:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

UNIT-1

Introduction to Data Structure

Computer is an electronic machine which is used for data processing and manipulation.

When programmer collects such type of data for processing, he would require to store all of them in
computer’s main memory.

In order to make computer work we need to know

o Representation of data in computer.

o Accessing of data.

o How to solve problem step by step.

For doing this task we use data structure.

What is Data Structure?

Data structure is a representation of the logical relationship existing between individual elements of
data.

Data Structure is a way of organizing all data items that considers not only the elements stored but also
their relationship to each other.

We can also define data structure as a mathematical or logical model of a particular organization of
data items.

The representation of particular data structure in the main memory of a computer is called as storage
structure.

The storage structure representation in auxiliary memory is called as file structure.

It is defined as the way of storing and manipulating data in-organized form so that it can be used
efficiently.

Data Structure mainly specifies the following four things

o Organization of Data

o Accessing methods

o Degree of associativity

o Processing alternatives for information

Algorithm + Data Structure = Program

Data structure study covers the following points

o Amount of memory require to store.

o Amount of time require.toprocess.

o Representation of datain memory.

o Operations performed on that data.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Classification of Data Structure

DATA
STRUCTURE
| |
|] 1
PRIMITIVE NON
PRIMITIVE
n L] L] L} n : L
INTEGER FLOATING CHARACTER POINTER ARRAY LIST FILE
POINT
) |
LINEAR LIST NON
LINEAR LIST
| | l_l_l
L) 1
STACK QUEUE GRAPH TREE

Data Structures are normally classified into two broad.categories

1. Primitive Data Structure

2. Non-primitive data Structure

Data types
A particular kind of data item, as defined by the values it can take, the programming language used, or
the operations that can be performed on it.

Primitive Data Structure

* Primitive data structures are basic structures and are directly operated upon by machine instructions.

* Primitive data structures have different representations on different computers.

* Integers, floats, character and pointers are examples of primitive data structures.

* These data types are available in most programming languages as built in type.
o Integer: It is a data type which allows all values without fraction part. We can use it for wholenumbers.
o Float: It is a data type which use for storing fractional numbers.
o Character: It is a data type which is used for character values.

Pointer: A variable that holds memory address of another variable are called pointer.

www.FirstRanker.com

:l » FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Non primitive Data Type

These are more sophisticated data structures.

These are derived from primitive data structures.

The non-primitive data structures emphasize on structuring of a group of homogeneous or heterogeneous

data items.

Examples of Non-primitive data type are Array, List, and File etc.

A Non-primitive data type is further divided into Linear and Non-Linear data structure

o Array: An array is a fixed-size sequenced collection of elements of the same datatype.

o List: An ordered set containing variable number of elements is called as Lists.

o File: Afile is a collection of logically related information. It can be viewed as a large list of records
consisting of various fields.

Linear data structures

A data structure is said to be Linear, if its elements are connected in linear fashion by means of logically or in

sequence memory locations.

There are two ways to represent a linear data structure in memory,

o Static memory allocation

o Dynamic memory allocation

The possible operations on the linear data structure are: Traversal, Insertion, Deletion, Searching, Sorting

and Merging.

Examples of Linear Data Structure are Stack and Queue.

Stack: Stack is a data structure in which insertion and deletion operations are performed at one endonly.

o The insertion operation is referred to as ‘PUSH’ and deletion operation is referred to as ‘POP’ operation.

o Stackis also called as Last in First out (LIFO)data structure.

Queue: The data structure which permits the.insertion at one end and Deletion at another end, known as

Queue.

o End at which deletion is occurs isknown as FRONT end and another end at which insertion occurs is
known as REAR end.

o Queue is also called as Firstin First out (FIFO) data structure.

Nonlinear data structures

Nonlinear data structures are those data structure in which data items are not arranged in a sequence.

Examples of Non-linear Data Structure are Tree and Graph.

Tree: A tree can be defined as finite set of data items (nodes) in which data items are arranged in branches

and sub branches according to requirement.

o Trees represent the hierarchical relationship between various elements.

o Tree consist of nodes connected by edge, the node represented by circle and edge lives connecting to
circle.

Graph: Graph is a collection of nodes (Information) and connecting edges (Logical relation) between nodes.
o Atree can be viewed as restricted graph.
o Graphs have many types:

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

= Un-directed Graph
= Directed Graph
= Mixed Graph

= Multi Graph
= Simple Graph
= Null Graph

= Weighted Graph

Difference between Linear and Non Linear Data Structure

Linear Data Structure Non-Linear Data Structure

Every item is related to its previous and next time. | Every item is attached with many other items.

Data is arranged in linear sequence. Data is not arranged in sequence.

Data items can be traversed in a single run. Data cannot be traversed in a single run.
Eg. Array, Stacks, linked list, queue. Eg. tree, graph.

Implementation is easy. Implementation is difficult.

Operation on Data Structures

Design of efficient data structure must take operations.to'be performed on the data structures into account. The
most commonly used operations on data structure are broadly categorized into following types

1. Create
The create operation results in reserving‘-memory for program elements. This can be done by declaration
statement. Creation of data structure may take place either during compile-time or run-time. malloc()
function of C language is used for.creation.

2. Destroy
Destroy operation destroys memory space allocated for specified data structure. free() function of C
language is used to destroy data structure.

3. Selection
Selection operation deals with accessing a particular data within a data structure.

4. Updation
It updates or modifies the data in the data structure.

5. Searching
It finds the presence of desired data item in the list of data items, it may also find the locations of all
elements that satisfy certain conditions.

6. Sorting
Sorting is a process of arranging all data items in a data structure in a particular order, say for example,
either in ascending order or in descending order.

www.FirstRanker.com

:l :1 FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

7. Merging
Merging is a process of combining the data items of two different sorted list into a single sorted list.

8. Splitting
Splitting is a process of partitioning single list to multiple list.

9. Traversal
Traversal is a process of visiting each and every node of a list in systematic manner.

Time and space analysis of algorithms

Algorithm
e An essential aspect to data structures isalgorithms.

e Data structures are implemented using algorithms.
e Analgorithm is a procedure that you can write as a C function or program, or any otherlanguage.
e Analgorithm states explicitly how the data will be manipulated.

Algorithm Efficiency

e Some algorithms are more efficient than others. We would prefer to choose an efficient algorithm, so it
would be nice to have metrics for comparing algorithm efficiency.

e The complexity of an algorithm is a function describing the efficiency of the algorithm in terms of the
amount of data the algorithm must process.

e Usually there are natural units for the domain-and range of this function. There are two main complexity
measures of the efficiency of an algorithm

e Time complexity

m Time Complexity is a function describing the amount of time an algorithm takes in terms of the
amount of input to theualgorithm.

m "Time" can mean the number of memory accesses performed, the number of comparisons between
integers, the number of times some inner loop is executed, or some other natural unit related to the
amount of real time the algorithm will take.

e Space complexity

m Space complexity is a function describing the amount of memory (space) an algorithm takes in terms
of the amount of input to the algorithm.

m We often speak of "extra" memory needed, not counting the memory needed to store the input itself.
Again, we use natural (but fixed-length) units to measure this.

m We can use bytes, but it's easier to use, say, number of integers used, number of fixed-sized structures,
etc. In the end, the function we come up with will be independent of the actual number of bytes
needed to represent the unit.

www.FirstRanker.com

» FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

m Space complexity is sometimes ignored because the space used is minimal and/or obvious, but
sometimes it becomes as important an issue as time.

Worst Case Analysis

In the worst case analysis, we calculate upper bound on running time of an algorithm. We must know the case
that causes maximum number of operations to be executed. For Linear Search, the worst case happens when
the element to be searched is not present in the array. When x is not present, the search () functions compares
it with all the elements of array [] one by one. Therefore, the worst case time complexity of linear search would
be.

Average Case Analysis

In average case analysis, we take all possible inputs and calculate computing time for all of the inputs. Sum all
the calculated values and divide the sum by total number of inputs. We must know (or predict) distribution of
cases. For the linear search problem, let us assume that all cases are uniformly distributed. So we sum all the
cases and divide the sum by (n+1).

Best Case Analysis

In the best case analysis, we calculate lower bound on running time of an algorithm. We must know the case
that causes minimum number of operations to be executed. In the linear search problem, the best case occurs
when x is present at the first location. The number of operations‘in worst case is constant (not dependent on n).
So time complexity in the best case would be.

Explain Array in detail

One Dimensional Array

® Simplest data structure that makes use of computed address to locate its elements is the one-
dimensional array or vector; number of memory locations is sequentially allocated to the vector.

® Avector size is fixed and.therefore requires a fixed number of memory locations.

® \ector A with subscript lower bound of “one” is represented as below....

® |,is the address of the first word allocated to the first element of
vector A.

Ly —»

e Cwords are allocated for each element or node

L, + (i-1)C e The address of A, is given equation Loc (A;) = Lo + C (i-1)
Alil e Let’s consider the more general case of representing a vector A

whose lower bound for it’s subscript is given by some variable b.
The location of Ai is then given by Loc (A;) = Ly + C (i-b)

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Two Dimensional Array

Two dimensional arrays are also called table or matrix, two dimensional arrays have two subscripts

Two dimensional array in which elements are stored column by column is called as column major matrix
Two dimensional array in which elements are stored row by row is called as row major matrix

First subscript denotes number of rows and second subscript denotes the number of columns

Two dimensional array consisting of two rows and four columns as above Fig is stored sequentially by
columns:A[1,1],A[2,1],A[1,2],A[2,2],A[1,3],A[2,3],A[1,4],A[2,4]

The address of element A [i, j] can be obtained by expression Loc (A[i,j]) = Lo+ (j-1)*2 +i-1

In general for two dimensional array consisting of n rows and m columns the address element A[i,j]is
givenbyLoc (A[i,j])=Lo+(j-1)*n+(i—-1)

In row major matrix, array can be generalized to arbitrary lower and upper bound in its subscripts,
assume that bl <1<uland b2 <j<u2

b1, b2 b1, u2

[1,1](1,2]1[1,3] [1,m] col1 col 2 col 3 col4

[2,1102,2]1[2,3] [2m] row1 [1,1] [1,2] [1,3] [1,4]
row2 (2,11 [2,2] [2,3] [2,4]

[n,1][n,2] [n,3] [n,m]

ul, b2 i

Row major matrix Column major matrix
No of Columns=m=u2-b2+1

For row major matrix : Loc(A[i,j]) = Lo+ (i=b1l) *(u2-b2+1) +(j-b2)

Applications of Array

1.

Symbol Manipulation (matrix representation of polynomial equation)

2. Sparse Matrix

Symbol Manipulation using Array

We can use array for different kind of operations in polynomial equation such as addition, subtraction,
division, differentiation etc...

We are interested in finding suitable representation for polynomial so that different operations like
addition, subtraction etc... can be performed in efficient manner

Array can be used to represent Polynomial equation

Matrix Representation of Polynomial equation
Y Y? Y3 y*

X | XY | XY* | xy* | xy*
XZ XZ Y XZ YZ XZ Y3 XZ Y4
X3y | X3v2 | 3y | X3Y?
x4 X4 Y X4 YZ x4 Y3 X4 Y4

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

® Once we have algorithm for converting the polynomial equation to an array representation and another
algorithm for converting array to polynomial equation, then different operations in array (matrix) will be
corresponding operations of polynomial equation

What is sparse matrix? Explain

® An mXn matrix is said to be sparse if “many” of its elements are zero.

® A matrix that is not sparse is called a dense matrix.

® We can device a simple representation scheme whose space requirement equals the size of the non-
zero elements.

Example:-
o The non-zero entries of a sparse matrix may be mapped into a linear list in row-major order.
o For example the non-zero entries of 4X8 matrix of below fig.(a) in row major order are 2, 1, 6, 7,

3,9,8,4,5

o o o0 2 0 0 1 o0

o 6 0 0 7 0 0 3

O 0o 0O 9 0 8 0 O

O 4 5 0 0 0.0 O

Fig (a) 4 x 8 matrix

Terms |0 1 2.3 4 5 6 7 8
Row 1 1 22 2 3 3 4 4
Column |4 7.2 5 8 4 6 2 3
Value 2.4 6 7 3 9 8 4 5

Fig (b)'Linear Representation of above matrix

e To construct matrix structure we need to record
(a) Original row and columns of each non zero entries
(b) No of rows and columns in the matrix
e So each element of the array into which the sparse matrix is mapped need to have three fields: row,
column and value

* A corresponding amount of time is saved creating the linear list representation over initialization of two
dimension array.

0 0 6 0 9 0 O
A= 2 0 0 7 8 0 4
10 O 0 0O 0 0 O
0 0O 12 0o 0 O ©O
0 0 0 0O 0 0 O
0 0 0 3 0 0 5

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

e Here from 6X7=42 elements, only 10 are non zero. A[1,3]=6, A[1,5]=9, A[2,1]=2, A[2,4]=7, A[2,5]=8,
A[2,7]=4, A[3,1]=10, A[4,3]=12, A[6,4]=3, A[6,7]=5.

® One basic method for storing such a sparse matrix is to store non-zero elements in one dimensional
array and to identify each array elements with row and column indices fig (c).

ROW COLUMN A

1 1 3 6

2 1 5 9

3 2 1 2

4 2 4 7

5 2 5 8

6 2 7 4

7 3 1 10

8 4 3 12

9 6 4 3

10 6 7 5

Fig (c)
COLUMN A
1 3 6
ROW /2 5 9
1 1 /3 1 2
2 3 4 4 7
3 7 5 5 8
. . \6 7 4
5[o \7 1 10
6 9 8 3 12
T \9 4 3
T_‘ 10 7 5
ROW NO First-Column T
for row no COLUMN NO

Fig(d)

e A more efficient representation in terms of storage requirement and access time to the row of the
matrix is shown in fid (d). The row vector changed so that its i element is the index to the first of the
column indices for the element in row | of the matrix.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Linked Representation of Sparse matrix
Typical node to represent non-zero element is

Row Column Value | Pointer To
Number | Number Next Node
1(3 6 —» 1| 5 9 — 2| 1 2 —» 2| 4 7
» 2| 5 8 > 2| 7 4 —» 3| 1 10 —» 4| 3 12

LG 4 3 6|7 5 NULL

What is Stack?

e Itis type of linear data structure.

e It follows LIFO (Last In First Out) property.

e It has only one pointer TOP that points the last or top most element of Stack.
e Insertion and Deletion in stack can only be done from top.only.

e Insertion in stack is also known as a PUSH operation.

e Deletion from stack is also known as POP operation'in stack.

Stack Implementation

e Stack implementation using array.
e Stack implementation using linkedist.

Applications of Statk

e Conversion ofpolish notations
There are three types of notations:
> Infix notation - Operator is between the operands : x +y
> Prefix notation - Operator is before the operands : + xy
> Postfix notation - Operator is after the operands : xy +
e Toreverse a string
A string can be reversed by using stack. The characters of string pushed on to the stack till the end of the string.
The characters are popped and displays. Since the end character of string is pushed at the last, it will be printed
first.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

e When function (sub-program) is called
When a function is called, the function is called last will be completed first. It is the property of stack. There is a
memory area, specially reserved for this stack.

#include <iostream>
using namespace std;
#define MAX 5
class Stack
{
private:
int top;
int ele[MAX];
public:
Stack();
int isFull();
int isEmpty();
void push(int item);
int pop(int *item);
2
//Initialization of stack
Stack:: Stack()
{
top =-1;
}
//Check stack is full or not
int Stack:: isFull()

{
int full = 0;

if(top == MAX-1)
full = 1;
return full;
}
//Check stack is empty or not
int Stack:: isEmpty()

{
int empty =0;

if(top==-1)
empty = 1;

return empty;
}
//Insert item into stack
void Stack:: push(int item)
{

if(isFull())

{

www.FirstRanker.com

:l :1 FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

cout<<"\nStack Overflow";
return;

}

top++;
ele[top] = item;

cout<<"\nlnserted item : "<< item;
}
//Delete item from stack
int Stack:: pop(int *item)
{
if(isEmpty())
{
cout<<"\nStack Underflow";
return -1;

}

*item = ele[top--];
return 0;
}
int main()
{
intitem =0;
Stack s = Stack();

s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.push(50);
s.push(60);
if(s.pop(&item) ==0)
cout<<"\nDeleted item+."<< item;
if(s.pop(&item) ==0)
cout<<"\nDeleted item : "<< item;
if(s.pop(&item) ==0)
cout<<"\nDeleted item : "<< item;
if(s.pop(&item)==0)
cout<<"\nDeleted item : "<< item;
if(s.pop(&item) ==0)
cout<<"\nDeleted item : "<< item;
if(s.pop(&item)==0)
cout<<"\nDeleted item : "<< item;

cout<< endl;

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

return O;
}
Queue
Like Stack, Queue is a linear structure which follows a particular order in which the operations are performed. The
order is First In First Out (FIFO). A good example of queue is any queue of consumers for a resource where the
consumer that came first is served first.
The difference between stacks and queues is in removing. In a stack we remove the item the most recently added; in 2
gueue, we remove the item the least recently added.
Operations on Queue:
Mainly the following four basic operations are performed on queue:
Enqueue: Adds an item to the queue. If the queue is full, then it is said to be an Overflow condition.
Dequeue: Removes an item from the queue. The items are popped in the same order in which they are pushed. If the
queue is empty, then it is said to be an Underflow condition.
Front: Get the front item from queue.
Rear: Get the last item from queue.

Queue

Insertion and Deletion
happen on different ends

v
Rear Front

Enqueue Dequeue

First in *first out

Applications of Queue:

Queue is used when things don’t have to be processed immediatly, but have to be processed in First InFirst Out order
like Breadth First Search. This property of Queue makes it also useful in following kind of scenarios.

1) When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk Scheduling.

2) When data is transferred asynchronously (data not necessarily received at same rate as sent) between two
processes. Examples include 10 Buffers, pipes, file 10, etc.

See this for more detailed applications of Queue and Stack.

Array implementation Of Queue:

For implementing queue, we need to keep track of two indices, front and rear. We enqueue an item at the rear and
dequeue an item from front. If we simply increment front and rear indices, then there may be problems, front may
reach end of the array. The solution to this problem is to increase front and rear in circular manner

Trace the conversion of infix to postfix form in tabular form.

() (A+B*C/D-E+F/G/(H+1))

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
Input Symbol Content of stack Reverse polish Rank

(0
(((0
A ((0
+ ((+ A 1
B ((+B A 1
* ((+* AB 2
C ((+*C AB 2
/ ((+/ ABC* 2
D ((+/D ABC* 2
- ((- ABC*D/+ 1
E ((-E ABC*D/+ 1
+ ((+ ABC*D/+E- 1
F ((+F ABC*D/+E- 1
/ ((+/ ABC*D/+E-F 2
G ((+/G ABC*D/+E-F 2
/ ((+/ ABC*D/+E-FG/ 2
(((+/(ABC*D/+E-FG/ 2
H ((+/(H ABC*D/+E-FG/ 2
+ ((+/(+ ABC*D/+E-FG/H 3
I ((+/(+1 ABC*D/+E=FG/H 3
) ((+/ ABC*D/+E~FG/HI+ 3
) (ABC*D/+E-FG/HI+/+ 1
) ABC*D/+E-FG/HI+/+ 1

Postfix expressioniss ABC*D /+E-FG/HI+/+

(i) (A+B)*C+D/(B+A*C)+D

Input Symbol Content. of 'stack Reverse polish Rank

(0
(((0
A ((A 0
+ ((+ A 1
B ((+8B A 1
) (AB+ 1
* (* AB+ 1
C (*C AB+ 1
+ (+ AB+C* 1
D (+D AB+C* 1
/ (+/ AB+C*D 2
((+/(AB+C*D 2
B (+/(B AB+C*D 2
+ (+/(+ AB+C*DB 3
A (+/(+A AB+C*DB 3

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
* (+/(+* AB+C*DBA 4
C (+/(+*C AB+C*DBA 4
) (+/ AB+C*DBAC*+ 3
+ (+ AB+C*DBAC*+/+ 1
D (+D AB+C*DBAC*+/+ 1
) AB+C*DBAC*+/+D+ 1

Postfix expressionis AB+C*DBAC*+/+D+

www.FirstRanker.com

» FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Convert the following string into prefix: A-B/(C*D"E)

Step-1 : reverse infix expression
JE~A)D*C((/B-A

Step-2 : convert '(* to ')’ and ')’ to (' and append extra ‘)’ at last
(E~(D*C))/B-A

Step-3 : Now convert this string to postfix

Input Symbol | Content of stack = Reverse polish Rank
0

E
E
D E
* ED
*C ED
EDC*
EDC*A
/ EDC*A
/B EDC*"
- EDC*AB/
-A EDC*AB/
EDC*AB/A-

* QO —~| > m|—

W ~N— -0
P PP P RPPNNNRPRPRPRPLROO

— >

Step 4 : Reverse this postfix expression
-A/BA*CDE

Write an algorithm for evaluation of postfix expression and evaluation the
following expression showing every status of stack in tabular form.

(()546+*493 /+*(ii)752+*411+/-

Algorithm: EVALUAE_POSTFIX

Given an input string POSTFIX representing postfix expression. This algorithm is going to
evaluate postfix expression and put the result into variable VALUE. A vector S is used as a stack
PUSH and POP are the function used for manipulation of stack. Operand2 and operandl are
temporary variable TEMP is used for temporary variable NEXTCHAR is a function which when
invoked returns the next character. PERFORM_OPERATION is a function which performs
required operation on OPERAND1 AND OPERAND?2.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

1. [Initialize stack and value]
TOP €« 1
VALUE < 0
2. [Evaluate the prefix expression]
Repeat until last character
TEMP €« NEXTCHAR (POSTFIX)
If TEMP is DIGIT
Then PUSH (S, TOP, TEMP)
Else OPERAND2 < POP (S, TOP)
OPERAND1 < POP (S, TOP)
VALUE < PERFORM_OPERATION(OPERAND1, OPERAND2, TEMP)
PUSH (S, POP, VALUE)
3. [Return answer from stack]
Return (POP (S, TOP))

www.FirstRanker.com

Evaluate (i): 546 +*493 /+*

Empty Stack

» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com

Read Operator +,

www.FirstRanker.com

Read Operator *,

pop two values pop two values
from stack opn2 = from stack opn2 =
Read and push 6, opnl =4, and 10, opnl =5, and
operands 5, 4, 6 push the answer 10 push the answer 50 PR
> 6 > >
4 10
5 5 50 |Read and
push
operands|
4,9,3
Read Operatlor , Read Operator +, Read Operator /, 3
f pop twokva ues pop two values 3 pop two values o |
rom Stlac Opnzd— from stack opn2 = from stack opn2 = <
7, oznh-SO,an 7 3, 0pnl=4, and 4 3, 0pn1 = 9, and 4
push the answer push the answer 7
push the answer 3
350 350 50 50 50
Poped value 350 is theanswer
Evaluate (ii): *752 +*411+ /-
Empty Stack Read Operator + Read Operator *,
pop two values pop two values
from stack opn2 = from stack opn2 =
Read and push 2, opnl =5, and 7,0pnl=7,and
operands 7, 5, 2 push-.the answer 7 push the answer 49 —_
> 2 > >
5 7
7 5 49 |Read and
push
operands|
4,1,1
Read Operatlor - Read Operator /, Read Operator +, 1
. pop twokva uezs pop two values 2 pop two values X |
rom stack opn d— from stack opn2 = from stack opn2 = <
2, Epr;l_49,an4 2 2,0pnl=4,and 4 1, opni = 1, and a
47 push the answer 47 49 push the answer 2 49 push the answer 2
49

Poped value 47 is the answer

www.FirstRanker.com

» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Consider the following arithmetic expression P, written in postfix notation.
Translate it in infix notation and evaluate.P: 12,7,3,-,/,2,1,5,+, % +

Same Expression in infix notationis: (12 /(7=3))+((5+1) *2)

Empty Stack Read Operator -, Read Operator /,
pop two values pop two values
from stack opn2 = from stack opn2 =
Read and push 3,0pnl=7,and 4, opnl =12, and
operands 12, 7,3 push the answer 4 push the answer 3 —_
> 3 > >
7 4
12 12 3 |Read and
push
operands|
2,1,5
Read Operatlor K Read Operator *, Read Operator +, 5
fpop twokva ues pop two values 6 pop two values X |
rom stac Opnzd- from stack opn2 = from stack opn2 = <
12,ho$1n1 =3 anl 12 6,0pnl =2, and 2 5,0pnl=1,and 2
15 push the answer 15 3 push the answer 12 3 push the answer 6
3
Poped value 15 is the answer
Explain Difference between Stack and Queue.
Stack Queue

A Linear List Which allows insertion-or deletion of
an element at one end only is called as Stack

Since insertion and deletion—of an element are
performed at one end of the stack, the elements
can only be removed in the opposite order of
insertion.

Stack is called as Last In First Out (LIFO) List.

The most and least accessible elements are called
as TOP and BOTTOM of the stack

Example of stack is arranging plates in one above
one.

Insertion operation is referred as PUSH and

deletion operation is referred as POP

Function calling in any languages uses Stack

A Linear List Which allows insertion at one end and
deletion at another end is called as Queue

Since insertion and deletion of an element are
performed at opposite end of the queue, the
elements can only be removed in the same order of
insertion.

Queue is called as First In First Out (FIFO) List.
Insertion of element is performed at FRONT end
and deletion is performed from REAR end

Example is ordinary queue in provisional store.

Insertion operation is referred as ENQUEUE and
deletion operation is referred as DQUEUE
Task Scheduling by Operating System uses queue

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Explain following:

(i) Queue (ii) Circular Queue (iii) DQUEUE (iv) Priority Queue

(i) Queue

e}

O O O O ©

A linear list which permits deletion to be performed at one end of the list and insertion at the other
end is called queue.

The information in such a list is processed FIFO (first in first out) of FCFS (first come
first served) pattern.

Front is the end of queue from that deletion is to be performed.

Rear is the end of queue at which new element is to be inserted.

The process to add an element into queue is called Enqueue

The process of removal of an element from queue is called Dequeue.
The familiar and traditional example of a queue is Checkout line at Supermarket Cash Register
where the first person in line is usually the first to be checkedout.

Front

¢

Deletion —<«— l«—— Insertion

Rear

(ii) Circular Queue

O

O O O O O O

A more suitable method of representing simple queue which prevents an excessive use of memory
is to arrange the elements Q[1], Q[2]....,Q[n] in a circular fashion with Q[1] following Q[n], this is
called circular queue

In a standard queue data structure re-buffering problem occurs for each dequeue operation. To
solve this problem by-joining the front and rear ends of a queue to make the queue as a circular
queue

Circular queue is a linear data structure. It follows FIFO principle.

In circular queue the last node is connected back to the first node to make a circle.

Circular linked list fallow the First In First Out principle

Elements are added at the rear end and the elements are deleted at front end of the queue

Both the front and the rear pointers points to the beginning of the array.

It is also called as “Ring buffer”.

www.FirstRanker.com

:l :1 FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

(iii) Dequeue
o A dequeue (double ended queue) is a linear list in which insertion and deletion are performed from
the either end of the structure.
o There are two variations of Dqueue
= |nput restricted dqueue- allows insertion at only one end
= Qutput restricted dqueue- allows deletion from only one end
o Such a structure can be represented by following fig.

Front

¢

Deletion 4 | ‘ Insertion

. —> —> .
Insertion Deletion

Rear

(iv) Priority Queue
o A queue in which we are able-to-insert remove items from any position based on some property
(such as priority of the task to’be processed) is often referred as priority queue.
Below fig. represent a priority queue of jobs waiting to use acomputer.
Priorities of 1, 2, 3 <have been attached with jobs of real time, online and batch respectively.
Therefore if a job is-initiated with priority i,it is inserted immediately at the end of list of other jobs
with priorities i. Here jobs are always removed from the front of queue

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

UNIT-3
Linked List

1. Linear Data Structure and their linked storage representation.

There are many applications where sequential allocation method is unacceptable because of following
characteristics

e Unpredictable storage requirement
e Extensive manipulation of stored data

The linked allocation method of storage can result in both efficient use of computer storage and computer time.

® Alinked list is a non-sequential collection of data items.

® The concept of a linked list is very simple, for every data item in the linked list, there is an associated
pointer that would give the memory allocation of the next data item in the linked list.

e The data items in the linked list are not in a consecutive memory locations but they may be
anywhere in memory.

® Accessing of these data items is easier as each data item contains within itself the address of the
next data item.

10 | next » 20 | next » 30 |(next 40 | null

Y

A Linked List

2. What s linked list? What are different types of linked list?
OR Write a short note on singly, circular and doubly linked
list. OR
Advantages and disadvantages of singly, circular and doubly linked list.

e Alinked list is a collection of objects stored in a list form.

¢ Alinked list is a sequence of items (objects) where every item is linked to the next.

¢ Alinked list is a non-primitive type of data structure in which each element is dynamically allocated
and in which elements point to each other to define a linear relationship.

¢ Elements of linked list are called nodes where each node contains two things, data and pointer to
next node.

e Linked list require more memory compared to array because along with value it stores pointer to
next node.

¢ Linked lists are among the simplest and most common data structures. They can be used to
implement other data structures like stacks, queues, and symbolic expressions, etc...

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
Node
A
& N f/{ C++ Structure to represent a node
¥ claz=s node
info link | I p
T T int info
Data struct node *link
Point l}’-
erto
next
node

Operations on linked list

Insert

o Insert at first position
o Insert at last position
o Insertinto ordered list

Delete
Traverse list (Print list)
Copy linked list

Types of linked list

Singly Linked List

It is basic type of linked list.

Each node contains data and pointer.to next node.

Last node’s pointer is null.

Limitation of singly linkedlist.is we can traverse only in one direction, forward direction.

D null

next » C next

A 4

A | next

\ 4
o]

Singly Linked List

Circular Linked List

Circular linked list is a singly linked list where last node points to first node in thelist.

It does not contain null pointers like singly linked list.

We can traverse only in one direction that is forward direction.

It has the biggest advantage of time saving when we want to go from last node to first node, it
directly points to first node.

A good example of an application where circular linked list should be used is a timesharing
problem solved by the operating system.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com

L A nex

A 4

nex

\ 4

C

nex J

nex

v
O

Doubly Linked list

Circular Linked List

www.FirstRanker.com

e Each node of doubly linked list contains data and two pointers to point previous (LPTR) and next

(RPTR) node.

A

Node
<« LPTR info RPTR
Pointer to Data Pointer to
previous node next node

N
// C++ Structure to represent

class node

{
int info
struct node *lptr;
struct node *rptr;

a node

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

3. Discuss advantages and disadvantages of linked list over array.

Advantages of an array
1. We can access any element of an array directly means random access is easy
2. It can be used to create other useful data structures (queues, stacks)
3. ltislight on memory usage compared to other structures

Disadvantages of an array
1. ltssizeis fixed
It cannot be dynamically resized in most languages
It is hard to add/remove elements
Size of all elements must be same.

e Wb

Rigid structure (Rigid = Inflexible or not changeable)

Advantages of Linked List

1. Linked lists are dynamic data structures: That is, they can grow or shrink
during execution of a program.

2. Efficient memory utilization: Here memory is not pre-allocated. Memory is
allocated whenever it is required. And it is deallocated (free) when it is no
longer needed.

3. Insertion and deletions are easier and efficient: Linked list provide flexibility
in inserting a data item at a specified position and deletion of a data item
from the given position.

4. Elements of linked list are flexible: It can be primary data type or user defined data
types

Disadvantages of Linked List

1. Random access is'not allowed. We have to access elements sequentially
starting from the first node. So we cannot do binary search with linked lists.
It cannot be easily sorted
We must traverse 1/2 the list on average to access any element
More complex to create than an array

e WS

Extra memory space for a pointer is required with each element of thelist

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

3. What are the advantages and disadvantages of
stack and queue implemented using linked list over
array?

Advantages and disadvantages of stack & queue implemented using linked list over array is
described below,

Insertion & Deletion Operation
® Insertion and deletion operations are known as push and pop operation in
stack and as insert and delete operation in queue.
® In the case of an array, if we have n-elements list and it is required to insert a
new element between the first and second element then n-1 elements of the
list must be moved so as to make room for the new element.
® In case of linked-list, this can be accomplished by only interchanging pointers.

e Thus, insertion and deletions are more efficient when performed in linked list then
array.

Searching a node
e If a particular node in a linked list is required, it is necessary to follow links
from the first node onwards until the desired node is found.
e Where as in the case of an array, directly we can access any node

Join & Split
® We can join two linked list by assigning pointer of second linked list in the last
node of first linked list.
e Just assign null address in the node from where we want to split one linked list in two
parts.
® Joining and splitting of twoarrays is much more difficult compared to linked list.

Memory
® The pointers in linked list consume additional memory compared to an array

Size
® Array is fixed sized so number of elements will be limited in stack and queue.

e Size of linked list is dynamic and can be changed easily so it is flexible in number of
elements

Insertion and deletion operations in Array and Linked-List

www.FirstRanker.com

: FirstRanker.com

Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

1 uo uoielado uons|ep pue uolIssul

o olltielE

: W aworiuie

“yoeyg Buisn x1j1s0d 0} Xijul Wol uog?fssejdxe ol

f g s S| H[ES]

r ¢isil pe

' ;,SSe|0 Jauleluod au} Jo} welboid ++9 sjdwexs 8

¢-LINS

¢1d

f Jxinely esieds au} 4o osodsuel | 10}

—

saldwexsa |

=LINI

www.FirstRanker.com

> FirstRankey£am

Firstranker's choiee—ms———

www.FirstRanker.com www.FirstRanker.com
TRees
'Df_‘?“ﬂ?' A Tvea o noa Uvest .15 chachone Iolioel,

(;\-nk\,g\’ dv ,‘ef\M‘B Le b d—— Srno - N__wipve

M(QDA S(J(\L\ ﬁ'_\a—:t_/;,,_

—Sposlally ,o“,,camm node Gllad & yad".
“m \Ce_pa Y- Y\D&n,\ QM ?09\"\\4'\‘6‘(\9_::1 ;AAE nNy= O

c&.»\ mnd getr webgi, 'T.Q.'T. NGSIRYN a3 Glod S0l Avoo o
“13 ek - :

A Bverur wnda tn e dven

“ .'-& ﬂ?o_ ok (\‘10_ Seama_
Snbtxea X

Mecwg Hal Mo J 45 oo

Qi%&:tﬁl Ao o Tema oS EAVE N P9 bﬁr bryaacles - TR, .

Hopesdalio s Moo W8 bbnariel epvesa s

)

NP,

Dacl. & [;‘L dofs ‘O'ftu\drx Da prreso NS e i
h" M
4 Keowse o code Q‘J'D&k

&zeaéz_g_a-—‘—wu_ DNsaber dr rQlL‘n'{RL cd\— = nrnd, -

—Hogeree gl o brea B T 1o

L
DV S e L

S AM%W

,Q',’ B‘fwg&e —

o ;Q’e:numé . %w
— rado & — -
%‘Y!W\ .0 m!r : .

m\&k\&

Nete '~ A Tvea &icin | '

1)

www.FirstRanker.com

:l » FirstRanker.com

FITstaaniers chokce www.FirstRanker.com www.FirstRanker.com

A s o et ~edo

2 s oy P—Mnb noda g D, =
S avd C© ado Pliage

Dad © wc&k&mﬂg& ‘ : -
D, 2.6 ard 3 cﬁf\p_Lm%' Nodag .

AR LGB aag Seatewncl weedos

e lowvol o £ a3

%q&—),&mﬂq— g beeo G Ly

TLa_ M-—hw»% nL_ oncdloy X oA Coud - e
T & CRVNIY P slgr\m(huc T,LF,G,.Hoy\oll

Q%MQA'E}\N zﬂ' Feeopo .
— LLzL vm@hm e T ook Gy ;{_:n_nx('— ,f\dlmaoA
‘mﬁ A j_fg— Sk— Bm\m

,@,\

& O g & &
N
Tre 'U ! S a |

(o (e Ce,0,2), CCe) /D C—ﬁ@@:

|
A vy

_ www.FirstRanker.com S i o i

o) FistRanker.com -

A Firstranker's choice

www’.FirstRan ker_.com www.FirstRanker.com

'gate

{ f‘;”\)
&

L &

%\W—Fgu“——‘
’ hmhmwmpmwmmmw%
nealo Q;J\ baue ot gl Ausn Sub nodos
R Dol kit — A bincduy Aveo . B oa LItz Kok et noday
Mot Gl efher emphy & Cogab Sy Gnol omd i
— Aioww 3 . . Lnkt—gula’rm“ ool ity
“J(f%lkt Sibixreo
pm&\r{m ole_a km\u dge g @
RN v \OmL n \Mg N rm?:b o" nndlos
- * A dall bondu, res b hel_
* Tn o }\lm@\u"m Srr nienber. oL exdeneal radeg
A mowe hTu\ . robao .-dr f?'rexgé\ Nocda
e The wrbos

ot extesnal nodeg ,&Ju@el Chay)= e g2
a1k V\D-%:_?n.\s&AoL_Dn&ﬂA Xeﬁ/\x{;&e) he T <!
v o Adl no. g nodez (n) .SJ\’Q{;{O}-’» 2h +) s_n<v‘_*L)

pﬁ\r&ummm N

mf—
—

A b«v\a&u tvea Aol S chow
Ausn meodixnde Vco:{umlsh‘man

L Aoy W\n(lr\m

o. Bncad Lz(— \rqim@mnt‘ggm

N
Ls ‘fL?MA\-&cl (63 NN

\.(§

. .
UM I =

S

Arcray VoD Mol «

Ko bﬂr‘\‘cnjh.d, O (Gra. D Peen Wiracd Drevesy | &
qe?«mrd—n):m (

(el elelolFlonla T 5 1T w T ‘

S——

www.FirstRanker.com

:l » FirstRanker.com

Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

e

J{'An\kcd L—?Q.{‘ Qom&&mojhm e~
Jleso o Uge obouloll | Sked e o %MLE——

g@am

ol T
: S
Tl .

{ \p\ \\‘;J_J [‘H]j
N .
(] UlTd] |

Foevosie Yroont VIZIBng all —Ho wnworloz n
e dxeo Un CQJ\&J&\ Oy - 4 Q—-n:/m:ﬂ& a o e
ot calliy |- P3N \ Y "-):((.I}"DL J‘L("—J\e,\zemaé’wqo& _ﬁnﬁ adg
(M) Tn ovday :
@D Pre Qb

I Pc&‘r O wdey

—

o Toenense —Heo Lm& Dubdxeo
9. v+ % Yoot
2. “Trowvarse “te 'T‘\’% 2ubdvea

Poo_Colors =
l'. ot Po voot ool
9. Tooyesge Ha lof—Bulodvea

3. Thomarge o Qf%l:ﬁ' Hul, b T
~ Prt— ovecllas o
L Tecoanadse W kb ol dyeo
;- 2. Toommage Mo Buub Al dveo S
2. VO Ne St hodle »
r \‘*‘“-*—-—5.________ i X i 4&,{-,-,” i 44 ;

www.FirstRanker.com

l FirstRanker.com

Firstranker's choice

Exonglet —

www.FirstRanker.com

www.FirstRanker.com

N

/ng . 3 ;
/ Bt
~—— - &/
Qwﬂu‘;'— L 2 S 1 =
P Odans — 2 4 S 2
st Ovdars— & o % |

QW\MQA p'xehd.\u, J:\on f—

A \xwm)u_y Yoo s Vo e ap nbe | LA o ’csmnxay -

Jm'r{xnmn’h,km (& lé}l(_nol Lask m?wlamm@#@%
1 = Lhkad Lt .1 nodle x

A¢eo 18 D10 N~ede ntod [LAV R Qe

o .

nasto ‘V\Q/V\V\Q/ a cd,: Wio C3% NorL hmn'\“ex fg Hoo
DU’*%H‘I T QAMCI‘, ‘V‘I\r\&ﬁ ’f_"rLz JLQ_ID‘(EQethLf lff— ‘o0 -030
Y\ M&U\ _hTO_n —Hora o% Nl Fabetn, Numbos dx— Al) MCQGA

AT DQ-\Q.ul ard ¢ M owvndon boiro P v
ey, e C‘onub " o addod Biwag o0 ¥ op ol
tokL tee & Mol pinden. o Penprone .&%
T Heceadacd “"oSuy e o N‘-’Lt nmnle_?l,\ =9

pmnt -
TR cecla Mwm&lﬁ ey Mob &—&LQLLQPG&L
: ok& '

www.FirstRanker cof

: FirstRanker.com

Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

\

S 5T iz D '-*\?“

BU—————— R A

fc:._.&wd'\.__a.il__j\s:.,m hodot .

= % N
Q i, <= ’:?‘t-‘\{\\.'\ me s e A {\\‘\\ D ‘“hﬁ.& e e ——————————

. A RSY { tlé*t Quladare had o Lgﬁ LL\&...:‘ Q-—.—-G)-

L

CTaal o 'y a o raday | S
.).

i e o= G - e
i = h L ~ Sobhdines \L-“ A pnaddag m__m_“ﬁw—?-ﬂ-&“e
P o N v
LT) \"T aSd nb nedsr Koo, o e e
' 1
{ d
l —— L;{;{_ rodn <L fmg"t-:;__g_ﬂ.f_\(*t roala R
{
-
T &ST ® wewvw e elaw
!

" ST S N —

1Y

tLj\ﬂ:f Qrcaleal a\,- ST
8

% - Non v({ ,&‘_L?._Q\Au'\h

e Solo B &6- e

@me Er

3 Seaolfig sk

Q’LQI\mAl l:l

S%CNLJ\.Q ol elieanuX & —

—

almaat— WL e meim_h%__mm_mm.:\tm_t\&u_ﬂ-

W jT
hS"" \& r‘kh(}l < Suxﬁ'*‘\ by &-&MJ‘%‘&&Q%M

o= v [Xoa > Nent) *‘L&M__Qmw
! J - .SLJ:——-_.__,\

S0 e
= \.._n LV E = g ‘ @0y wa T Y 'cﬂ\.u.,d...__h\;\!ﬁ. *‘W‘bv~»:-\\q_b__ .
] . 4:) ¢ ~ 2 Ll Sen [el . e %&U_A\atm{u&b;.,

www.FirstRanker.com

l FirstRanker.com

Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

ey Seorh veGovively Cray mode)
ST oode @ Nore - 0edo
&ar-:rm Yode

. i
Koy —FKOJJ«/

((

R <
hY

< Node -"Kn'u/'

o lTin_Lecmeola. mamns±/ L’-md

elge

" Nnods - huo,t;&’._l.- ;

axoﬁ‘u)m Seche 9‘LC,LDJV:WQD (Kn,u , Nl - &LMLJ_——’—

Tnsgx‘\:lm\'\-—

Nedn s Teaent (nlode %% ook TWe rary , Tabc Noluod)

3

W () Stedk)

ol = ro.onlade (Yoy) vellio \p

elee i€ (bay < dwob >m\

ot D\aile = ‘Tnent (oot —%-luA— tﬂu pNolpe) ! —
- X - G Cooolk —> vﬁcéwc 5 ‘ud ;VoantL\',

Salfine ook :)

LY _

‘ ——,'-;z‘*l:!.!;'_—” o pACANNG. O Voslo = = M_—h;md__t__m:@q_

T | L mia clheap mg]om\. Value - €acls onda i
e =] I - . . .
__%ﬂ“&_ﬁkn_(\ A Jﬁl‘nl <= ﬂz \Inhln l"_)— R P_é Al I“B‘tk tti_

www.FirstRanker.com

l FirstRanker.com

www.FirstRanker.com

Firstranker's choice www.FirstRanker.com
Mo\'umum =Valio &\Q@g_@"— Clt““«z P -

R »hammb ,wﬁb-T‘ﬁ‘E Mo

218 Pqud & ‘ﬁz Vniun “
Vo-\wA—— elormonts ot g \nmb

fio)

m')lauuh\g 8=
— & &
: K]

P

o

@ &

& & &

S pcae L —
e tede 3 \'m&{'&i\-ty addod o o el

l"“’?‘m k”"'\" B pafred) L”q” Q@ﬁw
e 2o o nt— b&hﬂ: hAsY poda N andl o
LLE) a \ﬂAvtald L m P’Yﬁ Co g2 ‘QA W

Pulﬂ(fc- Volrd Yesest— pm?&%@\ .

£

1{'(33)3'.:: !'Q p- loin o
'?r\&-‘oua = . W

ff‘n((LmrS’M © &

. L:\nﬁ_{) _f:mik:\, - L ' > 4
[SWoN rb = B -
. P iu

Dolt\-hn% c ool ; .
S " |
; Qlomnn\:"") O g

www.FirstRanker.com

Firstranker's choice

:! » FirstRanker. com

www:FirstRanker. com ~www.FirstRanker.com

e smj)ko\co_ o WNte e losk elowopk - %L——QQP———QM“
VBN TSRS, p—i

P

meb;j @wu.u, —

L
T T), (94:1-14 -L& (DYDCQJVnM dtum.ﬁ__]g:a&d__m_ﬁmxr__

?"Y‘\M'\ T E',QQAADAAtk KL mr{\t*r*rﬁ\'u— QQLOAM MLLA' i L’L—-CQQPDI\OAL-—“
An ac

¥ ~_ Othog 2 Yhe mnnw?hy» Qucum qunl&m&_nén__&mg_by_,.
T Woapn : '

0 ‘ ' ' - nart
x = % = ;
ONIT — 5 .
GRsPHS . _
a "‘”“‘\” B o, '~(-m-003‘ MQ__UM_,

@S0 Conmc.\ecb !au /Qkﬂb& o lem&ed AqPQQHL OMno__

wamszcan&eA \md Dﬁn\" desme) ~y" VonReod r'w-l the Lo leg,
NW\-/\J\./

ol Ccannectsd ‘\’\zo Vooilfcas S (‘L\Lopl Qeimag"‘

ool o onadn %

%O\Mr_mf Q,Qtr(‘\/a wlae

T Kok GL——\[Q}IV\CDAMJZ%\Q Lok ¢ M Ao e
-

;,ps-—. - I: N %@D\’\ ‘02)
D S nledd oo
= \Vlna.q!kPN TAMM&& Aﬂ S -
Hea Vesdon, ’\UQQSQD_ A O—pa — 1 v
——f-—Cf_D_. \—‘r C)9~Q N 22

www.FirstRanker.com

. :I » FirstRanker.com

Firstra ﬁEErIS thﬂH:E. —— ' B "“"." ST s T e P
www.FirstRanker.com www.FirstRanker.com

~1! = T
g«
———

the X Y —*E« 5"— Nne ¢ h‘ 0 \1\ (o _,_&)Q_he)&mw::\\fﬁh«m-- e

'S

(4]

IR belan va--m.m%& Yorbcor <A awnd B o
':‘g—fwm“. :5»' S .y Wik Qa e;-{%: =)
i J

X -
Ve eS

<

‘ e Nade . N boolSces 080 adjoteat W *J“-'ﬁr'
A Coorected 4 eachy iy —‘-tbem;ﬁt)_\ o (A%&..’_:ISAL.,._- .
Hi= ool Q'lcuw-?'L AR 3 G&\:qmb s A,C W b"‘%}\c\m“&

Crrse - OpeaaRa s
LY

e

| Qe
1 (@] 1
f: e A Voste e
i. s DAY Ll
? - %\l.g'\'llb’ =~
S0
Fepreae-abions & & Sreph— -
The e‘é_,llndm(s) o Rer mett Commeon Sug ve e
d o E’ﬁsf&\r — . | |
b - —A&f&bonﬁkj M)d

s : Ao&'@mncﬁv Loab

= @ —M

_— , e LT

www.FirstRanker.com

:l » FirstRanker.com

Firstranker's choice . N .)
www.FirstRanker.com www.FirstRanker.com

Adatency Matrte £ — Ry i e

Al -3
A.\s_QH 2.\9@30‘@4/{4,—'9.\&0 Vx'\/ b\"”m ‘V‘-U;Mb.

T o U R
M.Bi“ Ver¥coa Ga_o ChmAm Ve sk aﬂ'\(‘ I"]-} vlud.LC_QL'IA_ 1k

| Tk, n_an eAsa ¢ _:Lmn vestan 1 ta \»paknJ . | e
0 | I L) .

of o 1 o o]
’ \ o) l 1! (
2| O L O 1 D
3l o [L O I
i | L o | O

.‘O\Cn_nﬁu Lk = —

Ao mam,u/-@ﬁ hwg___&L%_m_ﬁ——m&{—-

e-Q\,LaJ-lm Y\p ;<L-' e rHraes TN W

ol mml‘- o LQQ,[WA Qs‘(c,p_‘g_, Yo I:Qgﬁj - ﬂ e g'gg

=
o Ve AwmA wi V\DGL’J\ o’l/ Lm\LnA ek

23

t

) ¢

e

o ——>Lw| L,.\/ ‘ ‘v
‘ 4ol :|—9th} "l—l’} >_T N

o | oS {E 7]

3 —Mﬂ

Fww\n T rrcneonel {———‘- , :

DES Cn&a’k Y smm s T aimmér\-m hawesie s o
oo Pn o_oﬂaj\{«l:\@mcl metfre oud tS&e_r, o ok Ay
5 wancilih .ol gok g e eaks Vet ko &E:r\k & oomaln,
Shon o Au;\ ancl '(\C’(‘u-"v! Un_ouay, t1‘

/V\\

i %
D o ¢ .
”\w/ |

www.FirstRanker.com o

:l », FirstRanker.com

l Firstranker's choice _ .
www.FirstRanker.com www.FirstRanker.com

-Qulcv\:* vialt Be cwbau.x{ Lanuited Venken o MG e

\mn\le.-l Di\ﬂhram?\x}lx.__h_ a Stecksa I |
Lade 22 31 M\ggxmxt \Qﬂm...._.\&_»i\\k\.ﬂ& n .&Q‘.\ \-\{‘ X - \ipu\h‘»ﬂ

Rl 3o me Bual awd Mm._h_ku,\u e Shacle ik

k S A SN SO VI W L8 A A e B S I AL, T T T e,
1 0 |
St 12— S B o
A J:?\ , . - - —
Qf QYR B
‘\ ‘Y P y an& K,

sp oo bla\L_,S\._DS__X!\:;LkAWC\&f..PLﬁ_" b et the SBoo .
é\\dn\L Cims L\\\Lm_;_&‘.uﬁ.&b_mm e oo S ke hawe

TK___ MA_FQ,_L_C\M’___%__{M.‘LFQY LYY
exa::éa iz Mot '\‘\\ _i—ﬁ Q%N_\SL A ’S& <

QN) e
\ /{ St .

Stepm— Toe W - volix A Qg putc At mg Mo Shewy
A]f{n\‘r mld L‘f\\.jﬁa\BA vele e "("\. b

-

B St

3

N
ﬁvvf-—-m—m.... "

\ L / e Shec ks I

L.
3
(/Jnj»

P g

e
Lot

www.FirstRanker.com

:l » FirstRanker.com

Firstranker's choice - ‘ o
www.FirstRanker.com www.FirstRanker.com

Ve D aond ek T nS \Mm-’;eAS amd Pudr Bl

o fp . Skook . vambt 10 bhoma . B ond S a8 unuited
VO)IEH "'HZ;\ \/?J(r?b & - . '

& & o
\:\T‘L/Q [S -

Bhpsi |
= Oaaly, Ao tyolitled vertEa
Q"‘dﬁpuh'q'l«t&vxﬁ-ﬁzp ste ol
~ S —
| = —

& @ B I -
\%/ Rk - : "
}'!R, Vot yodEa ahe popedd Loy Mo Sk g

(Maye ~Ha Skoy Cu.r)}u. C‘_)p"_)D"'—%A-'—‘BQ

ta O Hop Vst Jo node "

BES (Pove dix Fivat Sewnl|

Heas, —n tvove W5 oldeioe e .
e R i L e ey
-{3% LeR c»lqamﬂvﬁ 2 zed L&‘_, M&M o

mgm“‘”"m“‘“:’*m W—-

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) ;
www.FirstRanker.com www.FirstRanker.com

e oo PRI R — S

{
. 4 .

- ,“""“\‘ MW et Vewbeor “‘!»__ahitﬁ’eﬁm\loaﬂimw e

'

o A B A A S

%-;E?-\ = J!’-F(&E' Seloot “Mao Nowbam A ca clagh sz..-wam..,._. }

e s e A B i et

N
3 -—
'
-
!
? ————
L
4 ‘
e ——

1
/

‘n

www.FirstRanker.com

":l » FirstRanker.com

A Firstranker's choice) :
www.FirstRanker.com www.FirstRanker.com

Breadth First Search

Brea.udth First Search (BFS) algorithm traverses a graph in a breadthward
motion and uses a queue to remember to get the next vertex to start a
search, when a dead end occurs in any iteration.

As in the ek‘ample givén ébove BFS i
- ! algorithm traverses from AtoB
F first then to C and G lastly to D. It employs the following rules wEw

* Rule 1 - Visit the adjacent unvisited r as
vertex. Mark i isi i i rt it
| it visited. Dlsplay it. Insert it in a

* Rule 2 - If no adjacent vertex is found, remove the first vertex from the qu
eue.

Q Rule 3 -

Repeat Rule 1 and Rule 2 until the queue is empty

Step Traversal Descripti
ion

Initialize the queue.

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice _ .
www.FirstRanker.com www.FirstRanker.com

\ We start from
2 visiting S(starting node),
and mark it as visited,

/!
< 77N
2. A . 8 . G
. N /\w,\-’
K
/ 4 -
) "
D |

\ ¢ ueue
L Q

We then see an unvisited
AP adjacent node from S. In

e this example, we have
/ three nodes but
N < Ny alphabetically we

choose A, mark it as

\i \T /~.., visited and enqueue it. (ll

_ Queue

Next, the unvisited
(S) adjacent node

)\ from S is B. We mark it
/ as visited and enqueue it.

{p!
\ e
oy Queu

. Next, the unvisited (L
adjacent node
from S is C. We mark it
as visited and enqueue it.

ci'B A

Queue

www.FirstRanker.com

Firstranker's choice www.FirstRanker.com www.FirstRanker.com

\ Now, S is left with no
\ 8 unvisited adjacent nodes.

\ So, we dequeue and
/s find A.
1'1(.)
N e
%) =
S
& C B

A Queue

From A we have D as
unvisited adjacent node.

A We mark it as visited and
/ enqueue it.

: 7. LA . B | . C |
@ \“\\"' /\~
v 4 D ¢ B
D
A Queue

At this stage, we are left with no unmarked (unvisited) nodes. But as per
the algorithm we keep on dequeuing in order to get all unvisited nodes.
When the queue gets emptied, the program is over.

The implementation of this algorithm in C programming language can
be seen here

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Prim's Spanning Tree Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's
g

algorithm) uses the greedy approach. Prim's algorithm shares a similarity
with the shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a

single tree and keeps on adding new nodes to the spanning tree from the
given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm
better, we shall use the same example —

3
:
T

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Remove all loops and parallel edges from the given graph. In case of

parallel edges, keep the one which has the least cost associated and
remove all others.

L, ® @,
8@3@2

Step 2 - Choose any arbitrary node as root
node

In this case, we choose S node as the root node of Prim's spanning tree.
This node is arbitrarily chosen, so any node can be the root node. One may
wonder why any video can be a root node. So the answer is, in the
spanning tree all the nodes of a graph are included and because it is

connected then there must be at least one edge, which will join it to the
rest of the tree.

Step 3 - Check outgoing edges and select the
one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with

weight 7 and 8, respectively. We choose the edge S,A as it is lesser than
the other.

<

www.FirstRanker.com

—=I

» FirstRanker.com

A Firstranker's choice) .
www.FirstRanker.com www.FirstRanker.com

Now, the tree S-7-A is treated as one node and we check for all edges going

out from it. We select the one which has the lowest cost and include it in
the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node
and will check all the edges again. However, we will choose only the least

cost edge. In this case, C-3-D is the new edge, which is less than other
edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going
out of it having the same cost, i.e. D-2-T and D-2-B. Thus, we can add
either one. But the next step will again yield edge 2 as the least cost.
Hence, we are showing a spanning tree with both edges included.

We may find that the output spanning tree of the same graph using two different
algorithms is same.

www.FirstRanker.com

» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Kruskal's Spanning Tree Algorithm

Kruskal's algorithm to find the minimum cost spanning tree uses:gzegirfﬁgz
approach. This algorithm treats the graph as a forest and every']c 2 the
as an individual tree. A tree connects to another onIY and only if, I bl
least cost among all available options and does not violate MST propé .

To understand Kruskal's algorithm let us consider the following example —
9
P 8 N
\‘ 3 { B }
7 "\Aj p— a5
- 4 Sy
ONEE @
8 N 2T 2
& 3
1

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

3 2

poss = s Fea
P,]
‘ S Sy " 4
: : o g $ &
: .
: . . e ‘? :v
: fo g : e > w2 :
» ok e ; : i :
: Woug, < 5 o7 2 KA : ; ,‘."' 2 :
:AI: B! N . SEPRFARIT N samanas - :
1 I -. ° e o . 5
% 3 , ‘
- v s
g N 2 .
z & iz
- - :
1: S ot :
N 4 . ¥
- .. e

LI s
2 >
Pl

-
Teant® e IS N]
S N N A %

et o o iaa i A

In case of parallel edges, keep the one which has the least cost associated
n '

and remove all others.

www.FirstRanker.com

» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

>

Step 2 - Arrange all edges in their increasing
order of weight

The next step is to create a set of edges and weight, and arrange them in
an ascending order of weightage (cost).

|'s,D | D,T | AC | CD:CB BT I ABISA{SO
i_ b $ 3 " -
| 2 2 3 3 4 5 6 7 8

|

Step 3 - Add the edge which has the least
weightage

Now we start adding edges to the graph beginning from the one which has
the least weight. Throughout, we shall keep checking that the Spanning

properties remain intact. In case, by adding one edge, the spanning tree

property does not hold then we shall consider not to include the edge in the
graph.

The least cost is 2 and edges involved are B.D
_ ' ,D and D,T. We

Adding them does not violate spanning tree properties ’so we add‘ bl

our next edge selection. ' continue to

www.FirstRanker.com

A Firstranker's choice
www.FirstRanker.com www.FirstRanker.con?-a_
-~

Next cost is 3, and associated edges are A,C and C,D. We add them agalin =

{ A\J

—
]

=

? pisiin, N
&

PG
8 \?: (2 y 2
F

Next cost in the table is 4, and we observe that adding it will create a circuit
in the graph. —

~d

o

o '-(

We ignore it. In the process we shall ignore/avoid all edges that create a
circuit.

o
o
.

{5

e

D)

9 \5———-———-——\3 o]

We observe that edges with cost 5 and 6 also create circuits. We ignore
them and move on.

www.FirstRanker.com

:I B E:P- = W@Aﬁ;..&“ﬂ«ﬂwsﬁ’%béif‘:fl
[]
A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Now we are left with only one node to be added. Between the two least cost
edges available 7 and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we
now have minimum cost spanning tree.

il s b .. www.FirstRanker.com

€

| :l :1-aE|.|;stRa.nka.r..cnm

Firstranker's choice _]
Given a graph and a source vertex in the ngY»W,%FJ r&l{ﬁt%ﬂkp%rlhq Tom source Y&VXW\EH%EB%?hErg?\'LW
graph.

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST, we
generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set contains vertices
included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of
the algorithm, we find a vertex which is in the other sct (set of not yet included) and has a minimum distance
from the source.

Below are the detailed steps used in Dijkstra's algorithm to find the shortest path from a single source vertex to
all other vertices in the given graph.

Algorithm

1) Create a set sprSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.c.,
whose minimum distance from source is calculated and finalized. Initially, this set is empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign
distance value as 0 for the source vertex so that it is picked first.

3) While sprSer doesn’tinclude all vertices

.---a) Pick a vertex u which is not there in sptSer and has minimum distance value.

....b) Include u 10 sptSer.

-.--€) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all
adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of edge
u-v, is less than the distance value of v, then update the distance value of v.

Let us understand with the following example:

@3 @ 1 &
4. “-“g" T (I
£02 11
TN g P
. | 7 |
~,\":<"wr.:;‘—~- ‘E‘“ ;
g(&7‘ o E 1,‘_§“ 4

The set sptSet is initially empty and distances assigned to vertices are {0, INF, INF, INF, INF, INF, INF, INF}
where INF indicates infinite. Now pick the vertex with minimum distance value. The vertex 0 is picked,
include it in sptSer. So sptSet becomes {0}. After including 0 to sptSer, update distance values of its adjacent
vertices. Adjacent vertices of O are 1 and 7. The distance values of 1 and 7 are updated as 4 and 8. Following
subgraph shows vertices and their distance values, only the vertices with finite distance values are shown. The
vertices included in SPT are shown in green colour.

2
7

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). The vertex 1 is
picked and added 1o sptSet. So sptSet now becomes {0, 1. Update the distance values of adjacent vertices of
I. The distance value of vertex 2 becomes 12,

www.FirstRanker.com

L s

:l » EirstRanker.com

A Birstranker's choice
, A www.FirstRanker.com www.FirstRanker.com

2.

i
e

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET)-'YCTIL:X Tis
picked. So sptSet now becomes {0, 1, 7). Update the distance values of adjacent vertices of 7. The distance
value of vertex 6 and 8 becomes finite (15 and 9 respectively).

F 12

5.0

I
e 1 S
y S

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). Vertex 6 1S
picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values of adjacent vertices of 6. The distance
value of vertex 5 and 8 are updated.

¢ 2
@@

4
Bk 8

We repeat the above steps until sprSer doesn’t include all vertices of given graph. Finally, we get the following
Shortest Path Tree (SPT).

4 a2 15
6 ¥ & 3%
n .
0 8 a4
12 21
L B -
8 Q 1"

How to implement the above algorithm?

Recommended: Please solve it on “PRACTICE ™ first, belore moving on to the solution.

We use a boolean array sptSet|) to represent the set of vertices included in SPT. 1f a value sptSet[v] 1s true,
then vertex v is included in SPT, otherwise not. Array dist[] is used to store shortest distance values of all
vertices.

_. : www.FirstRanker.com

» FirstRanker.com

Firstranker's choice www.FirstRanker.com www.FirstRanker.com

1Y

SOLINS ALGORITHM

Solins algorithm is an algorithm for finding a minimum spanning trge in a graph for which all edge
weights are distinct, or a minimum spanning forest in the case of a graph that is not connected.

It was first published in 1926 by Otakar Boriivka as a method of constructing an efficient electnclity
network for Moravia. The algorithm was rediscovered by Choquetin _1 938 agasn
by Florek, tukasiewicz, Perkal, Steinhaus, and Zubrzyckiin 1951, and ~ again by Sollin in 1965,
Because Sollin was the only computer scientist in this list living in an English speaking country, this algorithm is
frequently called Sollin's algorithm, especially in the parallel computing literature.

The algorithm be

gins by finding the minimum-weight edge incident to each vertex of the graph, and
adding all of those edges

to the forest. Then, it repeats a similar process of finding the minimum-weight edge
from each tree constructed so far to a different tree, and addin

g all of those edges to the forest. Each repetition
of this process reduces the number of trees, within each connected component of the graph, to at most half of
this former value, so after logarithmically many repetitions the process finishes. When it does, the set of edges
it has added forms the minimum spanning forest.

Designating each vertex or set of connected vertices a "component”, pseudocode Solions algorithm is:

Input: A graph G whose edges have distinct wéights

Initialize a forest F to be a set of one-vertex trees, one for each vertex of the
graph.

While F has more than one component :

Find the connected components of F and label each ve

rtex of G by its component
Initialize the cheapest edge for each component to "None"

For each edge uv of G:
If v and v have different component labels:

If wv is cheaper than the cheapest edge for the

component of u:
Set uv as the cheapest edge for the component of u

If uv is cheaper than the cheapest edge for the component of v:
Set uv

as the cheapest edge for the component of v
For each component whose cheapest edge is not "None":
Add its cheapest edge to F

Output: F is the minimum spanning forest of G

G.

www.FirstRanker.com

» FirstRanker.com

Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
ixample
cription
components Descrip
Image
@ near
(g)} This is our original weighted graph. The numbif:; ==
‘ %D} the edges indicate their weight. Inttially, every ver

{E} by itself is a component (blue circles).
{F}
{G}

in the first iteration of the outer loop, the minimum

{A.B,D,F} weight edge out of every component is adced. Som-:-
{C.E.G} edges are selected twice (AD, CE). Two componenis
remain.
 In the second and final iteration, the minimum weight
edge out of each of the two remaining components is ‘

{(AB.C.D.EF.G} " added. These happen to be the same edge. One ‘
component remains and we 2re dons. The edos BD is
not considered bacause both endpoints are in-fhe
same component.

|
i
!
|
{
1
{
W |
|

§

A Firstranker's choice

=3l » FirstRanker.com
:I irstRan

—————————

www.FirstRanker.com . www.FirstRanker.com

B L L L i

UNIT- VI: Sorting: Bubble sort, Merge sort, Insertion Sort, Selectior
Sort. Searching: Linear Search, Binary Scarch. ‘ _—
Introduction to Data Structures: Basics of Lincar and Non-Lincar Data structures,

1 Sort, Quick

UNIT VL

. Explain in detail about sorting and different types of sorting techniques i
Sorting is a technique to rearrange the elements of a list in ascending or descending order, whfc)
can be numerical, lexicographical, or any user-defined order. Sorting is a process through which
the data is arranged in ascending or descending order. Sorting can be classified in two types;

Internal Sorts:- This method uses only the primary memory during sorting process, All (!n'l!il
items are held in main memory and no secondary memory is required this sorting process, If ull
the data that is to be sorted can be accommodated at a time in memory is called internal sorting,
There is a limitation for internal sorts; they can only process relatively small lists due to memory
constraints, There are 3 types of internal sorts.

(i) SELECTION SORT :- Ex:- Seclection sort algorithm, Heap Sort algorithm
(ii) INSERTION SORT :- Ex:- Insertion sort algorithm, Shell Sort algorithm
(iii) EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort algorithm

External Sorts:- Sorting large amount of data requires external or secondary memory. This
process uses external memory such as HDD, to store the data which is not fit into the main
memory. So, primary memory holds the currently being sorted data only. All external sorts are
based on process of merging. Different parts of data are sorted separately and merged together.
Ex:- Merge Sort

2. Write a program to explain bubble sort. Which type of technique does it belong, (b) What is
the worst case and best case time complexity of bubble sort?
/* bubble sort implementation */

#include<stdio.h>
#include<conio.h>
void main()
{
int i,n,temp,j,arr[25];
clrser();
printf("Enter the number of elements in the Array: ");
scanf("%d",&n);
printf("\nEnter the elements:\n\n");
for(i=0 ; i<n ; i++)
{
printf(" Array[%d] =" i);
scanf("%d" &arr[i]);
H

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

. www.FirstRanker.com-=-+--" WWW FirStRanker com
to b0 et

{
tor(= 0 L)

‘ .
are) =an i LD Z8wapping Condition i € hecked
{ tompart|));

ave)=tk

arl = temp,

|

t

!
printfU"\nThe Sorted Array isi\n\n®);

tor(i=0 3 isny i)
{
print™ Yodd " ar|i]),
' r
geteh()
}

Time Complexity of Bubble Sort :

The complexity of sorting algorithm is depends upon the number of comparisons that are made. Total
) : g
comparisons in Bubble sortis: n(n=1)/2 = n"-n

Best case : 0’
Average case ¢ 0 (n%)
Worst case - o Mm’)
3. Explain the algorithm for bubble sort and give a suitable example. (OR) Explain the

algorithm for exchange sort with a suitable example.

In bubble sort method the list is divided into two sub-lists sorted and unsorted. The smallest element
is bubbled from unsorted sub-list. After moving the smallest element the imaginary wall moves one
element ahead. The bubble sort was originally written to bubble up the highest element in the list. But
there is no difference whether highest / lowest element is bubbled. This method is easy to understand
but time consuming. In this type, two successive elements are compared and swapping is done. Thus,
step-by-step entire array elements are checked. Given a list of ‘n’ elements the bubble sort requires up
to n-1 passes to sort the data,

Bubbles up the highest
CNY Y Y Y

B
r

Unsorted N Sorted >

www.FirstRanker.com

:l » FirstRanker.com

R Firstranker's choice www.FirstRanker.com www.FirstRanker.com

Sort: Bubble_Sort (A [].N)

oori . \
Step 1 Repeat For P =1 toN- | Begin
Step2: Repeat ForJ=1to N-P Begin

Step 3 : IF(A[T] <A[J=1])
Swap(A[J].A[J=1]) End For
End For
Step 4 : Exit
Example;
Ex:- A list of unsorted elements are: 10 47 12 54 19 23

_. (Bubble up for highest value shown here)

10| |64 | |54 [sa| |54 |84
o1

47 10 47 47 47 47

12 47 10

23 23 23
o4 12 23 10 19 19
19 23 12 19 10 12

23 19 19 12 12 10

Original After After After After

List Pass1 Pass2 passa Pass 4 P?st:rs
»

A list of sorted elements now: 54 47 23 19 |2 10

4, Show the bubble sort results fo

reach pass for] > fi /
3518712523163 1 ’ i

ing initial array of elements,

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice www.FirstRanker.com www.FirstRanker.com

enter number of elements to be sorted:B8
enter elements of array:35 18 7 12 5 23 16 31

The given list

35 18 7 12 S 23 16 31
iteration 1 18 7 12 S 23 16 31 35
iteration 2 ? 12 s i8 16 23 31 35
iteration 3 rd 5] 12 16 18 23 31 35
iteration 4 S d 12 16 iB 23 31 35
iteration S s ? 12 16 i8 23 31 35S
iteration 6 S ? 12 16 iB 23 31 35
iteration 7 S rd 12 16 18 23 31 35S
iteration B8 S ? 12 16 i8 23 31 35

The final sorted list
) ? 12 16 18 23 31 35S

5. Write a program to explain insertion sort . Which type of technique does it belong.

(or)
Write a C-program for sorting integers in ascending order using insertion sort.
/*Program to sort elements of an array using insertion sort method*/

#include<stdio.h>
#include<conio.h>
void main() -,
{
int a[10],i,j,k,n;
clrser();
print{("How many elements you want to sort?\n");
scanf("%d",&n);
printf("\nEnter the Elements into an array:\n");
for (i=0;i<n;i++)
scanf("%d", &ai]);
for(i=1;i<n;i++)
{
k=ali];
for(j=i-1; j>=0 && k<a[j]; j--)
afj+1)=afj);

www.FirstRanker.com

®» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

afj+1]=k;
} printi{"\n\n Elements after sorting: \n");
for(i=0:i<n;i++)
printf{"%d\n", a[i]);
getch();
}
OUTPUT:
How many elements Youwant tosort?: 6
Enter elements for an array : 78 23 45 8 32 36
After Sorting the elements are: § 23 32 36 45 78

6. Explain the algorithm for insertion sort and give a suitable example.

Both the selection and bubble sorts exchange elements. But insertion sort does not exchange
clements. In insertion sort the element is inserted at an appropriate place similar to card

Insertion sort works this way:

It works the way you might sort a hand of playing cards:

1. We start with an empty
array].

2. Then remove one card [key] at a time from the tabl
correct position in the lefi hand [sorted array]

3. To find the correct position for the
hand, from right to left,

.

INSERTION_SORT (4)

FORj«—2TO length[4)
DO key «— 4[j]
{Put A[f] into the sorted sequence A[] ,
fe—j—]
WHILE ;> 0 and Ali] > key
DO Ali +1) — Ali]
le—ij—}

A[i + l] — I\c)

e I I R

Example: Following figure (from CLRS) show
A=(5,2.4,6,1, 3). Each part shows what hap

. pens for a particular iteration witl
€ current eard” bein

& inserted into the hand.

s the operation of INSERTION-

left hand [sorted array] and the cards face down on the table [unsorted

¢ [unsorted array], and insert it into the

card, we compare it with each of the cards already in the

J 1]}

SORT on the array
1 the value

11

owwwFirstRanker.com

:I ®» FirstRanker.com

Firstranker's choice www.FirstRanker.com www.FirstRanker.com

. . ;

1.;,‘_3:156 124'456 1 2 3 45 6

s[2f4]6[1]3 2[5 [4]6]173 [2]4]5]s[1]3]

XL Xy y

1234£5 123¢5é 1 2 3 4 5 6

2{4]s]e]1]3] 1[2]4]5]6]3 [1]2]3]4]5]6]
K

AT, \4 U

Read the figure row by row. Elements to the left of A[/] that are greater than A[/] move one position to
the right, and A[j] moves into the evacuated position

Ex:- A list of unsorted elements are: 78 23 45 § 32 36 . The results of insertion sort for
each pass is as follows:-

[23T4s5T 788 |32 [36]

[N

[8 [23[a5] 78|32 [36
N

u|23[32[4sl78
ey SN

L]zslaz]as[.:sj?a

i

A list of sorted elements now : 8 23 32 36 4 78)

elements
- 25615128349 182

www.FirstRanker.com

, :l » FirstRanker.com

R Firstranker's choice www EirstRanker.com www.FirstRanker.com

enter number of elements to be sorted:9
enter elements of array:25 6 15 12 8 34 9 18 2

The given list

25 6 15 12 8 34 9 18 2
iteration 1 : 6 25 15 12 8 34 9 18 2
iteration 2 : 6 15 25 12 8 34 9 18 Z
iteration 3 : 6 12 15 25 8 34 9 18 2
iteration 4 : 6 8 12 15 25 34 9 18 2
iteration § : 6 8 12 15 25 34 9 18 2
iteration 6 : 6 8 9 12 15 25 34 18 2
iteration 7 : 6 8 9 12 15 18 25 34 2
iteration 8 : 2 6 8 9 12 15 18 25 34
) The final sorted list

2 6 8 3 12 15 18 25 34

8. Demonstrate the selection sort results for each pass for the following initial array of elements
.21635713914182

enter number of elements to be sorted:9

‘3 enter elements of array:21 6 3 57 13 9 14 18 2
The given list
21 6 3 S? 13 9 14 18 2

fteration 1 21 6 3 2 13

iteration 2 16 6 3 2 13 3 i: éﬁ g;
iteration 3 14 6 3 2 13 9 8 21 57
fteration 4 9 6 3 2 13 14 18 21 5?7
iteration 5 9 6 3 2 13 14 18 21 S?
fteration 6 2 6 K 9 13 14 18 21 5?
iteration 7 2 3 6 9 13 14 18 21 57
iteration 8 2 3 6 9 13 14 18 21 5?

The final sorted list
2 3 6 9

o
w
et
=3
—
=
N
—
%3]
=~

PSRRI coecowww FirstRanker.com RS R

» FirstRanker.com g,

A Firstranker's choice

www.FirstRank(?[.com www.FirstRanker.cam
Vli&: nmu\tlvuwnh\oum\nl to sort? : 5
Enter elements for an army : 26 4 85
After Sorting the elements are 86 5 4 2

10, Explain the algorithm for selection sort and give a suitable example.

In selection sort the list is divided into two sub-lists sorted and unsorted. These two hsts.are)
divided by imaginary wall. We find a smallest element from unsorted sub-list and swap itto t fe
beginning. And the wall moves one element ahead, as the sorted list is increases and unsorted list

is decreases.,

Assume that we have a list on n elements. By applying selection sort, the first element is compared
with all remaining (n-1) elements. The smallest element is placed at the first location. Again, the
second element is compared with remaining (n-1) elements. At the time of comparison, the smaller
element is swapped with larger element. Similarly, entire array is checked for smallest element and
then swapping is done accordingly. Here we need n-1 passes or iterations to completely rearrange
the data,

Algorithm: Selection_Sort (A [],N)

Step 1: Repeat For K = 0 toN- 2 Begin
Step 2: Set POS=K
Step3: RepeatforJ=K+1toN- 1 Begin
IFA[J]<A[POS]
Set POS =)
End For
Step5: Swap A[K] with A[POS]
End For

Step 6: Exit

Ex:- A list of unsorted elements are: 23 78 45 8 32 56

www.FirstRanker.com

:l », FirstRanker.com

R Firstranker's choice www.FirstRanker.com www.FirstRanker.com

I |
E 23 | 78 |45 8 32 | 56
T +

[R T
8 E?B 45 | 23 | 32 | 56
 E——
" —

8 [23 |45 | 78 | 32 | 56

I —
8 | 23 321}78 45 | 56
| EER, |
 —
8 [2332|4578 56
L
8 |23[32]45][56 |78

A list of sorted elements now: 8 23 32 45 56 78

11. Show the quick sort results for each exchange for the following initial array of elements
3554121823 154538

MWU ICR S(]R'[‘ﬂmm
enter number of clements to be sorted:8

enter elements of array:35 5S4 12 18 23 1S5S 45 38

The given list
35 S51 12 18 23 15 1S 38

<3 15 12 18 35 S4 45 38
10 1S5 12 23 35 S4 15 38
1z 15 18 23 35 54 1S 38
1z 15 18 23 3s 5S4 1S 38
12 15 18 Z3 35 38 415 54
1z 15 18 23 3S 38 15 54

The final sorted list:
1z 15 18 23 35 3g 45 54

&¢ sort) and give a suitable example.
Quick sort is based on partition. It is also known as Partition exch
'q‘un.ck sort process is pick one element from an array and rearranges the remaining element i

This element divides the main list into two sub lists, Thi ivot gs o it
PIvot. Once pivot is
alue pivot and aJ| the elements greater

This procedure of choosing pivot and partition the list js
gofonly one element.

chosen, then it shifis all the elements less than Pivot to left of v
than pivot are shifted to the right side,
applied recursively until sub-ljsts consistin

Ex:-Alistal‘unsortcd clements are: § 3 211 5 4 0 2 9 4 20

www.FirstRanker.com 1n

:I ®» FirstRanker.com o9

R Firstranker's choice www EirstRanker.com www.FirstRanker.com

.........................
- e

-

Olllua":[l:llll;oi:: lll;ll]\::[5 [- I - l y Izol

Setiist[0] as pivot:
pivot

[(3)[5[2[11[5[14[0]2[9]4[20]

Rearrange (partition) the alements
Into two sub lists :

pivot
[a]a]2 |z[a]o]|u|o[14lzo|
\) ____“____.‘ _....__._/
= v v
Sub-list of ’ | Sub-list of]
lessarelements | greater elements i
Il Il
Apply Quick-son |

Apply Quick-sort
recursively
onsub-list

{
’ recursively
| on sub-list |

Algorithm for quick sort;

[) It is also known as partition exchange sort. It was invented by CAR Hoare. It is based on partition.
The basic concept of quick sort process is pick one element from an array and rearranges the
remaining elements around it. This element divides the main list into two sub lists. This chosen
element is called pivot. Once pivot is chosen, then it shifis all the elements less than pivot to left of
value pivot and all the clements greater than pivot are shifted to the right side. This procedure of

choosing pivot and partition the list is applied recursively until sub-lists consisting of only one
clement.

quicksort(q)

varlist less, pivotList, greater

if length(q) < |

return q

select a pivot value pivot from q

for each x in q except the pivot element
if x < pivot then add x to less

if X 2 pivot then add X to greater
add pivot to pivotList

return concatenate(quicksort(less), pivotList, qQuicksort(greater))

Time Complexity of Quick sort;

Best case : O (n log n)
Average case - O (nlogn)
Worst case : 0 (n*)

Advantages of quick sort:

www.FirstRanker.com

a :l » FirstRanker.com

A Firstranker's choice www.FirstRanker.com www.FirstRanker.com

1. This is faster sorting method among all.
2. Its efficiency is also relatively good.
3. It requires relatively small amount of memory.

Disadvantages of quick sort:

I. Itis complex method of sorting so, it is little hard to implement than other sorting methods.

13. Explain the algorithm for Merge sort and give a suitable example.

The basic concept of merge sort is divides the list into two smaller sub-lists of approximately
equal size. Recursively repeat this procedure till only one element is left in the sub-list. After this,
various sorted sub-lists are merged to form sorted parent list. This process goes on recursively till
the original sorted list arrived.

Algorithm for merge sort:

Merge sort is based on the divide-and-conquer paradigm. Its worst-case running time has a lower
order of growth than insertion sort. Since we are dealing with sub-problems, we state each sub-
problem as sorting a sub-array A[p .. r]. Initially, p = 1 and r = n, but these values change as we

recurse through sub-problems.

TosortA[p .. r]:

1. Divide Step

If a given array A4 has zero or one element, simply return; it is already sorted. Otherwise.,
split A[p .. r] into two sub-arrays A[p .. g] and Alg + 1 .. 7], each containing about half of
the elements of A[p .. r]. That is, ¢ is the halfway point of A[p .. r].

2. Conquer Step

Conquer by recursively sorting the two sub-arrays A[p .. qland A[g + 1 .. r).

3. Combine Step

Combine the elements back in A[p .. r] by merging the two sorted sub-
and A[g + 1 .. r] into a sorted sequence. To accomplish this step,
MERGE (4, p, g, r).

arrays A[p .. ¢)
we will define a procedure

Note that the recursion bottoms out when the sub-array h

as just one element, so that it is trivially
sorted, |

To sort the entire sequence A[1 .. n], make the initial call to the procedure MERGE-SORT (4, 1, n).

MERGE-SORT (A, p, r)

www.FirstRanker.com

» FirstRanker.com

A Firstranker's ch

oice

www.FirstRanker.com

www.FirstRanker.com

21

- ¥

..

. WFp<r /1 Check for base case
2 THEN ¢ = FLOOR[(p + r)2]) /1 Divide step

3. MERGE (A, p.) /I Conquer step.,

4 MERGE (A, ¢+ 1,r) /I Conguer step.

5 MERGE (A, p, q, 1) /I Conquer step.

Ex:- A list of unsorted elements are: 39 9 81 45 90 27 72 18

l Divide the array |
39| 9 (81469002772 [18
N
39(9 |81[45 90 (27 |72 [18
[) N
[39] 9 81 (46| |90 [27 72 (18

\.
39) | 9] (1] [45][00] [27] [72 |>1_§

[Merge the elements to somda"rray!
39] [9| [81] |45 [0] [27] [72] [1e

N SON N N
9 [39]| [45[81] [27]00] [18]72

v
9 |39 (45 81 1827 |72 [90

9 |18 27|39 (45|72 |81 |90

Sorted clementsare: 9 18 27 39 45 72 81 90

. Time Complexity of merge sort:
Best case O (n logn)
Average case : O (n log n)
Worst case : O (n log n)

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
Program for Quick Sort in WhileGleyda=u);
C++ do
- j==3
#include <iostream> while(v<a[j]);
using namespace std; if(i<j)
{

void quick_sort(int[],int,int); temp=a[i];
int partition(int[],int,int); ali]=a[j];
int main() a[j]=temp;
p
{ J

int a[50],n,i; ywhile(i<j);

cout<<"How many elements?";

cin>>n; a[l]=a[j];

cout<<"\nEnter array elements:"; a[j]=v;

for(i=0;i<n;i++) return(j);

cin>>a[i); J
quick_sort(a,0,n-1);
cout<<"\nArray after sorting:"; Output

for(i=0;i<n;i++)

How many elements?6
cout<<a[i]<<" ";

Enter array elements:9 156 7 10 12
return 0;

}
void quick_sort(int a[],int 1,int u)
{
int j;
if(I<u)
{
J=partition(a,l,u);
quick_sort(a,l,j-1);
quick_sort(a,j+1,u);
}
¥
int partition(int a[},int L,int u)
!
[}
int v,ij,temp;
v=a[l];
i=l;
j=utl

Array after sorting:6 79 1012 15

www.FirstRanker.com

B g P R T T s PRI i T T e o O

» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com
Program for merge Sort in ki+;
C++ \ ’

#include<iostream.h>
#include<conio.h>

void mergeSort(int arr[], int start, int end)

{
if (start < end)
void merge(int arr[], int start, int middle, int {
end) int middle =start+(end-start)/2;
t

inti, j, k;

intnl = middle - start + 1;

intn2 = e¢nd - middle;
int L[30], R[30);

for 1= 0;1<nl;i++)
L{i] = arr[start + i];

for (j = 0; j < n2; j++)
R[j] = arr[middle + 1+ j];
0
0

.
)
*

TR il

i
]
k = stan;
while (i <nl && j<n2)
{
if (L[i] <= R[D
{
arr[k] = L[i];
1+t
|

else

arr[k] = R[j];
Aas

k+;

H
while (i <nl)

{

arr(k] = L[i];
1+

k++;

)

while (j < n2)
f
1]
arr[k] = R{jl;

jt

mergeSort(arr, start, middle);
mergeSort(arr, middle+ 1, end):

merge(arr, start, middle, end);

H

void main()
{ clrscr();

int array[50].n;

cout<<"Enter the number of elements
(MAX 50): "; cin>>n;

for(int i=0;i<m;i++) { cin>>array[i];
)

mergeSort(array, 0, n-1);

cout<<™n Array after sorting : *;
for(i=0;i<n;i++)

cout<<array[i]<<" ",

getch();

www.FirstRanker.com

:l » FirstRanker.com

A Firstranker's choice

c
2
Lond
b

12.
13.

Unit-5:

d

© NGB W

Unit-6:

e DN OV BN

W NO LS W R

.

0.
. Construct max heap for the following: 140, 80, 30, 20,10,40,30,60 ,100,70,160,50, 130, 110,

www.FirstRanker.com www.FirstRanker.com

DATA STRUCTURES

Define binary search tree. Show how to insert and delete an element from binary searchtree.
Write algorithm to insert and delete an element from binary searchtree.

Explain in-order traversal of threaded binary tree with an example.

What operations can be performed on binary trees? Discuss.

Define fully binary tree.

Define pathin a tree.

Write in-order, pre-order and post-order traversal of a binary tree.

List the different tree traversals.

Explain binary tree ADT.

Discuss representation of binary tree using arrays and linked list.

120.
What is heap. And heap as Priority Queues.
Explain definition of max heap. Explain Insertion into a Max Heap, Deletion from a Max Heap.

What is a graph. Explain the properties of graphs.

What are connected components of graph. Is there a method to find out all the connected
components of graph. Explain.

Write breadth first traversal algorithm. Explain with an example.

Write Depth First Search algorithm. With an example.

Explain Prim’s algorithm with an example.

Discuss Kruskal’s algorithm with an example.

Explain how to represent a graphs.

Explain All-Pairs Shortest Path.
What are Spanning Trees.

. Explain Minimum Cost Spanning Trees.

Rearrange following numbers using quick sort: 10, 6, 3, 7, 17, 26, 56, 32,72.
Write a program to sort the elements using radix sort.

Write algorithm for merge sort.

Differentiate between iterative merge sort and recursive merge sort
Discuss how to sort elements using merge sort with suitable example.
state and explain heap sort with example.

Evaluate time complexity and space complexity of analgorithm.

State and explain insertion sort with example.
What is the best sorting technique.

10. Evaluate time complexity of insertion sort, quick sort, merge sort.

www.FirstRanker.com

