
www.F
irs

tR
an

ke
r.c

om

UNIT-1

Introduction to Data Structure

• Computer is an electronic machine which is used for data processing and manipulation.

• When programmer collects such type of data for processing, he would require to store all of them in

computer’s main memory.

• In order to make computer work we need to know

o Representation of data in computer.

o Accessing of data.

o How to solve problem step by step.

• For doing this task we use data structure.

What is Data Structure?

• Data structure is a representation of the logical relationship existing between individual elements of

data.

• Data Structure is a way of organizing all data items that considers not only the elements stored but also

their relationship to each other.

• We can also define data structure as a mathematical or logical model of a particular organization of

data items.

• The representation of particular data structure in the main memory of a computer is called as storage

structure.

• The storage structure representation in auxiliary memory is called as file structure.

• It is defined as the way of storing and manipulating data in organized form so that it can be used

efficiently.

• Data Structure mainly specifies the following four things

o Organization of Data

o Accessing methods

o Degree of associativity

o Processing alternatives for information

• Algorithm + Data Structure = Program

• Data structure study covers the following points

o Amount of memory require to store.

o Amount of time require to process.

o Representation of data in memory.

o Operations performed on that data.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

DATA
STRUCTURE

PRIMITIVE NON
PRIMITIVE

INTEGER FLOATING
POINT

CHARACTER POINTER ARRAY LIST FILE

LINEAR LIST NON
LINEAR LIST

STACK QUEUE GRAPH TREE

Classification of Data Structure

Data Structures are normally classified into two broad categories

1. Primitive Data Structure

2. Non-primitive data Structure

Data types

A particular kind of data item, as defined by the values it can take, the programming language used, or

the operations that can be performed on it.

Primitive Data Structure

• Primitive data structures are basic structures and are directly operated upon by machine instructions.

• Primitive data structures have different representations on different computers.

• Integers, floats, character and pointers are examples of primitive data structures.

• These data types are available in most programming languages as built in type.

o Integer: It is a data type which allows all values without fraction part. We can use it for whole numbers.

o Float: It is a data type which use for storing fractional numbers.

o Character: It is a data type which is used for character values.

Pointer: A variable that holds memory address of another variable are called pointer.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Non primitive Data Type

• These are more sophisticated data structures.

• These are derived from primitive data structures.

• The non-primitive data structures emphasize on structuring of a group of homogeneous or heterogeneous

data items.

• Examples of Non-primitive data type are Array, List, and File etc.

• A Non-primitive data type is further divided into Linear and Non-Linear data structure

o Array: An array is a fixed-size sequenced collection of elements of the same data type.

o List: An ordered set containing variable number of elements is called as Lists.

o File: A file is a collection of logically related information. It can be viewed as a large list of records

consisting of various fields.

Linear data structures

• A data structure is said to be Linear, if its elements are connected in linear fashion by means of logically or in

sequence memory locations.

• There are two ways to represent a linear data structure in memory,

o Static memory allocation

o Dynamic memory allocation

• The possible operations on the linear data structure are: Traversal, Insertion, Deletion, Searching, Sorting

and Merging.

• Examples of Linear Data Structure are Stack and Queue.

• Stack: Stack is a data structure in which insertion and deletion operations are performed at one end only.

o The insertion operation is referred to as ‘PUSH’ and deletion operation is referred to as ‘POP’ operation.

o Stack is also called as Last in First out (LIFO) data structure.

• Queue: The data structure which permits the insertion at one end and Deletion at another end, known as

Queue.

o End at which deletion is occurs is known as FRONT end and another end at which insertion occurs is

known as REAR end.

o Queue is also called as First in First out (FIFO) data structure.

Nonlinear data structures

• Nonlinear data structures are those data structure in which data items are not arranged in a sequence.

• Examples of Non-linear Data Structure are Tree and Graph.

• Tree: A tree can be defined as finite set of data items (nodes) in which data items are arranged in branches

and sub branches according to requirement.

o Trees represent the hierarchical relationship between various elements.

o Tree consist of nodes connected by edge, the node represented by circle and edge lives connecting to

circle.

• Graph: Graph is a collection of nodes (Information) and connecting edges (Logical relation) between nodes.

o A tree can be viewed as restricted graph.

o Graphs have many types:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

� Un-directed Graph

� Directed Graph

� Mixed Graph

� Multi Graph

� Simple Graph

� Null Graph

� Weighted Graph

Difference between Linear and Non Linear Data Structure

Linear Data Structure Non-Linear Data Structure

Every item is related to its previous and next time. Every item is attached with many other items.

Data is arranged in linear sequence. Data is not arranged in sequence.

Data items can be traversed in a single run. Data cannot be traversed in a single run.

Eg. Array, Stacks, linked list, queue. Eg. tree, graph.

Implementation is easy. Implementation is difficult.

Operation on Data Structures

Design of efficient data structure must take operations to be performed on the data structures into account. The

most commonly used operations on data structure are broadly categorized into following types

1. Create

The create operation results in reserving memory for program elements. This can be done by declaration

statement. Creation of data structure may take place either during compile-time or run-time. malloc()

function of C language is used for creation.

2. Destroy

Destroy operation destroys memory space allocated for specified data structure. free() function of C

language is used to destroy data structure.

3. Selection

Selection operation deals with accessing a particular data within a data structure.

4. Updation

It updates or modifies the data in the data structure.

5. Searching

It finds the presence of desired data item in the list of data items, it may also find the locations of all

elements that satisfy certain conditions.

6. Sorting

Sorting is a process of arranging all data items in a data structure in a particular order, say for example,

either in ascending order or in descending order.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

7. Merging

Merging is a process of combining the data items of two different sorted list into a single sorted list.

8. Splitting

Splitting is a process of partitioning single list to multiple list.

9. Traversal

Traversal is a process of visiting each and every node of a list in systematic manner.

Time and space analysis of algorithms

Algorithm

� An essential aspect to data structures is algorithms.

� Data structures are implemented using algorithms.

� An algorithm is a procedure that you can write as a C function or program, or any other language.

� An algorithm states explicitly how the data will be manipulated.

Algorithm Efficiency

� Some algorithms are more efficient than others. We would prefer to choose an efficient algorithm, so it

would be nice to have metrics for comparing algorithm efficiency.

� The complexity of an algorithm is a function describing the efficiency of the algorithm in terms of the

amount of data the algorithm must process.

� Usually there are natural units for the domain and range of this function. There are two main complexity

measures of the efficiency of an algorithm

� Time complexity

� Time Complexity is a function describing the amount of time an algorithm takes in terms of the

amount of input to the algorithm.

� "Time" can mean the number of memory accesses performed, the number of comparisons between

integers, the number of times some inner loop is executed, or some other natural unit related to the

amount of real time the algorithm will take.

� Space complexity

� Space complexity is a function describing the amount of memory (space) an algorithm takes in terms

of the amount of input to the algorithm.

� We often speak of "extra" memory needed, not counting the memory needed to store the input itself.

Again, we use natural (but fixed-length) units to measure this.

� We can use bytes, but it's easier to use, say, number of integers used, number of fixed-sized structures,

etc. In the end, the function we come up with will be independent of the actual number of bytes

needed to represent the unit.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

� Space complexity is sometimes ignored because the space used is minimal and/or obvious, but

sometimes it becomes as important an issue as time.

Worst Case Analysis

In the worst case analysis, we calculate upper bound on running time of an algorithm. We must know the case

that causes maximum number of operations to be executed. For Linear Search, the worst case happens when

the element to be searched is not present in the array. When x is not present, the search () functions compares

it with all the elements of array [] one by one. Therefore, the worst case time complexity of linear search would

be.

Average Case Analysis

In average case analysis, we take all possible inputs and calculate computing time for all of the inputs. Sum all

the calculated values and divide the sum by total number of inputs. We must know (or predict) distribution of

cases. For the linear search problem, let us assume that all cases are uniformly distributed. So we sum all the

cases and divide the sum by (n+1).

Best Case Analysis

In the best case analysis, we calculate lower bound on running time of an algorithm. We must know the case

that causes minimum number of operations to be executed. In the linear search problem, the best case occurs

when x is present at the first location. The number of operations in worst case is constant (not dependent on n).

So time complexity in the best case would be.

Explain Array in detail

One Dimensional Array

• Simplest data structure that makes use of computed address to locate its elements is the one-

dimensional array or vector; number of memory locations is sequentially allocated to the vector.

• A vector size is fixed and therefore requires a fixed number of memory locations.

• Vector A with subscript lower bound of “one” is represented as below….

L0

L0 + (i-1)C

• L0 is the address of the first word allocated to the first element of

vector A.

• C words are allocated for each element or node

• The address of Ai is given equation Loc (Ai) = L0 + C (i-1)

• Let’s consider the more general case of representing a vector A

whose lower bound for it’s subscript is given by some variable b.

The location of Ai is then given by Loc (Ai) = L0 + C (i-b)

A [i]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Two Dimensional Array

• Two dimensional arrays are also called table or matrix, two dimensional arrays have two subscripts

• Two dimensional array in which elements are stored column by column is called as column major matrix

• Two dimensional array in which elements are stored row by row is called as row major matrix

• First subscript denotes number of rows and second subscript denotes the number of columns

• Two dimensional array consisting of two rows and four columns as above Fig is stored sequentially by

columns : A [1, 1], A [2 , 1], A [1 , 2], A [2 , 2], A [1 , 3], A [2 , 3], A [1, 4], A [2, 4]

• The address of element A [i , j] can be obtained by expression Loc (A [i , j]) = L0 + (j-1)*2 + i-1

• In general for two dimensional array consisting of n rows and m columns the address element A [i , j] is

given by Loc (A [i , j]) = L0 + (j-1)*n + (i – 1)

• In row major matrix, array can be generalized to arbitrary lower and upper bound in its subscripts,

assume that b1 ≤ I ≤ u1 and b2 ≤ j ≤u2

b1, b2

b1, u2

[1 , 1] [1 , 2] [1 , 3] [1 ,m] col 1 col 2 col 3 col 4

[2 , 1] [2 , 2] [2 , 3] [2 m] row 1 [1 , 1] [1 , 2] [1 , 3] [1 , 4]

 row 2 [2 , 1] [2 , 2] [2 , 3] [2 , 4]

[n , 1] [n , 2] [n , 3] [n , m]

u1, b2

Row major matrix

No of Columns = m = u2 – b2 + 1

Column major matrix

• For row major matrix : Loc (A [i , j]) = L0 + (i – b1) *(u2-b2+1) + (j-b2)

Applications of Array

1. Symbol Manipulation (matrix representation of polynomial equation)

2. Sparse Matrix

Symbol Manipulation using Array

• We can use array for different kind of operations in polynomial equation such as addition, subtraction,

division, differentiation etc…

• We are interested in finding suitable representation for polynomial so that different operations like

addition, subtraction etc… can be performed in efficient manner

• Array can be used to represent Polynomial equation

• Matrix Representation of Polynomial equation

 Y Y2 Y3 Y4

X X Y X Y
2
 X Y

3
 X Y

4

X2
X

2
 Y X2 Y2 X2 Y3 X2 Y4

X3
X

3
 Y X3 Y2 X3 Y3 X3 Y4

X4
X

4
 Y X4 Y2 X4 Y3 X4 Y4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

• Once we have algorithm for converting the polynomial equation to an array representation and another

algorithm for converting array to polynomial equation, then different operations in array (matrix) will be

corresponding operations of polynomial equation

What is sparse matrix? Explain

• An mXn matrix is said to be sparse if “many” of its elements are zero.

• A matrix that is not sparse is called a dense matrix.

• We can device a simple representation scheme whose space requirement equals the size of the non-

zero elements.

Example:-

o The non-zero entries of a sparse matrix may be mapped into a linear list in row-major order.

o For example the non-zero entries of 4X8 matrix of below fig.(a) in row major order are 2, 1, 6, 7,

3, 9, 8, 4, 5

0 0 0 2 0 0 1 0

0 6 0 0 7 0 0 3

0 0 0 9 0 8 0 0

0 4 5 0 0 0 0 0

Fig (a) 4 x 8 matrix

Terms 0 1 2 3 4 5 6 7 8

Row 1 1 2 2 2 3 3 4 4

Column 4 7 2 5 8 4 6 2 3

Value 2 1 6 7 3 9 8 4 5

Fig (b) Linear Representation of above matrix

• To construct matrix structure we need to record

(a) Original row and columns of each non zero entries

(b) No of rows and columns in the matrix

• So each element of the array into which the sparse matrix is mapped need to have three fields: row,

column and value

• A corresponding amount of time is saved creating the linear list representation over initialization of two

dimension array.

 0 0 6 0 9 0 0

A = 2 0 0 7 8 0 4

 10 0 0 0 0 0 0
 0 0 12 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 3 0 0 5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

• Here from 6X7=42 elements, only 10 are non zero. A[1,3]=6, A[1,5]=9, A[2,1]=2, A[2,4]=7, A[2,5]=8,

A[2,7]=4, A[3,1]=10, A[4,3]=12, A[6,4]=3, A[6,7]=5.

• One basic method for storing such a sparse matrix is to store non-zero elements in one dimensional

array and to identify each array elements with row and column indices fig (c).

 ROW COLUMN A

1 1 3 6

2 1 5 9

 3

4

5

6

7

8

9

10

Fig (c)

COLUMN A

ROW NO First Column

for row no COLUMN NO

Fig(d)

• A more efficient representation in terms of storage requirement and access time to the row of the

matrix is shown in fid (d). The row vector changed so that its i
th

 element is the index to the first of the

column indices for the element in row I of the matrix.

6

9

2

7

8

4

10

12

3

5

3

5

1

4

5

7

1

3

4

7

 1

ROW 2

1 1 3

2 3 4

3 7 5

4 8 6

5 0 7

6 9 8

 9
 10

2

2

2

2

3

4

6

6

1

4

5

7

1

3

4

7

2

7

8

4

10

12

3

5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 3 6

1 5

2 5 8

2 7

Linked Representation of Sparse matrix

Typical node to represent non-zero element is

Row
Number

Column
Number

Value Pointer
Next

What is Stack?

• It is type of linear data structure

• It follows LIFO (Last In First Out) property.

• It has only one pointer TOP that points the last or top most element of Stack.

• Insertion and Deletion in stack can only be done from top only.

• Insertion in stack is also known as a

• Deletion from stack is also known as

Stack Implementation

• Stack implementation using array.

• Stack implementation using linked list

Applications of Stack

• Conversion ofpolish notations

There are three types of notations:

> Infix notation - Operator is between the operands : x + y

> Prefix notation - Operator is before the operands : + xy

> Postfix notation - Operator is after the operands : xy +

• To reverse a string

A string can be reversed by using stack. The characters of string pushed on to the stack till the end of the string.

The characters are popped and displays. Since the end character of string is pushed at the last, it will be printed

first.

123 4

7 4 2 9 2 1 2

7 4 3 1 10

6 4 3

6 7

Linked Representation of Sparse matrix

zero element is

Pointer To
Next Node

linear data structure.

(Last In First Out) property.

that points the last or top most element of Stack.

Insertion and Deletion in stack can only be done from top only.

Insertion in stack is also known as a PUSH operation.

Deletion from stack is also known as POP operation in stack.

Stack implementation using array.

Stack implementation using linked list.

There are three types of notations:

Operator is between the operands : x + y

Operator is before the operands : + xy

Operator is after the operands : xy +

A string can be reversed by using stack. The characters of string pushed on to the stack till the end of the string.

e characters are popped and displays. Since the end character of string is pushed at the last, it will be printed

12

5 NULL

A string can be reversed by using stack. The characters of string pushed on to the stack till the end of the string.

e characters are popped and displays. Since the end character of string is pushed at the last, it will be printed

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

• When function (sub-program) is called
When a function is called, the function is called last will be completed first. It is the property of stack. There is a

memory area, specially reserved for this stack.

#include <iostream>

using namespace std;

#define MAX 5

class Stack

{

 private:

 int top;

 int ele[MAX];

 public:

 Stack();

 int isFull();

 int isEmpty();

 void push(int item);

 int pop(int *item);

};

//Initialization of stack

Stack:: Stack()

{

 top = -1;

}

 //Check stack is full or not

int Stack:: isFull()

{

 int full = 0;

 if(top == MAX-1)

 full = 1;

 return full;

}

//Check stack is empty or not

int Stack:: isEmpty()

{

 int empty = 0;

 if(top == -1)

 empty = 1;

 return empty;

}

 //Insert item into stack

void Stack:: push(int item)

{

 if(isFull())

 {

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 cout<<"\nStack Overflow";

 return;

 }

 top++;

 ele[top] = item;

 cout<<"\nInserted item : "<< item;

}

 //Delete item from stack

int Stack:: pop(int *item)

{

 if(isEmpty())

 {

 cout<<"\nStack Underflow";

 return -1;

 }

 *item = ele[top--];

 return 0;

}

 int main()

{

 int item = 0;

 Stack s = Stack();

 s.push(10);

 s.push(20);

 s.push(30);

 s.push(40);

 s.push(50);

 s.push(60);

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 if(s.pop(&item) == 0)

 cout<<"\nDeleted item : "<< item;

 cout<< endl;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 return 0;

}

Queue
Like Stack, Queue is a linear structure which follows a particular order in which the operations are performed.

order is First In First Out (FIFO). A good example of queue is any queue of c

consumer that came first is served first.

The difference between stacks and queues is in removing. In a stack we remove the item the most recently added; in a

queue, we remove the item the least recently added.

Operations on Queue:

Mainly the following four basic operations are performed on queue:

Enqueue: Adds an item to the queue. If the queue is full, then it is said to be an Overflow condition.

Dequeue: Removes an item from the queue. The items are popped in the same or

queue is empty, then it is said to be an Underflow condition.

Front: Get the front item from queue.

Rear: Get the last item from queue.

Applications of Queue:
Queue is used when things don’t have to be processed

like Breadth First Search. This property of Queue makes it also useful in following kind of scenarios.

1) When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk Scheduling.

2) When data is transferred asynchronously (data not necessarily received at same rate as sent) between two

processes. Examples include IO Buffers, pipes, file IO, etc.

See this for more detailed applications of Queue and Stack.

Array implementation Of Queue
For implementing queue, we need to keep track of two indices, front and rear. We enqueue an item at the rear and

dequeue an item from front. If we simply increment front and rear indices, then there may be problems, front may

reach end of the array. The solution to this problem is to increase front and rear in circular manner

Trace the conversion of infix to postfix for

(i) (A + B * C / D - E + F / G / (H + I))

is a linear structure which follows a particular order in which the operations are performed.

A good example of queue is any queue of consumers for a resource where the

consumer that came first is served first.

The difference between stacks and queues is in removing. In a stack we remove the item the most recently added; in a

queue, we remove the item the least recently added.

Mainly the following four basic operations are performed on queue:

Adds an item to the queue. If the queue is full, then it is said to be an Overflow condition.

Removes an item from the queue. The items are popped in the same order in which they are pushed. If the

queue is empty, then it is said to be an Underflow condition.

Get the front item from queue.

Queue is used when things don’t have to be processed immediatly, but have to be processed in

. This property of Queue makes it also useful in following kind of scenarios.

red among multiple consumers. Examples include CPU scheduling, Disk Scheduling.

When data is transferred asynchronously (data not necessarily received at same rate as sent) between two

processes. Examples include IO Buffers, pipes, file IO, etc.

for more detailed applications of Queue and Stack.

Array implementation Of Queue:
For implementing queue, we need to keep track of two indices, front and rear. We enqueue an item at the rear and

eue an item from front. If we simply increment front and rear indices, then there may be problems, front may

reach end of the array. The solution to this problem is to increase front and rear in circular manner

Trace the conversion of infix to postfix form in tabular form.

E + F / G / (H + I))

is a linear structure which follows a particular order in which the operations are performed. The

onsumers for a resource where the

The difference between stacks and queues is in removing. In a stack we remove the item the most recently added; in a

Adds an item to the queue. If the queue is full, then it is said to be an Overflow condition.

der in which they are pushed. If the

immediatly, but have to be processed in First InFirst Out order

. This property of Queue makes it also useful in following kind of scenarios.

red among multiple consumers. Examples include CPU scheduling, Disk Scheduling.

When data is transferred asynchronously (data not necessarily received at same rate as sent) between two

For implementing queue, we need to keep track of two indices, front and rear. We enqueue an item at the rear and

eue an item from front. If we simply increment front and rear indices, then there may be problems, front may

reach end of the array. The solution to this problem is to increase front and rear in circular manner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Input Symbol Content of stack Reverse polish Rank
 (0

(((0

A ((0

+ ((+ A 1

B ((+ B A 1

* ((+ * A B 2

C ((+ * C A B 2

/ ((+ / A B C * 2

D ((+ / D A B C * 2

- ((- A B C * D / + 1

E ((- E A B C * D / + 1

+ ((+ A B C * D / + E - 1

F ((+ F A B C * D / + E - 1

/ ((+ / A B C * D / + E – F 2

G ((+ / G A B C * D / + E – F 2

/ ((+ / A B C * D / + E – F G / 2

(((+ / (A B C * D / + E – F G / 2

H ((+ / (H A B C * D / + E – F G / 2

+ ((+ / (+ A B C * D / + E – F G / H 3

I ((+ / (+ I A B C * D / + E – F G / H 3

) ((+ / A B C * D / + E – F G / H I + 3

) (A B C * D / + E – F G / H I + / + 1

) A B C * D / + E – F G / H I + / + 1

Postfix expression is: A B C * D / + E – F G / H I + / +

(ii) (A + B) * C + D / (B + A * C) + D

Input Symbol Content of stack Reverse polish Rank
 (0

(((0

A ((A 0

+ ((+ A 1

B ((+ B A 1

) (A B + 1

* (* A B + 1

C (* C A B + 1

+ (+ A B + C * 1

D (+ D A B + C * 1

/ (+ / A B + C * D 2

((+ / (A B + C * D 2

B (+ / (B A B + C * D 2

+ (+ / (+ A B + C * D B 3

A (+ / (+ A A B + C * D B 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

* (+ / (+ * A B + C * D B A 4

C (+ / (+ * C A B + C * D B A 4

) (+ / A B + C * D B A C * + 3

+ (+ A B + C * D B A C * + / + 1

D (+ D A B + C * D B A C * + / + 1

) A B + C * D B A C * + / + D + 1

Postfix expression is: A B + C * D B A C * + / + D +

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Convert the following string into prefix: A-B/(C*D^E)

Step-1 : reverse infix expression

) E ^) D * C ((/ B - A

Step-2 : convert ‘(‘ to ‘)’ and ‘)’ to ‘(‘ and append extra ‘)’ at last

(E ^ (D * C)) / B - A

Step-3 : Now convert this string to postfix

Input Symbol Content of stack Reverse polish Rank

 (0

(((0

E ((E 0

^ ((^ E 1

(((^ (E 1

D ((^ (D E 1

* ((^ (* E D 2

C ((^ (* C E D 2

) ((^ E D C * 2

) (E D C * ^ 1

/ (/ E D C * ^ 1

B (/ B E D C * ^ 1

- (- E D C * ^ B / 1

A (- A E D C * ^ B / 1

) E D C * ^ B / A - 1

Step 4 : Reverse this postfix expression

- A / B ^ * C D E

Write an algorithm for evaluation of postfix expression and evaluation the

following expression showing every status of stack in tabular form.

(i) 5 4 6 + * 4 9 3 / + * (ii) 7 5 2 + * 4 1 1 + / -

Algorithm: EVALUAE_POSTFIX

• Given an input string POSTFIX representing postfix expression. This algorithm is going to

evaluate postfix expression and put the result into variable VALUE. A vector S is used as a stack

PUSH and POP are the function used for manipulation of stack. Operand2 and operand1 are

temporary variable TEMP is used for temporary variable NEXTCHAR is a function which when

invoked returns the next character. PERFORM_OPERATION is a function which performs

required operation on OPERAND1 AND OPERAND2.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1. [Initialize stack and value]

TOP � 1

VALUE � 0

2. [Evaluate the prefix expression]

Repeat until last character

TEMP � NEXTCHAR (POSTFIX)

If TEMP is DIGIT

Then PUSH (S, TOP, TEMP)

Else OPERAND2 � POP (S, TOP)

OPERAND1 � POP (S, TOP)

VALUE � PERFORM_OPERATION(OPERAND1, OPERAND2, TEMP)

PUSH (S, POP, VALUE)

3. [Return answer from stack]

Return (POP (S, TOP))

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Evaluate (i): 5 4 6 + * 4 9 3 / + *

Empty Stack

Read and push

operands 5, 4, 6

Read Operator +,

pop two values

from stack opn2 =

6, opn1 = 4, and

push the answer 10

Read Operator *,

pop two values

from stack opn2 =

10, opn1 = 5, and

push the answer 50

Read Operator *,

pop two values

from stack opn2 =

7, opn1 = 50, and

push the answer

350

Read Operator +,

pop two values

from stack opn2 =

3, opn1 = 4, and

push the answer 7

Poped value 350 is the answer

Read Operator /,

pop two values

from stack opn2 =

3, opn1 = 9, and

push the answer 3

Evaluate (ii) : * 7 5 2 + * 4 1 1 + / -

Empty Stack

Read and push

operands 7, 5, 2

Read Operator +,

pop two values

from stack opn2 =

2, opn1 = 5, and

push the answer 7

Read Operator *,

pop two values

from stack opn2 =

7, opn1 = 7, and

push the answer 49

Read Operator - ,

pop two values

from stack opn2 =

2, opn1 = 49, and

push the answer 47

Read Operator /,

pop two values

from stack opn2 =

2, opn1 = 4, and

push the answer 2

Poped value 47 is the answer

Read Operator +,

pop two values

from stack opn2 =

1, opn1 = 1, and

push the answer 2

Read and

push

operands

4, 1, 1

Read and

push

operands

4, 9, 3

6

4

5

10

5

50

350

7

50

3

4

50

3

9

4

50

2

5

7

7

5

49

47

2

49

2

4

49

1

1

4

49

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Consider the following arithmetic expression P, written in postfix notation.

Translate it in infix notation and evaluate. P: 12, 7, 3, -, /, 2, 1, 5, +, *, +

Same Expression in infix notation is : (12 / (7 – 3)) + ((5 + 1) * 2)

Empty Stack

Read and push

operands 12, 7, 3

Read Operator -,

pop two values

from stack opn2 =

3, opn1 = 7, and

push the answer 4

Read Operator /,

pop two values

from stack opn2 =

4, opn1 = 12, and

push the answer 3

Read Operator +,

pop two values

from stack opn2 =

12, opn1 = 3, and

push the answer 15

Read Operator *,

pop two values

from stack opn2 =

6, opn1 = 2, and

push the answer 12

Poped value 15 is the answer

Read Operator +,

pop two values

from stack opn2 =

5, opn1 = 1, and

push the answer 6

Explain Difference between Stack and Queue.

Stack Queue

A Linear List Which allows insertion or deletion of

an element at one end only is called as Stack

A Linear List Which allows insertion at one end and

deletion at another end is called as Queue

Since insertion and deletion of an element are

performed at one end of the stack, the elements

can only be removed in the opposite order of

insertion.

Since insertion and deletion of an element are

performed at opposite end of the queue, the

elements can only be removed in the same order of

insertion.

Stack is called as Last In First Out (LIFO) List. Queue is called as First In First Out (FIFO) List.

The most and least accessible elements are called

as TOP and BOTTOM of the stack

Insertion of element is performed at FRONT end

and deletion is performed from REAR end

Example of stack is arranging plates in one above

one.

Example is ordinary queue in provisional store.

Insertion operation is referred as PUSH and

deletion operation is referred as POP

Insertion operation is referred as ENQUEUE and

deletion operation is referred as DQUEUE

Function calling in any languages uses Stack Task Scheduling by Operating System uses queue

Read and

push

operands

2, 1, 5

3

7

12

4

12

3

15

12

3

6

2

3

5

1

2

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Explain following:

(i) Queue (ii) Circular Queue (iii) DQUEUE (iv) Priority Queue

(i) Queue

o A linear list which permits deletion to be performed at one end of the list and insertion at the other

end is called queue.

o The information in such a list is processed FIFO (first in first out) of FCFS (first come

first served) pattern.

o Front is the end of queue from that deletion is to be performed.

o Rear is the end of queue at which new element is to be inserted.

o The process to add an element into queue is called Enqueue

o The process of removal of an element from queue is called Dequeue.

o The familiar and traditional example of a queue is Checkout line at Supermarket Cash Register

where the first person in line is usually the first to be checkedout.

Front

Deletion

Rear

Insertion

(ii) Circular Queue

o A more suitable method of representing simple queue which prevents an excessive use of memory

is to arrange the elements Q[1], Q[2]….,Q[n] in a circular fashion with Q[1] following Q[n], this is

called circular queue

o In a standard queue data structure re-buffering problem occurs for each dequeue operation. To

solve this problem by joining the front and rear ends of a queue to make the queue as a circular

queue

o Circular queue is a linear data structure. It follows FIFO principle.

o In circular queue the last node is connected back to the first node to make a circle.

o Circular linked list fallow the First In First Out principle

o Elements are added at the rear end and the elements are deleted at front end of the queue

o Both the front and the rear pointers points to the beginning of the array.

o It is also called as “Ring buffer”.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

(iii) Dequeue

o A dequeue (double ended queue) is a linear list in which insertion and deletion are performed from

the either end of the structure.

o There are two variations of Dqueue

� Input restricted dqueue- allows insertion at only one end

� Output restricted dqueue- allows deletion from only one end

o Such a structure can be represented by following fig.

Front

Deletion

Insertion

Insertion

Deletion

Rear

(iv) Priority Queue

o A queue in which we are able to insert remove items from any position based on some property

(such as priority of the task to be processed) is often referred as priority queue.

o Below fig. represent a priority queue of jobs waiting to use a computer.

o Priorities of 1, 2, 3 have been attached with jobs of real time, online and batch respectively.

Therefore if a job is initiated with priority i,it is inserted immediately at the end of list of other jobs

with priorities i. Here jobs are always removed from the front of queue

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT-3

Linked List

1. Linear Data Structure and their linked storage representation.

There are many applications where sequential allocation method is unacceptable because of following

characteristics

• Unpredictable storage requirement

• Extensive manipulation of stored data

The linked allocation method of storage can result in both efficient use of computer storage and computer time.

• A linked list is a non-sequential collection of data items.

• The concept of a linked list is very simple, for every data item in the linked list, there is an associated

pointer that would give the memory allocation of the next data item in the linked list.

• The data items in the linked list are not in a consecutive memory locations but they may be

anywhere in memory.

• Accessing of these data items is easier as each data item contains within itself the address of the

next data item.

A Linked List

2. What is linked list? What are different types of linked list?

OR Write a short note on singly, circular and doubly linked

list. OR

Advantages and disadvantages of singly, circular and doubly linked list.

• A linked list is a collection of objects stored in a list form.

• A linked list is a sequence of items (objects) where every item is linked to the next.

• A linked list is a non-primitive type of data structure in which each element is dynamically allocated

and in which elements point to each other to define a linear relationship.

• Elements of linked list are called nodes where each node contains two things, data and pointer to

next node.

• Linked list require more memory compared to array because along with value it stores pointer to

next node.

• Linked lists are among the simplest and most common data structures. They can be used to

implement other data structures like stacks, queues, and symbolic expressions, etc…

next next next null 40 30 20 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Operations on linked list

• Insert

o Insert at first position

o Insert at last position

o Insert into ordered list

• Delete

• Traverse list (Print list)

• Copy linked list

Types of linked list

Singly Linked List

• It is basic type of linked list.

• Each node contains data and pointer to next node.

• Last node’s pointer is null.

• Limitation of singly linked list is we can traverse only in one direction, forward direction.

Singly Linked List

Circular Linked List

• Circular linked list is a singly linked list where last node points to first node in the list.

• It does not contain null pointers like singly linked list.

• We can traverse only in one direction that is forward direction.

• It has the biggest advantage of time saving when we want to go from last node to first node, it

directly points to first node.

• A good example of an application where circular linked list should be used is a timesharing

problem solved by the operating system.

next next next null D C B A

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Doubly Linked list

• Each node of doubly linked list contains data and two pointers to point previous (LPTR) and next

(RPTR) node.

Node

Pointer to

previous node

Data

A nex
t

B

LPTR info

Circular Linked List

Each node of doubly linked list contains data and two pointers to point previous (LPTR) and next

// C++ Structure to represent a node

class node

{

 Pointer to

next node };

int info

struct node *lptr;

struct node *rptr;

B nex
t

C nex
t

D nex
t

RPTR

Each node of doubly linked list contains data and two pointers to point previous (LPTR) and next

// C++ Structure to represent a node

struct node *lptr;

struct node *rptr;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3. Discuss advantages and disadvantages of linked list over array.

Advantages of an array

1. We can access any element of an array directly means random access is easy

2. It can be used to create other useful data structures (queues, stacks)

3. It is light on memory usage compared to other structures

Disadvantages of an array

1. Its size is fixed

2. It cannot be dynamically resized in most languages

3. It is hard to add/remove elements

4. Size of all elements must be same.

5. Rigid structure (Rigid = Inflexible or not changeable)

Advantages of Linked List

1. Linked lists are dynamic data structures: That is, they can grow or shrink

during execution of a program.

2. Efficient memory utilization: Here memory is not pre-allocated. Memory is

allocated whenever it is required. And it is deallocated (free) when it is no

longer needed.

3. Insertion and deletions are easier and efficient: Linked list provide flexibility

in inserting a data item at a specified position and deletion of a data item

from the given position.

4. Elements of linked list are flexible: It can be primary data type or user defined data

types

Disadvantages of Linked List

1. Random access is not allowed. We have to access elements sequentially

starting from the first node. So we cannot do binary search with linked lists.

2. It cannot be easily sorted

3. We must traverse 1/2 the list on average to access any element

4. More complex to create than an array

5. Extra memory space for a pointer is required with each element of the list

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3. What are the advantages and disadvantages of

stack and queue implemented using linked list over

array?

Advantages and disadvantages of stack & queue implemented using linked list over array is

described below,

Insertion & Deletion Operation

• Insertion and deletion operations are known as push and pop operation in

stack and as insert and delete operation in queue.

• In the case of an array, if we have n-elements list and it is required to insert a

new element between the first and second element then n-1 elements of the

list must be moved so as to make room for the new element.

• In case of linked-list, this can be accomplished by only interchanging pointers.

• Thus, insertion and deletions are more efficient when performed in linked list then

array.

Searching a node

• If a particular node in a linked list is required, it is necessary to follow links

from the first node onwards until the desired node is found.

• Where as in the case of an array, directly we can access any node

Join & Split

• We can join two linked list by assigning pointer of second linked list in the last

node of first linked list.

• Just assign null address in the node from where we want to split one linked list in two

parts.

• Joining and splitting of two arrays is much more difficult compared to linked list.

Memory

• The pointers in linked list consume additional memory compared to an array

Size

• Array is fixed sized so number of elements will be limited in stack and queue.

• Size of linked list is dynamic and can be changed easily so it is flexible in number of

elements

Insertion and deletion operations in Array and Linked-List

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

