
www.F
irs

tR
an

ke
r.c

om

Computer Graphics

UNIT I - 2D PRIMITIVES

Output primitives – Line, Circle and Ellipse drawing algorithms - Attributes of

output primitives –Two dimensional Geometric transformation - Two dimensional

viewing – Line, Polygon, Curve and Text clipping algorithms

Introduction

A picture is completely specified by the set of intensities for the pixel positions in the

display. Shapes and colors of the objects can be described internally with pixel arrays

into the frame buffer or with the set of the basic geometric – structure such as straight

line segments and polygon color areas. To describe structure of basic object is referred as

output primitives.

Each output primitive is specified with input co-ordinate data and other information about

the way that objects is to be displayed. Additional output primitives that can be used to

constant a picture include circles and other conic sections, quadric surfaces, Spline curves

and surfaces, polygon floor areas and character string.

Points and Lines

Point plotting is accomplished by converting a single coordinate position furnished by

an application program into appropriate operations for the output device. With a CRT

monitor, for example, the electron beam is turned on to illuminate the screen phosphor at

the selected location

Line drawing is accomplished by calculating intermediate positions along the line path

between two specified end points positions. An output device is then directed to fill in

these positions between the end points

Pixel positions are referenced according to scan-line number and column number (pixel

position across a scan line). Scan lines are numbered consecutively from 0, starting at the

bottom of the screen; and pixel columns are numbered from 0, left to right across each

scan line

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Figure: Pixel Positions reference by scan line number and column number

To load an intensity value into the frame buffer at a position corresponding to column x

along scan line y,

setpixel (x, y)

To retrieve the current frame buffer intensity setting for a specified location we use a low

level function

getpixel (x, y)

Line Drawing Algorithms

• Digital Differential Analyzer (DDA) Algorithm

• Bresenham’s Line Algorithm

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Digital Differential Analyzer (DDA) Algorithm

The digital differential analyzer (DDA) is a scan-conversion line algorithm based on

calculation either ∆y or ∆x

The lines at unit intervals in one coordinate and determine corresponding integer values

nearest the line path for the other coordinate.

A line with positive slop, if the slope is less than or equal to 1, at unit x intervals (∆x=1)

and compute each successive y values as

yk+1 = yk + m (6)

Subscript k takes integer values starting from 1 for the first point and increases by 1 until

the final endpoint is reached. m can be any real number between 0 and 1 and, the

calculated y values must be rounded to the nearest integer

For lines with a positive slope greater than 1 we reverse the roles of x and y, (∆y=1) and

calculate each succeeding x value as

xk+1 = xk + (1/m) (7)

Equation (6) and (7) are based on the assumption that lines are to be processed from the

left endpoint to the right endpoint.

If this processing is reversed, ∆x=-1 that the starting endpoint is at the right

yk+1 = yk – m (8)

When the slope is greater than 1 and ∆y = -1 with

xk+1 = xk-1(1/m) (9)

If the absolute value of the slope is less than 1 and the start endpoint is at the left, we set

∆x = 1 and calculate y values with Eq. (6)

When the start endpoint is at the right (for the same slope), we set ∆x = -1 and obtain y

positions from Eq. (8). Similarly, when the absolute value of a negative slope is greater

than 1, we use ∆y = -1 and Eq. (9) or we use ∆y = 1 and Eq. (7).

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Algorithm

#define ROUND(a) ((int)(a+0.5))

void lineDDA (int xa, int ya, int xb, int yb)

{

int dx = xb - xa, dy = yb - ya, steps, k;

float xIncrement, yIncrement, x = xa, y = ya;

if (abs (dx) > abs (dy) steps = abs (dx) ;

else steps = abs dy);

xIncrement = dx / (float) steps;

yIncrement = dy / (float) steps

setpixel (ROUND(x), ROUND(y)) :

for (k=0; k<steps; k++)

{
x += xIncrement;

y += yIncrement;

setpixel (ROUND(x), ROUND(y));

}

}

Algorithm Description:

Step 1 : Accept Input as two endpoint pixel positions
Step 2: Horizontal and vertical differences between the endpoint positions are assigned to

parameters dx and dy (Calculate dx=xb-xa and dy=yb-ya).

Step 3: The difference with the greater magnitude determines the value of parameter

steps.

Step 4 : Starting with pixel position (xa, ya), determine the offset needed at each step to

generate the next pixel position along the line path.

Step 5: loop the following process for steps number of times

a. Use a unit of increment or decrement in the x and y direction

b. if xa is less than xb the values of increment in the x and y directions are 1 and m
c. if xa is greater than xb then the decrements -1 and – m are used.

Example : Consider the line from (0,0) to (4,6)

1. xa=0, ya =0 and xb=4 yb=6

2. dx=xb-xa = 4-0 = 4 and dy=yb-ya=6-0= 6

3. x=0 and y=0
4. 4 > 6 (false) so, steps=6

5. Calculate xIncrement = dx/steps = 4 / 6 = 0.66 and yIncrement = dy/steps =6/6=1

6. Setpixel(x,y) = Setpixel(0,0) (Starting Pixel Position)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

7. Iterate the calculation for xIncrement and yIncrement for steps(6) number of times

8. Tabulation of the each iteration

k X Y
Plotting points
(Rounded to Integer)

0 0+0.66=0.66 0+1=1 (1,1)

1 0.66+0.66=1.32 1+1=2 (1,2)

2 1.32+0.66=1.98 2+1=3 (2,3)

3 1.98+0.66=2.64 3+1=4 (3,4)

4 2.64+0.66=3.3 4+1=5 (3,5)

5 3.3+0.66=3.96 5+1=6 (4,6)

Result :

Advantages of DDA Algorithm

1. It is the simplest algorithm

2. It is a is a faster method for calculating pixel positions

Disadvantages of DDA Algorithm

1. Floating point arithmetic in DDA algorithm is still time-consuming

2. End point accuracy is poor

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Bresenham’s Line Algorithm

An accurate and efficient raster line generating algorithm developed by Bresenham that

uses only incremental integer calculations.

In addition, Bresenham’s line algorithm can be adapted to display circles and other

curves. To illustrate Bresenham's approach, we- first consider the scan-conversion

process for lines with positive slope less than 1.

Bresenham’s line Drawing Algorithm for |m| < 1

1. Input the two line endpoints and store the left end point in (x0,y0)

2. load (x0,y0) into frame buffer, ie. Plot the first point.

3. Calculate the constants ∆x, ∆y, 2∆y and obtain the starting value for the decision

parameter as P0 = 2∆y-∆x

4. At each xk along the line, starting at k=0 perform the following test

If Pk < 0, the next point to plot is(xk+1,yk) and

Pk+1 = Pk + 2∆y

otherwise, the next point to plot is (xk+1,yk+1) and

Pk+1 = Pk + 2∆y - 2∆x

5. Perform step4 ∆x times.

The constants 2∆y and 2∆y-2∆x are calculated once for each line to be scan

converted.

 Bresenham’s line Drawing Algorithm for |m| < 1

1. Input the two line endpoints and store the left end point in (x0,y0)

2. load (x0,y0) into frame buffer, ie. Plot the first point.
3. Calculate the constants ∆x, ∆y, 2∆y and obtain the starting value for the decision

parameter as P0 = 2∆y-∆x

4. At each xk along the line, starting at k=0 perform the following test

If Pk < 0, the next point to plot is(xk+1,yk) and

Pk+1 = Pk + 2∆y

Otherwise, the next point to plot is (xk+1,yk+1)

and Pk+1 = Pk + 2∆y - 2∆x

5. Perform step4 ∆x times.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Implementation of Bresenham Line drawing Algorithm

void lineBres (int xa,int ya,int xb, int yb)

{
int dx = abs(xa – xb) , dy = abs (ya - yb);

int p = 2 * dy – dx;

int twoDy = 2 * dy, twoDyDx = 2 *(dy - dx);

int x , y, xEnd;

/* Determine which point to use as start, which as end * /

if (xa > x b)

{
x = xb;

y = yb;

xEnd = xa;

}

else

{
x = xa;

y = ya;

xEnd = xb;

}

setPixel(x,y);

while(x<xEnd)

{

x++;

if (p<0)

p+=twoDy;

else

{

y++;

p+=twoDyDx;

}

setPixel(x,y);
}

}

Example : Consider the line with endpoints (20,10) to (30,18)

The line has the slope m= (18-10)/(30-20)=8/10=0.8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

∆x = 10 ∆y=8

The initial decision parameter has the value

p0 = 2∆y- ∆x = 6

and the increments for calculating successive decision parameters are

2∆y=16 2∆y-2 ∆x= -4

We plot the initial point (x0,y0) = (20,10) and determine successive pixel positions along

the line path from the decision parameter as

Tabulation

k pk (xk+1, yK+1)

0 6 (21,11)

1 2 (22,12)

2 -2 (23,12)

3 14 (24,13)

4 10 (25,14)

5 6 (26,15)

6 2 (27,16)

7 -2 (28,16)

8 14 (29,17)

9 10 (30,18)

Result

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Advantages

• Algorithm is Fast

• Uses only integer calculations

Disadvantages

It is meant only for basic line drawing.

Circle-Generating Algorithms

General function is available in a graphics library for displaying various kinds of curves,

including circles and ellipses.

Properties of a circle

A circle is defined as a set of points that are all the given distance (xc,yc).

This distance relationship is expressed by the Pythagorean Theorem in Cartesian

coordinates as

(x – xc)
2
 + (y – yc)

2
 = r

2
 (1)

Use above equation to calculate the position of points on a circle circumference by

stepping along the x axis in unit steps from xc-r to xc+r and calculating the corresponding

y values at each position as

y = yc +(-) (r
2
 – (xc –x)

2
)
1/2

 (2)

This is not the best method for generating a circle for the following reason

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Considerable amount of computation

Spacing between plotted pixels is not uniform

To eliminate the unequal spacing is to calculate points along the circle boundary using

polar coordinates r and θ. Expressing the circle equation in parametric polar from yields

the pair of equations

x = xc + rcos θ y = yc + rsin θ

When a display is generated with these equations using a fixed angular step size, a circle

is plotted with equally spaced points along the circumference. To reduce calculations use

a large angular separation between points along the circumference and connect the points

with straight line segments to approximate the circular path

To generate all pixel positions around a circle by calculating only the points within the

sector from x=0 to y=0. the slope of the curve in this octant has an magnitude less than of

equal to 1.0. at x=0, the circle slope is 0 and at x=y, the slope is -1.0.

In this approach is to test the halfway position between two pixels to determine if

this midpoint is inside or outside the circle boundary. This method is more easily applied

to other conics and for an integer circle radius the midpoint approach generates the same

pixel positions as the Bresenham circle algorithm.

For a straight line segment the midpoint method is equivalent to the bresenham line

algorithm. The error involved in locating pixel positions along any conic section using

the midpoint test is limited to one half the pixel separations.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Midpoint circle Algorithm

1. Input radius r and circle center (xc,yc) and obtain the first point on the circumference

of the circle centered on the origin as

(x0,y0) = (0,r)

2. Calculate the initial value of the decision parameter as P0=(5/4)-r

3. At each xk position, starting at k=0, perform the following test. If Pk <0 the next point

along the circle centered on (0,0) is (xk+1,yk) and Pk+1=Pk+2xk+1+1

Otherwise the next point along the circle is (xk+1,yk-1) and Pk+1=Pk+2xk+1+1-2 yk+1

Where 2xk+1=2xk+2 and 2yk+1=2yk-2

4. Determine symmetry points in the other seven octants.
5. Move each calculated pixel position (x,y) onto the circular path centered at (xc,yc) and

plot the coordinate values.

x=x+xc y=y+yc

6. Repeat step 3 through 5 until x>=y.

 Example : Midpoint Circle Drawing

Given a circle radius r=10

The circle octant in the first quadrant from x=0 to x=y. The initial value of the decision

parameter is P0=1-r = - 9

For the circle centered on the coordinate origin, the initial point is (x0,y0)=(0,10) and

initial increment terms for calculating the decision parameters are

2x0=0 , 2y0=20

Successive midpoint decision parameter values and the corresponding coordinate

positions along the circle path are listed in the following table.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

k pk (xk+1, yk-1) 2xk+1 2yk+1

0 -9 (1,10) 2 20

1 -6 (2,10) 4 20

2 -1 (3,10) 6 20

3 6 (4,9) 8 18

4 -3 (5,9) 10 18

5 8 (6,8) 12 16

6 5 (7,7) 14 14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Implementation of Midpoint Circle Algorithm

void circleMidpoint (int xCenter, int yCenter, int radius)

{

int x = 0;

int y = radius;

int p = 1 - radius;
void circlePlotPoints (int, int, int, int);

/* Plot first set of points */

circlePlotPoints (xCenter, yCenter, x, y);

while (x < y)

{

x++ ;

if (p < 0)

p +=2*x +1;

else

{

y--;

p +=2* (x - Y) + 1;

}

circlePlotPoints(xCenter, yCenter, x, y)
}

}

void circlePlotPolnts (int xCenter, int yCenter, int x, int y)

{
setpixel (xCenter + x, yCenter + y) ;

setpixel (xCenter - x. yCenter + y);

setpixel (xCenter + x, yCenter - y);

setpixel (xCenter - x, yCenter - y) ;

setpixel (xCenter + y, yCenter + x);

setpixel (xCenter - y , yCenter + x);

setpixel (xCenter t y , yCenter - x);

setpixel (xCenter - y , yCenter - x);

}

Ellipse-Generating Algorithms

An ellipse is an elongated circle. Therefore, elliptical curves can be generated by

modifying circle-drawing procedures to take into account the different dimensions of an

ellipse along the major and minor axes.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Properties of ellipses

An ellipse can be given in terms of the distances from any point on the ellipse to two

fixed positions called the foci of the ellipse. The sum of these two distances is the same

values for all points on the ellipse.

If the distances to the two focus positions from any point p=(x,y) on the ellipse are

labeled d1 and d2, then the general equation of an ellipse can be stated as

d1+d2=constant

Expressing distances d1 and d2 in terms of the focal coordinates F1=(x1,y2) and

F2=(x2,y2)

sqrt((x-x1)
2
+(y-y1)

2
)+sqrt((x-x2)

2
+(y-y2)

2
)=constant

By squaring this equation isolating the remaining radical and squaring again. The

general ellipse equation in the form

Ax
2
+By

2
+Cxy+Dx+Ey+F=0

The coefficients A,B,C,D,E, and F are evaluated in terms of the focal coordinates and the

dimensions of the major and minor axes of the ellipse.

The major axis is the straight line segment extending from one side of the ellipse

to the other through the foci. The minor axis spans the shorter dimension of the ellipse,

perpendicularly bisecting the major axis at the halfway position (ellipse center) between

the two foci.

An interactive method for specifying an ellipse in an arbitrary orientation is to

input the two foci and a point on the ellipse boundary.

Ellipse equations are simplified if the major and minor axes are oriented to align

with the coordinate axes. The major and minor axes oriented parallel to the x and y axes

parameter rx for this example labels the semi major axis and parameter ry labels the semi

minor axis

((x-xc)/rx)
2
+((y-yc)/ry)

2
=1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

y y

y x y x

Using polar coordinates r and θ, to describe the ellipse in Standard position with

the parametric equations

x=xc+rxcos θ

y=yc+rxsin θ

Angle θ called the eccentric angle of the ellipse is measured around the perimeter of a

bounding circle.

We must calculate pixel positions along the elliptical arc throughout one quadrant, and

then we obtain positions in the remaining three quadrants by symmetry

Mid point Ellipse Algorithm

1. Input rx,ry and ellipse center (xc,yc) and obtain the first point on an ellipse

centered on the origin as

(x0,y0) = (0,ry)

2. Calculate the initial value of the decision parameter in region 1 as

P10=r
2
-r

2
r +(1/4)r

2

3. At each xk position in region1 starting at k=0 perform the following test. If

P1k<0, the next point along the ellipse centered on (0,0) is (xk+1, yk) and

p1k+1 = p1k +2 r
2
xk +1 + r

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

y y

y x y

x x

y xx x

y x y x

y 0 x o x y

(x0,y0) = (0,ry)

4. Calculate the initial value of the decision parameter in region 1 as

P10=r
2
-r

2
r +(1/4)r

2

5. At each xk position in region1 starting at k=0 perform the following test. If

P1k<0, the next point along the ellipse centered on (0,0) is (xk+1, yk) and

p1k+1 = p1k +2 r
2
xk +1 + r

2

Otherwise the next point along the ellipse is (xk+1, yk-1) and

p1k+1 = p1k +2 r
2
xk +1 - 2r

2
 yk+1 + r

2

with

2 r
2
x +1 = 2 r

2
x + 2r

2

y k y k y

2 r

2
y +1 = 2 r

2
y + 2r

x k x k x

And continue until 2ry
2
 x>=2rx

2
 y

6. Calculate the initial value of the decision parameter in region 2 using the last

point (x0,y0) is the last position calculated in region 1.

p20 = r
2
(x +1/2)

2
+r

2
(y -1)

2
 – r

2
r

2

7. At each position yk in region 2, starting at k=0 perform the following test, If

p2k>0 the next point along the ellipse centered on (0,0) is (xk,yk-1) and

p2k+1 = p2k – 2r
2
yk+1+r

2

Otherwise the next point along the ellipse is (xk+1,yk-1) and

p2k+1 = p2k + 2r
2
xk+1 – 2r

2
yk+1 + r

2

Using the same incremental calculations for x any y as in region 1

8. Determine symmetry points in the other three quadrants.

9. Move each calculate pixel position (x,y) onto the elliptical path centered on

(xc,yc) and plot the coordinate values

x=x+xc, y=y+yc
10. Repeat the steps for region1 unit 2r

2
x>=2r

2
y

y x

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

y x y x

Example : Mid point ellipse drawing

Input ellipse parameters rx=8 and ry=6 the mid point ellipse algorithm by

determining raster position along the ellipse path is the first quadrant. Initial

values and increments for the decision parameter calculations are
2r

2
 x=0 (with increment 2r

2
=72)

y
2r

2
 y=2r

2
 r

y
(with increment -2r

2
= -128)

x x y x

For region 1 the initial point for the ellipse centered on the origin is (x0,y0) =

(0,6) and the initial decision parameter value is

p10=r
2
-r

2
r

2
+1/4r

2
=-332

Successive midpoint decision parameter values and the pixel positions along the

ellipse are listed in the following table.

k p1k xk+1,yk+1
2

2ry xk+1
2

2rx yk+1

0 -332 (1,6) 72 768

1 -224 (2,6) 144 768

2 -44 (3,6) 216 768

3 208 (4,5) 288 640

4 -108 (5,5) 360 640

5 288 (6,4) 432 512

6 244 (7,3) 504 384

Move out of region 1, 2ry2x >2rx
2
y .

For a region 2 the initial point is (x0,y0)=(7,3) and the initial decision parameter

is

p20 = fellipse(7+1/2,2) = -151

The remaining positions along the ellipse path in the first quadrant are then

calculated as

k P2k xk+1,yk+1
2

2ry xk+1
2

2rx yk+1

0 -151 (8,2) 576 256

1 233 (8,1) 576 128

2 745 (8,0) - -

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Implementation of Midpoint Ellipse drawing

#define Round(a) ((int)(a+0.5))

void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)

{
int Rx2=Rx*Rx;

int Ry2=Ry*Ry;

int twoRx2 = 2*Rx2;

int twoRy2 = 2*Ry2;

int p;

int x = 0;

int y = Ry;

int px = 0;

int py = twoRx2* y;

void ellipsePlotPoints (int , int , int , int) ;

/* Plot the first set of points */

ellipsePlotPoints (xcenter, yCenter, x,y) ;

/ * Region 1 */

p = ROUND(Ry2 - (Rx2* Ry) + (0.25*Rx2));

while (px < py)
{

x++;

px += twoRy2;

i f (p < 0)

p += Ry2 + px;

else

{

y - - ;

py -= twoRx2;

p += Ry2 + px - py;

}

ellipsePlotPoints(xCenter, yCenter,x,y);

}

/* Region 2 */
p = ROUND (Ry2*(x+0.5)*' (x+0.5)+ Rx2*(y- l)* (y- l) - Rx2*Ry2);

while (y > 0)

{

y--;
py -= twoRx2;

i f (p > 0)

p += Rx2 - py;

else

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

{

x++;

px+=twoRy2;

p+=Rx2-py+px;

}

ellipsePlotPoints(xCenter, yCenter,x,y);

}
}

void ellipsePlotPoints(int xCenter, int yCenter,int x,int y);

{
setpixel (xCenter + x, yCenter + y);

setpixel (xCenter - x, yCenter + y);

setpixel (xCenter + x, yCenter - y);

setpixel (xCenter- x, yCenter - y);

}

Attributes of output primitives

Any parameter that affects the way a primitive is to be displayed is referred to as an

attribute parameter. Example attribute parameters are color, size etc. A line drawing

function for example could contain parameter to set color, width and other properties.

1. Line Attributes

2. Curve Attributes

3. Color and Grayscale Levels

4. Area Fill Attributes

5. Character Attributes

6. Bundled Attributes

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Line Attributes

Basic attributes of a straight line segment are its type, its width, and its color. In some

graphics packages, lines can also be displayed using selected pen or brush options

• Line Type

• Line Width

• Pen and Brush Options

• Line Color

Line type

Possible selection of line type attribute includes solid lines, dashed lines and dotted lines.

To set line type attributes in a PHIGS application program, a user invokes the function

setLinetype (lt)

Where parameter lt is assigned a positive integer value of 1, 2, 3 or 4 to generate lines

that are solid, dashed, dash dotted respectively. Other values for line type parameter it

could be used to display variations in dot-dash patterns.

Line width

Implementation of line width option depends on the capabilities of the output device to

set the line width attributes.

setLinewidthScaleFactor(lw)

Line width parameter lw is assigned a positive number to indicate the relative width of

line to be displayed. A value of 1 specifies a standard width line. A user could set lw to a

value of 0.5 to plot a line whose width is half that of the standard line. Values greater

than 1 produce lines thicker than the standard.

Line Cap

We can adjust the shape of the line ends to give them a better appearance by adding line

caps.

There are three types of line cap. They are

• Butt cap

• Round cap

• Projecting square cap

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Butt cap obtained by adjusting the end positions of the component parallel lines so that

the thick line is displayed with square ends that are perpendicular to the line path.

Round cap obtained by adding a filled semicircle to each butt cap. The circular arcs are

centered on the line endpoints and have a diameter equal to the line thickness

Projecting square cap extend the line and add butt caps that are positioned one-half of

the line width beyond the specified endpoints.

Color and Grayscale Levels

Various color and intensity-level options can be made available to a user, depending on

the capabilities and design objectives of a particular system

In a color raster system, the number of color choices available depends on the amount of

storage provided per pixel in the frame buffer

Color-information can be stored in the frame buffer in two ways:

• We can store color codes directly in the frame buffer

• We can put the color codes in a separate table and use pixel values as an index into

this table

With the direct storage scheme, whenever a particular color code is specified in an

application program, the corresponding binary value is placed in the frame buffer for

each-component pixel in the output primitives to be displayed in that color.

A minimum number of colors can be provided in this scheme with 3 bits of storage per

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

pixel, as shown in Table

A user can set color-table entries in a PHIGS applications program with the function

setColourRepresentation (ws, ci, colorptr)

Parameter ws identifies the workstation output device; parameter ci specifies the color

index, which is the color-table position number (0 to 255) and parameter colorptr points

to a trio of RGB color values (r, g, b) each specified in the range from 0 to 1

Grayscale

With monitors that have no color capability, color functions can be used in an application

program to set the shades of gray, or grayscale, for displayed primitives. Numeric values

over the range from 0 to 1 can be used to specify grayscale levels, which are then

converted to appropriate binary codes for storage in the raster.

Area fill Attributes

Options for filling a defined region include a choice between a solid color or a

pattern fill and choices for particular colors and patterns

Fill Styles

Areas are displayed with three basic fill styles: hollow with a color border, filled with a

solid color, or filled with a specified pattern or design. A basic fill style is selected in a

PHIGS program with the function

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

setInteriorStyle(fs)

Values for the fill-style parameter f

fill style is hatch, which is used to fill an area with selected hatching patterns

lines or crossed lines

The color for a solid interior or for a hollow area

parameter fc is set to the desired color code

setInteriorColourIndex(fc)

Character Attributes

The appearance of displayed character is controlled by attributes such as font, size, color

and orientation. Attributes can be set both for entire character strings (text) and for

individual characters defined as marker symbols

Text Attributes

The choice of font or type face is set of characters with a particular design style as

courier, Helvetica, times roman, and vari

The characters in a selected font also be displayed with styles. (

double) in bold face in italics,

setInteriorStyle(fs)

style parameter fs include hollow, solid, and pattern. Another value for

fill style is hatch, which is used to fill an area with selected hatching patterns

The color for a solid interior or for a hollow area outline is chosen with where fill color

parameter fc is set to the desired color code

setInteriorColourIndex(fc)

The appearance of displayed character is controlled by attributes such as font, size, color

s can be set both for entire character strings (text) and for

individual characters defined as marker symbols

The choice of font or type face is set of characters with a particular design style as

courier, Helvetica, times roman, and various symbol groups.

The characters in a selected font also be displayed with styles. (solid,

, and in or sshhaaddooww styles.

and pattern. Another value for

fill style is hatch, which is used to fill an area with selected hatching patterns-parallel

outline is chosen with where fill color

The appearance of displayed character is controlled by attributes such as font, size, color

s can be set both for entire character strings (text) and for

The choice of font or type face is set of characters with a particular design style as

solid, dotted,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

A particular font and associated stvle is selected in a PHIGS program by setting an

integer code for the text font parameter tf in the function

setTextFont(tf)

Control of text color (or intensity) is managed from an application program with

setTextColourIndex(tc)

where text color parameter tc specifies an allowable color code.

Text size can be adjusted without changing the width to height ratio of characters with

SetCharacterHeight (ch)

Bundled Attributes

The procedures considered so far each function reference a single attribute that specifies

exactly how a primitive is to be displayed these specifications are called individual

attributes.

A particular set of attributes values for a primitive on each output device is chosen by

specifying appropriate table index. Attributes specified in this manner are called bundled

attributes. The choice between a bundled or an unbundled specification is made by setting

a switch called the aspect source flag for each of these attributes

setIndividualASF(attributeptr, flagptr)

where parameter attributer ptr points to a list of attributes and parameter flagptr points to

the corresponding list of aspect source flags. Each aspect source flag can be assigned a

value of individual or bundled

Bundled line attributes

Entries in the bundle table for line attributes on a specified workstation are set with the

function

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

setPolylineRepresentation (ws, li, lt, lw, lc)

Parameter ws is the workstation identifier and line index parameter li defines the bundle

table position. Parameter lt, lw, tc are then bundled and assigned values to set the line

type, line width, and line color specifications for designated table index.

Example

setPolylineRepresentation(1,3,2,0.5,1)

setPolylineRepresentation (4,3,1,1,7)

A poly line that is assigned a table index value of 3 would be displayed using

dashed lines at half thickness in a blue color on work station 1; while on workstation 4,

this same index generates solid, standard-sized white lines

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Two Dimensional Geometric Transformations

Changes in orientations, size and shape are accomplished with geometric transformations

that alter the coordinate description of objects.

Basic transformation

• Translation

� T(tx, ty)

� Translation distances

• Scale

� S(sx,sy)

� Scale factors

• Rotation

� R(θ)

� Rotation angle

Translation

A translation is applied to an object by representing it along a straight line path

from one coordinate location to another adding translation distances, tx, ty to original

coordinate position (x,y) to move the point to a new position (x’,y’) to

x’ = x + tx, y’ = y + ty

The translation distance point (tx,ty) is called translation vector or shift vector.

Translation equation can be expressed as single matrix equation by using column vectors

to represent the coordinate position and the translation vector as

P = (x, y)

T = (tx , ty)

x' = x + tx

y' = y + ty

 x
1

x tx

y
1 = y + ty

P' = P + T

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

 Moving a polygon from one position to another position

with the translation vector (-5.5, 3.75)

Rotations:

A two-dimensional rotation is applied to an object by repositioning it along a

circular path on xy plane. To generate a rotation, specify a rotation angle θ and the

position (xr,yr) of the rotation point (pivot point) about which the object is to be rotated.

Positive values for the rotation angle define counter clock wise rotation about

pivot point. Negative value of angle rotates objects in clock wise direction. The

transformation can also be described as a rotation about a rotation axis perpendicular to

xy plane and passes through pivot point

Rotation of a point from position (x,y) to position (x’,y’) through angle θ relative to

coordinateorigin

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

The transformation equations for rotation of a point position P when the pivot point is at

coordinate origin. In figure r is constant distance of the point positions Ф is the original

angular of the point from horizontal and θ is the rotation angle.

The transformed coordinates in terms of angle θ and Ф

x’ = rcos(θ+Ф) = rcosθ cosФ – rsinθsinФ

y’ = rsin(θ+Ф) = rsinθ cosФ + rcosθsinФ

The original coordinates of the point in polar coordinates

x = rcosФ, y = rsinФ

the transformation equation for rotating a point at position (x,y) through an angle θ about

origin

x’ = xcosθ – ysinθ

y’ = xsinθ + ycosθ

Rotation equation

P’= R . P

Rotation Matrix

R =

Cosθ sinθ

Sinθ cosθ

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Graphics

Note : Positive values for the rotation angle define counterclockwise rotations about the

rotation point and negative values rotate objects in the clockwise.

Scaling

A scaling transformation alters the size of an object. This operation can be carried out for

polygons by multiplying the coordinate values (x,y) to each vertex by scaling factor Sx &

Sy to produce the transformed coordinates (x’,y’)

x’= x.Sx y’ = y.Sy

scaling factor Sx scales object in x direction while Sy scales in y direction.

The transformation equation in matrix form

 x
1
 sx 0

 = x y

 y
1 0 sy

or

P’ = S. P

Where S is 2 by 2 scaling matrix

Turning a square (a) Into a rectangle (b) with scaling factors sx = 2 and sy= 1.

Any positive numeric values are valid for scaling factors sx and sy. Values less than 1

reduce the size of the objects and values greater than 1 produce an enlarged object.

There are two types of Scaling. They are

Uniform scaling

Non Uniform Scaling

sin(θ) cos(θ) y

 y'
 x'

=
cos(θ) − sin(θ) x

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To get uniform scaling it is necessary to assign same value for sx and sy. Unequal values

for sx and sy result in a non uniform scaling

Other Transformations

1. Reflection

2. Shear

Reflection

A reflection is a transformation that produces a mirror image of an object. The mirror

image for a two-dimensional reflection is generated relative to an axis of reflection by

rotating the object 180
o
 about the reflection axis. We can choose an axis of reflection in

the xy plane or perpendicular to the xy plane or coordinate origin

Reflection of an object about the x axis

Reflection the x axis is accomplished with the transformation matrix

 1 0 0

 0 -1 0

 0 0 1

Reflection of an object about the y axis

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Reflection the y axis is accomplished with the transformation matrix

 -1 0 0

 0 1 0

 0 0 1

Reflection of an object about the coordinate origin

Reflection about origin is accomplished with the transformation matrix

 -1 0 0

 0 -1 0

 0 0 1

Shear

A Transformation that slants the shape of an object is called the shear transformation.

Two common shearing transformations are used. One shifts x coordinate values and other

shift y coordinate values. However in both the cases only one coordinate (x or y) changes

its coordinates and other preserves its values.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The x shear preserves the y coordinates, but changes the x values which cause vertical

lines to tilt right or left as shown in figure

The Transformations matrix for x-shear is

 1 shx 0

 0 1 0

 0 0 1

which transforms the coordinates as

x’ =x+ shx .y

y’ = y

 Y Shear

The y shear preserves the x coordinates, but changes the y values which cause horizontal

lines which slope up or down

The Transformations matrix for y-shear is

 1 0 0

 shy 1 0

 0 0 1

Which transforms the coordinates

as x’ =x

y’ = y+ shy .x

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The transformation matrix for xy-shear

X
1

 Y
1 =

 1

 1

which transforms the coordinates as

x’ =x+ shx .y

y’ = y+ shy .x

Shearing Relative to other reference line

We can apply x shear and y shear transformations relative to other reference lines. In x

shear transformations we can use y reference line and in y shear we can use x reference

line.

X shear with y reference line

We can generate x-direction shears relative to other reference lines with the

transformation matrix

Which transforms the coordinates as follows

x’ =x+ shx (y- yref)

y’ = y

1 shx 0

shy 1 0
0 0 1

X

Y
1

1 shx shx. yref

0 1 0

0 0 1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

0

Y shear with x reference line

We can generate y-direction shears relative to other reference lines with the

transformation matrix

1 shx − shx .yref

 1

0 0

0

1

which transforms the coordinates as

x’ =x

y’ = shy (x- xref) + y

Example

Shy = ½ and xref=-1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Two dimensional viewing

The viewing pipeline

A world coordinate area selected for display is called a window. An area on a display

device to which a window mapped is called a view port. The window defines what is to

be viewed the view port defines where it is to be displayed.

The mapping of a part of a world coordinate scene to device coordinate is referred to as

viewing transformation. The two dimensional viewing transformation is referred to as

window to view port transformation of windowing transformation.

A viewing transformation using standard rectangles for the window and viewport

The two dimensional viewing transformation pipeline

The viewing transformation in several steps as indicated in Fig. First, we construct

the scene in world coordinates using the output primitives. Next to obtain a particular

orientation for the window, we can set up a two-dimensional viewing- coordinate system

in the world coordinate plane, and define a window in the viewing- coordinate system.

The viewing- coordinate reference frame is used to provide a method for setting up

arbitrary orientations for rectangular windows. Once the viewing reference frame is

established, we can transform descriptions in world coordinates to viewing coordinates.

We then define a viewport in normalized coordinates (in the range from 0 to 1) and map

the viewing-coordinate description of the scene to normalized coordinates.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

At the final step all parts of the picture that lie outside the viewport are clipped, and the

contents of the viewport are transferred to device coordinates. By changing the position

of the viewport, we can view objects at different positions on the display area of an

output device.

Window to view port coordinate transformation:

A point at position (xw,yw) in a designated window is mapped to viewport coordinates

(xv,yv) so that relative positions in the two areas are the same. The figure illustrates the

window to view port mapping.

A point at position (xw,yw) in the window is mapped into position (xv,yv) in the associated

view port. To maintain the same relative placement in view port as in window

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

xv − xvmin =

xvmax − xvmin

yv − yvmin =
yvmax − yvmin

xw − xwmin

xwmax − xwmin

yw − ywmin

ywmax − ywmin

solving these expressions for view port position (xv,yv)

xv= xv + (xw − xw)

(xvmax − xvmin)

min min xwmax − xwmin

yv= yv + (yw − yw)

(yvmax − yvmin)

min min
ywmax − ywmin

where scaling factors are

sx = xvmax – xvmin sy = yvmax - yvmin

 xwmax – xwmin ywmax - ywmin

The conversion is performed with the following sequence of transformations.

1. Perform a scaling transformation using point position of (xw min, yw min) that

scales the window area to the size of view port.

2. Translate the scaled window area to the position of view port. Relative

proportions of objects are maintained if scaling factor are the same(Sx=Sy).

Otherwise world objects will be stretched or contracted in either the x or y direction when

displayed on output device. For normalized coordinates, object descriptions are mapped

to various display devices.

Any number of output devices can be open in particular application and another

window view port transformation can be performed for each open output device. This

mapping called the work station transformation is accomplished by selecting a window

area in normalized apace and a view port are in coordinates of display device.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Two Dimensional viewing functions

Viewing reference system in a PHIGS application program has following function.

evaluateViewOrientationMatrix(x0,y0,xv,yv,error, viewMatrix)

where x0,y0 are coordinate of viewing origin and parameter xv, yv are the world

coordinate positions for view up vector.An integer error code is generated if the input

parameters are in error otherwise the view matrix for world-to-viewing transformation is

calculated. Any number of viewing transformation matrices can be defined in an

application.

To set up elements of window to view port mapping

evaluateViewMappingMatrix (xwmin, xwmax, ywmin, ywmax, xvmin, xvmax, yvmin,

yvmax, error, viewMappingMatrix)

Here window limits in viewing coordinates are chosen with parameters xwmin, xwmax,

ywmin, ywmax and the viewport limits are set with normalized coordinate positions

xvmin, xvmax, yvmin, yvmax.

The combinations of viewing and window view port mapping for various workstations in

a viewing table with

setViewRepresentation(ws,viewIndex,viewMatrix,viewMappingMatrix,

xclipmin, xclipmax, yclipmin, yclipmax, clipxy)

Where parameter ws designate the output device and parameter view index sets an

integer identifier for this window-view port point. The matrices viewMatrix and

viewMappingMatrix can be concatenated and referenced by viewIndex.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

setViewIndex(viewIndex)

selects a particular set of options from the viewing table.

At the final stage we apply a workstation transformation by selecting a work station

window viewport pair.

setWorkstationWindow (ws, xwsWindmin, xwsWindmax,

ywsWindmin, ywsWindmax)

setWorkstationViewport (ws, xwsVPortmin, xwsVPortmax,

ywsVPortmin, ywsVPortmax)

where was gives the workstation number. Window-coordinate extents are specified in the

range from 0 to 1 and viewport limits are in integer device coordinates.

Clipping operation

Any procedure that identifies those portions of a picture that are inside or outside of a

specified region of space is referred to as clipping algorithm or clipping. The region

against which an object is to be clipped is called clip window.

Algorithm for clipping primitive types:

Line clipping (Straight-line segment)

Curve clipping

Text clipping

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

.

Line Clipping

A line clipping procedure involves several parts. First we test a given line segment

whether it lies completely inside the clipping window. If it does not we try to determine

whether it lies completely outside the window. Finally if we can not identify a line as

completely inside or completely outside, we perform intersection calculations with one or

more clipping boundaries.

Process lines through “inside-outside” tests by checking the line endpoints. A line with

both endpoints inside all clipping boundaries such as line from P1 to P2 is saved. A line

with both end points outside any one of the clip boundaries line P3P4 is outside the

window.

Cohen-Sutherland Line Clipping

This is one of the oldest and most popular line-clipping procedures. The method

speeds up the processing of line segments by performing initial tests that reduce the

number of intersections that must be calculated.

Every line endpoint in a picture is assigned a four digit binary code called a region

code that identifies the location of the point relative to the boundaries of the clipping

rectangle.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Binary region codes assigned to line end points according to relative position with

respect to the clipping rectangle.

Regions are set up in reference to the boundaries. Each bit position in region code is used

to indicate one of four relative coordinate positions of points with respect to clip window:

to the left, right, top or bottom. By numbering the bit positions in the region code as 1

through 4 from right to left, the coordinate regions are corrected with bit positions as

bit 1: left

bit 2: right

bit 3: below

bit4: above

A value of 1 in any bit position indicates that the point is in that relative position.

Otherwise the bit position is set to 0. If a point is within the clipping rectangle the region

code is 0000. A point that is below and to the left of the rectangle has a region code of

0101.

Bit values in the region code are determined by comparing endpoint coordinate

values (x,y) to clip boundaries. Bit1 is set to 1 if x <xwmin.

For programming language in which bit manipulation is possible region-code bit

values can be determined with following two steps.

(1) Calculate differences between endpoint coordinates and clipping boundaries.

(2) Use the resultant sign bit of each difference calculation to set the corresponding value

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

in the region code.

(3) bit 1 is the sign bit of x – xwmin

bit 2 is the sign bit of xwmax - x bit

3 is the sign bit of y – ywmin bit 4

is the sign bit of ywmax - y.

(4) Once we have established region codes for all line endpoints, we can quickly

determine which lines are completely inside the clip window and which are clearly

outside.

(5) Any lines that are completely contained within the window boundaries have a

region code of 0000 for both endpoints, and we accept

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Nicholl-Lee-Nicholl Line clipping

By creating more regions around the clip window, the Nicholl-Lee-Nicholl (or NLN)

algorithm avoids multiple clipping of an individual line segment. In the Cohen-

Sutherland method, multiple intersections may be calculated.These extra intersection

calculations are eliminated in the NLN algorithm by carrying out more region testing

before intersection positions are calculated.

Compared to both the Cohen-Sutherland and the Liang-Barsky algorithms, the

Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions. The trade-off

is that the NLN algorithm can only be applied to two-dimensional dipping, whereas both

the Liang-Barsky and the Cohen-Sutherland methods are easily extended to three-

dimensional scenes.

For a line with endpoints P1 and P2 we first determine the position of point P1,

for the nine possible regions relative to the clipping rectangle. Only the three regions

shown in Fig. need to be considered. If P1 lies in any one of the other six regions, we can

move it to one of the three regions in Fig. using a symmetry transformation. For

example, the region directly above the clip window can be transformed to the region left

of the clip window using a reflection about the line y = -x, or we could use a 90 degree

counterclockwise rotation.

Three possible positions for a line endpoint p1(a) in the NLN algorithm

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Case 1: p1 inside region

Case 2: p1 across edge

Case 3: p1 across corner

Next, we determine the position of P2 relative to P1. To do this, we create some new

regions in the plane, depending on the location of P1. Boundaries of the new regions are

half-infinite line segments that start at the position of P1 and pass through the window

corners. If P1 is inside the clip window and P2 is outside, we set up the four regions

shown in Fig

The four clipping regions used in NLN alg when p1 is inside and p2 outside the clip

window

The intersection with the appropriate window boundary is then carried out,

depending on which one of the four regions (L, T, R, or B) contains P2. If both P1 and P2

are inside the clipping rectangle, we simply save the entire line.

If P1 is in the region to the left of the window, we set up the four regions, L, LT, LR, and

LB, shown in Fig.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

These four regions determine a unique boundary for the line segment. For instance, if P2

is in region L, we clip the line at the left boundary and save the line segment from this

intersection point to P2. But if P2 is in region LT, we save the line segment from the left

window boundary to the top boundary. If P2 is not in any of the four regions, L, LT, LR,

or LB, the entire line is clipped.

For the third case, when P1 is to the left and above the clip window, we usethe clipping

regions in Fig.

Fig : The two possible sets of clipping regions used in NLN algorithm when P1 is

above and to the left of the clip window

In this case, we have the two possibilities shown, depending on the position of P1,

relative to the top left corner of the window. If P2, is in one of the regions T, L, TR, TB,

LR, or LB, this determines a unique clip window edge for the intersection calculations.

Otherwise, the entire line is rejected.

To determine the region in which P2 is located, we compare the slope of the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

line to the slopes of the boundaries of the clip regions. For example, if P1 is left of

the clipping rectangle (Fig. a), then P2, is in region LT if

slopeP1PTR<slopeP1P2<slopeP1PTL

or

yT – y1 < y2 – y1 < yT – y1

xR – x1 x2 – x1 xL – x1

And we clip the entire line if

(yT – y1)(x2 – x1) < (xL – x1) (y2 – y1)

The coordinate difference and product calculations used in the slope tests are

saved and also used in the intersection calculations. From the parametric equations

x = x1 + (x2 – x1)u

y = y1 + (y2 – y1)u

an x-intersection position on the left window boundary is x = xL,, with

u= (xL – x1)/ (x2 – x1) so that the y-intersection position is

y = y1 + y2 – y1 (xL – x1)

x2 – x1

And an intersection position on the top boundary has y = yT and u = (yT – y1)/ (y2 – y1)

with

x = x1 + x2 – x1 (yT – y1)

y2 – y1

POLYGON CLIPPING

To clip polygons, we need to modify the line-clipping procedures. A polygon

boundary processed with a line clipper may be displayed as a series of unconnected line

segments (Fig.), depending on the orientation of the polygon to the clipping window.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Display of a polygon processed by a line clipping algorithm

For polygon clipping, we require an algorithm that will generate one or more closed areas

that are then scan converted for the appropriate area fill. The output of a polygon clipper

should be a sequence of vertices that defines the clipped polygon boundaries.

Sutherland – Hodgeman polygon clipping:

A polygon can be clipped by processing the polygon boundary as a whole against

each window edge. This could be accomplished by processing all polygon vertices

against each clip rectangle boundary.

There are four possible cases when processing vertices in sequence around the

perimeter of a polygon. As each point of adjacent polygon vertices is passed to a window

boundary clipper, make the following tests:

1. If the first vertex is outside the window boundary and second vertex is inside,

both the intersection point of the polygon edge with window boundary and

second vertex are added to output vertex list.

2. If both input vertices are inside the window boundary, only the second vertex

is added to the output vertex list.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3. If first vertex is inside the window boundary and second vertex is outside only

the edge intersection with window boundary is added to output vertex list.

4. If both input vertices are outside the window boundary nothing is added to the

output list.

Clipping a polygon against successive window boundaries.

Successive processing of pairs of polygon vertices against the left window boundary

Clipping a polygon against the left boundary of a window, starting with vertex 1.

Primed numbers are used to label the points in the output vertex list for this window

boundary.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

vertices 1 and 2 are found to be on outside of boundary. Moving along vertex 3 which is

inside, calculate the intersection and save both the intersection point and vertex 3. Vertex

4 and 5 are determined to be inside and are saved. Vertex 6 is outside so we find and save

the intersection point. Using the five saved points we repeat the process for next window

boundary.

Implementing the algorithm as described requires setting up storage for an output list of

vertices as a polygon clipped against each window boundary. We eliminate the

intermediate output vertex lists by simply by clipping individual vertices at each step and

passing the clipped vertices on to the next boundary clipper.

A point is added to the output vertex list only after it has been determined to be inside or

on a window boundary by all boundary clippers. Otherwise the point does not continue in

the pipeline.

A polygon overlapping a rectangular clip window

Processing the vertices of the polygon in the above fig. through a boundary clipping

pipeline. After all vertices are processed through the pipeline, the vertex list is {

v2”, v2’, v3,v3’}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Implementation of Sutherland-Hodgeman Polygon Clipping

typedef enum { Left,Right,Bottom,Top } Edge;

#define N_EDGE 4

#define TRUE 1

#define FALSE 0

int inside(wcPt2 p, Edge b,dcPt wmin,dcPt wmax)

{

switch(b)

{

case Left: if(p.x<wmin.x) return (FALSE); break;

case Right:if(p.x>wmax.x) return (FALSE); break;

case bottom:if(p.y<wmin.y) return (FALSE); break;

case top: if(p.y>wmax.y) return (FALSE); break;

}

return (TRUE);

}

int cross(wcPt2 p1, wcPt2 p2,Edge b,dcPt wmin,dcPt wmax)

{

if(inside(p1,b,wmin,wmax)==inside(p2,b,wmin,wmax))

return (FALSE);

else

return (TRUE);

}

wcPt2 (wcPt2 p1, wcPt2 p2,int b,dcPt wmin,dcPt wmax)

{

wcPt2 iPt;

float m;

if(p1.x!=p2.x)

m=(p1.y-p2.y)/(p1.x-p2.x);

switch(b)

{

case Left:

ipt.x=wmin.x;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ipt.y=p2.y+(wmin.x-p2.x)*m;

break;

case Right:

ipt.x=wmax.x;

ipt.y=p2.y+(wmax.x-p2.x)*m;

break;

case Bottom:
ipt.y=wmin.y;

if(p1.x!=p2.x)

ipt.x=p2.x+(wmin.y-p2.y)/m;

else

ipt.x=p2.x;

break;

case Top:

ipt.y=wmax.y;

if(p1.x!=p2.x)

ipt.x=p2.x+(wmax.y-p2.y)/m;

else

ipt.x=p2.x;

break;

}

return(ipt);

}

void clippoint(wcPt2 p,Edge b,dcPt wmin,dcPt wmax, wcPt2 *pout,int *cnt, wcPt2

*first[],struct point *s)

{

wcPt2 iPt;

if(!first[b])

first[b]=&p;

else

if(cross(p,s[b],b,wmin,wmax))

{

ipt=intersect(p,s[b],b,wmin,wmax);

if(b<top)

clippoint(ipt,b+1,wmin,wmax,pout,cnt,first,s);

else

{

pout[*cnt]=ipt;

(*cnt)++;

}

}
s[b]=p;

if(inside(p,b,wmin,wmax))

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

if(b<top)

clippoint(p,b+1,wmin,wmax,pout,cnt,first,s);

else

{

pout[*cnt]=p;

(*cnt)++;

}

}

void closeclip(dcPt wmin,dcPt wmax, wcPt2 *pout,int *cnt,wcPt2 *first[], wcPt2 *s)

{
wcPt2 iPt;

Edge b;

for(b=left;b<=top;b++)

{
if(cross(s[b],*first[b],b,wmin,wmax))

{

i=intersect(s[b],*first[b],b,wmin,wmax);

if(b<top)

clippoint(i,b+1,wmin,wmax,pout,cnt,first,s);

else

{
pout[*cnt]=i;

(*cnt)++;

}

}

}

}

int clippolygon(dcPt point wmin,dcPt wmax,int n,wcPt2 *pin, wcPt2 *pout)
{

wcPt2 *first[N_EDGE]={0,0,0,0},s[N_EDGE];

int i,cnt=0;

for(i=0;i<n;i++)

clippoint(pin[i],left,wmin,wmax,pout,&cnt,first,s);

closeclip(wmin,wmax,pout,&cnt,first,s);

return(cnt);

}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Curve Clipping

Curve-clipping procedures will involve nonlinear equations, and this requires

more processing than for objects with linear boundaries. The bounding rectangle for a

circle or other curved object can be used first to test for overlap with a rectangular clip

window.

If the bounding rectangle for the object is completely inside the window, we save

the object. If the rectangle is determined to be completely outside the window, we discard

the object. In either case, there is no further computation necessary.

But if the bounding rectangle test fails, we can look for other computation-saving

approaches. For a circle, we can use the coordinate extents of individual quadrants and

then octants for preliminary testing before calculating curve-window intersections.

The below figure illustrates circle clipping against a rectangular window. On the

first pass, we can clip the bounding rectangle of the object against the bounding rectangle

of the clip region. If the two regions overlap, we will need to solve the simultaneous line-

curve equations to obtain the clipping intersection points.

Clipping a filled circle

Text clipping

There are several techniques that can be used to provide text clipping in a graphics

package. The clipping technique used will depend on the methods used to

generate characters and the requirements of a particular application.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The simplest method for processing character strings relative to a window

boundary is to use the all-or-none string-clipping strategy shown in Fig. . If all of the

string is inside a clip window, we keep it. Otherwise, the string is discarded. This

procedure is implemented by considering a bounding rectangle around the text pattern.

The boundary positions of the rectangle are then compared to the window boundaries,

and the string is rejected if there is any overlap. This method produces the fastest text

clipping.

Text clipping using a bounding rectangle about the entire string

An alternative to rejecting an entire character string that overlaps a window

boundary is to use the all-or-none character-clipping strategy. Here we discard only

those characters that are not completely inside the window .In this case, the boundary

limits of individual characters are compared to the window. Any character that either

overlaps or is outside a window boundary is clipped.

A final method for handling text clipping is to clip the components of individual

characters. We now treat characters in much the same way that we treated lines. If an

individual character overlaps a clip window boundary, we clip off the parts of the

character that are outside the window.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Text Clipping performed on the components of individual characters

Exterior clipping:

Procedure for clipping a picture to the interior of a region by eliminating

everything outside the clipping region. By these procedures the inside region of the

picture is saved. To clip a picture to the exterior of a specified region. The picture parts to

be saved are those that are outside the region. This is called as exterior clipping.

Objects within a window are clipped to interior of window when other higher

priority window overlaps these objects. The objects are also clipped to the exterior of

overlapping windows.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT - II THREE-DIMENSIONAL CONCEPTS
Parallel and Perspective projections
Representations – Polygons, Curved lines,Splines, Quadric Surfaces
Visualization of data sets
Viewing –Visible surface identification.

 Three Dimensional

 Three Dimensional Dis

 To obtain a display of a three dimensional scene that has been
modeled in world coordinates, we must setup a co
reference for the ‘camera’.

 This coordinate reference defines the position and orientation for
the plane of the camera film which is the plane we want to use to
display a view of the objects in the

 Object descriptions are then transferred to the camera reference
coordinates and projected onto the selected display

 The objects can be
lighting and surface rendering techniques to shade the visible
surfaces.

Parallel Projection:

 Parallel projection is a method for generating a view of a solid
object is to project points on the object surfa
onto the display plane.

 In parallel projection, parallel lines in the world coordinate scene
project into parallel lines on the two dimensional display

 This technique is used in engineering and architectural drawin
to represent an object with a set of views that maintain relative
proportions of the

DIMENSIONAL CONCEPTS
Parallel and Perspective projections-Three-Dimensional Object

Polygons, Curved lines,Splines, Quadric Surfaces
Visualization of data sets- Three- Transformations – Three- Dimensional

Visible surface identification.

Three Dimensional Concepts

Three Dimensional Display Methods:

obtain a display of a three dimensional scene that has been
modeled in world coordinates, we must setup a co

‘camera’.

This coordinate reference defines the position and orientation for
camera film which is the plane we want to use to

display a view of the objects in the scene.

Object descriptions are then transferred to the camera reference
coordinates and projected onto the selected display plane.

The objects can be displayed in wire frame form, or we can apply
lighting and surface rendering techniques to shade the visible

Parallel projection is a method for generating a view of a solid
object is to project points on the object surface along parallel
onto the display plane.

In parallel projection, parallel lines in the world coordinate scene
project into parallel lines on the two dimensional display

This technique is used in engineering and architectural drawin
to represent an object with a set of views that maintain relative
proportions of the object.

Dimensional Object
Polygons, Curved lines,Splines, Quadric Surfaces-

Dimensional

obtain a display of a three dimensional scene that has been
modeled in world coordinates, we must setup a co-ordinate

This coordinate reference defines the position and orientation for
camera film which is the plane we want to use to

Object descriptions are then transferred to the camera reference
plane.

displayed in wire frame form, or we can apply
lighting and surface rendering techniques to shade the visible

Parallel projection is a method for generating a view of a solid
ce along parallel lines

In parallel projection, parallel lines in the world coordinate scene
project into parallel lines on the two dimensional display planes.

This technique is used in engineering and architectural drawings
to represent an object with a set of views that maintain relative

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Fig. Three parallel projection views of an object, showing

relative proportions from different viewing positions.

Perspective Projection:

 It is a method for generating a view of a three dimensional scene is
to project points to the display plane alone converging

 This makes objects further from the viewing position be displayed
smaller than objects of the same size
position.

 In a perspective projection, parallel lines in a scene that are not
parallel to the display plane are projected into converging

 Scenes displayed using perspective projections appear more
realistic, since this is the way that our eyes and a camera lens
form images.

Depth Cueing:

 Depth information is important to identify the viewing direction,
which is the front and which is

 Depth cueing is a method for indicating depth with wire frame
displays is to vary the intensity of objects according to their
distance from the viewing

 Depth cueing is applied by choosing maximum and minimum
intensity (or color) values and a range of distance over which the
intensities are to vary.

Visible line and surface identification:

 A simplest way to identify the visible line is to highlight the visible
lines or to display them in a different

 Another method is to display the non visible lines as dashed

Surface Rendering:

Fig. Three parallel projection views of an object, showing

relative proportions from different viewing positions.

Projection:

It is a method for generating a view of a three dimensional scene is
to project points to the display plane alone converging paths.

This makes objects further from the viewing position be displayed
smaller than objects of the same size that are nearer to the viewing

In a perspective projection, parallel lines in a scene that are not
parallel to the display plane are projected into converging

Scenes displayed using perspective projections appear more
realistic, since this is the way that our eyes and a camera lens

Depth information is important to identify the viewing direction,
which is the front and which is the back of displayed object.

Depth cueing is a method for indicating depth with wire frame
displays is to vary the intensity of objects according to their
distance from the viewing position.

Depth cueing is applied by choosing maximum and minimum
intensity (or color) values and a range of distance over which the

vary.

Visible line and surface identification:

A simplest way to identify the visible line is to highlight the visible
lines or to display them in a different color.

Another method is to display the non visible lines as dashed

Fig. Three parallel projection views of an object, showing

It is a method for generating a view of a three dimensional scene is
paths.

This makes objects further from the viewing position be displayed
that are nearer to the viewing

In a perspective projection, parallel lines in a scene that are not
parallel to the display plane are projected into converging lines.

Scenes displayed using perspective projections appear more
realistic, since this is the way that our eyes and a camera lens

Depth information is important to identify the viewing direction,
object.

Depth cueing is a method for indicating depth with wire frame
displays is to vary the intensity of objects according to their

Depth cueing is applied by choosing maximum and minimum
intensity (or color) values and a range of distance over which the

A simplest way to identify the visible line is to highlight the visible

Another method is to display the non visible lines as dashed lines.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Realism is attained in displays by setting the surface intensity of
objects according to the lighting conditions in the scene and
surface characteristic

 Lighting conditions include the intensity and positions of light
sources and the background

 Surface characteristics include degree of transparency and how
rough or smooth the surfaces are to

Exploded and Cutaway views:

 Exploded and cutaway views of objects can be to show the internal
structure and relationship of the objects

 An alternative to exploding an object into its component parts is
the cut away view which removes part of the visible surfaces to
show internal structure.

Three-dimensional and Stereoscopic Views:

 In Stereoscopic views, three dimensional views can be obtained by
reflecting a raster image from a vibrating flexible mirror.

 The vibrations of the mirror are synchronized with the
the scene on the CRT.

 As the mirror vibrates, the focal length varies so that each point in
the scene is projected to a position corresponding to its

 Stereoscopic devices present two views of a scene; one for the left
eye and the other for the right

 The two views are generated by selecting viewing positions that
corresponds to the two eye positions of a single

 These two views can be displayed on alternate refresh cycles of a
raster monitor, and viewed throug
first one lens then the other in synchronization with the monitor
refresh cycles.

 Three Dimensional Graphics

 The 3D package must include methods for mapping scene
descriptions onto a flat viewing

 There should be some consideration on how surfaces of solid
objects are to be modeled, how visible surfaces can be identified,
how transformations of objects are preformed in space, and how to
describe the additional spatial

 World coordinate descriptions are extended to 3D, and users are
provided with output and input routines accessed with
specifications such

o Polyline3(n,

Realism is attained in displays by setting the surface intensity of
objects according to the lighting conditions in the scene and
surface characteristics.

Lighting conditions include the intensity and positions of light
sources and the background illumination.

Surface characteristics include degree of transparency and how
rough or smooth the surfaces are to be.

Exploded and Cutaway views:

Exploded and cutaway views of objects can be to show the internal
structure and relationship of the objects parts.

An alternative to exploding an object into its component parts is
the cut away view which removes part of the visible surfaces to

structure.

dimensional and Stereoscopic Views:

In Stereoscopic views, three dimensional views can be obtained by
reflecting a raster image from a vibrating flexible mirror.

The vibrations of the mirror are synchronized with the
CRT.

As the mirror vibrates, the focal length varies so that each point in
the scene is projected to a position corresponding to its depth.

Stereoscopic devices present two views of a scene; one for the left
other for the right eye.

The two views are generated by selecting viewing positions that
corresponds to the two eye positions of a single viewer.

These two views can be displayed on alternate refresh cycles of a
raster monitor, and viewed through glasses that alternately darken
first one lens then the other in synchronization with the monitor

Three Dimensional Graphics Packages

The 3D package must include methods for mapping scene
descriptions onto a flat viewing surface.

There should be some consideration on how surfaces of solid
objects are to be modeled, how visible surfaces can be identified,
how transformations of objects are preformed in space, and how to
describe the additional spatial properties.

inate descriptions are extended to 3D, and users are
provided with output and input routines accessed with
specifications such as

Polyline3(n, WcPoints)

Realism is attained in displays by setting the surface intensity of
objects according to the lighting conditions in the scene and

Lighting conditions include the intensity and positions of light

Surface characteristics include degree of transparency and how

Exploded and cutaway views of objects can be to show the internal

An alternative to exploding an object into its component parts is
the cut away view which removes part of the visible surfaces to

In Stereoscopic views, three dimensional views can be obtained by

The vibrations of the mirror are synchronized with the display of

As the mirror vibrates, the focal length varies so that each point in
depth.

Stereoscopic devices present two views of a scene; one for the left

The two views are generated by selecting viewing positions that

These two views can be displayed on alternate refresh cycles of a
h glasses that alternately darken

first one lens then the other in synchronization with the monitor

The 3D package must include methods for mapping scene

There should be some consideration on how surfaces of solid
objects are to be modeled, how visible surfaces can be identified,
how transformations of objects are preformed in space, and how to

inate descriptions are extended to 3D, and users are
provided with output and input routines accessed with

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

o Text3(WcPoint, string)

o Getlocator3(WcPoint)

o Translate3(translateVector, matrix

Where points and vectors are specified with 3 components and
transformation matrices have 4 rows and 4

 Three Dimensional Object

Representation schemes for solid objects
categories as follows:

1. Boundary Representation (

It describes a three dimensional object as a set of surfaces that
separate the object interior from the environment. Examples are
polygon facets and spline patches.

2. Space Partitioning

It describes the interior properti
region containing an object into a set of small, nonoverlapping,
contiguous solids (usually cubes).

Eg: Octree Representation

 Polygon Surfaces

Polygon surfaces are boundary representations for a 3D graphics
object is a set of polygons that enclose the object interior.

Polygon Tables

 The polygon surface is specified with a set of vertex coordinates
and associated attribute

 For each polygon input, the data are placed into tables that are to
be used in the subsequent

 Polygon data tables can be organized into two groups: Geometric
tables and attribute

Geometric Tables

Contain vertex coordinates and parameters to identify the spatial
orientation of the polygon surfaces.

Attribute tables

Contain attribute information for an object such as parameters
specifying the degree of transparency of the object and its surface
reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three
lists:

1. The Vertex Table

Coordinate values for each vertex in the object are stored in
this table.

Text3(WcPoint, string)

Getlocator3(WcPoint)

Translate3(translateVector, matrix Translate)

Where points and vectors are specified with 3 components and
transformation matrices have 4 rows and 4 columns.

Three Dimensional Object Representations

schemes for solid objects are divided
follows:

presentation (B-reps)

It describes a three dimensional object as a set of surfaces that
separate the object interior from the environment. Examples are
polygon facets and spline patches.

Space Partitioning representation

It describes the interior properties, by partitioning the spatial
region containing an object into a set of small, nonoverlapping,
contiguous solids (usually cubes).

Eg: Octree Representation

Polygon surfaces are boundary representations for a 3D graphics
of polygons that enclose the object interior.

The polygon surface is specified with a set of vertex coordinates
and associated attribute parameters.

For each polygon input, the data are placed into tables that are to
ubsequent processing.

Polygon data tables can be organized into two groups: Geometric
tables and attribute tables.

Contain vertex coordinates and parameters to identify the spatial
orientation of the polygon surfaces.

Contain attribute information for an object such as parameters
specifying the degree of transparency of the object and its surface
reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three

Table

Coordinate values for each vertex in the object are stored in

Where points and vectors are specified with 3 components and

divided into two

It describes a three dimensional object as a set of surfaces that
separate the object interior from the environment. Examples are

es, by partitioning the spatial
region containing an object into a set of small, nonoverlapping,

Polygon surfaces are boundary representations for a 3D graphics

The polygon surface is specified with a set of vertex coordinates

For each polygon input, the data are placed into tables that are to

Polygon data tables can be organized into two groups: Geometric

Contain vertex coordinates and parameters to identify the spatial

Contain attribute information for an object such as parameters
specifying the degree of transparency of the object and its surface

A convenient organization for storing geometric data is to create three

Coordinate values for each vertex in the object are stored in

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. The Edge Table

It contains pointers back into the vertex table to identify the
vertices for each polygon edge.

3. The Polygon Table

It contains pointers
edges for each polygon.

This is shown in fig

Vertex table

V1 : X1, Y1, Z1

V2 : X2, Y2, Z2

V3 : X3, Y3, Z3

V4 : X4, Y4, Z4

V5 : X5, Y5, Z5

 Listing the geometric data in three tables provides a convenient
reference to the individual components (vertices,
polygons) of each

 The object can be displayed efficiently by using data from the edge
table to draw the component

 Extra information can be added to the data tables for
information extraction.

Table

It contains pointers back into the vertex table to identify the
vertices for each polygon edge.

Table

It contains pointers back into the edge table to identify the
edges for each polygon.

This is shown in fig

Edge Table Polygon surface table

E1 : V1, V2 S1 : E1, E2, E3

E2 : V2, V3 S2 : E3, E4, E5

E3 : V3, V1

E4 : V3, V4

E5 : V4, V5

E6 : V5, V1

Listing the geometric data in three tables provides a convenient
reference to the individual components (vertices,

 object.

The object can be displayed efficiently by using data from the edge
table to draw the component lines.

Extra information can be added to the data tables for
extraction. For instance, edge table can be

It contains pointers back into the vertex table to identify the

back into the edge table to identify the

Polygon surface table

3

5, E6

Listing the geometric data in three tables provides a convenient
reference to the individual components (vertices, edges and

The object can be displayed efficiently by using data from the edge

Extra information can be added to the data tables for faster
be expanded

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

to include forward points into the polygon table so that common
edges between polygons can be identified more rapidly.

 This is useful for the rendering procedure that must vary surface
shading smoothly across the edges from one polygon to the next.
Similarly, the vertex table can be expanded so that vertices are
cross-referenced to corresponding edges.

 Additional geometric information that is stored in the data tables
includes the slope for each edge and the coordinate extends for
each polygon. As vertices are input, we can calculate edge slopes
and we can scan the coordinate values to identify the minimum
and maximum x, y and z values for individual

 The more information included in the data tables will be easier to
check for errors.

 Some of the tests that could be performed by a graphics package
are:

1. That every vertex is listed as an endpoint for
edges.

2. That every edge is part of at least one

3. That every polygon is

4. That each polygon has at least one shared

5. That if the edge table contains pointers to polygons, every
edge referenced by a polygon pointer has a
pointer back to the

Plane Equations:

 To produce a display of a 3D object, we must process the input data
representation for the object through several procedures such

- Transformation
descriptions to viewing

- Then to device

- Identification of visible surfaces

- The application of surface

 For these processes,
orientation of the individual

to include forward points into the polygon table so that common
edges between polygons can be identified more rapidly.

E1 : V1, V2, S1

E2 : V2, V3, S1

E3 : V3, V1, S1, S2

E4 : V3, V4, S2

E5 : V4, V5, S2

E6 : V5, V1, S2

This is useful for the rendering procedure that must vary surface
shading smoothly across the edges from one polygon to the next.
Similarly, the vertex table can be expanded so that vertices are

referenced to corresponding edges.

geometric information that is stored in the data tables
includes the slope for each edge and the coordinate extends for
each polygon. As vertices are input, we can calculate edge slopes
and we can scan the coordinate values to identify the minimum

mum x, y and z values for individual polygons.

The more information included in the data tables will be easier to

Some of the tests that could be performed by a graphics package

That every vertex is listed as an endpoint for at least two

That every edge is part of at least one polygon.

That every polygon is closed.

That each polygon has at least one shared edge.

That if the edge table contains pointers to polygons, every
edge referenced by a polygon pointer has a
pointer back to the polygon.

produce a display of a 3D object, we must process the input data
representation for the object through several procedures such

Transformation of the modeling and world
ons to viewing coordinates.

Then to device coordinates:

Identification of visible surfaces

The application of surface-rendering procedures.

processes, we need information about the
individual surface components of the object.

to include forward points into the polygon table so that common

This is useful for the rendering procedure that must vary surface
shading smoothly across the edges from one polygon to the next.
Similarly, the vertex table can be expanded so that vertices are

geometric information that is stored in the data tables
includes the slope for each edge and the coordinate extends for
each polygon. As vertices are input, we can calculate edge slopes
and we can scan the coordinate values to identify the minimum

The more information included in the data tables will be easier to

Some of the tests that could be performed by a graphics package

at least two

edge.

That if the edge table contains pointers to polygons, every
edge referenced by a polygon pointer has a reciprocal

produce a display of a 3D object, we must process the input data
representation for the object through several procedures such as,

 coordinate

the spatial
object. This

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

information is obtained from the vertex coordinate value and the
equations that describe the polygon planes.

The equation for a plane surface is

Ax + By+ Cz + D

Where (x, y, z) is any point on the plane, and the coeffic
and D are constants describing the spatial properties of the plane.

 We can obtain the values of A, B,C and D by solving a set of three
plane equations using the coordinate values for three non collinear
points in the plane.

 For that, we can select three successive polygon vertices (x
(x2, y2, z2) and (x
simultaneous linear plane equations for the ratios A/D, B/D and
C/D.

(A/D)xk + (B/D)y

 The solution for this set of equations can be obtained in determinant
form, using Cramer’s rule

 1 y1 z1

A = 1 y2 z2

 1 y3 z3

x1

y1

1

C = x2 y2 1

 x3 y3 1

 Expanding the determinants , we can write the calculations for the
plane coefficients in the

A = y1 (z2 –z3

B = z1 (x2 -x

C = x1 (y2 –y

D = -x1 (y2 z

 As vertex values and other information are entered into the
polygon data structure, values for A, B, C and D are computed for
each polygon and stored with the other polygon

 Plane equations are used
points relative to the plane surfaces of an object. For any point (x,
y, z) hot on a plane with parameters A,B,C,D, we

Ax + By + Cz + D

information is obtained from the vertex coordinate value and the
equations that describe the polygon planes.

The equation for a plane surface is

Ax + By+ Cz + D = 0 -------- (1)

Where (x, y, z) is any point on the plane, and the coefficients A,B,C
and D are constants describing the spatial properties of the plane.

We can obtain the values of A, B,C and D by solving a set of three
plane equations using the coordinate values for three non collinear

plane.

can select three successive polygon vertices (x
) and (x3, y3, z3) and solve the following set of

simultaneous linear plane equations for the ratios A/D, B/D and

+ (B/D)yk + (c/D)zk = -1, k=1,2,3

for this set of equations can be obtained in determinant
form, using Cramer’s rule as

 x1 1 z1

B = x2 1 z2

 x3 1 z3

x1

y1

z1

D = - x2 y2 z2 -----------------

 x3 y3 z3

determinants , we can write the calculations for the
plane coefficients in the form:

3) + y2(z3 –z1) + y3 (z1 –z2)

x3) + z2 (x3 -x1) + z3 (x1 -x2)

y3) + x2 (y3 –y1) + x3 (y1 -y2)

z3 -y3 z2) - x2 (y3 z1 -y1 z3) - x3 (y1 z2 -y2

As vertex values and other information are entered into the
polygon data structure, values for A, B, C and D are computed for
each polygon and stored with the other polygon data.

Plane equations are used also to identify the position of spatial
points relative to the plane surfaces of an object. For any point (x,
y, z) hot on a plane with parameters A,B,C,D, we have

Ax + By + Cz + D ≠ 0

information is obtained from the vertex coordinate value and the

ients A,B,C
and D are constants describing the spatial properties of the plane.

We can obtain the values of A, B,C and D by solving a set of three
plane equations using the coordinate values for three non collinear

can select three successive polygon vertices (x1, y1, z1),
) and solve the following set of

simultaneous linear plane equations for the ratios A/D, B/D and

k=1,2,3 -------- (2)

for this set of equations can be obtained in determinant

----------------- (3)

determinants , we can write the calculations for the

 z1) ------ (4)

As vertex values and other information are entered into the
polygon data structure, values for A, B, C and D are computed for

also to identify the position of spatial
points relative to the plane surfaces of an object. For any point (x,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

We can identify the point as either inside or outside the
surface according o the sigh (negative or positive) of Ax + By + Cz +
D:

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the
surface.

If Ax + By + Cz + D > 0, the point (x, y, z) is outside the
surface.

 These inequality tests are valid i
system, provided the plane parmeters A,B,C and D were calculated
using vertices selected in a counter clockwise order when viewing
the surface in an outside

Polygon Meshes

 A single plane surface can be
fillArea. But when object surfaces are to be tiled, it is more
convenient to specify the surface facets with a mesh function.

 One type of polygon mesh is the triangle strip.A triangle strip
formed with 11 triangles c

This function
 the coordinates for n

 Another similar function in the quadrilateral mesh, which generates
a mesh of (n-1) by (m
n by m array of vertices. Figure shows 20 vertices forming a mesh
of 12 quadrilaterals.

We can identify the point as either inside or outside the
surface according o the sigh (negative or positive) of Ax + By + Cz +

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the

If Ax + By + Cz + D > 0, the point (x, y, z) is outside the

These inequality tests are valid in a right handed Cartesian
system, provided the plane parmeters A,B,C and D were calculated
using vertices selected in a counter clockwise order when viewing
the surface in an outside-to-inside direction.

A single plane surface can be specified with a function such as
fillArea. But when object surfaces are to be tiled, it is more
convenient to specify the surface facets with a mesh function.

One type of polygon mesh is the triangle strip.A triangle strip
formed with 11 triangles connecting 13 vertices.

function produces n-2 connected triangles
coordinates for n vertices.

Another similar function in the quadrilateral mesh, which generates
1) by (m-1) quadrilaterals, given the coordinates for an

n by m array of vertices. Figure shows 20 vertices forming a mesh
quadrilaterals.

We can identify the point as either inside or outside the plane
surface according o the sigh (negative or positive) of Ax + By + Cz +

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the

If Ax + By + Cz + D > 0, the point (x, y, z) is outside the

n a right handed Cartesian
system, provided the plane parmeters A,B,C and D were calculated
using vertices selected in a counter clockwise order when viewing

specified with a function such as
fillArea. But when object surfaces are to be tiled, it is more
convenient to specify the surface facets with a mesh function.

One type of polygon mesh is the triangle strip.A triangle strip

triangles given

Another similar function in the quadrilateral mesh, which generates
coordinates for an

n by m array of vertices. Figure shows 20 vertices forming a mesh

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

[Type text]

 Curved Lines and

 Displays of three dimensional curved lines and surface can be
generated from an input set of
objects or from a set of user specified data
functional description in decorated to produce a polygon
approximation to the

 Quadric Surfaces

 The quadric surfaces are described with
(quadratics).

 They include spheres, ellipsoids, tori, parabolids, and hyperboloids.

Sphere

 In Cartesian coordinates, a spherical surface with radius r centered
on the coordinates origin is defined as the set of points (x, y
satisfy the equation.

x2 + y

 The spherical surface can be represented in parametric form by
using latitude and longitude

Curved Lines and Surfaces

Displays of three dimensional curved lines and surface can be
generated from an input set of mathematical functions defining the
objects or from a set of user specified data points for surfaces, a
functional description in decorated to produce a polygon
approximation to the surface.

The quadric surfaces are described with second degree equations

They include spheres, ellipsoids, tori, parabolids, and hyperboloids.

In Cartesian coordinates, a spherical surface with radius r centered
on the coordinates origin is defined as the set of points (x, y

equation.

+ y2 + z2 = r2 --

The spherical surface can be represented in parametric form by
using latitude and longitude angles

Displays of three dimensional curved lines and surface can be
mathematical functions defining the

for surfaces, a
functional description in decorated to produce a polygon-mesh

second degree equations

They include spheres, ellipsoids, tori, parabolids, and hyperboloids.

In Cartesian coordinates, a spherical surface with radius r centered
on the coordinates origin is defined as the set of points (x, y, z) that

 (1)

The spherical surface can be represented in parametric form by

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

[Type text]

x

rx

2

x = r cosφ cosθ,

y = r cosφ sinθ,

z = rsinφ

 The parameter representation in eqn (2) provides a symmetric
range for the angular parameter θ and

Ellipsoid

 Ellipsoid surface is an extension of a spherical surface where the
radius in three mutually perpendicular directions can have
different values The Cartesian representation for points over the
surface of an ellipsoid centered on the origin is

+

 The parametric representation for the ellipsoid in terms of
latitude angle φ and the longitude angle θ

x = rx

y = ry

z = rz

 Spline Representations

 A Spline is a flexible strip used to produce a
a designated set of

 Several small weights are distributed along the length of the strip
to hold it in position on the drafting table as the curve is

y

ry

2

z

rz

2

x = r cosφ cosθ, -л/2 <= φ<= л/2

y = r cosφ sinθ, -л <= φ <= л -------(2)

z = rsinφ

The parameter representation in eqn (2) provides a symmetric
range for the angular parameter θ and φ.

Ellipsoid surface is an extension of a spherical surface where the
radius in three mutually perpendicular directions can have

The Cartesian representation for points over the
an ellipsoid centered on the origin is

 + = 1

The parametric representation for the ellipsoid in terms of
latitude angle φ and the longitude angle θ is

x cosφ cosθ, -л/2 <= φ <= л/2

y cosφ sinθ, -л <= φ <= л

z sinφ

Representations

A Spline is a flexible strip used to produce a smooth curve through
a designated set of points.

Several small weights are distributed along the length of the strip
to hold it in position on the drafting table as the curve is

(2)

The parameter representation in eqn (2) provides a symmetric

Ellipsoid surface is an extension of a spherical surface where the
radius in three mutually perpendicular directions can have

The Cartesian representation for points over the

The parametric representation for the ellipsoid in terms of the

smooth curve through

Several small weights are distributed along the length of the strip
to hold it in position on the drafting table as the curve is drawn.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 The Spline curve refers to any sections curve formed with
polynomial sections satisfying specified continuity conditions at
the boundary of the

 A Spline surface can be described with two sets of orthogonal
spline curves.

 Splines are used
surface shapes, to

The Spline curve refers to any sections curve formed with
polynomial sections satisfying specified continuity conditions at
the boundary of the pieces.

A Spline surface can be described with two sets of orthogonal

Splines are used in graphics applications to design curve and
to digitize drawings for computer storage,

The Spline curve refers to any sections curve formed with
polynomial sections satisfying specified continuity conditions at

A Spline surface can be described with two sets of orthogonal

in graphics applications to design curve and
storage, and to

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

specify animation paths for the objects or the camera in the scene.
CAD applications for splines include the design of automobiles
bodies, aircraft and spacecraft surfaces, and ship hulls.

Interpolation and Approximation Splines

 Spline curve can be specified
control points which indicates the general shape of the

 These control points
parametric polynomial functions in one of the two

1. When polynomial sections are fitted
through each control point the resulting curve is said
interpolate the set of control

A set of six control points interpolated with piecewise

2. When the polynomials are fitted to the
path without necessarily passing through any control points,
the resulting curve is said to approximate the set of control
points.

A set of six control points approximated with piecewise

 Interpolation curves are used to digitize drawings or to specify
animation paths.

 Approximation curves are used as design tools to structure object
surfaces.

animation paths for the objects or the camera in the scene.
CAD applications for splines include the design of automobiles
bodies, aircraft and spacecraft surfaces, and ship hulls.

Interpolation and Approximation Splines

Spline curve can be specified by a set of coordinate positions called
control points which indicates the general shape of the curve.

points are fitted with piecewise continuous
parametric polynomial functions in one of the two ways.

When polynomial sections are fitted so that the curve passes
through each control point the resulting curve is said
interpolate the set of control points.

A set of six control points interpolated with piecewise
continuous polynomial sections

When the polynomials are fitted to the general control point
path without necessarily passing through any control points,
the resulting curve is said to approximate the set of control

A set of six control points approximated with piecewise
continuous polynomial sections

olation curves are used to digitize drawings or to specify

Approximation curves are used as design tools to structure object

animation paths for the objects or the camera in the scene.
CAD applications for splines include the design of automobiles

by a set of coordinate positions called
curve.

continuous

so that the curve passes
through each control point the resulting curve is said to

A set of six control points interpolated with piecewise

general control point
path without necessarily passing through any control points,
the resulting curve is said to approximate the set of control

A set of six control points approximated with piecewise

olation curves are used to digitize drawings or to specify

Approximation curves are used as design tools to structure object

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

A spline curve is designed, modified and manipulated with
operations on the control poi
rotated or scaled with transformation applied to the control points.

 The convex polygon boundary that encloses a set of control points
is called the convex

 The shape of the convex hull is to imagine a rubber
around the position of the control points so that each control point
is either on the perimeter of the hull or inside

Convex hull shapes (dashed lines) for two sets of control points

Parametric Continuity Conditions

For a smooth transition from one section of a piecewise parametric
curve to the next various continuity conditions are needed at the
connection points.

If each section of a spline in described with a set of parametric
coordinate functions or the form

x = x(u), y =

 We set parametric
derivatives of adjoining curve sections at their common

 Zero order parametric continuity referred to as C
means that the curves meet.
at u2 for the first curve section are equal. Respectively, to the value
of x,y, and z evaluated at u

 First order parametric continuity referred to as C
the first parametric derivatives of the coordinate functions in equation (a)
for two successive curve sections are

A spline curve is designed, modified and manipulated with
operations on the control points.The curve can be translated,
rotated or scaled with transformation applied to the control points.

The convex polygon boundary that encloses a set of control points
is called the convex hull.

The shape of the convex hull is to imagine a rubber band stretched
around the position of the control points so that each control point
is either on the perimeter of the hull or inside it.

Convex hull shapes (dashed lines) for two sets of control points

Parametric Continuity Conditions

transition from one section of a piecewise parametric
curve to the next various continuity conditions are needed at the
connection points.

If each section of a spline in described with a set of parametric
coordinate functions or the form

x = x(u), y = y(u), z = z(u), u1<= u <= u2 -------------

parametric continuity by matching the parametric
derivatives of adjoining curve sections at their common boundary.

Zero order parametric continuity referred to as C0

means that the curves meet. (i.e) the values of x,y, and z evaluated
for the first curve section are equal. Respectively, to the value

of x,y, and z evaluated at u1 for the next curve section.

First order parametric continuity referred to as C1 continuity means that
arametric derivatives of the coordinate functions in equation (a)

for two successive curve sections are

A spline curve is designed, modified and manipulated with
nts.The curve can be translated,

rotated or scaled with transformation applied to the control points.

The convex polygon boundary that encloses a set of control points

band stretched
around the position of the control points so that each control point

Convex hull shapes (dashed lines) for two sets of control points

transition from one section of a piecewise parametric
curve to the next various continuity conditions are needed at the

If each section of a spline in described with a set of parametric

------------- (a)

parametric
boundary.

0 continuity,
(i.e) the values of x,y, and z evaluated

for the first curve section are equal. Respectively, to the value

continuity means that
arametric derivatives of the coordinate functions in equation (a)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

equal at their joining

 Second order parametric continuity, or C2 continuity means that
both the first and second parametric derivatives of
sections are equal at their

 Higher order parametric continuity conditions are defined similarly.

Piecewise construction of a curve by joining two curve segments
using different orders of continuity

a) Zero order continuity

b) First order continuity

c) Second order continuity

Geometric Continuity Conditions

 To specify conditions for geometric continuity is an alternate
method for joining two successive curve sections.

equal at their joining point.

Second order parametric continuity, or C2 continuity means that
both the first and second parametric derivatives of the two curve
sections are equal at their intersection.

Higher order parametric continuity conditions are defined similarly.

Piecewise construction of a curve by joining two curve segments
using different orders of continuity

order continuity only

First order continuity only

Second order continuity only

Geometric Continuity Conditions

specify conditions for geometric continuity is an alternate
method for joining two successive curve sections.

Second order parametric continuity, or C2 continuity means that
the two curve

Higher order parametric continuity conditions are defined similarly.

Piecewise construction of a curve by joining two curve segments

specify conditions for geometric continuity is an alternate

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 The parametric derivatives of the two sections should
proportional to each other at their common boundary instead of
equal to each other.

 Zero order Geometric continuity referred as G
that the two curves sections must have the same
position at the boundary

 First order Geometric Continuity referred as G
that the parametric first derivatives are proportional at the
interaction of two successive

 Second order Geometric continuity
that both the first and second parametric derivatives of the two
curve sections are proportional at their boundary. Here the
curvatures of two sections will match at the joining

Three control points fitted with

parametric continuity

b) geometric continuity where the tangent vector of curve C
point p1 has a greater magnitude than the tangent vector of curve
C1 at p1.

Spline specifications

There are three methods to spe

1. We can state the set of boundary conditions that are imposed on the
spline; (or)

2. We can state the matrix that characterizes the spline; (or)

3. We can state the set of blending functions that determine how
specified geometric con
positions along the curve

The parametric derivatives of the two sections should
proportional to each other at their common boundary instead of

other.

Zero order Geometric continuity referred as G0 continuity means
that the two curves sections must have the same
position at the boundary point.

First order Geometric Continuity referred as G1 continuity means
that the parametric first derivatives are proportional at the
interaction of two successive sections.

Second order Geometric continuity referred as G2 continuity means
that both the first and second parametric derivatives of the two
curve sections are proportional at their boundary. Here the
curvatures of two sections will match at the joining position.

Three control points fitted with two curve sections joined with a)

parametric continuity

b) geometric continuity where the tangent vector of curve C3

point p1 has a greater magnitude than the tangent vector of curve

There are three methods to specify a spline representation:

We can state the set of boundary conditions that are imposed on the

We can state the matrix that characterizes the spline; (or)

We can state the set of blending functions that determine how
specified geometric constraints on the curve are combined to calculate
positions along the curve path.

The parametric derivatives of the two sections should be
proportional to each other at their common boundary instead of

continuity means
 coordinate

continuity means
that the parametric first derivatives are proportional at the

continuity means
that both the first and second parametric derivatives of the two
curve sections are proportional at their boundary. Here the

position.

two curve sections joined with a)

3 at
point p1 has a greater magnitude than the tangent vector of curve

cify a spline representation:

We can state the set of boundary conditions that are imposed on the

We can state the set of blending functions that determine how
straints on the curve are combined to calculate

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To illustrate these three equivalent specifications, suppose we have the
following parametric cubic polynomial representation for the x
coordinate along the path of a spline

x(u)=axu3 + a

Boundary conditions for this curve might be set on the

endpoint coordinates x(
at the endpoints x’(0) and x’(1). These boundary conditions are sufficient

to determine the values of the four coordinates a

From the boundary conditions we can obtain the matrix that
characterizes this spline curve by first rewriting eq(1) as the matrix
product

x(u) = [u3 u2 u 1]

where U is the row
coefficient column matrix.

 Using equation (2) we can write the boundary conditions in matrix
form and solve for the coefficient matrix C

C = Mspline .

Where Mgeom in a four element column matrix containing the geometric
constraint values on the spline and M
transforms the geometric constraint values to the polynomial coefficients
and provides a characterization for the spline curve.

 Matrix Mgeom contains control point coordinate values and other
geometric constraints.

 We can substitute th
to obtain.

x (u) = U . M

 The matrix Mspline,

the basis matriz is useful for transforming from one spline
representation to

 Finally we can expand equation (4) to obtain a polynomial
representation for coordinate x in terms of the geometric
constraint parameters.

x(u) =

where gk are the constraint parameters, such as the control point

illustrate these three equivalent specifications, suppose we have the
following parametric cubic polynomial representation for the x
coordinate along the path of a spline section.

+ axu2 + cxu + dx 0<= u <=1 ------------

Boundary conditions for this curve might be set on the

endpoint coordinates x(0) and x(1) and on the parametric first derivatives
at the endpoints x’(0) and x’(1). These boundary conditions are sufficient

to determine the values of the four coordinates ax, bx, cx and dx

From the boundary conditions we can obtain the matrix that
racterizes this spline curve by first rewriting eq(1) as the matrix

u 1]
 = U.C

row matrix of power of parameter u and C is
coefficient column matrix.

equation (2) we can write the boundary conditions in matrix
form and solve for the coefficient matrix C as

 Mgeom --

in a four element column matrix containing the geometric
constraint values on the spline and Mspline in the 4 * 4 matrix that
transforms the geometric constraint values to the polynomial coefficients
and provides a characterization for the spline curve.

contains control point coordinate values and other
constraints.

We can substitute the matrix representation for C into equation (2)

x (u) = U . Mspline . Mgeom --

spline, characterizing a spline representation, called
the basis matriz is useful for transforming from one spline
representation to another.

Finally we can expand equation (4) to obtain a polynomial
representation for coordinate x in terms of the geometric

parameters.

x(u) = ∑ gk. BFk(u)

are the constraint parameters, such as the control point

ax

bx

cx

dx

illustrate these three equivalent specifications, suppose we have the
following parametric cubic polynomial representation for the x

------------ (1)

Boundary conditions for this curve might be set on the

0) and x(1) and on the parametric first derivatives
at the endpoints x’(0) and x’(1). These boundary conditions are sufficient

x.

From the boundary conditions we can obtain the matrix that
racterizes this spline curve by first rewriting eq(1) as the matrix

and C is the

equation (2) we can write the boundary conditions in matrix

-- (3)

in a four element column matrix containing the geometric
matrix that

transforms the geometric constraint values to the polynomial coefficients

contains control point coordinate values and other

e matrix representation for C into equation (2)

---------------- (4)

characterizing a spline representation, called
the basis matriz is useful for transforming from one spline

Finally we can expand equation (4) to obtain a polynomial
representation for coordinate x in terms of the geometric

are the constraint parameters, such as the control point

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

coordinates and slope of the curve at the control points and BF
the polynomial blending

 Visualization of Data

 The use of graphical methods as an aid in scientific and
engineering analysis is commonly referred to as scientific
visualization.

 This involves the visualization of data sets and processes that may
be difficult or impossible to analyze without graphical methods.
Example medical scanners, satellite and spacecraft scanners

Visualization techniques are useful for analyzing process tha
occur over a long period of time or that cannot observed directly.
Example quantum mechanical phenomena and special relativity
effects produced by objects traveling near the speed of

 Scientific visualization is used to visually display ,
manipulate information to allow better understanding of the

 Similar methods employed by commerce, industry and other
nonscientific areas are sometimes referred to as business
visualization.

 Data sets are classified according
or 3D) and according to data type (scalars , vectors , tensors and
multivariate data

Visual Representations for Scalar Fields

 A scalar quantity is one that has a single value. Scalar data sets
contain values th
spatial positions also the values may be functions of other scalar
parameters. Examples of physical scalar quantities are energy,
density, mass , temperature and water

 A common method for visualizi
or charts that show the distribution of data values as a function of
other parameters such as position and

 Pseudo-color methods are also used to distinguish different
values in a scalar data set, and color coding techniques can be
combined with graph and chart models.
set we choose a range of colors and map the range of data values to
the color range. Color coding a data set can be tricky b
color combinations can lead to misinterpretations of the data.

 Contour plots are used to display isolines (lines of constant scalar
value) for a data set distributed over a surface. The isolines are

of the curve at the control points and BF
the polynomial blending functions.

Visualization of Data Sets

The use of graphical methods as an aid in scientific and
engineering analysis is commonly referred to as scientific

This involves the visualization of data sets and processes that may
be difficult or impossible to analyze without graphical methods.
Example medical scanners, satellite and spacecraft scanners

Visualization techniques are useful for analyzing process tha
occur over a long period of time or that cannot observed directly.
Example quantum mechanical phenomena and special relativity
effects produced by objects traveling near the speed of light.

Scientific visualization is used to visually display , enhance and
manipulate information to allow better understanding of the

Similar methods employed by commerce, industry and other
nonscientific areas are sometimes referred to as business

Data sets are classified according to their spatial distribution (2D
or 3D) and according to data type (scalars , vectors , tensors and

).

Visual Representations for Scalar Fields

A scalar quantity is one that has a single value. Scalar data sets
contain values that may be distributed in time as well as over
spatial positions also the values may be functions of other scalar
parameters. Examples of physical scalar quantities are energy,
density, mass , temperature and water content.

A common method for visualizing a scalar data set is to use graphs
or charts that show the distribution of data values as a function of
other parameters such as position and time.

color methods are also used to distinguish different
values in a scalar data set, and color coding techniques can be
combined with graph and chart models. To color code a scalar data
set we choose a range of colors and map the range of data values to
the color range. Color coding a data set can be tricky because some
color combinations can lead to misinterpretations of the data.

Contour plots are used to display isolines (lines of constant scalar
value) for a data set distributed over a surface. The isolines are

of the curve at the control points and BFk(u) are

The use of graphical methods as an aid in scientific and
engineering analysis is commonly referred to as scientific

This involves the visualization of data sets and processes that may
be difficult or impossible to analyze without graphical methods.
Example medical scanners, satellite and spacecraft scanners

Visualization techniques are useful for analyzing process that
occur over a long period of time or that cannot observed directly.
Example quantum mechanical phenomena and special relativity

light.

enhance and
manipulate information to allow better understanding of the data.

Similar methods employed by commerce, industry and other
nonscientific areas are sometimes referred to as business

to their spatial distribution (2D
or 3D) and according to data type (scalars , vectors , tensors and

A scalar quantity is one that has a single value. Scalar data sets
at may be distributed in time as well as over

spatial positions also the values may be functions of other scalar
parameters. Examples of physical scalar quantities are energy,

ng a scalar data set is to use graphs
or charts that show the distribution of data values as a function of

color methods are also used to distinguish different
values in a scalar data set, and color coding techniques can be

color code a scalar data
set we choose a range of colors and map the range of data values to

ecause some
color combinations can lead to misinterpretations of the data.

Contour plots are used to display isolines (lines of constant scalar
value) for a data set distributed over a surface. The isolines are

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

spaced at some convenient interval to
of the data values over the region of space. Contouring methods are
applied to a set of data values that is distributed over a regular
grid.

A 2D contouring algorithm traces the isolines from cell to cell
within the grid by
determine which cell edges are crossed by a particular isoline.

The path of an isoline across five grid cells
Sometimes isolines are plotted with spline curves but spline fitting

can lead to misinterpretation of t
isolines could cross or curved isoline paths might not be a true
indicator of data trends since data values are known only at the cell
corners.

For 3D scalar data fields we can take cross sectional slices and
display the 2D data distributions over the slices. Visualization
packages provide a slicer routine that allows cross sections to be
taken at any angle.

Instead of looking at 2D cross sections we plot one or more
isosurfaces which are simply 3D contour plots. When two
overlapping isosurfaces are displayed the outer surface is made
transparent so that we can view the shape of both

 Volume rendering which is like an X
for visualizing a 3D data set. The
set is projected to a display screen using the ray
Along the ray path from each screen

Volume visualization of a regular, Cartesian data grid
using ray casting to examine interior data values

spaced at some convenient interval to show the range and variation
of the data values over the region of space. Contouring methods are
applied to a set of data values that is distributed over a regular

A 2D contouring algorithm traces the isolines from cell to cell
within the grid by checking the four corners of grid cells to
determine which cell edges are crossed by a particular isoline.

The path of an isoline across five grid cells
Sometimes isolines are plotted with spline curves but spline fitting

can lead to misinterpretation of the data sets. Example two spline
isolines could cross or curved isoline paths might not be a true
indicator of data trends since data values are known only at the cell

For 3D scalar data fields we can take cross sectional slices and
data distributions over the slices. Visualization

packages provide a slicer routine that allows cross sections to be

Instead of looking at 2D cross sections we plot one or more
isosurfaces which are simply 3D contour plots. When two
overlapping isosurfaces are displayed the outer surface is made
transparent so that we can view the shape of both isosurfaces.

Volume rendering which is like an X-ray picture is another method
for visualizing a 3D data set. The interior information ab
set is projected to a display screen using the ray- casting method.
Along the ray path from each screen pixel

Volume visualization of a regular, Cartesian data grid
using ray casting to examine interior data values

show the range and variation
of the data values over the region of space. Contouring methods are
applied to a set of data values that is distributed over a regular

A 2D contouring algorithm traces the isolines from cell to cell
checking the four corners of grid cells to

determine which cell edges are crossed by a particular isoline.

Sometimes isolines are plotted with spline curves but spline fitting
he data sets. Example two spline

isolines could cross or curved isoline paths might not be a true
indicator of data trends since data values are known only at the cell

For 3D scalar data fields we can take cross sectional slices and
data distributions over the slices. Visualization

packages provide a slicer routine that allows cross sections to be

Instead of looking at 2D cross sections we plot one or more
isosurfaces which are simply 3D contour plots. When two
overlapping isosurfaces are displayed the outer surface is made

isosurfaces.

another method
about a data

casting method.

Volume visualization of a regular, Cartesian data grid
using ray casting to examine interior data values

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

. Data values at the grid positions. are averaged so

that one value is stored for each voxel of the data space. How the
data are encoded for display depends on the

Visual representation for Vector fields

 A vector quantity V in three
values

(Vx , Vy,Vz,) one for each coordinate direction, and a two
dimensional vector has two components (V
describe a vector quantity is by giving its magnitude IV I
direction as a unit vector u.

As with scalars, vector quantities may be functions of
position, time, and other parameters. Some examples of physical
vector quantities are velocity, acceleration, force, electric fields,
magnetic fields, gravitation

One way to visualize a vector field is to plot each data point
as a small arrow that shows the magnitude and direction of the
vector. This method is most often used with cross
since it can be difficult to
region cluttered with overlapping arrows. Magnitudes for the vector
values can be shown by varying the lengths of the arrows.

Vector values are also represented by plotting field lines or
streamlines .

Field lines are commonly used for electric , magnetic and
gravitational fields. The magnitude of the vector values is indicated
by spacing between field lines, and the direction is the tangent to
the field.

Field line representation for a vector data set

Data values at the grid positions. are averaged so
that one value is stored for each voxel of the data space. How the
data are encoded for display depends on the application.

Visual representation for Vector fields

A vector quantity V in three-dimensional space has three scalar

,) one for each coordinate direction, and a two
dimensional vector has two components (Vx, Vy,). Another way to
describe a vector quantity is by giving its magnitude IV I
direction as a unit vector u.

As with scalars, vector quantities may be functions of
position, time, and other parameters. Some examples of physical
vector quantities are velocity, acceleration, force, electric fields,
magnetic fields, gravitational fields, and electric current.

One way to visualize a vector field is to plot each data point
as a small arrow that shows the magnitude and direction of the
vector. This method is most often used with cross-sectional slices,
since it can be difficult to see the trends in a three-dimensional
region cluttered with overlapping arrows. Magnitudes for the vector
values can be shown by varying the lengths of the arrows.

Vector values are also represented by plotting field lines or

commonly used for electric , magnetic and
gravitational fields. The magnitude of the vector values is indicated
by spacing between field lines, and the direction is the tangent to

Field line representation for a vector data set

Data values at the grid positions. are averaged so
that one value is stored for each voxel of the data space. How the

onal space has three scalar

,) one for each coordinate direction, and a two-
,). Another way to

describe a vector quantity is by giving its magnitude IV I and its

As with scalars, vector quantities may be functions of
position, time, and other parameters. Some examples of physical
vector quantities are velocity, acceleration, force, electric fields,

al fields, and electric current.

One way to visualize a vector field is to plot each data point
as a small arrow that shows the magnitude and direction of the

sectional slices,
dimensional

region cluttered with overlapping arrows. Magnitudes for the vector
values can be shown by varying the lengths of the arrows.

Vector values are also represented by plotting field lines or

commonly used for electric , magnetic and
gravitational fields. The magnitude of the vector values is indicated
by spacing between field lines, and the direction is the tangent to

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Visual Representations for Tensor Fields

A tensor quantity in three-dimensional space has nine components
and can be represented with a 3 by 3 matrix. This representation is used
for a second-order tensor, and higher-order tensors do occur in some
applications.

Some examples of physical, second-order tensors are stress and
strain in a material subjected to external forces, conductivity of an
electrical conductor, and the metric tensor, which gives the properties of
a particular coordinate space.

The stress tensor in Cartesian coordinates, for example, can
be represented as

Tensor quantities are frequently encountered in anisotropic
materials, which have different properties in different directions. The x,
xy, and xz elements of the conductivity tensor, for example, describe the
contributions of electric field components in the x, y, and z directions to
the current in the x direction.

Usually, physical tensor quantities are symmetric, so that the
tensor has only six distinct values. Visualization schemes for
representing all six components of a second-order tensor quantity are
based on devising shapes that have six parameters.

Instead of trying to visualize all six components of a tensor
quantity, we can reduce the tensor to a vector or a scalar. And by
applying tensor-contraction operations, we can obtain a scalar
representation.

Visual Representations for Multivariate Data Fields

In some applications, at each grid position over some region of
space, we may have multiple data values, which can be a mixture of
scalar, vector, and even tensor values.

A method for displaying multivariate data fields is to construct
graphical objects, sometimes referred to as glyphs, with multiple parts.
Each part of a glyph represents a physical quantity. The size and color of
each part can be used to display information about scalar magnitudes.
To give directional information for a vector field, we can use a wedge, a
cone, or some other pointing shape for the glyph part representing the
vector.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Three Dimensional Geometric and Modeling Transformations

Geometric transformations and object modeling in three
Dimensions are extended from two-dimensional methods by including
considerations for the z-coordinate.

 Translation

In a three dimensional homogeneous coordinate representation, a
point or an object is translated from position P = (x,y,z) to position P’ =
(x’,y’,z’) with the matrix operation.

 x’ 1 0 0 tx x

y’ = 0 1 0 ty y

z’ 0 0 1 yz z ------1

 1 0 0 0 1 1

(or) P’ = T.P -- (2)

Parameters tx, ty and tz specifying translation distances for the
coordinate directions x,y and z are assigned any real values.

The matrix representation in equation (1) is equivalent to the three
equations

x’ = x + tx

y’ = y + ty

z’ = z + tz -- (3)

Translating a point with translation vector T = (tx, ty, tz)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Inverse of the translation matrix in equation (1) can be obtained by

negating the translation distance t

This produces a translation in the opposite direction and the
product of a translation matrix and its inverse produces the identity
matrix.

 Rotation

 To generate a rotation transformation for an object an axis of rotation must
designed to rotate the object and the amount of angular rotation is also

 Positive rotation angles produce counter clockwise rotations about
a coordinate axis.

Co-ordinate Axes Rotations

The 2D z axis rotation equations are easily extended to 3D.

x’ = x cos θ

y’ = x sin θ + y cos θ

z’ = z --------------------------------

Parameters θ specifies
coordinate form, the 3D z axis rotation equations are expressed

 X1

which we can write more compactly as

P’ = Rz (θ) . P

The below figure illustrates rotation of an object about the z axis.

Transformation equations

coordinate axes can be

y’

z’

1

Inverse of the translation matrix in equation (1) can be obtained by

negating the translation distance tx, ty and tz.

This produces a translation in the opposite direction and the
product of a translation matrix and its inverse produces the identity

To generate a rotation transformation for an object an axis of rotation must
to rotate the object and the amount of angular rotation is also

Positive rotation angles produce counter clockwise rotations about
axis.

ordinate Axes Rotations

The 2D z axis rotation equations are easily extended to 3D.

x’ = x cos θ – y sin θ

y’ = x sin θ + y cos θ

--- (2)

specifies the rotation angle. In homogeneous
coordinate form, the 3D z axis rotation equations are expressed

 cos θ -sin θ 0 0 x

which we can write more compactly as

. P -- (4)

The below figure illustrates rotation of an object about the z axis.

equations for rotation about the
 obtained with a cyclic permutation of

= sinθ cosθ 0 0 y

0 0 1 0 z

0 0 0 1 1

Inverse of the translation matrix in equation (1) can be obtained by

This produces a translation in the opposite direction and the
product of a translation matrix and its inverse produces the identity

To generate a rotation transformation for an object an axis of rotation must be
to rotate the object and the amount of angular rotation is also be specified.

Positive rotation angles produce counter clockwise rotations about

The 2D z axis rotation equations are easily extended to 3D.

homogeneous
coordinate form, the 3D z axis rotation equations are expressed as

The below figure illustrates rotation of an object about the z axis.

 other two
of the

 -------(3)

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

coordinate parameters x, y and z in equation (2) i.e., we use the
replacements

x � y � z � x-------------------- (5)

Substituting permutations (5) in equation (2), we get the equations
for an x-axis rotation

y’ = ycosθ - zsinθ

z’

x’

=

=

ysinθ + zcosθ

x

---------------(6)

which can be written in the homogeneous coordinate form

x’ 1 0 0 0 x

y’ = 0 cosθ -sinθ 0 y

z’ 0 sinθ cosθ 0 z -------(7)

1 0 0 0 1 1

(or) P’ = Rx (θ). P --------------------------- (8)

Rotation of an object around the x-axis is demonstrated in the
below fig

Cyclically permuting coordinates in equation (6) give the

transformation equation for a y axis rotation.

z’ = zcosθ - xsinθ

x’ = zsinθ + xcosθ ---------------(9)

y’ = y

The matrix representation for y-axis rotation is

x’ cosθ 0 sinθ 0 x

y’ = 0 1 0 0 y

z’ -sinθ 0 cosθ 0 z ---------- (10)

1 0 0 0 1 1

(or) P’ = Ry (θ). P ---------------------------- (11)

An example of y axis rotation is shown in below figure

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 An inverse rotation matrix is formed by replacing the rotation angle
θ by –θ.

 Negative values for
direction, so the identity matrix is produces when any rotation
matrix is multiplied by its

 Since only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix
interchanging rows and columns. (i.e.,) we can calculate the
inverse of any rotation matrix R by evaluating its transpose (R
1 = RT).

General Three Dimensional Rotations

 A rotation matrix for any axis that does not coin
coordinate axis can be set up as a composite transformation
involving combinations of translations and the coordinate axes
rotations.

 We obtain the required composite matrix

1. Setting up the transformation sequence that moves the
selected rotation axis onto one of the coordinate

2. Then set up the rotation matrix about that coordinate axis
for the specified rotation

3. Obtaining the inverse transformation sequence that returns
the rotation axis to its original

 In the special case where an object is to be rotated about an axis
that is parallel to one of the coordinate axes, we can attain the
desired rotation with the following transformation

1. Translate the object so that the rotation axis coincides with
the parallel coordinate

2. Perform the specified rotation about the

3. Translate the object so that the rotation axis is moved back
to its original

 When an object is to be rotated about an axis that is not parallel to
one of the coordinate axes,
transformations.

 In such case, we need rotations to align the axis with a selected
coordinate axis and to bring the axis back to its original

 Given the specifications for the rotation axis and the
we can accomplish the required rotation in five

1. Translate the object so that the rotation axis passes through
the coordinate

An inverse rotation matrix is formed by replacing the rotation angle

Negative values for rotation angles generate rotations in a clockwise
direction, so the identity matrix is produces when any rotation
matrix is multiplied by its inverse.

Since only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by
interchanging rows and columns. (i.e.,) we can calculate the
inverse of any rotation matrix R by evaluating its transpose (R

General Three Dimensional Rotations

A rotation matrix for any axis that does not coincide with a
coordinate axis can be set up as a composite transformation
involving combinations of translations and the coordinate axes

We obtain the required composite matrix by

Setting up the transformation sequence that moves the
rotation axis onto one of the coordinate axis.

Then set up the rotation matrix about that coordinate axis
for the specified rotation angle.

Obtaining the inverse transformation sequence that returns
the rotation axis to its original position.

ecial case where an object is to be rotated about an axis
that is parallel to one of the coordinate axes, we can attain the
desired rotation with the following transformation sequence:

Translate the object so that the rotation axis coincides with
lel coordinate axis.

Perform the specified rotation about the axis.

Translate the object so that the rotation axis is moved back
to its original position.

When an object is to be rotated about an axis that is not parallel to
one of the coordinate axes, we need to perform some additional

In such case, we need rotations to align the axis with a selected
coordinate axis and to bring the axis back to its original orientation.

Given the specifications for the rotation axis and the rotation angle,
we can accomplish the required rotation in five steps:

Translate the object so that the rotation axis passes through
the coordinate origin.

An inverse rotation matrix is formed by replacing the rotation angle

rotation angles generate rotations in a clockwise
direction, so the identity matrix is produces when any rotation

Since only the sine function is affected by the change in sign of the
can also be obtained by

interchanging rows and columns. (i.e.,) we can calculate the
inverse of any rotation matrix R by evaluating its transpose (R-

cide with a
coordinate axis can be set up as a composite transformation
involving combinations of translations and the coordinate axes

Setting up the transformation sequence that moves the
axis.

Then set up the rotation matrix about that coordinate axis

Obtaining the inverse transformation sequence that returns

ecial case where an object is to be rotated about an axis
that is parallel to one of the coordinate axes, we can attain the

sequence:

Translate the object so that the rotation axis coincides with

Translate the object so that the rotation axis is moved back

When an object is to be rotated about an axis that is not parallel to
we need to perform some additional

In such case, we need rotations to align the axis with a selected
orientation.

rotation angle,

Translate the object so that the rotation axis passes through

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. Rotate the object so that the axis of rotation coincides with
one of the coordinate

3. Perform the specified rotation about that coordinate

4. Apply inverse rotations to bring the rotation axis back to its
original orientation.

5. Apply the inverse translation to bring the rotation axis back
to its original

 Scaling

 The matrix expression
P = (x,y,.z) relative to the coordinate origin can be written

x’

y’ =

z’

1

where scaling parameters s

 Explicit expressions for the coordinate transformations for scaling
relative to the origin

x’ = x.s

y’ = y.s

z’ = z.s

 Scaling an object changes the size of the object and repositions the
object relatives to the coordinate

 If the transformation parameters are not equal, relative dimensions
in the object are changed.

 The original shape of the object is preserved with a uniform scaling

(sx = sy= sz) .

 Scaling with respect to a selected fixed position (x
represented with the following transformation sequence:

 Translate the fixed point to the

 Scale the object relative to the coordinate origin using

Rotate the object so that the axis of rotation coincides with
one of the coordinate axes.

e specified rotation about that coordinate

Apply inverse rotations to bring the rotation axis back to its
orientation.

Apply the inverse translation to bring the rotation axis back
to its original position.

The matrix expression for the scaling transformation of a position
P = (x,y,.z) relative to the coordinate origin can be written

sx 0 0 0 x

0 sy 0 0 y

0 0 sz 0 z --------

0 0 0 1 1

(or) P’ = S.P --------------- (12)

where scaling parameters sx , sy, and sz are assigned any position values.

Explicit expressions for the coordinate transformations for scaling
relative to the origin are

x’ = x.sx

= y.sy ----------------------- (13)

z’ = z.sz

Scaling an object changes the size of the object and repositions the
relatives to the coordinate origin.

If the transformation parameters are not equal, relative dimensions
changed.

The original shape of the object is preserved with a uniform scaling

Scaling with respect to a selected fixed position (x f, yf, zf) can be
represented with the following transformation sequence:

Translate the fixed point to the origin.

Scale the object relative to the coordinate origin using

Rotate the object so that the axis of rotation coincides with

e specified rotation about that coordinate axis.

Apply inverse rotations to bring the rotation axis back to its

Apply the inverse translation to bring the rotation axis back

for the scaling transformation of a position
P = (x,y,.z) relative to the coordinate origin can be written as

--------(11)

are assigned any position values.

Explicit expressions for the coordinate transformations for scaling

Scaling an object changes the size of the object and repositions the

If the transformation parameters are not equal, relative dimensions

The original shape of the object is preserved with a uniform scaling

f) can be

 Eq.11.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Translate the fixed point back to its original position. This
sequence of transformation is shown in the below figure

 The matrix representation for an arbitrary fixed point scaling can be
expressed as the concatenation of th
transformation are

T (xf, yf, zf) . S(sx, sy, sz). T(

sx

0

0

0

 Inverse scaling matrix m formed by replacing the scaling
parameters sx, sy and s

 The inverse matrix generates an opposite scaling transformation, so
the concatenation of any scaling matrix and its inverse produces
the identity matrix.

Other Transformations

 A 3D reflection can be performed relative to a selected reflection

Translate the fixed point back to its original position. This
sequence of transformation is shown in the below figure

The matrix representation for an arbitrary fixed point scaling can be
expressed as the concatenation of the translate-scale

). T(-xf,-yf, -zf) =

0 0 (1-sx)xf

sy 0 (1-sy)yf -------------

0 sz (1-sz)zf

0 0 1

Inverse scaling matrix m formed by replacing the scaling
and sz with their reciprocals.

The inverse matrix generates an opposite scaling transformation, so
the concatenation of any scaling matrix and its inverse produces

matrix.

A 3D reflection can be performed relative to a selected reflection

Translate the fixed point back to its original position. This
sequence of transformation is shown in the below figure .

The matrix representation for an arbitrary fixed point scaling can be
scale-translate

-------------(14)

Inverse scaling matrix m formed by replacing the scaling

The inverse matrix generates an opposite scaling transformation, so
the concatenation of any scaling matrix and its inverse produces

A 3D reflection can be performed relative to a selected reflection

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

axis or with respect to a selected reflection

Reflection relative to a plane are equivalent to 180
space.

 When the reflection plane in a coordinate plane
then the transformation can be a conversion between left
and right-handed

 An example of a reflection that converts coordinate specifications
from a right handed system to a left
figure

 This transformation changes the sign of z coordinates, leaves the x
and y coordinate values

 The matrix representation for this reflection of points relative to the xy
plane is

RFz

 Reflections about other planes can be obtained as a combination
of rotations and coordinate plane

Shears

 Shearing transformations are used to modify object

 They are also used in three dimensional viewing for obtaining
general projections

 The following transformation produces a z

Parameters a and b can be assigned any real

This transformation matrix
Values by an amount that is proportional to the z value, and the z
coordinate will be unchanged. Boundaries of planes that are
perpendicular to the z axis are shifted by an amount proportional to z
the figure shows the effect of
a = b = 1.

axis or with respect to a selected reflection plane.

Reflection relative to a plane are equivalent to 1800 rotations in 4D

When the reflection plane in a coordinate plane (either x
then the transformation can be a conversion between left

handed systems.

An example of a reflection that converts coordinate specifications
from a right handed system to a left-handed system is shown in the

This transformation changes the sign of z coordinates, leaves the x
and y coordinate values unchanged.

The matrix representation for this reflection of points relative to the xy

1 0 0 0

= 0 1 0 0

 0 0 -1 0

 0 0 0 1

Reflections about other planes can be obtained as a combination
of rotations and coordinate plane reflections.

Shearing transformations are used to modify object shapes.

They are also used in three dimensional viewing for obtaining
ojections transformations.

The following transformation produces a z-axis shear.

Parameters a and b can be assigned any real values.

matrix is used to alter x and y coordinate
Values by an amount that is proportional to the z value, and the z
coordinate will be unchanged. Boundaries of planes that are
perpendicular to the z axis are shifted by an amount proportional to z

effect of shearing matrix on a unit cube for the values

rotations in 4D

(either xy, xz or yz)
then the transformation can be a conversion between left-handed

An example of a reflection that converts coordinate specifications
handed system is shown in the

This transformation changes the sign of z coordinates, leaves the x

The matrix representation for this reflection of points relative to the xy

Reflections about other planes can be obtained as a combination

shapes.

They are also used in three dimensional viewing for obtaining

coordinate
Values by an amount that is proportional to the z value, and the z

perpendicular to the z axis are shifted by an amount proportional to z
cube for the values

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Three-Dimensional Viewing

In three dimensional graphics applications,

- we can view an object from any spatial position, from the
front, from above or from the back.

- We could generate a view of what we could see if we were
standing in the middle of a group of objects or inside object,
such as a building.

 Viewing Pipeline:

In the view of a three dimensional scene, to take a snapshot we
need to do the following steps.

1. Positioning the camera at a particular point in space.

2. Deciding the camera orientation (i.e.,) pointing the
camera and rotating it around the line of right to set up
the direction for the picture.

3. When snap the shutter, the scene is cropped to the size of
the ‘window’ of the camera and light from the visible
surfaces is projected into the camera film.

In such a way the below figure shows the three dimensional
transformation pipeline, from modeling coordinates to final device
coordinate.

 Modeling
transformatio
n

world co-
ordinates

Viewing
transformation

 Modeling
 Coordinates

Viewing co-
ordinates

Projection
transformatio
n

Projection
Co ordinates

Workstation
information

Device co
ordinates

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. Perspective Projection
transformed to the view plane along lines that converge to a
point called the projection reference

Perspective projection of an object to the view

 Parallel Projections

 Parallel projections are specified with a projection vector that
defines the direction for the projection

 When the projection in perpendicular to the view plane, it is said to
be an Orthographic parallel
Oblique parallel projection.

Orientation of the projection vector V
orthographic projection (a) and an oblique projection (b)

Orthographic Projection

 Orthographic projections are used to
top views of an object.

 Front, side and rear orthographic projections of an object are
called elevations.

 A top orthographic projection is called a plan

Processing Steps

1. Once the scene
converted to viewing coordinates.

2. The viewing coordinates system is used in graphics packages as
a reference for specifying the observer viewing position and the
position of the projection

3. Projection operations are performed to convert the viewing
coordinate description of the scene to coordinate positions on
the projection plane, which will then be mapped to the output
device.

4. Objects outside the viewing limits are clipped from further
consideration, a
visible surface identification and surface rendering procedures
to produce the display within the device

• Projections

 Once world coordinate descriptions of the objects are converted to
viewing coordinates, we can project the 3 dimensional objects onto
the two dimensional view

 There are two basic types of

1. Parallel Projection
transformed to the view plane along parallel

Parallel projection of an object to the view plane

Perspective Projection – Here, object positions are
transformed to the view plane along lines that converge to a
point called the projection reference point.

Perspective projection of an object to the view
plane

Parallel projections are specified with a projection vector that
defines the direction for the projection lines.

When the projection in perpendicular to the view plane, it is said to
be an Orthographic parallel projection, otherwise it said to be an

projection.

Orientation of the projection vector Vp to produce an
orthographic projection (a) and an oblique projection (b)

Orthographic Projection

Orthographic projections are used to produce the front, side and
object.

Front, side and rear orthographic projections of an object are

A top orthographic projection is called a plan view.

Once the scene has been modeled, world coordinates position is
converted to viewing coordinates.

The viewing coordinates system is used in graphics packages as
a reference for specifying the observer viewing position and the
position of the projection plane.

perations are performed to convert the viewing
coordinate description of the scene to coordinate positions on
the projection plane, which will then be mapped to the output

Objects outside the viewing limits are clipped from further
consideration, and the remaining objects are processed through
visible surface identification and surface rendering procedures
to produce the display within the device viewport.

Projections

Once world coordinate descriptions of the objects are converted to
ordinates, we can project the 3 dimensional objects onto

the two dimensional view planes.

There are two basic types of projection.

Parallel Projection - Here the coordinate positions are
transformed to the view plane along parallel lines.

projection of an object to the view plane

Here, object positions are
transformed to the view plane along lines that converge to a

Perspective projection of an object to the view

Parallel projections are specified with a projection vector that

When the projection in perpendicular to the view plane, it is said to
projection, otherwise it said to be an

to produce an
orthographic projection (a) and an oblique projection (b)

produce the front, side and

Front, side and rear orthographic projections of an object are

has been modeled, world coordinates position is

The viewing coordinates system is used in graphics packages as
a reference for specifying the observer viewing position and the

perations are performed to convert the viewing
coordinate description of the scene to coordinate positions on
the projection plane, which will then be mapped to the output

Objects outside the viewing limits are clipped from further
nd the remaining objects are processed through

visible surface identification and surface rendering procedures

Once world coordinate descriptions of the objects are converted to
ordinates, we can project the 3 dimensional objects onto

Here the coordinate positions are
lines.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 This projection gives the measurement of lengths
accurately.

Orthographic projections of an object, displaying plan

 The orthographic projection that displays more than one face of an
object is called axonometric orthographic

 The most commonly
projection.

 It can be generated by aligning the projection plane so that it
intersects each coordinate axis in which the object is defined as
the same distance from the

This projection gives the measurement of lengths

Orthographic projections of an object, displaying plan
and elevation views

The orthographic projection that displays more than one face of an
object is called axonometric orthographic projections.

The most commonly used axonometric projection is the isometric

It can be generated by aligning the projection plane so that it
intersects each coordinate axis in which the object is defined as
the same distance from the origin.

This projection gives the measurement of lengths and angles

Orthographic projections of an object, displaying plan

The orthographic projection that displays more than one face of an

used axonometric projection is the isometric

It can be generated by aligning the projection plane so that it
intersects each coordinate axis in which the object is defined as

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT III - GRAPHICS PROGRAMMING

Color Models – RGB, YIQ, CMY, HSV

Raster, Keyframe - Graphics programming using OPENGL

Drawing three dimensional objects

Color Models

Color Model is a method for explaining the properties or behavior of color within some

particular context. No single color model can explain all aspects of color, so we make use

of different models to help describe the different perceived

Properties of Light

 Light is a narrow frequency

 Other frequency bands within this spectrum are called radio waves, micro waves,

infrared waves and x-rays. The below fig shows the

the electromagnetic bands.

 At the low frequency end is a red color (4.3*10

violet color (7.5 *10
14

Hz)

 Spectral colors range from the reds through orange and yellow at the low
frequency end to greens,

Each frequency value within the visible band corresponds to a distinct color.

APHICS PROGRAMMING

RGB, YIQ, CMY, HSV – Animations – General Computer Animation,

Graphics programming using OPENGL – Basic graphics primitives

Drawing three dimensional objects - Drawing three dimensional scenes

Color Model is a method for explaining the properties or behavior of color within some

particular context. No single color model can explain all aspects of color, so we make use

of different models to help describe the different perceived characteristics of color.

frequency band within the electromagnetic system.

Other frequency bands within this spectrum are called radio waves, micro waves,

rays. The below fig shows the frequency ranges for some of

bands.

At the low frequency end is a red color (4.3*10
4
 Hz) and the highest frequency is a

Hz)

Spectral colors range from the reds through orange and yellow at the low
greens, blues and violet at the high end.

Each frequency value within the visible band corresponds to a distinct color.

General Computer Animation,

Basic graphics primitives –

Color Model is a method for explaining the properties or behavior of color within some

particular context. No single color model can explain all aspects of color, so we make use

characteristics of color.

system.

Other frequency bands within this spectrum are called radio waves, micro waves,

frequency ranges for some of

Hz) and the highest frequency is a

Spectral colors range from the reds through orange and yellow at the low

Each frequency value within the visible band corresponds to a distinct color.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Since light is an electro
of either the frequency for the wavelength
The wavelength ad frequency of the monochromatic wave is inversely

to each other, with the proportionality constants as the

 A light source such as the sun or a light bulb emits all frequencies within the visible

range to produce white light. When white light is incident upon an object, some

frequencies are reflected and some are absorbed

frequencies present in the reflected light determines what

the object.

 If low frequencies are predominant in the reflected light, the object is described as

red. In this case, the perceived ligh

the spectrum. The dominant frequency is also called the hue, or simply the color of

the light.

 Brightness is another property,

 Intensity in the radiant
unit projected area of the
source.

- Purity describes

- Pastels and Pale colors

 The term chromaticity is used to refer collectively to the two properties, purity and
dominant frequency.

 Two different color light sources with suitably chosen intensities can be used to
produce a range of other

 If the 2 color sources combine to produce white light, they are called

complementary colors. E.g., Red and Cyan, green and magenta, and blue and

yellow.

 Color models that are used to describe combinations of light in terms of dominant

frequency use 3 colors to

 The 2 or 3 colors used to produce other colors in a color model are called primary colors.

 RGB Color Model

 Based on the tristimulus theory of version, our eyes perceive color through the

stimulation of three visual pigments in the cones

 These visual pigments have a peak sensitivity at wavelengths of about 630 nm
(red), 530 nm (green) and 450 nm

Since light is an electro magnetic wave, the various colors are described in terms
of either the frequency for the wavelength λ of the wave.
The wavelength ad frequency of the monochromatic wave is inversely

to each other, with the proportionality constants as the speed of light

A light source such as the sun or a light bulb emits all frequencies within the visible

range to produce white light. When white light is incident upon an object, some

frequencies are reflected and some are absorbed by the object. The combination of

frequencies present in the reflected light determines what we perceive as the color of

If low frequencies are predominant in the reflected light, the object is described as

red. In this case, the perceived light has the dominant frequency at the red end of

the spectrum. The dominant frequency is also called the hue, or simply the color of

property, which in the perceived intensity of the

Intensity in the radiant energy emitted per limit time, per unit solid angle, and per
unit projected area of the source. Radiant energy is related to the luminance

 how washed out or how pure the color of the

Pastels and Pale colors are described as less pure.

The term chromaticity is used to refer collectively to the two properties, purity and

Two different color light sources with suitably chosen intensities can be used to
produce a range of other colors.

If the 2 color sources combine to produce white light, they are called

complementary colors. E.g., Red and Cyan, green and magenta, and blue and

Color models that are used to describe combinations of light in terms of dominant

to obtain a wide range of colors, called the color

The 2 or 3 colors used to produce other colors in a color model are called primary colors.

Based on the tristimulus theory of version, our eyes perceive color through the

stimulation of three visual pigments in the cones on the retina.

These visual pigments have a peak sensitivity at wavelengths of about 630 nm
(red), 530 nm (green) and 450 nm (blue).

magnetic wave, the various colors are described in terms

The wavelength ad frequency of the monochromatic wave is inversely proportional

speed of light C where c= λf

A light source such as the sun or a light bulb emits all frequencies within the visible

range to produce white light. When white light is incident upon an object, some

the object. The combination of

perceive as the color of

If low frequencies are predominant in the reflected light, the object is described as

t has the dominant frequency at the red end of

the spectrum. The dominant frequency is also called the hue, or simply the color of

the light.

energy emitted per limit time, per unit solid angle, and per
luminance of the

the light appears.

The term chromaticity is used to refer collectively to the two properties, purity and

Two different color light sources with suitably chosen intensities can be used to

If the 2 color sources combine to produce white light, they are called

complementary colors. E.g., Red and Cyan, green and magenta, and blue and

Color models that are used to describe combinations of light in terms of dominant

color gamut.

The 2 or 3 colors used to produce other colors in a color model are called primary colors.

Based on the tristimulus theory of version, our eyes perceive color through the

These visual pigments have a peak sensitivity at wavelengths of about 630 nm

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 By comparing intensities

 This is the basis for displaying color output on a video monitor using the 3 color

primaries, red, green, and blue referred to as the RGB color model. It is

represented in the below

The sign represents black, and the vertex with

 Vertices of the cube on the axes represent the primary colors, the remaining vertices
represents the complementary

 The RGB color scheme is an additive model. (i.e.,) Intensities of
are added to produce other

 Each color point within the bounds of the cube can be represented as the triple
(R,G,B) where values for

 The color Cλ is expressed in RGB component

Cλ = RR + GG +

 The magenta vertex is obtained
and white at (1,1,1) in the

 Shades of gray are represented along the main diagonal of the cube from the
(black) to the white vertex.

 YIQ Color Model

 The National Television System Committee (NTSC) color model for forming the
composite video signal in the YIQ

 In the YIQ color model, luminance (brightness) information in contained in the Y

parameter, chromaticity information (hue and purity) is contained into the I and Q

intensities in a light source, we perceive the color of

This is the basis for displaying color output on a video monitor using the 3 color

primaries, red, green, and blue referred to as the RGB color model. It is

represented in the below figure.

represents black, and the vertex with coordinates (1,1,1) in white.

Vertices of the cube on the axes represent the primary colors, the remaining vertices
complementary color for each of the primary colors.

The RGB color scheme is an additive model. (i.e.,) Intensities of the primary colors
are added to produce other colors.

Each color point within the bounds of the cube can be represented as the triple
for R, G and B are assigned in the range from 0

 is expressed in RGB component as

+ BB

The magenta vertex is obtained by adding red and blue to produce the triple (1,0,1)
the sum of the red, green and blue vertices.

Shades of gray are represented along the main diagonal of the cube from the
vertex.

The National Television System Committee (NTSC) color model for forming the
composite video signal in the YIQ model.

In the YIQ color model, luminance (brightness) information in contained in the Y

parameter, chromaticity information (hue and purity) is contained into the I and Q

of the light.

This is the basis for displaying color output on a video monitor using the 3 color

primaries, red, green, and blue referred to as the RGB color model. It is

coordinates (1,1,1) in white.

Vertices of the cube on the axes represent the primary colors, the remaining vertices

the primary colors

Each color point within the bounds of the cube can be represented as the triple
0 to1.

adding red and blue to produce the triple (1,0,1)

Shades of gray are represented along the main diagonal of the cube from the origin

The National Television System Committee (NTSC) color model for forming the

In the YIQ color model, luminance (brightness) information in contained in the Y

parameter, chromaticity information (hue and purity) is contained into the I and Q

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

parameters.

 A combination of red, green and blue intensities are chosen for the Y paramet
yield the standard luminosity

 Since Y contains the luminance information, black and white TV monitors use
the Y signal.

 Parameter I contain orange
shading and occupies a bandwidth of

 Parameter Q carries green
MHz.

 An RGB signal can be converted to a TV signal using an NTSC encoder which
converts RGB values to YIQ values, as

Y 0.299

I 0.596

Q 0.212

 An NTSC video signal can be converted to an RGB signal using an NTSC encoder

which separates the video signal into YIQ components, the converts to RCB values,

as follows:

R 1.000

G 1.000

B 1.000

A combination of red, green and blue intensities are chosen for the Y paramet
yield the standard luminosity curve.

Since Y contains the luminance information, black and white TV monitors use

Parameter I contain orange-cyan hue information that provides the flash
shading and occupies a bandwidth of 1.5 MHz.

Parameter Q carries green-magenta hue information in a bandwidth of about 0.6

An RGB signal can be converted to a TV signal using an NTSC encoder which
converts RGB values to YIQ values, as follows

0.299 0.587 0.144 R

0.596 0.275 0.321 G

0.212 0.528 0.311 B

An NTSC video signal can be converted to an RGB signal using an NTSC encoder

which separates the video signal into YIQ components, the converts to RCB values,

0.956 0.620 Y

0.272 0.647 I

1.108 1.705 Q

A combination of red, green and blue intensities are chosen for the Y parameter to

Since Y contains the luminance information, black and white TV monitors use only

cyan hue information that provides the flash-tone

magenta hue information in a bandwidth of about 0.6

An RGB signal can be converted to a TV signal using an NTSC encoder which

An NTSC video signal can be converted to an RGB signal using an NTSC encoder

which separates the video signal into YIQ components, the converts to RCB values,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CMY Color Model

 A color model defined with the primary colors cyan, magenta, and yellow (CMY)
in useful for describing

 It is a subtractive color model (i.e.,) cyan can be formed

light. When white light is reflected from cyan

have no red component.

• Magenta ink subtracts the green component from incident light and yellow
subtracts the blue component.

• In CMY model, point (1,1,1) represents black because all components of the
incident light are subtracted.

 The origin represents white

 Equal amounts of each of the primary colors produce grays along the main
diagonal of the cube.

 A combination of cyan and magenta ink produces blue light because the red and
green components of the incident light are

 The printing process often used with the CMY model generates a color point with

a collection of 4 ink dots; one dot is used for each of the primary colors (cyan,

magenta and yellow) and one dot in

The conversion from an RGB representation to a CMY

C 1

M 1

Y 1

Where the white is represented in the RGB system as the unit column vector.

A color model defined with the primary colors cyan, magenta, and yellow (CMY)
 color output to hard copy devices.

It is a subtractive color model (i.e.,) cyan can be formed by adding green and blue

light. When white light is reflected from cyan-colored ink, the reflected light must

component. i.e., red light is absorbed or subtracted by the

subtracts the green component from incident light and yellow
component.

In CMY model, point (1,1,1) represents black because all components of the
incident light are subtracted.

The origin represents white light.

Equal amounts of each of the primary colors produce grays along the main

A combination of cyan and magenta ink produces blue light because the red and
green components of the incident light are absorbed.

The printing process often used with the CMY model generates a color point with

a collection of 4 ink dots; one dot is used for each of the primary colors (cyan,

and yellow) and one dot in black.

The conversion from an RGB representation to a CMY representation is

R

G

B

Where the white is represented in the RGB system as the unit column vector.

A color model defined with the primary colors cyan, magenta, and yellow (CMY)

adding green and blue

colored ink, the reflected light must

the link.

subtracts the green component from incident light and yellow

In CMY model, point (1,1,1) represents black because all components of the

Equal amounts of each of the primary colors produce grays along the main

A combination of cyan and magenta ink produces blue light because the red and

The printing process often used with the CMY model generates a color point with

a collection of 4 ink dots; one dot is used for each of the primary colors (cyan,

representation is expressed as

Where the white is represented in the RGB system as the unit column vector.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Similarly the conversion

R

G

B

Where black is represented in the CMY system as the unit column vector.

HSV Color Model

 The HSV model uses color descriptions that have a more interactive appeal to a

user.

 Color parameters in this

 The 3D representation of the HSV model is derived from the RGB cube. The
outline of the cube has the hexagon

The boundary of the hexagon represents the various hues, and it is used as the top of
the HSV hexcone.

 In the hexcone, saturation
vertical axis through the center of the

 Hue is represented as an angle about the vertical axis, ranging from
through 360

0
. Vertices of

conversion of CMY to RGB representation is expressed

 1 C

 1 M

 1 Y

Where black is represented in the CMY system as the unit column vector.

The HSV model uses color descriptions that have a more interactive appeal to a

this model are hue (H), saturation (S), and value

The 3D representation of the HSV model is derived from the RGB cube. The
outline of the cube has the hexagon shape.

The boundary of the hexagon represents the various hues, and it is used as the top of

saturation is measured along a horizontal axis, and value
vertical axis through the center of the hexcone.

Hue is represented as an angle about the vertical axis, ranging from
of the hexagon are separated by 60

0
 intervals.

expressed as

The HSV model uses color descriptions that have a more interactive appeal to a

value (V).

The 3D representation of the HSV model is derived from the RGB cube. The

The boundary of the hexagon represents the various hues, and it is used as the top of

value is along a

Hue is represented as an angle about the vertical axis, ranging from 0
0
 at red

intervals.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Yellow is at 60
0
, green at 120

Complementary colors are 180

 Saturation S varies from 0 to 1. the maximum purity at S = 1, at S = 0.25, the hue

is said to be one quarter

 Value V varies from 0 at the apex to 1 at the

- the apex representation

 At the top of the hexcone, colors have their

 When V = 1 and S = 1 we have the „pure

White is the point at V = 1 and S = 0.

green at 120
0
 and cyan opposite red at H = 180

Complementary colors are 180
0
 apart.

Saturation S varies from 0 to 1. the maximum purity at S = 1, at S = 0.25, the hue

quarter pure, at S = 0, we have the gray scale.

Value V varies from 0 at the apex to 1 at the top.

the apex representation black.

At the top of the hexcone, colors have their maximum intensity.

When V = 1 and S = 1 we have the „pure‟ hues.

White is the point at V = 1 and S = 0.

and cyan opposite red at H = 180
0
.

Saturation S varies from 0 to 1. the maximum purity at S = 1, at S = 0.25, the hue

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

HLS Color Model

 HLS model is based on

 It has the double cone representation shown in the below figure. The 3 parameters
in this model are called Hue

 Hue specifies an angle about

 In this model H = θ
0
 corresponds to

 The remaining colors are specified around the perimeter of the cone in the same

order as in the HSV model.

 Magenta is at 60
0
, Red in at 120

 The vertical axis is called lightness (L). At L = 0, we have black, and white is at

= 1 Gray scale in along the L axis and the “purehues” on the L = 0.5 plane.

 Saturation parameter S specifies relative purity of a color. S varies from 0 to 1

pure hues are those for which S = 1 and L =

 intuitive color parameters used by Tektronix.

It has the double cone representation shown in the below figure. The 3 parameters
in this model are called Hue (H), lightness (L) and saturation (s).

about the vertical axis that locates a chosen

corresponds to Blue.

The remaining colors are specified around the perimeter of the cone in the same

model.

, Red in at 120
0
, and cyan in at H = 180

0
.

The vertical axis is called lightness (L). At L = 0, we have black, and white is at

= 1 Gray scale in along the L axis and the “purehues” on the L = 0.5 plane.

Saturation parameter S specifies relative purity of a color. S varies from 0 to 1

pure hues are those for which S = 1 and L = 0.5

Tektronix.

It has the double cone representation shown in the below figure. The 3 parameters

The remaining colors are specified around the perimeter of the cone in the same

The vertical axis is called lightness (L). At L = 0, we have black, and white is at L

= 1 Gray scale in along the L axis and the “purehues” on the L = 0.5 plane.

Saturation parameter S specifies relative purity of a color. S varies from 0 to 1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 As S decreases, the hues are said to be less

 At S= 0, it is said to be

Animation

Computer animation refers

 Computer animations can also be generated by changing camera parameters such
as position, orientation and

 Applications of computer
training and education.

Example : Advertising animations often transition one object shape into another.

Frame-by-Frame animation

Each frame of the scene is separately generated and stored. Later, the frames can be

recoded on film or they can be consecutively displayed in "real

Design of Animation Sequences

An animation sequence in designed with the

 Story board layout

 Object definitions

 Key-frame specifications

 Generation of in-between

Story board

 The story board is an outline of the

 It defines the motion sequences

 Depending on the type of
of a set of rough sketches or a list of the basic ideas for the

Object Definition

An object definition is given for each participant in the action.

As S decreases, the hues are said to be less pure.

At S= 0, it is said to be gray scale.

refers to any time sequence of visual changes in a scene.

Computer animations can also be generated by changing camera parameters such
as position, orientation and focal length.

Applications of computer-generated animation are entertainment, advertising,

Advertising animations often transition one object shape into another.

separately generated and stored. Later, the frames can be

recoded on film or they can be consecutively displayed in "real-time playback" mode

Design of Animation Sequences

An animation sequence in designed with the following steps:

specifications

between frames.

The story board is an outline of the action.

sequences as a set of basic events that are to take

Depending on the type of animation to be produced, the story board could consist
of a set of rough sketches or a list of the basic ideas for the motion.

An object definition is given for each participant in the action.

a scene.

Computer animations can also be generated by changing camera parameters such

generated animation are entertainment, advertising,

Advertising animations often transition one object shape into another.

separately generated and stored. Later, the frames can be

time playback" mode

take place.

animation to be produced, the story board could consist

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Objects can be defined in

 The associated movements

Key frame

 A key frame is detailed drawing of the scene at a certain time in the animation

sequence.

 Within each key frame, each object is positioned according to the time for that

frame.

 Some key frames are chosen at extreme positions in the action; others are spaced
so that the time interval between

In-betweens

 In betweens are the intermediate

 The number of in between
the animation.

 Film requires 24 frames per second and graphics terminals are refreshed at the
of 30 to 60 frames per seconds.

 Time intervals for the motion are setup so there are from 3 to 5 in
each pair of key frames.

 Depending on the speed

 For a 1 min film sequence

 Other required tasks are

- Motion verification

- Editing

- Production and synchronization of a sound

General Computer Animation Functions

Steps in the development of an animation sequence are,

1. Object manipulation and

in terms of basic shapes such as polygons or

movements of each object are specified along with the

frame is detailed drawing of the scene at a certain time in the animation

frame, each object is positioned according to the time for that

frames are chosen at extreme positions in the action; others are spaced
so that the time interval between key frames is not too much.

intermediate frames between the key frames.

between needed is determined by the media to be

Film requires 24 frames per second and graphics terminals are refreshed at the
seconds.

Time intervals for the motion are setup so there are from 3 to 5 in-between for
frames.

speed of the motion, some key frames can be duplicated.

sequence with no duplication, 1440 frames are needed.

are

verification

Production and synchronization of a sound track.

General Computer Animation Functions

Steps in the development of an animation sequence are,

Object manipulation and rendering

 splines.

the shape.

frame is detailed drawing of the scene at a certain time in the animation

frame, each object is positioned according to the time for that

frames are chosen at extreme positions in the action; others are spaced

used to display

Film requires 24 frames per second and graphics terminals are refreshed at the rate

between for

duplicated.

needed.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. Camera motion

3. Generation of in-betweens

 Animation packages such as wave front provide special functions for designing
the animation and processing individuals

 Animation packages facilitate

 Object shapes and associated

 Motion can be generated according to specified constraints using 2D and 3D
transformations.

 Standard functions can be applied to identify visible surfaces and
rendering algorithms.

 Camera movement functions such as zooming, panning and tilting are used for
motion simulation.

 Given the specification for the key frames, the in
generated.

Raster Animations

 On raster systems, real-
using raster operations.

 Sequence of raster operations can be executed to produce real time animation of
either 2D or 3D objects.

 We can animate objects
transformations.

- Predefine the object as successive positions along the motion path, set the
successive blocks of pixel values to color table

- Set the pixels at the first position of the object to „on

pixels at the other

- The animation is accomplished

the object is „on

preceding position is set to the background

betweens

Animation packages such as wave front provide special functions for designing
the animation and processing individuals objects.

facilitate to store and manage the object database.

associated parameter are stored and updated in the database.

Motion can be generated according to specified constraints using 2D and 3D

Standard functions can be applied to identify visible surfaces and apply

Camera movement functions such as zooming, panning and tilting are used for

Given the specification for the key frames, the in-betweens can be automatically

-time animation in limited applications can be generated

Sequence of raster operations can be executed to produce real time animation of
objects.

objects along 2D motion paths using the

Predefine the object as successive positions along the motion path, set the
successive blocks of pixel values to color table entries.

Set the pixels at the first position of the object to „on‟ values, and set the

other object positions to the background color.

The animation is accomplished by changing the color table values so that

the object is „on‟ at successive positions along the animation path as the

preceding position is set to the background intensity.

Animation packages such as wave front provide special functions for designing

database.

the database.

Motion can be generated according to specified constraints using 2D and 3D

apply the

Camera movement functions such as zooming, panning and tilting are used for

betweens can be automatically

time animation in limited applications can be generated

Sequence of raster operations can be executed to produce real time animation of

the color-table

Predefine the object as successive positions along the motion path, set the

‟ values, and set the

changing the color table values so that

 at successive positions along the animation path as the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Computer Animation Languages

 Animation functions include a graphics editor, a

graphics routines.

 The graphics editor allows designing and modifying object shapes, using spline

surfaces, constructive solid

 Scene description includes the positioning of objects and light sources defining the

photometric parameters and setting the camera

 Action specification involves the
camera.

 Keyframe systems are specialized animation languages designed dimply to
generate the in-betweens

 Parameterized systems allow object motion characteristics to be sp

of the object definitions. The adjustable parameters control such object

characteristics as degrees of freedom motion limitations and allowable shape

changes.

 Scripting systems allow object specifications and animation sequences to be

defined with a user input script. From the script, a library of various objects and

motions can be constructed.

Keyframe Systems

 Each set of in-betweens

 For complex scenes, we can separate the

objects called cells, an acronym from cartoon

Computer Animation Languages

Animation functions include a graphics editor, a key frame generator and standard

The graphics editor allows designing and modifying object shapes, using spline

solid geometry methods or other representation

Scene description includes the positioning of objects and light sources defining the

photometric parameters and setting the camera parameters.

Action specification involves the layout of motion paths for the objects and

Keyframe systems are specialized animation languages designed dimply to
betweens from the user specified keyframes.

Parameterized systems allow object motion characteristics to be sp

of the object definitions. The adjustable parameters control such object

characteristics as degrees of freedom motion limitations and allowable shape

Scripting systems allow object specifications and animation sequences to be

efined with a user input script. From the script, a library of various objects and

constructed.

betweens are generated from the specification of two

For complex scenes, we can separate the frames into individual components or

objects called cells, an acronym from cartoon animation.

frame generator and standard

The graphics editor allows designing and modifying object shapes, using spline

representation schemes.

Scene description includes the positioning of objects and light sources defining the

layout of motion paths for the objects and

Keyframe systems are specialized animation languages designed dimply to

Parameterized systems allow object motion characteristics to be specified as part

of the object definitions. The adjustable parameters control such object

characteristics as degrees of freedom motion limitations and allowable shape

Scripting systems allow object specifications and animation sequences to be

efined with a user input script. From the script, a library of various objects and

 keyframes.

frames into individual components or

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Morphing

 Transformation of object

Morphing methods can be applied to any motion
change in shape. The example is shown in the below figure.

The general preprocessing rules for equalizing keyframes in terms of either

the number of vertices to be added to a

Suppose we equalize the edge count and
of line segments in two

Lmax = max (L

Lmin = min(L

Ne = Lmax

Ns = int (L

 The preprocessing is accomplished

1. Dividing Ne edges of keyframe

2. Dividing the remaining lines of keyframe

 For example, if Lk = 15 and L
sections each. The remaining

 If the vector counts in equalized parameters V
number of vertices in the

Vmax = max(Vk,V

Nls = (Vmax -1) mod (V

Np = int ((Vmax –

 Preprocessing using vertex count is performed

1. Adding Np points to N

2. Adding Np-1 points to the remaining edges of

object shapes from one form to another is called

Morphing methods can be applied to any motion or transition involving a
change in shape. The example is shown in the below figure.

The general preprocessing rules for equalizing keyframes in terms of either

the number of vertices to be added to a keyframe.

Suppose we equalize the edge count and parameters Lk and Lk+1 denote the number
 consecutive frames. We define,

= max (Lk, Lk+1)

= min(Lk , Lk+1)

max mod Lmin

= int (Lmax/Lmin)

The preprocessing is accomplished by

edges of keyframemin into Ns+1 section.

Dividing the remaining lines of keyframemin into Ns sections.

= 15 and Lk+1 = 11, we divide 4 lines of keyframe
remaining lines of keyframek+1 are left infact.

in equalized parameters Vk and Vk+1 are used to denote the
the two consecutive frames. In this case we define

,Vk+1), Vmin = min(Vk,Vk+1) and

1) mod (Vmin – 1)

– 1)/(Vmin – 1))

using vertex count is performed by

points to Nls line section of keyframemin.

1 points to the remaining edges of keyframemin

called Morphing.

or transition involving a

The general preprocessing rules for equalizing keyframes in terms of either

denote the number

sections.

= 11, we divide 4 lines of keyframek+1 into 2

are used to denote the
define

min.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Simulating Accelerations

Curve-fitting techniques are often used to specify the animation paths between key

frames. Given the vertex positions at the key frames, we can fit the positions with linear

or nonlinear paths. Figure illustrates a nonlinear fit of key-frame positions. This

determines the trajectories for the in-betweens. To simulate accelerations, we can adjust

the time spacing for the in-betweens

For constant speed (zero acceleration), we use equal-interval time spacing for the in-

betweens. Suppose we want n in-betweens for key frames at times t1 and t2.

The time interval between key frames is then divided into n + 1 subintervals, yielding an

in-between spacing of

∆= t2-t1/n+1

we can calculate the time for any in-between as

tBj = t1+j ∆t, j = 1,2, n

Motion Specification

These are several ways in which the motions of objects can be specified in an
animation system.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Direct Motion Specification

 Here the rotation angles

 Then the geometric transformation
positions.

 We can approximate the path of a bouncing ball with a damped, rectified, sine curve

 y (x) = A / sin(ωx + θ0) /e
-kx

where A is the initial amplitude,
k is the damping constant.

Goal Directed Systems

 We can specify the motions that are to take place in general terms that abstractly

describe the actions.

 These systems are called goal directed. Because they determine

parameters given the goals of the

 Eg., To specify an object to „walk

Kinematics and Dynamics

 With a kinematics description, we specify the animation

(position, velocity and acceleration) without reference to the forces that cause the

motion.

 For constant velocity (zero acceleration) we designate the motions of rigid bodies
in a scene by giving an initial position and velocity

 We can specify accelerations (rate of change of velocity), speed up, slow downs
and curved motion paths.

 An alternative approach is to use inverse kinematics; where the initial and final

positions of the object are specified at specified times and the mo

computed by the system.

angles and translation vectors are explicitly given.

Then the geometric transformation matrices are applied to transform coordinate

We can approximate the path of a bouncing ball with a damped, rectified, sine curve

where A is the initial amplitude, ω is the angular frequency, θ0 is the phase angle and
k is the damping constant.

We can specify the motions that are to take place in general terms that abstractly

These systems are called goal directed. Because they determine

parameters given the goals of the animation.

Eg., To specify an object to „walk‟ or to „run‟ to a particular distance.

Kinematics and Dynamics

With a kinematics description, we specify the animation by motion parameters

ity and acceleration) without reference to the forces that cause the

For constant velocity (zero acceleration) we designate the motions of rigid bodies
giving an initial position and velocity vector for each object.

can specify accelerations (rate of change of velocity), speed up, slow downs

An alternative approach is to use inverse kinematics; where the initial and final

positions of the object are specified at specified times and the motion parameters are

matrices are applied to transform coordinate

We can approximate the path of a bouncing ball with a damped, rectified, sine curve

is the phase angle and

We can specify the motions that are to take place in general terms that abstractly

These systems are called goal directed. Because they determine specific motion

distance.

motion parameters

ity and acceleration) without reference to the forces that cause the

For constant velocity (zero acceleration) we designate the motions of rigid bodies
vector for each object.

can specify accelerations (rate of change of velocity), speed up, slow downs

An alternative approach is to use inverse kinematics; where the initial and final

tion parameters are

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Graphics programming using OPENGL

OpenGL is a software interface that allows you to access the graphics hardware without

taking care of the hardware details or which graphics adapter is in

a low-level graphics library specification. It makes available to the programmer a small

set of geomteric primitives

provides a set of commands that allow the specification of geometric objec

three dimensions, using the provided primitives, together with commands that control

how these objects are rendered

Libraries

 OpenGL Utility Library (GLU) contains several routines that use lower

OpenGL commands to perfo

viewing orientations and

 OpenGL Utility Toolkit

by Mark Kilgard, to hide

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file.

Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library,

which also requires inclusion of the glu.h header file. So almost

file begins with:

#include <GL/gl.h>

#include <GL/glu.h>

If you are using the OpenGL Utility Toolkit (GLUT) for managing your window

manager tasks, you should include:

#include <GL/glut.h>

The following files must be placed in the proper folder to run a OpenGL Program.

raphics programming using OPENGL

OpenGL is a software interface that allows you to access the graphics hardware without

taking care of the hardware details or which graphics adapter is in the system.

level graphics library specification. It makes available to the programmer a small

set of geomteric primitives - points, lines, polygons, images, and bitmaps. OpenGL

provides a set of commands that allow the specification of geometric objec

three dimensions, using the provided primitives, together with commands that control

how these objects are rendered (drawn).

OpenGL Utility Library (GLU) contains several routines that use lower

OpenGL commands to perform such tasks as setting up matrices for specific

and projections and rendering surfaces.

Toolkit (GLUT) is a window-system-independent toolkit,

hide the complexities of differing window APIs.

For all OpenGL applications, you want to include the gl.h header file in every file.

Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library,

which also requires inclusion of the glu.h header file. So almost every OpenGL source

If you are using the OpenGL Utility Toolkit (GLUT) for managing your window

manager tasks, you should include:

The following files must be placed in the proper folder to run a OpenGL Program.

OpenGL is a software interface that allows you to access the graphics hardware without

system. OpenGL is

level graphics library specification. It makes available to the programmer a small

points, lines, polygons, images, and bitmaps. OpenGL

provides a set of commands that allow the specification of geometric objects in two or

three dimensions, using the provided primitives, together with commands that control

OpenGL Utility Library (GLU) contains several routines that use lower-level

rm such tasks as setting up matrices for specific

toolkit, written

APIs.

For all OpenGL applications, you want to include the gl.h header file in every file.

Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library,

every OpenGL source

If you are using the OpenGL Utility Toolkit (GLUT) for managing your window

The following files must be placed in the proper folder to run a OpenGL Program.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Libraries (place in the lib\ subdirectory of Visual C++)

opengl32.lib
glu32.lib
glut32.lib

Include files (place in the include\GL\ subdirectory of Visual C++)

gl.h

glu.h

glut.h

Dynamically-linked libraries (place in the \Windows\System subdirectory)

opengl32.dll

glu32.dll

glut32.dll

Working with OpenGL

Opening a window for Drawing

The First task in making pictures is to open a screen window for drawing. The following

five functions initialize and display the screen window in our program.

1. glutInit(&argc, argv)

The first thing we need to do is call the glutInit() procedure. It should be called before

any other GLUT routine because it initializes the GLUT library. The parameters to

glutInit() should be the same as those to main(), specifically main(int argc, char** argv)

and glutInit(&argc, argv).

2. glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)

The next thing we need to do is call the glutInitDisplayMode() procedure to specify the
display mode for a window.

We must first decide whether we want to use an RGBA (GLUT_RGB) or color-index

(GLUT_INDEX) color model. The RGBA mode stores its color buffers as red, green,

blue, and alpha color components. Color-index mode, in contrast, stores color buffers in

indicies. And for special effects, such as shading, lighting, and fog, RGBA mode

provides more flexibility. In general, use RGBA mode whenever possible. RGBA mode

is the default.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Another decision we need to make when setting up the display mode is whether we want

to use single buffering (GLUT_SINGLE) or double buffering (GLUT_DOUBLE). If we

aren't using annimation, stick with single buffering, which is the default.

3. glutInitWindowSize(640,480)

We need to create the characteristics of our window. A call to glutInitWindowSize() will

be used to specify the size, in pixels, of our inital window. The arguments indicate the

height and width (in pixels) of the requested window.

4. glutInitWindowPosition(100,15)

Similarly, glutInitWindowPosition() is used to specify the screen location for the upper-

left corner of our initial window. The arguments, x and y, indicate the location of the

window relative to the entire display. This function positioned the screen 100 pixels over

from the left edge and 150 pixels down from the top.

5. glutCreateWindow(“Example”)

To create a window, the with the previously set characteristics (display mode, size,

location, etc), the programmer uses the glutCreateWindow() command. The command

takes a string as a parameter which may appear in the title bar.

6. glutMainLoop()

The window is not actually displayed until the glutMainLoop() is entered. The very last
thing is we have to call this function

Event Driven Programming

The method of associating a call back function with a particular type of event is called as
event driven programming. OpenGL provides tools to assist with the event management.

There are four Glut functions available

1. glutDisplayFunc(mydisplay)

The glutDisplayFunc() procedure is the first and most important event callback function.

A callback function is one where a programmer-specified routine can be registered to be

called in response to a specific type of event. For example, the argument of

glutDisplayFunc(mydisplay) is the function that is called whenever GLUT determines

that the contents of the window needs to be redisplayed. Therefore, we should put all the

routines that you need to draw a scene in this display callback function.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. glutReshapeFunc(myreshape)

The glutReshapeFunc() is a callback function that specifies the function that is called

whenever the window is resized or moved. Typically, the function that is called when

needed by the reshape function displays the window to the new size and redefines the

viewing characteristics as desired.

3. glutKeyboardFunc(mykeyboard)

GLUT interaction using keyboard inputs is handled. The command glutKeyboardFunc()

is used to run the callback function specified and pass as parameters, the ASCII code of

the pressed key, and the x and y coordinates of the mouse cursor at the time of the event.

Special keys can also be used as triggers. The key passed to the callback function, in this
case, takes one of the following values (defined in glut.h).

Special keys can also be used as triggers. The key passed to the callback function, in this
case, takes one of the following values (defined in glut.h).

GLUT_KEY_UP GLUT_KEY_RIGHT GLUT_KEY_DOWN

GLUT_KEY_PAGE_UP GLUT_KEY_PAGE_DOWN GLUT_KEY_HOME

GLUT_KEY_END GLUT_KEY_INSERT

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Example : Skeleton for OpenGL Code

int main(int argc, char** argv)
{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(465, 250);

glutInitWindowPosition(100, 150);

glutCreateWindow("My First Example");

glutDisplayFunc(mydisplay);

glutReshapeFunc(myreshape);

glutMouseFunc(mymouse);

glutKeyboardFunc(mykeyboard);

myinit();

glutMainLoop();

return 0;
}

Basic graphics primitives

OpenGL Provides tools for drawing all the output primitives such as points, lines,

triangles, polygons, quads etc and it is defined by one or more vertices.

To draw such objects in OpenGL we pass it a list of vertices. The list occurs between the

two OpenGL function calls glBegin() and glEnd(). The argument of glBegin() determine

which object is drawn.

These functions are

glBegin(int mode);
glEnd(void);

The parameter mode of the function glBegin can be one of the following:

GL_POINTS

GL_LINES
GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

glVertex() : The main function used to draw objects is named as glVertex. This function
defines a point (or a vertex) and it can vary from receiving 2 up to 4 coordinates.

Format of glVertex Command

When we wish to refer the basic command without regard to the specific arguments and

datatypes it is specified as

glVertex*();

Example

//the following code plots three dots

glBegin(GL_POINTS);

glVertex2i(100, 50);

glVertex2i(100, 130);

glVertex2i(150, 130);

glEnd();

// the following code draws a triangle

glBegin(GL_TRIANGLES);

glVertex3f(100.0f, 100.0f, 0.0f);

glVertex3f(150.0f, 100.0f, 0.0f);

glVertex3f(125.0f, 50.0f, 0.0f);

glEnd();

// the following code draw a lines

glBegin(GL_LINES);

glVertex3f(100.0f, 100.0f, 0.0f); // origin of the line

glVertex3f(200.0f, 140.0f, 5.0f); // ending point of the line

glEnd();

OpenGl State

OpenGl keeps track of many state variables, such as current size of a point, the current

color of a drawing, the current background color, etc.

The value of a state variable remains active until new value is given.

glPointSize() : The size of a point can be set with glPointSize(), which takes one floating

point argument

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Example : glPointSize(4.0);

glClearColor() : establishes what color the window will be cleared to. The background

color is set with glClearColor(red, green, blue, alpha), where alpha

specifies a degree of transparency

Example : glClearColor (0.0, 0.0, 0.0, 0.0); //set black background color

glClear() : To clear the entire window to the background color, we use glClear

(GL_COLOR_BUFFER_BIT). The argument GL_COLOR_BUFFER_BIT is another

constant built into OpenGL

Example : glClear(GL_COLOR_BUFFER_BIT)

glColor3f() : establishes to use for drawing objects. All objects drawn after this point use

this color, until it‟s changed with another call to set the color.

Example:

glColor3f(0.0, 0.0, 0.0); //black

glColor3f(1.0, 0.0, 0.0); //red

glColor3f(0.0, 1.0, 0.0); //green

glColor3f(1.0, 1.0, 0.0); //yellow

glColor3f(0.0, 0.0, 1.0); //blue

glColor3f(1.0, 0.0, 1.0); //magenta

glColor3f(0.0, 1.0, 1.0); //cyan
glColor3f(1.0, 1.0, 1.0); //white

gluOrtho2D(): specifies the coordinate system in two dimension

void gluOrtho2D (GLdouble left, GLdouble right, GLdouble bottom,GLdouble top);

Example : gluOrtho2D(0.0, 640.0, 0.0, 480.0);

glOrtho() : specifies the coordinate system in three dimension

Example : glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glFlush() : ensures that the drawing commands are actually executed rather than stored

in a buffer awaiting (ie) Force all issued OpenGL commands to be executed

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

glMatrixMode(GL_PROJECTION) : For orthographic projection

glLoadIdentity() : To load identity matrix

Example : OpenGL Program to draw three dots (2-Dimension)

#include "stdafx.h"
#include "gl/glut.h"
#include <gl/gl.h>
void myInit(void)

{

glClearColor (1.0, 1.0, 1.0, 0.0);

glColor3f (0.0, 0.0, 0.0);
glPointSize(4.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
void Display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);
glVertex2i(100, 50);

glVertex2i(100, 130);

glVertex2i(150, 130);

glEnd();
glFlush();
}
int main (int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640,480);

glutInitWindowPosition(100,150);

glutCreateWindow("Example");

glutDisplayFunc(Display);

myInit();

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

glutMainLoop();
return 0;

}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Drawing three dimensional objects & Drawing three dimensional scenes

OpenGL has separate transformation matrices for different graphics features

glMatrixMode(GLenum mode), where mode is one of:

GL_MODELVIEW - for manipulating model in scene

GL_PROJECTION - perspective orientation
GL_TEXTURE - texture map orientation

glLoadIdentity(): loads a 4-by-4 identity matrix into the current matrix

glPushMatrix() : push current matrix stack

glPopMatrix() : pop the current matrix stack

glMultMatrix () : multiply the current matrix with the specified matrix

glViewport() : set the viewport

Example : glViewport(0, 0, width, height);

gluPerspective() : function sets up a perspective projection matrix.

Format : gluPerspective(angle, asratio, ZMIN, ZMAX);

Example : gluPerspective(60.0, width/height, 0.1, 100.0);

gluLookAt() - view volume that is centered on a specified eyepoint

Example : gluLookAt(3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glutSwapBuffers () : glutSwapBuffers swaps the buffers of the current window if

double buffered.

Example for drawing three dimension Objects

glBegin(GL_QUADS); // Start drawing a quad primitive

glVertex3f(-1.0f, -1.0f, 0.0f); // The bottom left corner

glVertex3f(-1.0f, 1.0f, 0.0f); // The top left corner

glVertex3f(1.0f, 1.0f, 0.0f); // The top right corner

glVertex3f(1.0f, -1.0f, 0.0f); // The bottom right corner

glEnd();

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

[Computer graphics study material

// Triangle

glBegin(GL_TRIANGLES);

glVertex3f(-0.5f, -0.5f, -10.0);

glVertex3f(0.5f, -0.5f, -10.0);

glVertex3f(0.0f, 0.5f, -10.0);

glEnd();

// Quads in different colours

glBegin(GL_QUADS);

glColor3f(1,0,0); //red

glVertex3f(-0.5, -0.5, 0.0);

glColor3f(0,1,0); //green

glVertex3f(-0.5, 0.5, 0.0);

glColor3f(0,0,1); //blue

glVertex3f(0.5, 0.5, 0.0);

glColor3f(1,1,1); //white

glVertex3f(0.5, -0.5, 0.0);

glEnd();

GLUT includes several routines for drawing these three

cone

icosahedron

teapot

cube

octahedron

tetrahedron

dodecahedron

sphere

torus

OpenGL Functions for drawing the 3D Objects

glutWireCube(double size);

glutSolidCube(double size);

glutWireSphere(double radius, int slices, int stacks);

glutSolidSphere(double radius, int slices, int stacks);

glutWireCone(double radius, double height, int slice

glutSolidCone(double radius, double height, int slices, int stacks);

glutWireTorus(double inner_radius, double outer_radius, int sides, int rings);

glutSolidTorus(double inner_radius, double outer_radius, int sides, int rings);

glutWireTeapot(double size);

glutSolidTeapot(double size);

material]

glBegin(GL_TRIANGLES);

);

);

10.0);

GLUT includes several routines for drawing these three-dimensional objects:

Functions for drawing the 3D Objects

glutWireSphere(double radius, int slices, int stacks);

glutSolidSphere(double radius, int slices, int stacks);

glutWireCone(double radius, double height, int slices, int stacks);

glutSolidCone(double radius, double height, int slices, int stacks);

glutWireTorus(double inner_radius, double outer_radius, int sides, int rings);

glutSolidTorus(double inner_radius, double outer_radius, int sides, int rings);

size);

size);

glutWireTorus(double inner_radius, double outer_radius, int sides, int rings);

glutSolidTorus(double inner_radius, double outer_radius, int sides, int rings);

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 – Computer Graphics Unit - III

3D Transformation in OpenGL

glTranslate () : multiply the current matrix by a translation matrix

glTranslated(GLdouble x, GLdouble y, GLdouble z);
void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

x, y, z - Specify the x, y, and z coordinates of a translation vector.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after a

call to glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate system.

glRotate() : multiply the current matrix by a rotation matrix

void glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z);

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

angle : Specifies the angle of rotation, in degrees.

x, y, z : Specify the x, y, and z coordinates of a vector, respectively.

glScale() : multiply the current matrix by a general scaling matrix

voidglScaled(GLdouble x, GLdouble y, GLdouble z);

void glScalef(GLfloat x, GLfloat y, GLfloat z);

x, y, z : Specify scale factors along the x, y, and z axes, respectively.

Example : Transformation of a Polygon

#include "stdafx.h"

#include "gl/glut.h"

#include <gl/gl.h>

void Display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glBegin(GL_POLYGON);

glVertex3f(0.0, 0.0, 0.0); // V0 (0, 0, 0)

glVertex3f(1.0f, 0.0, 0.0); // V1 (1, 0, 0)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

glVertex3f(1.0f, 1.0f, 0.0); // V2 (1, 1, 0)

glVertex3f(0.5f, 1.5f, 0.0); // V3 (0.5, 1.5, 0)

glVertex3f(0.0, 1.0f, 0.0); // V4

(0, 1, 0) glEnd();

glPushMatrix();

glTranslatef(1.5,

2.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glScalef(0.5, 0.5,

0.5);

glBegin(GL_POL

YGON);

glVertex3f(0.0, 0.0, 0.0); // V0 (0, 0, 0)

glVertex3f(1.0f, 0.0, 0.0); // V1 (1, 0, 0)

glVertex3f(1.0f, 1.0f, 0.0); // V2 (1, 1, 0)

glVertex3f(0.5f, 1.5f, 0.0); // V3 (0.5, 1.5, 0)

glVertex3f(0.0, 1.0f, 0.0); // V4
(0, 1, 0) glEnd();
glPop

Matrix();

glFlush();

glutSwapBuff

ers();

}

void Init(void)

{

glClearColor(0.0, 0.0, 0.0, 0.0);

}

void Resize(int width, int height)

{
glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(60.0, width/height, 0.1,

1000.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}
int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE |

GLUT_RGB); glutInitWindowSize(400, 400);

glutInitWindowPosition(200, 200);

glutCreateWindow("Polygon in

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

OpenGL"); Init();

glutDisplayFunc(

Display);

glutReshapeFunc(

Resize);

glutMainLoop();

return 0;

}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

FREQUENTLY ASKED QUESTIONS

Unit I

1. Explain about different line drawing algorithms.

2. a) What is reflection and shear transformation? Discuss with examples.

b) Discuss about Sutherland Hodgeman polygon clipping algorithm with

example.

3. a) Explain about cohen-sutherland line clipping algorithm

b) Discuss about homogenous coordinates.

4. Discuss about mid-point ellipse algorithm.

5. Derive the decision parameter used in Bresenham’s line drawing algorithm

6. Explain the Cohen-Sutherland algorithm for finding the category of a line

segment. Show clearly how each category is handled by the algorithm.
7. a) Explain the perspective projection for projecting 3D objects on a 2D view

surface.

b)Describe 3D clipping

8. Using midpoint ellipse algorithm, generate points on the ellipse with center as

origin, major axis 8 units and minor axis 6 units.
9. a) Adapt the Liang-Barsky line-clipping algorithm to polygon clipping.

b) Write a note on viewing functions.

10. a) Write a routine to reflect an object about an arbitrarily selected plane
b) Write short notes o 3D clipping.

11. Explain 2- dimensional scaling and shear transformations with examples.

12. a) Explain the various approaches followed in different line-clipping algorithms.
b) What is the principle of Cyrus-Beck algorithm for clipping a polygon?

Unit II

 13. a)Differentiate between parallel and perspective projections.
 b) Explain in brief about 3D viewing pipeline.

 14. a) Explain the working of the Sutherland-Hodgeman algorithm for polygon

clipp with the help of suitable example.
b) Compare Liang Barsky algorithm with Cohen Sutherland algorithm.

15. a) Derive the perspective projection transformation matrix.
b) b) Explain in brief about the working process of 3D clipping.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

16. a) Show that a rotation about the origin can be done by performing

three shearing Transformations

b) What is the need of homogeneous coordinates? Give the

homogeneous coordinates for translation, rotation and scaling.
17. a) Derive the transformation matrix for rotation about an x-axis in 3D.

b) Compare the orthographic and oblique types of parallel

projections and also Explain the various clipping parameters in 3D

clipping.

Unit III

 18. Explain about color models (RGB, CMY, YIQ, HSV, HSL)?

 19 Explain about Animations

 20 Explain “Functions in OPENGL” with example programs(line , triangle

square etc)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

UNIT IV – RENDERING

Introduction to shading models – Flat and smooth shading – Adding

texture to faces – Adding shadows of objects – Building a camera ina

program – Creating shaded objects – Rendering texture – Drawing
shadows.

 Introduction to Shading Models
The mechanism of light reflection from an actual surface is very

complicated it depends on many factors. Some of these factors are

geometric and others are related to the characteristics of the surface.

A shading model dictates how light is scattered or reflected from a
surface. The shading models described here focuses on achromatic light.

Achromatic light has brightness and no color, it is a shade of gray so it is

described by a single value its intensity.

A shading model uses two types of light source to illuminate the
objects in a scene : point light sources and ambient light. Incident

light interacts with the surface in three different ways:

Some is absorbed by the surface and is converted to heat.

Some is reflected from the surface

Some is transmitted into the interior of the object
If all incident light is absorbed the object appears black and is

known as a black body. If all of the incident light is transmitted the

object is visible only through the effects of reflection.
Some amount of the reflected light travels in the right direction to

reach the eye causing the object to be seen. The amount of light that

reaches the eye depends on the orientation of the surface, light and
the observer. There are two different types of reflection of incident

light

Diffuse scattering occurs when some of the incident light

slightly penetrates the surface and is re-radiated uniformly in
all directions. Scattered light interacts strongly with the surface

and so its color is usually affected by the nature of the surface

material.

 Specular reflections are more mirrorlike and highly
directional. Incident light is directly reflected from its outer

surface. This makes the surface looks shinny. In the simplest
model the reflected light has the same color as the incident
light, this makes the material look like plastic. In a more
complex model the color of the specular light varies , providing
a better approximation to the shininess of metal surfaces.

The total light reflected from the surface in a certain

direction is the sum of the diffuse component and the specular

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

component. For each surface point of interest we compute the size
of each component that reaches the eye.

 Geometric Ingredients For Finding Reflected Light
We need to find three vectors in order to compute the diffuse

and specular components. The below fig. shows three principal
vectors (s, m and v) required to find the amount of light that

reaches the eye from a point P.
Important directions in computing the reflected light

 The normal vector , m , to the surface at P.

1. The vector v from P to the viewer‟s eye.

2. The vector s from P to the light source.
The angles between these three vectors form the basis of

computing light intensities. These angles are normally calculated

using world coordinates.
Each face of a mesh object has two sides. If the object is

solid , one is inside and the other is outside. The eye can see only

the outside and it is this side for which we must compute light

contributions.
We shall develop the shading model for a given side of a face.

If that side of the face is turned away from the eye there is no light

contribution.

 How to Compute the Diffuse Component

Suppose that a light falls from a point source onto one side
of a face , a fraction of it is re-radiated diffusely in all directions

from this side. Some fraction of the re-radiated part reaches the

eye, with an intensity denoted by Id.
An important property assumed for diffuse scattering is that

it is independent of the direction from the point P, to the location of

the viewer‟s eye. This is called omnidirectional scattering ,

because scattering is uniform in all directions. Therefore Id is

independent of the angle between m and v.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

s m

 Fig (b) the face is turned partially away from the light source

through angle θ. The area subtended is now only cos(θ) , so that

the brightness is reduced of S is reduced by this same factor. This
relationship between the brightness and surface orientation is

called Lambert’s law.

cos(θ) is the dot product between the normalized versions of
s and m. Therefore the strength of the diffuse component:

Id = Is ρd
s.m

s m

Is is the intensity of the light source and ρd is the diffuse

reflection coefficient. If the facet is aimed away from the eye this

dot product is negative so we need to evaluate Id to 0. A more
precise computation of the diffuse component is :

Id = Is ρd max
s.m

,0

The reflection coefficient ρd depends on the wavelength of the

incident light , the angle θ and various physical properties of the

surface. But for simplicity and to reduce computation time, these
effects are usually suppressed when rendering images. A

reasonable value for ρd is chosen for each surface.
 Specular Reflection

Real objects do not scatter light uniformly in all directions

and so a specular component is added to the shading model.

Specular reflection causes highlights which can add reality to a

picture when objects are shinny. The behavior of specular light can
be explained with Phong model.

Phong Model
It is easy to apply and the highlights generated by the phong

model given an plasticlike appearance , so the phong model is

good when the object is made of shinny plastic or glass.
The Phong model is less successful with objects that have a

shinny metallic surface.
Fig a) shows a situation where light from a source impinges

on a surface and is reflected in different directions.

In this model we discuss the amount of light reflected is

greatest in the direction of perfect mirror reflection , r, where the

angle of incidence θ equals the angle of reflection. This is the

direction in which all light would travel if the surface were a
perfect mirror. At the other nearby angles theamount of light

reflected diminishes rapidly, Fig

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

(b) shows this with beam patterns. The distance from P to the beam
envelope shows the relative strength of the light scattered in that

direction.

Fig(c) shows how to quantify this beam pattern effect . The
direction r of perfect reflection depends on both s and the normal
vector m to the surface.

 The Role of Ambient Light and Exploiting Human Perception
The diffuse and specular components of reflected light are found by

simplifying the rules by which physical light reflects from physical

surfaces. The dependence of these components on the relative position

of the eye , model and light sources greatly improves the reality of a
picture.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The simple reflection model does not perfectly renders a scene. An
example: shadows are unrealistically deep and harsh, to soften these

shadows we add a third light component called ambient light.

With only diffuse and specular reflections, any parts of a surface

that are shadowed from the point source receive no light and so are
drawn black but in real, the scenes around us are always in some soft

nondirectional light. This light arrives by multiple reflections from

various objects in the surroundings. But it would be computationally
very expensive to model this kind of light.

Ambient Sources and Ambient Reflections
To overcome the problem of totally dark shadows we imagine that a

uniform background glow called ambient light exists in the

environment. The ambient light source spreads in all directions

uniformly.

The source is assigned an intensity Ia. Each face in the model is

assigned a value for its ambient reflection coefficient ρd, and the term Ia

ρa is added to the diffuse and specular light that is reaching the eye from

each point P on that face. Ia and ρa are found experimentally.
Too little ambient light makes shadows appear too deep and

harsh., too much makes the picture look washed out and bland.

 How to combine Light Contributions
We sum the three light contributions –diffuse, specular and

ambient to form the total amount of light I that reaches the eye from

point P:
I = ambient + diffuse + specular
I= Ia ρa + Id ρd × lambert + Isp ρs × phongf

Where we define the values

lambert = max 0,
 s.m

s m

and phong = max 0,
 h.m

h m

I depends on various source intensities and reflection coefficients

and the relative positions of the point P, the eye and the point light

source.

Ir= Iar ρar + Idr ρdr × lambert + Ispr ρsr × phongf

Ig= Iag ρag + Idg ρdg × lambert + Ispg ρsg × phongf

Ib= Iab ρab + Idb ρdb × lambert + Ispb ρsb × phongf -----------------
(1)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The above equations are applied three times to compute the

red, green and blue components of the reflected light.

The light sources have three types of color : ambient =(Iar,Iag,Iab) ,
diffuse=(Idr,Idg,Idb) and specular=(Ispr,Ispg,Ispb). Usually the diffuse and the
specular light colors are the same. The terms lambert and phongf do not
depends on the color component so they need to be calculated once. To
do this we need to define nine reflection coefficients:

ambient reflection coefficients: ρar , ρag and ρab

diffuse reflection coefficients: ρdr , ρdg and ρdb

specular reflection coefficients: ρsr , ρsg and ρsb

The ambient and diffuse reflection coefficients are based on the

color of the surface itself.

The Color of Specular Light
Specular light is mirrorlike , the color of the specular component

is same as that of the light source.
Example: A specular highlight seen on a glossy red apple when

illuminated by a yellow light is yellow and not red. This is the same for
shiny objects made of plasticlike material.

To create specular highlights for a plastic surface the specular

reflection coefficients ρsr , ρsg and ρsb are set to the same value so that the
reflection coefficients are gray in nature and do not alter the color of the

incident light.

 Shading and the Graphics Pipeline

The key idea is that the vertices of a mesh are sent down the

pipeline along with their associated vertex normals, and all shading
calculations are done on vertices.

The above fig. shows a triangle with vertices v0,v1 and v2 being

rendered. Vertex vi has the normal vector mi associated with it. These

quantities are sent down the pipeline with calls such as :

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The call to glNormal3f() sets the “current normal vector” which

is applied to all vertices sent using glVertex3f(). The current normal

remains current until it is changed with another call to glNormal3f().

The vertices are transformed by the modelview matrix, M so

they are then expressed in camera coordinates. The normal vectors are

also transformed. Transforming points of a surface by a matrix M causes
the normal m at any point to become the normal M-Tm on the

transformed surface, where M-T is the transpose of the inverse of M.

All quantities after the modelview transformation are expressed in

camera coordinates. At this point the shading model equation (1) is

applied and a color is attached to each vertex.
The clipping step is performed in homogenous coordinates.

This may alter some of the vertices. The below figure shows the case

where vertex v1 of a triangle is clipped off and two new vertices a and b

are created. The triangle becomes a quadrilateral. The color at each new
vertices must be computed, since it is needed in the actual rendering

step.

 To Use Light Sources in OpenGL

OpenGL provides a number of functions for setting up and
using light sources, as well as for specifying the surface properties of
materials.
Create a Light Source

In OpenGL we can define upto eight sources, which are

referred through names GL_LIGHT0, GL_LIGHT1 and so on. Each source

has properties and must be enabled. Each property has a default value.
For example, to create a source located at (3,6,5) in the world coordinates

GLfloat myLightPosition[]={3.0 , 6.0,5.0,1.0 };

glLightfv(GL_LIGHT0, GL-POSITION, myLightPosition);
glEnable(GL_LIGHTING); //enable lighting in general

glEnable(GL_LIGHT0); //enable source GL_LIGHT0

The array myLightPosition[] specifies the location of the light
source. This position is passed to glLightfv() along with the name

GL_LIGHT0 to attach it to the particular source GL_LIGHT0.
Some sources such as desk lamp are in the scene whereas like

the sun are infinitely remote. OpenGL allows us to create both types by
using homogenous coordinates to specify light position:(x,y,z,1),
Spotlights

Light sources are point sources by default, meaning that they

emit light uniformly in all directions. But OpenGL allows you to make

them into spotlights, so they emit light in a restricted set of directions.
The fig. shows a spotlight aimed in direction d with a “cutoff angle” of α.

Properties of an OpenGL spotlight

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

No light is seen at points lying outside the cutoff cone. For

vertices such as P, which lie inside the cone, the amount of light
reaching P is attenuated by the factor cosε(β), where β is the angle

between d and a line from the source to P and is the exponent chosen by

the user to give the desired falloff of light with angle.
The parameters for a spotlight are set by using glLightf() to

set a single value and glLightfv() to set a vector:

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF,45.0); //a cutoff angle 45degree
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,4.0); //ε=4.0
GLfloat dir[]={2.0, 1.0, -4.0}; // the spotlight‟s direction

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION,dir);

The default values for these parameters are d= (0,0,-1) , α=180 degree

and ε=0, which makes a source an omni directional point source.

OpenGL allows three parameters to be set that specify general

rules for applying the lighting model. These parameters are passed to

variations of the function glLightModel.

The color of global Ambient Light:
The global ambient light is independent of any particular

source. To create this light , specify its color with the statements:

GLfloat amb[]={ 0.2, 0.3, 0.1, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,amb);

This code sets the ambient source to the color (0.2, 0.3, 0.1).
The default value is (0.2, 0.2, 0.2,1.0) so the ambient is always present.

Setting the ambient source to a non-zero value makes object in a scene

visible even if you have not invoked any of the lighting functions.

Is the Viewpoint local or remote?
OpenGL computes specular reflection using halfway vector

h= s + v. The true directions s and v are different at each vertex. If the

light source is directional then s is constant but v varies from vertex to

vertex. The rendering speed is increased if v is made constant for all

vertices.
As a default OpenGL uses v =(0,0,1),which points along the

positive z axis in camera coordinates. The true value of v can be

computed by the following statement:

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

Are both sides of a Polygon Shaded Properly?

Each polygon faces in a model has two sides, inside and
outside surfaces. The vertices of a face are listed in counterclockwise

order as seen from outside the object. The camera can see only the

outside surface of each face. With hidden surfaces removed, the inside

surface of each face is hidden from the eye by some closer face.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

In OpenGL the terms “front faces” and “back faces” are used for

“inside” and “outside”. A face is a front face if its vertices are listed in

counterclockwise order as seen by the eye.
The fig.(a) shows a eye viewing a cube which is modeled using

the counterclockwise order notion. The arrows indicate the order in

which the vertices are passed to OpenGL. For an object that encloses

that some space, all faces that are visible to the eye are front faces, and
OpenGL draws them with the correct shading. OpenGL also draws back

faces but they are hidden by closer front faces.

Fig(b) shows a box with a face removed. Three of the visible
faces are back faces. By default, OpenGL does not shade these properly.

To do proper shading of back faces we use:

glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 When this statement is executed, OpenGL reverses the normal
vectors of any back face so that they point towards the viewer, and then it performs
shading computations properly. Replacing GL_TRUE with GL_FALSE will turn off this
facility.

Moving Light Sources
Lights can be repositioned by suitable uses of glRotated() and

glTranslated(). The array position, specified by using

glLightfv(GL_LIGHT0,GL_POSITION,position)
is modified by the modelview matrix that is in effect at the time glLightfv()
is called. To modify the position of the light with transformations and

independently move the camera as in the following code:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

void display()
{

GLfloat position[]={2,1,3,1}; //initial light position

clear the color and depth buffers

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glPushMatrix();
glRotated(….); //move the light

glTranslated(…);

glLightfv(GL_LIGHT0,GL_POSITION,position);
glPopMatrix();

gluLookAt(….); //set the camera position

draw the object

glutSwapBuffers();

}
To move the light source with camera we use the following

code:

GLfloat pos[]={0,0,0,1};

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glLightfv(GL_LIGHT0,GL_POSITION,position); //light at (0,0,0)
gluLookAt(….); //move the light and the camera
draw the object

This code establishes the light to be positoned at the eye and
the light moves with the camera.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

 Working With Material Properties In OpenGL
The effect of a light source can be seen only when light reflects

off an object‟s surface. OpenGL provides methods for specifying the

various reflection coefficients. The coefficients are set with variations of
the function glMaterial and they can be specified individually for front and back faces.
The code:

Glfloat myDiffuse[]={0.8, 0.2, 0.0, 1.0 };

glMaterialfv(GL_FRONT,GL_DIFFUSE,myDiffuse);

sets the diffuse reflection coefficients(ρdr , ρdg ,ρdb) equal to (0.8,
0.2, 0.0) for all specified front faces. The first parameter of glMaterialfv()

can take the following values:
GL_FRONT:Set the reflection coefficient for front faces.
GL_BACK:Set the reflection coefficient for back faces.

GL_FRONT_AND_BACK:Set the reflection coefficient for both front

and back faces.
The second parameter can take the following values: GL_AMBIENT:

Set the ambient reflection coefficients. GL_DIFFUSE: Set the

diffuse reflection coefficients. GL_SPECULAR: Set the
specular reflection coefficients.

GL_AMBIENT_AND_DIFFUSE: Set both the ambient and the

diffuse reflection coefficients to the same values.
GL_EMISSION: Set the emissive color of the surface.

The emissive color of a face causes it to “glow” in the specified

color, independently of any light source.

 Shading of Scenes specified by SDL
The scene description language SDL supports the loading of

material properties into objects so that they can be shaded properly.

light 3 4 5 .8 .8 ! bright white light at (3,4,5)
background 1 1 1 ! white background
globalAmbient .2 .2 .2 ! a dark gray global ambient light
ambient .2 .6 0

diffuse .8 .2 1 ! red material

specular 1 1 1 ! bright specular spots – the color of the source
specularExponent 20 !set the phong exponent

scale 4 4 4 sphere

The code above describes a scene containing a sphere with the

following material properties:
o ambient reflection coefficients: (ρar , ρag , ρab)= (.2, 0.6, 0);
o diffuse reflection coefficients: (ρdr , ρdg , ρdb)= (0.8,0.2,1.0);
o specular reflection coefficients: (ρsr , ρsg , ρsb) = (1.0,1.0,1.0);
o Phong exponent f = 20.

The light source is given a color of (0.8,0.8,0.8) for both its
diffuse and specular component. The global ambient term
(Iar , Iag , Iab)= (0.2, 0.2, 0.2).

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The current material properties are loaded into each object‟s mtrl

field at the time the object is created. When an object is drawn

using drawOpenGL(), it first passes its material properties to OpenGL,

so that at the moment the object is actually drawn, OpenGL has those

properties in its current state.

 FLAT SHADING AND SMOOTH SHADING

Different objects require different shading effects. In the

modeling process we attached a normal vector to each vertex of each

face. If a certain face is to appear as a distinct polygon, we attach the
same normal vector to all of its vertices; the normal vector chosen is that

indicating the direction normal to the plane of the face. If the face is

approximate an underlying surface, we attach to each vertex the normal
to the underlying surface at that plane.

The information obtained from the normal vector at each

vertex is used to perform different kinds of shading. The main distinction

is between a shading method that accentuates the individual polygons
(flat shading) and a method that blends the faces to de-emphasize the

edges between them (smooth shading).
In both kinds of shading, the vertices are passed down the

graphics pipeline, shading calculations are performed to attach a color to
each vertex and the vertices are converted to screen coordinates and the
face is “painted” pixel by pixel with the appropriate color.

Painting a Face
A face is colored using a polygon fill routine. A polygon routine

is sometimes called as a tiler because it moves over a polygon pixel by

pixel, coloring each pixel. The pixels in a polygon are visited in a regular

order usually from bottom to top of the polygon and from left to right.
Polygons intersect are convex. A tiler designed to fill only

convex polygons can be very efficient because at each scan line there is

unbroken run of pixels that lie inside the polygon. OpenGL uses this
property and always fills convex polygons correctly whereas nonconvex

polygons are not filled correctly.

A convex quadrilateral whose face is filled with color

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The screen coordinates of each vertex is noted. The lowest and

highest points on the face are ybott and ytop. The tiler first fills in the row

at y= ybott , then at ybott + 1, etc. At each scan line ys, there is a leftmost

pixel xleft and a rightmost pixel xright. The toler moves from xleft to xright,

placing the desired color in each pixel. The tiler is implemented as a
simple double loop:

for (int y= ybott ; y<= ytop; y++) // for each scan line
{

find xleft and xright

for(int x= xleft ; x<= xright; x++) // fill across the scan line
{

find the color c for this pixel
put c into the pixel at (x,y)

}
}

The main difference between flat and smooth shading is the

manner in which the color c is determined in each pixel.
 Flat Shading

When a face is flat, like a roof and the light sources are distant
, the diffuse light component varies little over different points on the roof.
In such cases we use the same color for every pixel covered by the face.

OpenGL offers a rendering mode in which the entire face is
drawn with the same color. In this mode, although a color is passed

down the pipeline as part of each vertex of the face, the painting

algorithm uses only one color value. So the command find the color c
for this pixel is not inside the loops, but appears before the loop, setting

c to the color of one of the vertices.

Flat shading is invoked in OpenGL using the command
glShadeModel(GL_FLAT);

When objects are rendered using flat shading. The individual

faces are clearly visible on both sides. Edges between faces actually

appear more pronounced than they would on an actual physical object
due to a phenomenon in the eye known as lateral inhibition. When

there is a discontinuity across an object the eye manufactures a Mach

Band at the discontinuity and a vivid edge is seen.

Specular highlights are rendered poorly with flat shading

because the entire face is filled with a color that was computed at only

one vertex.

 Smooth Shading
Smooth shading attempts to de-emphasize edges between

faces by computing colors at more points on each face. The two types of

smooth shading

Gouraud shading

Phong shading

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Gouraud Shading
Gouraud shading computes a different value of c for each

pixel. For the scan line ys in the fig. , it finds the color at the leftmost

pixel, colorleft, by linear interpolation of the colors at the top and bottom

of the left edge of the polygon. For the same scan line the color at the

top is color4, and that at the bottom is color1, so colorleft will be

calculated as
colorleft = lerp(color1, color4,f), -------------------------------- (1)

where the fraction

varies between 0 and 1 as ys varies from ybott to y4. The eq(1) involves

three calculations since each color quantity has a red, green and blue

component.

Colorright is found by interpolating the colors at the top and

bottom of the right edge. The tiler then fills across the scan line , linearly

interpolating between colorleft and colorright to obtain the color at pixel x:

C(x) = lerp

To increase the efficiency of the fill, this color is computed

incrementally at each pixel . that is there is a constant difference
between c(x+1) and c(x) so that

C(x+1)=c(x)+

The incremented is calculated only once outside of the inner most

loop. The code:
for (int y= ybott; y<=ytop ; y++) //for each scan line
{

find xleft and xright

find colorleft and colorright

colorinc=(colorright - colorleft) / (xright - xleft);
for(int x= xleft, c=colorleft; x<=xright; x++, c+=colorinc)
put c into the pixel at (x,y)

}
Computationally Gouraud shading is more expensive than

flat shading. Gouraud shading is established in OpenGL using the

function:
glShadeModel(GL_SMOOTH);
When a sphere and a bucky ball are rendered using Gouraud

shading, the bucky ball looks the same as it was rendered with flat

shading because the same color is associated with each vertex of a face.
But the sphere looks smoother, as there are no abrupt jumps in color

between the neighboring faces and the edges of the faces are gone ,

replaced by a smoothly varying colors across the object.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Continuity of color across a polygonal edge

Fig.(a) shows two faces F and F‟ that share an edge. In

rendering F, the colors CL and CR are used and in rendering F‟, the colors

C‟L and C‟R are used. But since CR equals C‟L, there is no abrupt change

in color at the edge along the scan line.

Fig.(b) shows how Gouraud shading reveals the underlying

surface. The polygonal surface is shown in cross section with vertices V1

and V2. The imaginary smooth surface is also represented. Properly

computed vertex normals m1,m2 point perpendicularly to this imaginary

surface so that the normal for correct shading will be used at each vertex

and the color there by found will be correct. The color is then made to
vary smoothly between the vertices.

Gouraud shading does not picture highlights well because

colors are found by interpolation. Therefore in Gouraud shading the
specular component of intensity is suppressed.

Phong Shading
Highlights are better reproduced using Phong Shading.

Greater realism can be achieved with regard to highlights on shiny
objects by a better approximation of the normal vector to the face at each

pixel this type of shading is called as Phong Shading

When computing Phong Shading we find the normal vector at

each point on the face of the object and we apply the shading model
there to fig the color we compute the normal vector at each pixel by

interpolating the normal vectors at the vertices of the polygon.
The fig shows a projected face with the normal vectors m1, m2,

m3 and m4 indicated at the four vertices.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Interpolating normals

For the scan line ys, the vectors m left and m right are found by
linear interpolation

This interpolated vector must be normalized to unit length

before it is used in the shading formula once m left and m right are known

they are interpolated to form a normal vector at each x along the scan

line that vector is used in the shading calculation to form the color at the

pixel.
In Phong Shading the direction of the normal vector varies

smoothly from point to point and more closely approximates that of an

underlying smooth surface the production of specular highlights are good
and more realistic renderings produced.

Drawbacks of Phong Shading

Relatively slow in speed

More computation is required per pixel

Note: OpenGL does not support Phong Shading

 Adding texture to faces
The realism of an image is greatly enhanced by adding surface

texture to various faces of a mesh object.

The basic technique begins with some texture function,

texture(s,t) in texture space , which has two parameters s and t. The
function texture(s,t) produces a color or intensity value for each value of

s and t between 0(dark)and 1(light). The two common sources of textures

are

Bitmap Textures

Procedural Textures

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Bitmap Textures
Textures are formed from bitmap representations of images,

such as digitized photo. Such a representation consists of an array

txtr[c][r] of color values. If the array has C columns and R rows, the
indices c and r vary from 0 to C-1 and R-1 resp.,. The function

texture(s,t) accesses samples in the array as in the code:

Color3 texture (float s, float t)
{

return txtr[(int) (s * C)][(int) (t * R)];
}

Where Color3 holds an RGB triple.

Example: If R=400 and C=600, then the texture (0.261, 0.783)
evaluates to txtr[156][313]. Note that a variation in s from 0 to 1

encompasses 600 pixels, the variation in t encompasses 400 pixels. To

avoid distortion during rendering , this texture must be mapped onto a
rectangle with aspect ratio 6/4.

Procedural Textures

Textures are defined by a mathematical function or procedure.
For example a spherical shape could be generated by a function:

float fakesphere(float s, float t)
{

float r= sqrt((s-0.5) * (s-0.5)+ (t-0.5) * (t-0.5));
if (r < 0.3) return 1-r/0.3; //sphere intensity

else return 0.2; //dark background
}
This function varies from 1(white) at the center to 0 (black) at

the edges of the sphere.
 Painting the Textures onto a Flat Surface

Texture space is flat so it is simple to paste texture on a flat

surface.
Mapping texture onto a planar polygon

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The fig. shows a texture image mapped to a portion of a planar

polygon,F. We need to specify how to associate points on the texture with
points on F.

In OpenGL we use the function glTexCoord2f() to associate a

point in texture space Pi=(si,ti) with each vertex Vi of the face. the

function glTexCoord2f(s,t)sets the current texture coordinate to (s,y). All
calls to glVertex3f() is called after a call to glTexCoord2f(), so each vertex

gets a new pair of texture coordinates.

Example to define a quadrilateral face and to position a
texture on it, we send OpenGL four texture coordinates and four 3D

points, as follows:

Mapping a Square to a Rectangle

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The fig. shows the a case where the four corners of the texture
square are associated with the four corners of a rectangle. In this

example, the texture is a 640-by-480 pixel bit map and it is pasted onto

a rectangle with aspect ratio 640/480, so it appears without distortion.

Adding Texture Coordinates to Mesh Objects
A mesh objects has three lists

The vertex list

The normal vector list

The face list

We need to add texture coordinate to this list, which stores
the coordinates (si, ti) to be associated with various vertices. We can add
an array of elements of the type

class TxtrCoord(public : float s,t;);
to hold all of the coordinate pairs of the mesh. The two important
techniques to treat texture for an object are:

1. The mesh object consists of a small number of flat faces, and
a different texture is to be applied to each. Each face has only a

sigle normal vector, but its own list of texture coordinates. So the

following data are associated with each face:

the number of vertices in the face.

the index of normal vector to the face.

a list of indices of the vertices.

a list of indices of the texture coordinates.
2. The mesh represents a smooth underlying object and a single

texture is to wrapped around it. Each vertex has associated with it

a specific normal vector and a particular texture coordinate pair. A
single index into the vertex, normal vector and texture lists is used

for each vertex. The data associated with the face are:

The number of vertices in the face

list of indices of the vertices.

 Rendering the Texture

Rendering texture in a face F is similar to Gouraud Shading. It

proceeds across the face pixel by pixel. For each pixel it must determine
the corresponding texture coordinates (s,t), access the texture and set

the pixel to the proper texture color. Finding the coordinated (s,t) should

be done carefully.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Painting the Texture by Modulating the Reflection Coefficient

The color of an object is the color of its diffuse light component.
Therefore we can make the texture appear to be painted onto the surface

by varying the diffuse reflection coefficient. The texture function

modulates the value of the reflection coefficient from point to point. We
replace eq(1) with

I= texture(s,t) [Ia ρa + Id ρd × lambert]+ Isp ρs × phongf

For appropriate values of s and t. Phong specular reflections are
the color of the source and not the object so highlights do not depend on
the texture. OpenGL does this type of texturing using

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);

Simulating Roughness by Bump Mapping
Bump mapping is a technique developed by Blinn, to give a

surface a wrinkled or dimpled appearance without struggling to model

each dimple itself. One problem associated with applying bump mapping

to a surface like a teapot is that since the model does not contain the
dimples , the object‟s outline caused by a shadow does not show dimples

and it is smooth along each face.

The goal is to make a scalar function texture(s,t) disturb the
normal vector at each spot in a controlled fashion. This disturbance
should depend only on the shape of the surface and the texture.

 On the nature of bump mapping

The fig. shows in cross section how bump mapping works.

Suppose the surface is represented parametrically by the function P(u,v)
and has unit normal vector m(u,v). Suppose further that the 3D point

at(u*,v*) corresponds to texture at (u*,v*).
Blinn‟s method simulates perturbing the position of the true

surface in the direction of the normal vector by an amount proportional

to the texture (u*,v*);that is
P‟(u*,V*) = P(u*,v*)+texture(u*,v*)m(u*,v*).

Figure(a) shows how this techniques adds wrinkles to the surface. The

disturbed surface has a new normal vector m‟(u*,v*)at each point. The

idea is to use this disturbed normal as if it were “attached” to the original

undisturbed surface at each point, as shown in figure (b). Blinn has

demonstrated that a good approximation to m‟(u*,v*) is given by

m‟(u*,v*) =m(u*,v*)+d(u*,v*)

Where the perturbation vector d is given by

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

d(u*,v*) = (m X pv) textureu – (m X pu) texturev.

In which textureu, and texturev are partial derivatives of the texture

function with respect to u and v respectively. Further pu and pv are
partial derivative of P(u,v) with respect to u and v, respectively. all
functions are evaluated at(u*,V*).Note that the perturbation function
depends only on the partial derivatives of the texture(),not on
texture()itself.

 Reflection Mapping
This technique is used to improve the realism of pictures ,

particularly animations. The basic idea is to see reflections in an object

that suggest the world surrounding that object.

The two types of reflection mapping are

 Chrome mapping

A rough and blurry image that suggests the surrounding
environment is reflected in the object as you would see in an object

coated with chrome.

Environment mapping
A recognizable image of the surrounding environment is seen

reflected in the object. Valuable visual clues are got from such

reflections particularly when the object is moving.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

 ADDING SHADOWS OF OBJECTS
Shadows make an image more realistic. The way one object casts a

shadow on another object gives important visual clues as to how the two

objects are positioned with respect to each other. Shadows conveys lot of
information as such, you are getting a second look at the object from the

view point of the light source. There are two methods for computing

shadows:

Shadows as Texture

Creating shadows with the use of a shadow buffer

 Shadows as Texture
The technique of “painting“ shadows as a texture works for

shadows that are cast onto a flat surface by a point light source. The

problem is to compute the shape of the shadow that is cast.
Computing the shape of a shadow

Fig(a) shows a box casting a shadow onto the floor. The shape of the
shadow is determined by the projections of each of the faces of the box

onto the plane of the floor, using the light source as the center of

projection.

Fig(b) shows the superposed projections of two of the faces. The
top faces projects to top‟ and the front face to front‟.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

This provides the key to drawing the shadow. After drawing the
plane by the use of ambient, diffuse and specular light contributions,
draw the six projections of the box‟s faces on the plane, using only the

ambient light. This technique will draw the shadow in the right shape
and color. Finally draw the box.

Building the “Projected” Face
To make the new face F‟ produced by F, we project each of the

vertices of F onto the plane. Suppose that the plane passes through point
A and has a normal vector n. Consider projecting vertex V, producing V‟.

V‟ is the point where the ray from source at S through V hits the plane,

thispointis

 S (V S)

 Creating Shadows with the use of a Shadow buffer
This method uses a variant of the depth buffer that performs the

removal of hidden surfaces. An auxiliary second depth buffer called a
shadow buffer is used for each light source. This requires lot of memory.

This method is based on the principle that any points in a scene

that are hidden from the light source must be in shadow. If no object lies
between a point and the light source, the point is not in shadow.

The shadow buffer contains a depth picture of the scene from the

point of view of the light source. Each of the elements of the buffer

records the distance from the source to the closest object in the
associated direction. Rendering is done in two stages:

1) Loading the shadow buffer

n.(A S)

n.(V S)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The shadow buffer is initialized with 1.0 in each element, the largest

pseudo depth possible. Then through a camera positioned at the light
source, each of the scenes is rasterized but only the pseudo depth of the

point on the face is tested. Each element of the shadow buffer keeps

track of the smallest pseudo depth seen so far.
Using the shadow buffer. The fig. shows a scene being viewed by the usual eye
camera and a source camera located at the light source. Suppose that point P is
on the ray from the source through the shadow buffer pixel d[i][j] and that point
B on the pyramid is also on this ray. If the pyramid is present d[i][j] contains the
pseudo depth to B; if the pyramid happens to be absent d[i][j] contains the
pseudo depth to P.

The shadow buffer calculation is independent of the eye position,

so in an animation in which only the eye moves, the shadow buffer is

loaded only once. The shadow buffer must be recalculated whenever the
objects move relative to the light source.

2) Rendering the scene
Each face in the scene is rendered using the eye camera.

Suppose the eye camera sees point P through pixel p[c][r]. When

rendering p[c][r], we need to find

The pseudo depth D from the source to p

The index location [i][j] in the shadow buffer that is to be
tested and

 The value d[i][j] stored in the shadow buffer

If d[i][j] is less than D, the point P is in the shadow and p[c][r] is

set using only ambient light. Otherwise P is not in shadow and p[c][r] is

set using ambient, diffuse and specular light.

 BUILDING A CAMERA IN A PROGRAM

To have a finite control over camera movements, we create and
manipulate our own camera in a program. After each change to this
camera is made, the camera tells OpenGL what the new camera is.

We create a Camera class that does all things a camera does. In
a program we create a Camera object called cam, and adjust it with
functions such as the following:

cam.set(eye, look, up); // initialize the camera

cam.slide(-1, 0, -2); //slide the camera forward and to the left
cam.roll(30); // roll it through 30 degree

cam.yaw(20); // yaw it through 20 degree

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The Camera class definition:

class Camera {
private:

Point3 eye;

Vector3 u, v, n;
double viewAngle, aspect, nearDist, farDist; //view volume shape
void setModelViewMatrix(); //tell OpenGL where the camera is

public:

};

Camera(); //default constructor
void set(Point3 eye, Point3 look, Vector3 up); //like gluLookAt()

void roll(float, angle); //roll it

void pitch(float, angle); // increase the pitch
void yaw(float, angle); //yaw it
void slide(float delU, float delV, float delN); //slide it

void setShape(float vAng, float asp, float nearD, float farD);

The Camera class definition contains fields for eye and the directions u,
v and n. Point3 and Vector3 are the basic data types. It also has fields

that describe the shape of the view volume: viewAngle, aspect,
nearDistandfarDist.

The utility routine setModelViewMatrix() communicates the
modelview matrix to OpenGL. It is used only by member functions of the class

and needs to be called after each change is made to the camera‟s position. The
matrix

V

u x u y u z d x

vx v y vz d y

nx n y nz d z

0 0 0 0

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

The utility routines set() and setModelViewMatrix()

void Camera :: setModelViewMatrix(void)

{ //load modelview matrix with existing camera values
float m[16];
Vector3 eVec(eye.x, eye.y, eye.z); //a vector version of eye

m[0]= u.x ; m[4]= u.y ; m[8]= u.z ; m[12]= -eVec.dot(u);

m[1]= v.x ; m[5]= v.y ; m[9]= v.z ; m[13]= -eVec.dot(v);
m[2]= n.x ; m[6]= n.y ; m[10]= y.z ; m[14]= -eVec.dot(n);

m[3]= 0 ; m[7]= 0 ; m[11]= 0 ; m[15]= 1.0 ;

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m); //load OpenGL‟s modelview matrix

}

void Camera :: set (Point3 eye, Point3 look, Vector3 up)

{ // Create a modelview matrix and send it to OpenGL
eye.set(Eye); // store the given eye position
n.set(eye.x – look.x, eye.y – look.y, eye.z – look.z); // make n

u.set(up.cross(n)); //make u= up X n

n.normalize(); // make them unit length

u.normalize();

v.set(n.cross(u)); // make v= n X u
setModelViewMatrix(); // tell OpenGL

}

The method set() acts like gluLookAt(): It uses the values of eye,

look and up to compute u, v and n according to equation:
n= eye – look,

u = up X n

and
v = n X u. It places this information in the camera‟s fields and

Communicates it to OpenGL.

 The routine setShape() is simple. It puts the four argument
values into the appropriate camera fields and then calls

gluPerspective(viewangle, aspect, nearDist, farDist)

along with
glMatrixMode(GL_PROJECTION)

and
glLoadIdentity()

to set the projection matrix.
The central camera functions are slide(), roll(), yaw() and pitch(),

which makes relative changes to the camera‟s position and orientation.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS2401 Computer Graphics Unit IV

Flying the camera
The user flies the camera through a scene interactively by

pressing keys or clicking the mouse. For instance,

pressing u will slide the camera up some amount

pressing y will yaw the camera to the left

pressing f will slide the camera forward

The user can see different views of the scene and then changes
the camera to a better view and produce a picture. Or the user can fly
around a scene taking different snapshots. If the snapshots are stored
and then played back, an animation is produced of the camera flying
around the scene.

There are six degrees of freedom for adjusting a camera: It can be

slid in three dimensions and it can be rotated about any of three
coordinate axes.

Sliding the Camera
Sliding the camera means to move it along one of its own axes

that is, in the u, v and n direction without rotating it. Since the camera is

looking along the negative n axis, movement along n is forward or back.

Movement along u is left or right and along v is up or down.
To move the camera a distance D along its u axis, set eye to eye +

Du. For convenience ,we can combine the three possible slides in a single

function:

slide(delU, delV, delN)
slides the camera amount delU along u, delV along v and delN along n.
The code is as follows:

void Camera : : slide(float delU, float delV, float delN)
{

eye.x += delU * u.x + delV * v.x + delN * n.x;

eye.y += delU * u.y + delV * v.y + delN * n.y;
eye.z += delU * u.z + delV * v.z + delN * n.z;

setModelViewMatrix();

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT V FRACTALS

Fractals and Self similarity – Peano curves – Creating image by

iterated functions –Mandelbrot sets – Julia Sets – Random Fractals –

Overview of Ray Tracing –Intersecting rays with other primitives – Adding

Surface texture – Reflections and Transparency – Boolean operations on
Objects

Computers are good at repetition. In addition, the high precision with
which modern computers can do calculations allows an algorithm to take

closer look at an object, to get greater levels of details.

Computer graphics can produce pictures of things that do not even
exist in nature or perhaps could never exist. We will study the inherent

finiteness of any computer generated picture. It has finite resolution and

finite size, and it must be made in finite amount of time. The pictures we
make can only be approximations, and the observer of such a picture

uses it just as a hint of what the underlying object really looks like.

 FRACTALS AND SELF-SIMILARITY
Many of the curves and pictures have a particularly important

property called self-similar. This means that they appear the same at
every scale: No matter how much one enlarges a picture of the curve, it
has the same level of detail.

Some curves are exactly self-similar, whereby if a region is

enlarged the enlargement looks exactly like the original.

Other curves are statistically self-similar, such that the wiggles
and irregularities in the curve are the same “on the average”, no matter

how many times the picture is enlarged. Example: Coastline.

 Successive Refinement of Curves

A complex curve can be fashioned recursively by repeatedly
“refining” a simple curve. The simplest example is the Koch curve,

discovered in1904 by the Swedish mathematician Helge von Koch. The

curve produces an infinitely long line within a region of finite area.
Successive generations of the Koch curve are denoted K0, K1,

K2….The zeroth generation shape K0 is a horizontal line of length unity.
Two generations of the Koch curve

To create K1 , divide the line K0 into three equal parts and replace

the middle section with a triangular bump having sides of length 1/3.
The total length of the line is 4/3. The second order curve K2, is formed by building a

bump on each of the four line segments of K1.To form Kn+1 from Kn:
Subdivide each segment of Kn into three equal parts and replace

the middle part with a bump in the shape of an equilateral triangle.

In this process each segment is increased in length by a factor of
4/3, so the total length of the curve is 4/3 larger than that of the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

previous generation. Thus Ki has total length of (4/3)i , which increases

as i increases. As i tends to infinity, the length of the curve becomes

infinite.

The first few generations of the Koch snowflake

The Koch snowflake of the above figure is formed out of three Koch

curves joined together. The perimeter of the ith generations shape Si is
three times length of a Koch curve and so is 3(4/3)i , which grows forever

as i increases. But the area inside the Koch snowflake grows quite

slowly. So the edge of the
Koch snowflake gets rougher and rougher and longer and longer, but

the area remains bounded. Koch snowflake s3, s4 and s5

The Koch curve Kn is self-similar in the following ways: Place

a small window about some portion of Kn, and observe its ragged shape.

Choose a window a billion times smaller and observe its shape. If n is
very large, the curve appears to be have same shape and roughness.

Even if the portion is enlarged another billion times, the shape would be

the same.

We call n the order of the curve Kn, and we say the order –n
Koch curve consists of four versions of the order (n-1) Koch curve.To

draw K2 we draw a smaller version of K1 , then turn left 60 , draw K1

again, turn right 120 , draw K1 a third time. For snowflake this routine is
performed just three times, with a 120 turn in between.

The recursive method for drawing any order Koch curve is

given in the following pseudocode:

To draw Kn:
if (n equals 0) Draw a straight line;

else {
Draw Kn-1;
Turn left 60 ;

Draw Kn-1;
Turn right 120 ;

Draw Kn-1;
Turn left 60 ;

Draw Kn-1;
}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Drawing a Koch Curve
Void drawKoch (double dir, double len, int n)

{
// Koch to order n the line of length len

// from CP in the direction dir

double dirRad= 0.0174533 * dir; // in radians
if (n ==0)

lineRel(len * cos(dirRad), len * sin(dirRad));

else {

n--; //reduce the order
len /=3; //and the length
drawKoch(dir, len, n);

dir +=60;

drawKoch(dir, len, n);
dir -=120;

drawKoch(dir, len, n);

dir +=60;
drawKoch(dir, len, n);

}
}

The routine drawKoch() draws Kn on the basis of a parent

line of length len that extends from the current position in the direction

dir. To keep track of the direction of each child generation, the parameter

dir is passed to subsequent calls of Koch().

 Creating An Image By Means of Iterative Function Systems

Another way to approach infinity is to apply a
transformation to a picture again and again and examine the results.
This technique also provides an another method to create fractal shapes.
that it draws gray scale and color images of objects. The image is viewed
as a collection of pixels and at each iteration the transformed point lands
in one of the pixels. A counter is kept for each pixel and at the
completion of the game the number of times each pixel has been visited
is converted into a color according to some mapping.

5.3.4 Finding the IFS; Fractal Image Compression

Dramatic levels of image compression provide strong
motivation for finding an IFS whose attractor is the given image. A image

contains million bytes of data, but it takes only hundreds or thousands

of bytes to store the coefficients of the affine maps in the IFS.

Fractal Image Compression and regeneration The original image is processed to
create the list of affine maps, resulting in a greatly compressed representation
of the image.

In the decompression phase the list of affine maps is used
and an algorithm such as the Chaos Game reconstructs the image. This
compression scheme is lossy, that is the image I’ that is generated by the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

game during decompression is not a perfect replica of the original image

I.

 THE MANDELBROT SET

Graphics provides a powerful tool for studying a fascinating

collection of sets that are the most complicated objects in mathematics.
Julia and Mandelbrot sets arise from a branch of analysis

known as iteration theory, which asks what happens when one iterates a

function endlessly. Mandelbrot used computer graphics to perform

experiments.

 Mandelbrot Sets and Iterated Function Systems
A view of the Mandelbrot set is shown in the below figure. It

is the black inner portion, which appears to consist of a cardoid along
with a number of wartlike circles glued to it.

Its border is complicated and this complexity can be
explored by zooming in on a portion of the border and computing a close

up view. Each point in the figure is shaded or colored according to the

outcome of an experiment run on an IFS.

The Mandelbrot set

The Iterated function systems for Julia and Mandelbrot sets

The IFS uses the simple function

f(z) = z2 + c -------------------------------------- (1)
where c is some constant. The system produces each output by squaring

its input and adding c. We assume that the process begins with the
starting value s, so the system generates the sequence of values or orbit

d1= (s)2 + c
d2= ((s)2 + c)2 + c
d3= (((s)2 + c)2 + c)2 + c
d4= ((((s)2 + c)2 + c)2 + c)2 + c -------------------------------- (2)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The orbit depends on two ingredients

the starting point s

the given value of c
Given two values of s and c how do points dk along the orbit

behaves as k gets larger and larger? Specifically, does the orbit remain
finite or explode. Orbits that remain finite lie in their corresponding Julia
or Mandelbrot set, whereas those that explode lie outside the set.

When s and c are chosen to be complex numbers , complex
arithmetic is used each time the function is applied. The Mandelbrot and
Julia sets live in the complex plane – plane of complex numbers.

The IFS works well with both complex and real numbers.

Both s and c are complex numbers and at each iteration we square the

previous result and add c. Squaring a complex number z = x + yi yields
the new complex number:

(x + yi)2 = (x2 – y2) + (2xy)i -- (3)

having real part equal to x2 – y2 and imaginary part equal to 2xy.

Some Notes on the Fixed Points of the System
It is useful to examine the fixed points of the system

f(.) =(.)2 + c . The behavior of the orbits depends on these fixed points

that is those complex numbers z that map into themselves, so that
z2 + c = z. This gives us the quadratic equation z2 – z + c = 0 and the fixed
points of the system are the two solutions of this equation, given by

p+, p- =
1

2
--------------------------------(4)

1
c

4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

If an orbit reaches a fixed point, p its gets trapped there

forever. The fixed point can be characterized as attracting or repelling.
If an orbit flies close to a fixed point p, the next point along the orbit will

be forced

closer to p if p is an attracting fixed point

farther away from p if p is a repelling a fixed point.
If an orbit gets close to an attracting fixed point, it is sucked

into the point. In contrast, a repelling fixed point keeps the orbit away

from it.

 Defining the Mandelbrot Set
The Mandelbrot set considers different values of c, always

using the starting point s =0. For each value of c, the set reports on the

nature of the orbit of 0, whose first few values are as follows:

orbit of 0: 0, c, c2+c, (c2+c)2+c, ((c2+c)2+c)2 +c,……..
For each complex number c, either the orbit is finite so that

how far along the orbit one goes, the values remain finite or the orbit

explodes that is the values get larger without limit. The Mandelbrot set

denoted by M, contains just those values of c that result in finite orbits:

The point c is in M if 0 has a finite orbit.

The point c is not in M if the orbit of 0 explodes.
Definition:

The Mandelbrot set M is the set of all complex numbers c
that produce a finite orbit of 0.

If c is chosen outside of M, the resulting orbit explodes. If c
is chosen just beyond the border of M, the orbit usually thrashes around

the plane and goes to infinity.

If the value of c is chosen inside M, the orbit can do a variety
of things. For some c’s it goes immediately to a fixed point or spirals into

such a point.

 Computing whether Point c is in the Mandelbrot Set
A routine is needed to determine whether or not a given

complex number c lies in M. With a starting point of s=0, the routine

must examine the size of the numbers dk along the orbit. As k increases

the value of

in M).

dk either explodes(c is not in M) or does not explode(c is

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

At each iteration, the current dk resides in the pair (dx,dy)

which is squared using eq(3) and then added to (cx,cy) to form the next

d value. The value dk
2 is kept in fsq and compared with 4. The dwell()

function plays a key role in drawing the Mandelbrot set.

 Drawing the Mandelbrot Set
To display M on a raster graphics device. To do this we set

up a correspondence between each pixel on the display and a value of c,
and the dwell for that c value is found. A color is assigned to the pixel,
depending on whether the dwell is finite or has reached its limit.

The simplest picture of the Mandelbrot set just assign black

to points inside M and white to those outside. But pictures are more

appealing to the eye if a range of color is associated with points outside

M. Such points all have dwells less than the maximum and we assign
different colors to them on the basis of dwell size.

The user specifies how large the desired image is to be on

the screen that is

the number of rows, rows

the number of columns, cols

 JULIA SETS
Like the Mandelbrot set, Julia sets are extremely

complicated sets of points in the complex plane. There is a different Julia

set, denoted Jc for each value of c. A closely related variation is the filled-

in Julia set, denoted by Kc, which is easier to define.
 The Filled-In Julia Set Kc

In the IFS we set c to some fixed chosen value and examine

what happens for different starting point s. We ask how the orbit of
starting point s behaves. Either it explodes or it doesn’t. If it is finite , we

say the starting point s is in Kc, otherwise s lies outside of Kc.
Definition:

The filled-in Julia set at c, Kc, is the set of all starting points

whose orbits are finite.
When studying Kc, one chooses a single value for c and

considers different starting points. Kc should be always symmetrical
about the origin, since the orbits of s and –s become identical after one
iteration.

 Drawing Filled-in Julia Sets

A starting point s is in Kc, depending on whether its orbit is

finite or explodes, the process of drawing a filled-in Julia set is almost
similar to Mandelbrot set. We choose a window in the complex plane and

associate pixels with points in the window. The pixels correspond to

different values of the starting point s. A single value of c is chosen and
then the orbit for each pixel position is examined to see if it explodes and

if so, how quickly does it explodes.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Pseudocode for drawing a region of the Filled-in Julia set

for(j=0; j<rows; j++)
for(i=0; i<cols; i++)

{
find the corresponding s value in equation (5)

estimate the dwell of the orbit

find Color determined by estimated dwell
setPixel(j , k, Color);

}

The dwell() must be passed to the starting point s as well as
c. Making a high-resolution image of a Kc requires a great deal of
computer time, since a complex calculation is associated with every

pixel.

 Notes on Fixed Points and Basins of Attraction
If an orbit starts close enough to an attracting fixed point, it

is sucked into that point. If it starts too far away, it explodes. The set of
points that are sucked in forms a so called basin of attraction for the

fixed point p. The set is the filled-in Julia set Kc. The fixed point which

lies inside the circle |z|= ½ is the attracting point.

All points inside Kc, have orbits that explode. All points

inside Kc, have orbits that spiral or plunge into the attracting fixed point.

If the starting point is inside Kc, then all of the points on the orbit must

also be inside Kc and they produce a finite orbit. The repelling fixed point

is on the boundary of Kc.
Kc for Two Simple Cases

The set Kc is simple for two values of c:
1. c=0: Starting at any point s, the orbit is simply s, s2,s4,…….,s2k,…,

so the orbit spirals into 0 if |s|<1 and explodes if |s|>1. Thus K0

is the set of all complex numbers lying inside the unit circle, the circle of
radius 1 centered at the origin.

2. c = -2: in this case it turns out that the filled-in Julia set consists

of all points lying on the real axis between -2 and 2.
For all other values of c, the set Kc, is complex. It has been

shown that each Kc is one of the two types:
Kc is connected or

Kc is a Cantor set
A theoretical result is that Kc is connected for precisely those

values of c that lie in the Mandelbrot set.

 The Julia Set Jc
Julia Set Jc is for any given value of c; it is the boundary of

Kc. Kc is the set of all starting points that have finite orbits and every

point outside Kc has an exploding orbit. We say that the points just along

the boundary of Kc and “on the fence”. Inside the boundary all orbits

remain finite; just outside it, all orbits goes to infinity.

Preimages and Fixed Points
If the process started instead at f(s), the image of s, then the

two orbits would be:
s, f(s), f2(s), f3(s),…. (orbit of s)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

or
f(s), f2(s), f3(s), f4(s),…. (orbit of f(s))
which have the same value forever. If the orbit of s is finite,

then so is the orbit of its image f(s). All of the points in the orbit , if

considered as starting points on their own, have orbits with thew same

behavior: They all are finite or they all explode.
Any starting point whose orbit passes through s has the

same behavior as the orbit that start at s: The two orbits are identical
forever. The point “just before” s in the sequence is called the preimage
of s and is the inverse of the function f(.) = (.)2 + c. The inverse of f(.) is

, so we have

two preimages of z are given by z c ------------------------ (6)

To check that equation (6) is correct, note that if either

preimage is passed through (.)2 + c, the result is z. The test is illustrated

in figure(a) where the orbit of s is shown in black dots and the two

preimages of s are marked. The two orbits of these preimages “join up”
with that of s.

Each of these preimages has two preimages and each if

these has two, so there is a huge collection of orbits that join up with the

orbit of s, and thereafter committed to the same path. The tree of

preimages of s is illustrated in fig(B): s has two parent preimages, 4
grandparents, etc. Going back k generations we find that there are 2k

preimages. The Julia set Jc can be characterized in many ways that are

more precise than simply saying it is the “boundary of” Kc. One such

characterization that suggests an algorithm for drawing Jc is the

following:
The collection of all preimages of any point in Jc is dense in Jc.

Starting with any point z in Jc, we simply compute its two

parent preimages, their four grandparent preimages, their eight great-

grandparent ones, etc. So we draw a dot at each such preimage, and the
display fills in with a picture of the Julia set. To say that these dots are

dense in Jc means that for every point in Jc, there is some preimage that

is close by.
Drawing the Julia set Jc

To draw Jc we need to find a point and place a dot at all of
the point’s preimages. Therea re two problems with this method:

1. Finding a point in Jc

2. Keeping track of all the preimages

An approach known as the backward-iteration method
overcomes these obstacles and produces good result. The idea is simple:

Choose some point z in the complex plane. The point may or may not be

in Jc. Now iterate in backward direction: at each iteration choose one of

the two square roots randomly, to produce a new z value. The following
pseudo code is illustrative:

z c

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

z c

z c

do {

if (coin flip is heads z=);

else z = ;

draw dot at z;

} while (not bored);

The idea is that for any reasonable starting point iterating

backwards a few times will produce a z that is in Jc. It is as if the
backward orbit is sucked into the Julia set. Once it is in the Julia set, all

subsequent iterations are there, so point after point builds up inside Jc,

and a picture emerges.

 RANDOM FRACTALS
Fractal is the term associated with randomly generated

curves and surfaces that exhibit a degree of self-similarity. These curves

are used to provide “naturalistic” shapes for representing objects such as
coastlines, rugged mountains, grass and fire.

 Fractalizing a Segment
The simplest random fractal is formed by recursively

roughening or fractalizing a line segment. At each step, each line

segment is replaced with a “random elbow”.
The figure shows this process applied to the line segment S

having endpoints A and B. S is replaced by the two segments from A to C

and from C to B. For a fractal curve, point C is randomly chosen along
the perpendicular bisector L of S. The elbow lies randomly on one or the

other side of the “parent” segment AB.Fractalizing with a random elbow

 Steps in the fractalization process. Three stages are required in the

fractalization of a segment. In the first stage, the midpoint of AB is perturbed to
form point C. In the second stage , each of the two segment has its midpoints

perturbed to points D and E. In the third and final stage, the new points F…..I

are added.

To perform fractalization in a program
Line L passes through the midpoint M of segment S and is

perpendicular to it. Any point C along L has the parametric form:

C(t) = M + (B-A) t--- (7)

for some values of t, where the midpoint M= (A+B)/2.
The distance of C from M is |B-A||t|, which is proportional

to both t and the length of S. So to produce a point C on the random

elbow, we let t be computed randomly. If t is positive, the elbow lies to

one side of AB; if t is negative it lies to the other side.
For most fractal curves, t is modeled as a Gaussian random

variable with a zero mean and some standard deviation. Using a mean of

zero causes, with equal probability, the elbow to lie above or below the
parent segment.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Fractalizing a Line segment

void fract(Point2 A, Point2 B, double stdDev)
// generate a fractal curve from A to B

double xDiff = A.x – B.x, yDiff= A.y –B.y;

Point2 C;
if(xDiff * XDiff + YDiff * yDiff < minLenSq)

cvs.lintTo(B.x, B.y);

else
{

}

stdDev *=factor; //scale stdDev by factor

double t=0;
// make a gaussian variate t lying between 0 and 12.0
for(int i=0; I, 12; i++)

t+= rand()/32768.0;
t= (t-6) * stdDev; //shift the mean to 0 and sc

C.x = 0.5 *(A.x +B.x) – t * (B.y – A.y);

C.y = 0.5 *(A.y +B.y) – t * (B.x – A.x);
fract(A, C, stdDev);

fract(C, B, stdDev);

The routine fract() generates curves that approximate actual

fractals. The routine recursively replaces each segment in a
random elbow with a smaller random elbow. The stopping

criteria used is: When the length of the segment is small

enough, the segment is drawn using cvs.lineTo(), where cvs is a
Canvas object. The variable t is made to be approximately

Gaussian in its distribution by summing together 12 uniformly

distributed random values lying between 0 and 1. The result
has a mean value of 6 and a variance of 1. The mean value is

then shifted to 0 and the variance is scaled as necessary.

The depth of recursion in fract() is controlled by
the length of the line segment. Controlling the Spectral Density
of the Fractal Curve

The fractal curve generated using the above
code has a “power spectral density” given by

S(f)= 1/f β

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Where β the power of the noise process is the parameter the

user can set to control the jaggedness of the fractal noise. When β is 2,
the process is known as Brownian motion and when β is 1, the process is

called “1/f noise”. 1/f noise is self similar and is shown to be a good

model for physical process such as clouds. The fractal dimension of such

processes is:

D
5

2
In the routine fract(), the scaling factor factor by which the

standard deviation is scaled at each level based on the exponent β of the
fractal curve. Values larger than 2 leads to smoother curves and values

smaller than 2 leads to more jagged curves. The value of factor is given

by:

Factor = 2 (1 – β/2)

The factor decreases as β increases.
Drawing a fractal curve (pseudocode)

double MinLenSq, factor; //global variables
void drawFractal (Point2 A, Point2 B)
{

double beta, StdDev;

User inputs beta, MinLenSq and the the initial StdDev
factor = pow(2.0, (1.0 – beta)/ 2.0);

cvs.moveTo(A);
fract(A, B, StdDev);

}
In this routine factor is computed using the C++ library

function pow(…).
One of the features of fractal curves generated by

pseudorandom –number generation is that they are repeatable. All that is

required is to use the same seed each time the curve is fractalized. A

complicated shape can be fractalized and can be stored in the database
by storing only

the polypoint that describes the original line segments

the values of minLenSq and stdDev and the seed.

 An extract replica of the fractalized curve can be regenerated at
any time using these informations.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Unit - VI

Overview of Ray Tracing Intersecting rays with other primitives � Adding Surface texture �

Reflections andTransparency � Boolean operations on Objects.

Intersecting rays with other primitives:
Mathematical preliminaries

Coordinate systems

To deal easily with the various primitive objects, you need to be able to work in all three of the

standard 3D coordinate systems: rectangular (x,y,z), spherical polar (), and cylindrical

polar (). To convert from one to another you use the following formulae.

Spherical polar to rectangular

x =

(1)

y =

(2)

z =

(3)

Cylindrical polar to rectangular

x =

(4)

y =

(5)

z = z (6)

Rectangular to spherical polar1

r =

(7)

=

(8)

=

(9)

Rectangular to cylindrical polar

r =

(10)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

=

(11)

z = z (12)

Vector algebra
It is helpful to remember your vector arithmetic. A 3D vector is represented thus:

(13)

For ease of writing such definitions in text we may say , where we understand

that this ordered triple is equivalent to the vector.
Equations for the primitives

Sphere

The unit sphere, centred at the origin, has the implicit equation:

x2+y2+z2=1 (25)

In spherical polar coordinates it is even simpler:

r=1 (26)

In vector arthmetic, it becomes:

 (27)

To find the intersection between this sphere and an arbitrary ray, substitute the ray

equation (Equation 24) in the sphere equation (Equation 25):

(xE+txD)2+(yE+tyD)2+(zE+tzD)2=1 (28)

 t2(xD
2+yD

2+zD
2)+t(2xExD+2yEyD+2zEzD)

 +(xE
2+yE

2+zE
2-1)=0 (29)

at2+bt+c=0

(30)

(31)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

where a=xD
2+yD

2+zD
2, b=2xExD+2yEyD+2zEzD, and c=xE

2+yE
2+zE

2-1. This gives zero,

one, or two real values for t. If there are zero real values then there is no
intersection between the ray and the sphere. If there are either one or two real

values then chose the smallest, non-negative value, as the intersection point. If

there is no non-negative value, then the line (of which the ray is a part) does
intersect the sphere, but the intersection point is not on the part of the line

which consistutes the ray. In this case there is again no intersection point

between the ray and the sphere.

An alternative formulation is to use the vector versions of the equations (Equations 23 and 27):

(32)

(33)

 at2+bt+c=0 (34)

(35)

Where , , and . In other words, exactly the same
result, expressed in a more compact way. Graphics Gems I (p. 388) decribes yet another
way of arriving at the same result.

Cylinder

The infinite unit cylinder aligned along the z-axis is defined as:

x2+y2=1 (36)

In cylindrical polar coordinates it is just:

r=1 (37)

To intersect a ray with this, substitute Equation 24 in Equation 36.

 (xE+txD)2+(yE+tyD)2=1 (38)

 t2(xD
2+yD

2)+t(2xExD+2yEyD)

 +(xE
2+yE

2-1)=0 (39)

 at2+bt+c=0 (40)

(41)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

where a=xD
2+yD

2, b=2xExD+2yEyD, and c=xE
2+yE

2-1.

The finite open-ended unit cylinder aligned along the z-axis is defined as:

(42)

The only difference between this and Equation 36 being the restriction on z. In
cylindrical polar coordinates this is obviously:

(43)

To handle this finite length cylinder, solve Equation 41 above. This gives, at most, two
values of t. Call these t1 and t2. Calculate z1 and z2using Equation 24 (z1 = zE + t1zD and

z2 = zE + t2zD) and then check and . Whichever

intersection point passes this test and, if both pass the test, has the smallest non-
negative value of t, is the closest intersection point of the ray with the open-ended finite
cylinder.

If we wish the finite length cylinder to be closed we must formulate an intersection calculation

between the ray and the cylinder's end caps. The end caps have the formulae:

(44)

(45)

Once you have calculated the solutions to Equation 41 you will either know that there
are no intersections with the infinite cylinder or you will know that there are one or two
real intersection points (t1 and t2). The previous paragraph explained how to ascertain
whether these correspond to points on the finite length open-ended cylinder. Now, if z1

and z2 lie either side of we know that the ray intersects the end cap, and can
calculate the intersection point as:

(46)

A similar equation holds for the end cap. Note that the ray may intersect both end

caps, for example when and .

Cone

The infinite double cone2 aligned along the z-axis is defined as:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

x2+y2=z2 (47)

In cylindrical polar coordinates it is:

r2=z2 (48)

To intersect a ray with this, substitute Equation 24 in Equation 47.

 (xE+txD)2+(yE+tyD)2=(zE+tzD)2 (49)

 t2(xD
2+yD

2-zD
2)+t(2xExD+2yEyD-2zEzD)

 +(xE
2+yE

2-zE
2)=0 (50)

 at2+bt+c=0 (51)

(52)

where a=xD

2+yD
2-zD

2, b=2xExD+2yEyD-2zEzD, and c=xE
2+yE

2-zE
2.

The finite open-ended cone aligned along the z-axis is defined as:

(53)

The only difference between this and Equation 47 being the restriction on z. Note that if

and are both positive or both negative then you get a single cone with its top

truncated. If either or is zero you get a single cone with its apex at the origin.

To handle this finite length cone you proceed as for the finite length cylinder, with the obvious

simple modifications.

Texture mapping is a method for defining high frequency detail, surface texture, or color

information on a computer-generated graphic or 3D model. Its application to 3D graphics was

pioneered by Edwin Catmull in 1974.

Texture mapping originally referred to a method (now more accurately called diffuse

mapping) that simply wrapped and mapped pixels from a texture to a 3D surface. In recent decades

the advent of multi-pass rendering and complex mapping such as height mapping, bump mapping,

normal mapping, displacement mapping, reflection mapping, specular mapping, mipmaps,

occlusion mapping, and many other variations on the technique (controlled by a materials system)

have made it possible to simulate near-photorealism in real time by vastly reducing the number of

polygons and lighting calculations needed to construct a realistic and functional 3D scene.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

A texture map[5][6] is an image applied (mapped) to the surface of a shape or polygon.[7]

This may be a bitmap image or a procedural texture. They may be stored in common image file

formats, referenced by 3d model formats or material definitions, and assembled into resource

bundles.

They may have 1-3 dimensions, although 2 dimensions are most common for visible surfaces. For

use with modern hardware, texture map data may be stored in swizzled or tiled orderings to

improve cache coherency. Rendering APIs typically manage texture map resources (which may be

located in device memory) as buffers or surfaces, and may allow 'render to texture' for additional

effects such as post processing, environment mapping.

They usually contain RGB color data (either stored as direct color, compressed formats, or indexed

color), and sometimes an additional channel for alpha blending (RGBA) especially for billboards

and decal overlay textures. It is possible to use the alpha channel (which may be convenient to

store in formats parsed by hardware) for other uses such as specularity. Multiple texture maps (or

channels) may be combined for control over specularity, normals, displacement, or subsurface

scattering e.g. for skin rendering. Multiple texture images may be combined in texture atlases or

array textures to reduce state changes for modern hardware. (They may be considered a modern

evolution of tile map graphics). Modern hardware often supports cube map textures with multiple

faces for environment mapping.

Texture application

This process is akin to applying patterned paper to a plain white box. Every vertex in a polygon is

assigned a texture coordinate (which in the 2d case is also known as a UV coordinates). This may

be done through explicit assignment of vertex attributes, manually edited in a 3D modelling

package through UV unwrapping tools. It is also possible to associate a procedural transformation

from 3d space to texture space with the material. This might be accomplished via planar projection

or, alternatively, cylindrical or spherical mapping. More complex mappings may consider the

distance along a surface to minimize distortion. These coordinates are interpolated across the faces

of polygons to sample the texture map during rendering. Textures may be repeated or mirrored to

extend a finite rectangular bitmap over a larger area, or they may have a one-to-one unique

"injective" mapping from every piece of a surface (which is important for render mapping and

light mapping, also known as baking)

Texture space

Texture mapping maps from the model surface (or screen space during rasterization) into texture

space; in this space, the texture map is visible in its undistorted form. UV unwrapping tools

typically provide a view in texture space for manual editing of texture coordinates. Some rendering

techniques such as subsurface scattering may be performed approximately by texture-space

operations.

Multitexturing

Multitexturing is the use of more than one texture at a time on a polygon.[8] For instance, a light

map texture may be used to light a surface as an alternative to recalculating that lighting every time

the surface is rendered. Microtextures or detail textures are used to add higher frequency details,

and dirt maps may add weathering and variation; this can greatly reduce the apparent periodicity

of repeating textures. Modern graphics may use in excess of 10 layers for greater fidelity which are

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

combined using shaders. Another multitexture technique is bump mapping, which allows a texture

to directly control the facing direction of a surface for the purposes of its lighting calculations; it

can give a very good appearance of a complex surface (such as tree bark or rough concrete) that

takes on lighting detail in addition to the usual detailed coloring. Bump mapping has become

popular in recent video games, as graphics hardware has become powerful enough to

accommodate it in real-time.[9]

Texture Filtering

The way that samples (e.g. when viewed as pixels on the screen) are calculated from the texels

(texture pixels) is governed by texture filtering. The cheapest method is to use the nearest-

neighbour interpolation, but bilinear interpolation or trilinear interpolation between mipmaps are

two commonly used alternatives which reduce aliasing or jaggies. In the event of a texture

coordinate being outside the texture, it is either clamped or wrapped. Anisotropic filtering better

eliminates directional artefacts when viewing textures from oblique viewing angles.

Baking

As an optimization, it is possible to render detail from a high resolution model or expensive

process (such as global illumination) into a surface texture (possibly on a low resolution model).

This is also known as render mapping. This technique is most commonly used for lightmapping

but may also be used to generate normal maps and displacement maps. Some video games (e.g.

Messiah) have used this technique. The original Quake software engine used on-the-fly baking to

combine light maps and colour texture-maps ("surface caching"). Baking can be used as a form of

level of detail generation, where a complex scene with many different elements and materials may

be approximated by a single element with a single texture which is then algorithmically reduced

for lower rendering cost and fewer drawcalls. It is also used to take high detail models from 3D

sculpting software and point cloud scanning and approximate them with meshes more suitable for

realtime rendering.

Reflection in computer graphics is used to emulate reflective objects like mirrors and shiny

surfaces. Reflection is accomplished in a ray trace renderer by following a ray from the eye to the

mirror and then calculating where it bounces from, and continuing the process until no surface is

found, or a non-reflective surface is found. Reflection on a shiny surface like wood or tile can add

to the photorealistic effects of a 3D rendering.

 Polished - A polished reflection is an undisturbed reflection, like a mirror or chrome.

 Blurry - A blurry reflection means that tiny random bumps on the surface of the material

cause the reflection to be blurry.

 Metallic - A reflection is metallic if the highlights and reflections retain the color of the

reflective object.

 Glossy - This term can be misused. Sometimes, it is a setting which is the opposite of

blurry (e.g. when "glossiness" has a low value, the reflection is blurry). However, some

people use the term "glossy reflection" as a synonym for "blurred reflection". Glossy used

in this context means that the reflection is actually blurred.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Examples

Polished or mirror reflection

Mirror on wall rendered with 100% reflection.

Mirrors are usually almost 100% reflective

Metallic reflection

The large sphere on the left is blue with its reflection marked as metallic. The large
sphere on the right is the same color but does not have the metallic property selected.

Normal (nonmetallic) objects reflect light and colors in the original color of the object being

reflected. Metallic objects reflect lights and colors altered by the color of the metallic object itself.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Blurry reflection

The large sphere on the left has sharpness set to 100%. The sphere on the right has
sharpness set to 50% which creates a blurry reflection.

Many materials are imperfect reflectors, where the reflections are blurred to various degrees due to

surface roughness that scatters the rays of the reflections.

Glossy reflection

The sphere on the left has normal, metallic reflection. The sphere on the right has the same

parameters, except that the reflection is marked as "glossy".

Transparency

It is possible in a number of graphics file formats. The term transparency is used in

various ways by different people, but at its simplest there is "full transparency" i.e. something that

is completely invisible. Only part of a graphic should be fully transparent, or there would be

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

nothing to see. More complex is "partial transparency" or "translucency" where the effect is

achieved that a graphic is partially transparent in the same way as colored glass. Since ultimately a

printed page or computer or television screen can only be one color at a point, partial transparency

is always simulated at some level by mixing colors. There are many different ways to mix colors,

so in some cases transparency is ambiguous. In addition, transparency is often an "extra" for a

graphics format, and some graphics programs will ignore the transparency.

Transparent pixels

This image has binary transparency (some pixels fully transparent, other pixels fully
opaque). It can be transparent against any background because it is monochrome.

One color entry in a single GIF or PNG image's palette can be defined as "transparent" rather than

an actual color. This means that when the decoder encounters a pixel with this value, it is rendered

in the background color of the part of the screen where the image is placed, also if this varies

pixel-by-pixel as in the case of a background image.

Applications include:

 an image that is not rectangular can be filled to the required rectangle using
transparent surroundings; the image can even have holes (e.g. be ring-shaped)

 in a run of text, a special symbol for which an image is used because it is not
available in the character set, can be given a transparent background, resulting
in a matching background.

The transparent color should be chosen carefully, to avoid items that just happen to be the same
color vanishing. Even this limited form of transparency has patchy implementation, though
most popular web browsers are capable of displaying transparent GIF images. This support
often does not extend to printing, especially to printing devices (such as PostScript) which do
not include support for transparency in the device or driver. Outside the world of web
browsers, support is fairly hit-or-miss for transparent GIF files. Transparency by clipping path

An alternative approach to full transparency is to use a Clipping path. A clipping path is

simply a shape or outline, that is used in conjunction with the other graphics. Everything inside

the path is visible, and everything outside the path is invisible. The path is inherently vector, but

can potentially be used to mask both vector and bitmap data. The main usage of clipping paths is in

PostScript files.

Compositing calculations

While some transparency specifications are vague, others may give mathematical details of how

two colors are to be composited. This gives a fairly simple example of how compositing

calculations can work, can produce the expected results, and can also produce surprises.

In this example, two grayscale colors are to be composited. Grayscale values are considered to be

numbers between 0.0 (white) and 1.0 (black). To emphasize: this is only one possible rule for

transparency. If working with transparency, check the rules in use for your situation.

The color at a point, where color G1 and G2 are to be combined, is (G1 + G2) / 2. Some

consequences of this are:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Where the colors are equal, the result is the same color because (G1 + G1) /2

= G1.

 Where one color (G1) is white (0.0), the result is G2 / 2. This will always be less

than any nonzero value of G2, so the result is whiter than G2. (This is easily
reversed for the case where G2 is white).

 Where one color (G1) is black (1.0), the result is (G2 + 1) / 2. This will always
be more than G2, so the result is more black than G2.

 The formula is commutative since (G1 + G2) / 2 = (G2 + G1) / 2. This

means it does not matter which order two graphics are mixed i.e. which of the
two is on the top and which is on the bottom.

 The formula is not associative since

 ((G1 + G2) / 2 + G3) / 2 = G1 / 4 + G2 / 4 + G3 / 2

 (G1 + (G2 + G3) / 2) / 2 = G1 / 2 + G2 / 4 + G3 / 4

This is important as it means that when combining three or more objects with this rule for

transparency, the final color depends very much on the order of doing the calculations.

Although the formula is simple, it may not be ideal. Human perception of brightness is not
linear - we do not necessarily consider that a gray value of 0.5 is halfway between black and
white. Such details may not matter when transparency is used only to soften edges, but in more
complex designs this may be significant. Most people working seriously with transparency will
need to see the results and may fiddle with the colors or (where possible) the algorithm to
arrive at the results they need. Transparency in PostScript

The PostScript language has limited support for full (not partial) transparency, depending on the

PostScript level. Partial transparency is available with the pdf mark extension,[1] available on many

PostScript implementations.

Level 1

Level 1 PostScript offers transparency via two methods:

 A one-bit (monochrome) image can be treated as a mask. In this case the 1-bits
can be painted any single color, while the 0-bits are not painted at all. This
technique cannot be generalised to more than one color, or to vector shapes.

 Clipping paths can be defined. These restrict what part of all subsequent
graphics can be seen. This can be used for any kind of graphic, however in level
1, the maximum number of nodes in a path was often limited to 1500, so
complex paths (e.g. cutting around the hair in a photograph of a person's head)
often failed.

Level 2

Level 2 PostScript adds no specific transparency features. However, by the use of patterns,

arbitrary graphics can be painted through masks defined by any vector or text operations. This is,

however, complex to implement. In addition, this too often reached implementation limits, and few

if any application programs ever offered this technique.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Level 3

Level 3 PostScript adds further transparency option for any raster image. A transparent color, or

range of colors, can be applied; or a separate 1-bit mask can be used to provide an alpha channel.

Boolean operations on polygons

Boolean operations on polygons are a set of Boolean operations (AND, OR, NOT, XOR, ...)

operating on one or more sets of polygons in computer graphics. These sets of operations are

widely used in computer graphics, CAD, and in EDA (in integrated circuit physical design and

verification software)

Constructive solid geometry (CSG) (formerly called computational binary solid geometry) is a

technique used in solid modeling. Constructive solid geometry allows a modeler to create a

complex surface or object by using Boolean operators to combine simpler objects.[1] Often CSG

presents a model or surface that appears visually complex, but is actually little more than cleverly

combined or recombined objects. In 3D computer graphics and CAD, CSG is often used in

procedural modeling. CSG can also be performed on polygonal meshes, and may or may not be

procedural and/or parametric. Contrast CSG with polygon mesh modeling and box modeling.

The simplest solid objects used for the representation are called primitives. Typically they are the

objects of simple shape: cuboids, cylinders, prisms, pyramids, spheres, cones.[1] The set of

allowable primitives is limited by each software package. Some software packages allow CSG on

curved objects while other packages do not.

It is said that an object is constructed from primitives by means of allowable operations, which are

typically Boolean operations on sets: union, intersection and difference, as well as geometric

transformations of those sets.[1]

A primitive can typically be described by a procedure which accepts some number of parameters;

for example, a sphere may be described by the coordinates of its center point, along with a radius

value. These primitives can be combined into compound objects using operations like these:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Union
Merger of two objects into one

Difference
Subtraction of one object from another

Constructive solid geometry has a number of practical uses. It is used in cases where simple

geometric objects are desire or where mathematical accuracy is important.[3] Nearly all engineering

CAD packages use CSG (where it may be useful for representing tool cuts, and features where

parts must fit together). The Quake engine and Unreal engine both use this system, as does

Hammer (the native Source engine level editor), and Torque Game Engine/Torque Game Engine

Advanced. CSG is popular because a modeler can use a set of relatively simple objects to create

very complicated geometry.[2] When CSG is procedural or parametric, the user can revise their

complex geometry by changing the position of objects or by changing the Boolean operation used

to combine those objects. One of the advantages of CSG is that it can easily assure that objects are

"solid" or water-tight if all of the primitive shapes are water-tight.[4] This can be important for

some manufacturing or engineering computation applications. By comparison, when creating

geometry based upon boundary representations, additional topological data is required, or

consistency checks must be performed to assure that the given boundary description specifies a

valid solid object. A convenient property of CSG shapes is that it is easy to classify arbitrary points

as being either inside or outside the shape created by CSG. The point is simply classified against

all the underlying primitives and the resulting Boolean expression is evaluated.[5] This is a

desirable quality for some applications such as ray tracing.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

