RIGHT SIDE DIRECTION.

THIS WAY BOTH PLANES ARE BROUGHT IN THE SAME PLANE
On clicking the button if a warning comes please click YES to cor safe for your pc.

VP
FV
X

ACTUAL, PATTERN OF
PP IS_ROTATEDIN RIGHT SIDE 90°
www.FirstRanker.com OF ORTHOGRAPHIC

Methods of Drawing Orthographic Projections

First Angle Projections Method Here views are drawn
by placing object in $1^{\text {st }}$ Quadrant

SYMBOLIC PRESENTATION

Third Angle Projec
Here views are by placing o in $3^{\text {rd }}$ Qua

FIRST ANGLE PROJECTION

IN THIS METHOD, THE OBJECT IS ASSUMED TO BE SITUATED IN FIRST QUADRANT MEANS ABOVE HP \& INFRONT OF VP.

OBJECT IS INBETWEEN OBSERVER \& PLANE.

ACTUAL PATTERN OF PLANES \& VIEWS

THIRD ANGLE PROJECTION

IN THIS METHOD, THE OBJECT IS ASSUMED TO BE SITUATED IN THIRD QUADRANT (BELOW HP \& BEHIND OF VP.)

PLANES BEING TRANSPERENT AND INBETWEEN OBSERVER \& OBJECT.

ACTUAL PATTERN OF PLANES \& VIEWS

THIRD ANGLE PROJECTIONS

ORTHOGRAPHIC PROJECTLONS \{ MACHINE ELEMENTS \}

OBJECT IS OBSERVED IN THREE DIRECTIONS. THE DIRECTIONS SHOULD BE NORMAL TO THE RESPECTIVE PLANES. AND NOW PROJECT THREE DIFFERENT VIEWS ON THOSE THESE VEWS ARE FRONT VIEW, TOP VIEW AND SIDE

FRONT VIEW IS A VIEW PRCD=CNED ON VERTGAL PLAN TOP VIEW IS A VIEW PROJECNED ON HORIZONTAL PLAN SIDE VIEW IS A VIEW PROJFCIED ON PROFILE PLANE

FIRST STUDY THE CONCEPT OF $1^{\text {ST }}$ AND $3^{\text {RD }}$ AN PROJECTION METHODS

AND THEN STUDY NEXT 26 ILLUSTRATED CASES CA TRY TO RECOCNIZE SURFACES PERPENDICUTAR TQww.Firstraanker.com DIRECTIONS

PICTORIAL PRESENTATION IS GIVEN

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PRQuNE.FTrstianker:com HOD

FOR T.V.

ORTHOGRAPHIC PR

FRONT VIEW
L.

TOP VIEW
PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROwhEEFTS

FOR T.V.

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

STUDY ILLUSTRATIONS

FOR T.V.

ORTHOGRAPHIC PROJEC

PICTORIAL PRESENTATION IS GIVEN
TOP VIEW
-DRAW THREE VIEWS OF THIS OBJECT

DRAW THREE VIEWS OF THIS OBJECT
 BY FIRST ANGLE PROJECTION METHOD

ORTHOGRAPHIC PROJECI

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROWUEOFFFSBAAkARETHOD

STUDY

FOR T.V.

STUDY

LLUSTRATIONS

ORTHOGRAPHIC PROJE

FOR T.V.
ALL VIEWS IDENTIC

PICTORIAL PRESENTATION IS GIVEN
 DRAW FV AND SV OF THIS OBJECT
 BY FIRST ANGLE PROJECTION METHOD

ORTHOGRAPHIC PROJECTIONS

PICTORIAL PRESENTATIC DRAW FV AND TV OF THI BY FIRST ANGLE PROJECTI

ORTHOGRAPHIC PROJECTIONS

PICTORIAL PRESENTATION

F.V.

FOR T.V.

ORTHOGRAPHIC PROJECTIONS

FV

[^0]: APPLY SAME STwiwerisstrantercomvE NEXT ELEVEN PR

[^1]: ALWAYS, FOR NEW FV TAKE DISTANCES OF PREVIOUS FV AND FOR NEW TV, DISTANCES OF PREVIOUS TV REMEMBER!!

[^2]: ALWAYS FOR NEW FV TAKE DISTANCES OF PREVIOUS FV AND FOR NEW TV, DISTANCES OF PREVIOUSTV
 REMEMBER!!

