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Introduction
Number systems provide the basis for all operations in information processing systems. In a number system the
information is divided into a group of symbols; for example, 26 English letters, 10 decimal digits etc. In conventional
arithmetic, a number system based upon ten units (0 to 9) is used. However, arithmetic and logic circuits used in
computers and other digital systems operate with only 0's and 1's because it is very difficult to design circuits that require
ten distinct states. The number system with the basic symbols 0 and 1 is called binary. ie. A binary system uses just two
discrete values. The binary digit (either 0 or 1) is called a bit.
A group of bits which is used to represent the discrete elements of information is a symbol. The mapping of symbols to a
binary value is known a binary code. This mapping must be unique. For example, the decimal digits 0 through 9 are
represented in a digital system with a code of four bits. Thus a digital system is a system that manipulates discrete
elements of information that is represented internally in binary form.

Decimal Numbers
The invention of decimal number system has been the most important factor in the development of science and
technology. The decimal number system uses positional number representation, which means that the value of each digit
is determined by its position in a number.
The base, also called the radix of a number system is the number of symbols that the system contains. The decimal system
has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10. Each position in the decimal system is 10 times
more significant than the previous position. The numeric value of a decimal number is determined by multiplying each
digit of the number by the value of the position in which the digit appears and then adding the products. Thus the number
2734 is interpreted as
2x1000+7xz100+3x10+4x1=2000+700+30+4
Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

In general in a number system with a base or radix r, the digits used are from 0 to r-1 and the number can be represented
as

M= anrn + :amrn'1 + o + alr1 + at,rU where, forn =0,1,23,..(1)

r =hase or radix of the system.

a=number of digits having values between 0 and r-1

Equation (1) is for all integers and for the fractions (numbers between 0 and 1), the following equation holds.
N=a ' +a,0? +.... ta ™ ta™

Thus for decimal fraction 0.7123
N=07000+ 00100+ 0.0020 + 0.0003

wherea-1 =7

a-2=1
a-3=2
a-4 =3

Binary Numbers
The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. Like the decimal system,
binary is a positional system, except that each bit position corresponds to a power of 2 instead of a power of 10. In digital
systems, the binary number system and other number systems closely related to it are used almost exclusively. Hence,
digital systems often provide conversion between decimal and binary numbers. The decimal value of a binary number can
be formed by multiplying each power of 2 by either 1 or 0 followed by adding the values together.
Example : The decimal equivalent of the binary number 101010.

N=101010

=1x25 + 0x24+1=23 + 0x22+1221 + 0220

=43

In binary r bits can represent I = 2 symbols. e.g. 3 bits can represent up to § symbols, 4 bits for 16 symbols etc. For N
symbols to be represented, the minimum number of bits required is the lowest integer 'r" that satisfies the relationship.

=1

e.g. if N =26, minimum r is 5 since 2t=16and 2" =32

Octal Numbers

Digital systems operate only on binary numbers. Since binary numbers are often very long, two shorthand notations, octal
and hexadecimal, are used for represgytipglaEi¢ SR MkBpaD Prtal systems use a base or radix of 8. Thus it has digits

from 0 to 7 (r-1). As in the decimal and binary systems, the positional valued of each digit in a sequence of numbers is
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fixed. Each position in an octal number is a power of 8, and each position is 8 times more significant than the previous
position.

Example : The decimal equivalent of the octal number 15.2.

=152,
=1z8+5=z8" +2=x8!
=13.25

Hexadecimal Numbers

The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to 9 are used as the first
ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which represent the values 10, 11,12,13,14
and 15 respectively. Table 1 shows the relationship between decimal, binary, octal and hexadecimal number systems.

|Decima1||Binary||Octa1||Hexadecima1|
L o Joooof[ o || o |
Lt Jooot][ t ] 1 |
L 2 Jloowof 2 ]| 2 |
[ 3 Joort][3 ]| 3 |
L 4 Jlowof[ 4 || 4 |
L 5 Jowor)f s || 5 |
L 6 Jouof[e || 6 |
L7 Jouff7 ]| 7 |
[ 8 Jltooofftoff 8 |
L 9 Jwot][un ] 9 |
| 10 |1010] 12 | A |
| 11 1011 ][ 13 | B |
[ 12 [ 1100] 14 || C |
[ 13 |[1101] 15 | D |
[ 14 10 16 || E |
[ 15 |17 ]| F |

Hexadecimal numbers are often used in describing the data in computer memory. A computer memory stores a large
number of words, each of which is a standard size collection of bits. An 8-bit word is known as a Byte. A hexadecimal
digit may be considered as half of a byte. Two hexadecimal digits constitute one byte, the rightmost 4 bits corresponding
to half a byte, and the leftmost 4 bits corresponding to the other half of the byte. Often a half-byte is called nibble.

If "word" size is n bits there are 2n possible bit patterns so only 2n possible distinct numbers can be represented. It
implies that all possible numbers cannot be represent and some of these bit patterns (half?) to represent negative numbers.
The negative numbers are generally represented with sign magnitude i.e. reserve one bit for the sign and the rest of bits
are interpreted directly as the number. For example in a 4 bit system, 0000 to 0111 can be used to positive numbers from
+0 to +2"! and represent 1000 to 1111 can be used for negative numbers from -0 to -2"!. The two possible zero's
redundant and also it can be seen that such representations are arithmetically costly.

Another way to represent negative numbers are by radix and radix-1 complement (also called r's and (r-1)'s). For example
-k is represented as R" -k. In the case of base 10 and corresponding 10's complement with n=2, 0 to 99 are the possible
numbers. In such a system, 0 to 49 is reserved for positive numbers and 50 to 99 are for positive numbers.

Examples:
+3 = +3
3=10%2-3=97

2's complement is a special case of complement representation. The negative number -k is equal to 2 n -k. In 4 bits
system, positive numbers 0 to 2™! is represented by 0000 to 0111 and negative numbers -2"! to -1 is represented by 1000
to 1111. Such a representation has only one zero and arithmetic is easier. To negate a number complement all bits and add
1

Example:

11910 =011101112 . www.FirstRanker.com
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10001000

+1 add 1
10001001
That is 10001001 2 =-119 1o

Properties of Two's Complement Numbers

X plus the complement of X equals 0.
There is one unique 0.
Positive numbers have 0 as their leading bit ( MSB ); while negatives have 1 as their MSB .
The range for an n-bit binary number in 2's complement representation is from -2 ™D to 2 ™D - ]
The complement of the complement of a number is the original number.
Subtraction is done by addition to the 2's complement of the number.
Value of Two's Complement Numbers
For an n-bit 2's complement number the weights of the bits is the same as for unsigned numbers except of the MSB . For
the MSB or sign bit, the weight is -2 ™!. The value of the n-bit 2's complement number is given by:
A 2's-complement — (a ol ) X (‘2 ol ) + (an-2) X (2 n-l ) + .. (a 1 ) X (2 ! ) +ao
For example, the value of the 4-bit 2's complement number 1011 is given by:
=1x-23+0x22+1x2"'+1
=8+0+2+1
=-5
An n-bit 2's complement number can converted to an m-bit number where m>n by appending m-n copies of the sign bit to
the left of the number. This process is called sign extension. Example: To convert the 4-bit 2's complement number 1011
to an 8-bit representation, the sign bit (here = 1) must be extended by appending four 1's to left of the number:
1011 4-bit 2's-complement — 11111011 8-bit 2's-complement

A

To verify that the value of the 8-bit number is still -5; value of 8-bit number

=274+26+25+24+23+2+1

=-128+64+32+16+8 +2+1

=-128+123=-5

Similar to decimal number addition, two binary numbers are added by adding each pair of bits together with carry
propagation. An addition example is illustrated below:

X 190
Y 141
X+Y 331

101111000 Carry

10111110 X
+10001101 T
101001011

Similar to addition, two binary numbers are subtracted by subtracting each pair of bits together with borrowing, where
needed. For example:

X 229

Y 46

X-Y 183

oort1it1i1on Borrow

11100101 X

oo101110 T

10110111 X-v

Two' complement addition/subtraction example
4 0l 2 1110
-7 1001 ¥ 1010
-3 1101 £ 11000

Overflow occurs if signs (MSBs) of both operands are the same and the sign of the result is different. Overflow can also
be detected if the carry in the sign position is different from the carry out of the sign position. Ignore carry out from MSB.

Number Base Conversions
This section describes the conversmn\ﬁqu(ﬁ%ff ﬁ%éwleberrnsystem to another. Radix Divide and Multiply Method

is generauy used for conversion. There 1S a general proceaure for the operatlon oI convemng a decimal mumber to a
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number in base r. If the number includes a radix point, it is necessary to separate the number into an integer part and a
fraction part, since each part must be converted differently. The conversion of a decimal integer to a number in base 1 is
done by dividing the number and all successive quotients by r and accumulating the remainders. The conversion of a
decimal fraction is done by repeated multiplication by r and the integers are accumulated instead of remainders.

Integer part - repeated divisions by r yield LSD to MSD

Fractional part - repeated multiplications by r yield MSD to LSD

Example: Conversion of decimal 23 to binary is by divide decimal value by 2 (the base) until the value is 0
Integer  remainder

23

11 1 — LEB
5 1

2 1 x

1 0

0 1 — M3B

The answer is 23 1o =10111»
Divide number by 2; keep track of remainder; repeat with dividend equal to quotient until zero; first remainder is binary
LSB and last is MSB.
The conversion from decimal integers to any base-r system is similar to this above example, except that division is done
by r instead of 2.
Example:
Convert (0.7854) 10 to binary.

0.7854x2=1.5708;a. =1

0.5708 x2=1.1416;a , =1

0.1416 x2=0.2832;a 3=0

0.2832x2=0.5664;a 4=0

The answer is (0.7854) 10 = (0.1100) »
Multiply fraction by two; keep track of integer part; repeat with multiplier equal to product fraction; first integer is MSB ,
last is the LSB; conversion may not be exact; a repeated fraction. The conversion from decimal fraction to any base-r
system is similar to this above example, except the multiplication is done by r instead of 2.
The conversion of decimal numbers with both integer and fraction parts is done by converting the integer and the fraction
separately and then combining the two answers.
Thus (23.7854) 10=(10111. 1100) »

For converting a binary number to octal, the following two step procedure can be used.

1. Group the number of bits into 3's starting at least significant symbol. If the number of bits is not evenly divisible
by 3, then add 0's at the most significant end.

2. Write the corresponding 1 octal digit for each group

Examples:
100 010 111 (binary)

4 2 7(octd)

10 101 110 (binary)
2 5 6 (octal)
Similarly for converting a binary number to hex, the following two step procedure can be used.

1. Group the number of bits into 4's starting at least significant symbol. If the number of bits is not evenly divisible
by 4, then add 0's at the most significant end.
2. Write the corresponding 1 hex digit for each group

Examples:
1001 11100111 0000 {(binary)

9 e 70 (hex)

111111010 0011 (binary)
1 _f a3 (hesz)

The hex to binary conversion is very WpW: FiidtStRR@MNKEN tI@OIBit binary code for each hexadecimal digit
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Example:

3 9 C 8 {hex)
0011 1001 1100 1000 {binary)
Similarly for octal to binary conversion, write down the 8 bit binary code for each octal digit.
The hex to octal conversion can be carried out in 2 steps; first the hex to binary followed by the binary to octal. Similarly,
decimal to hex conversion is completed in 2 steps; first the decimal to binary and from binary to hex as described above.

Boolean Algebra and Basic Operators

Due to historical reasons, digital circuits are called switching circuits, digital circuit functions are called switching
functions and the algebra is called switching algebra. The algebraic system known as Boolean algebra named after the
mathematician George Boole. George Boole Invented multi-valued discrete algebra (1854) and E. V. Huntington
developed its postulates and theorems (1904). Historically, the theory of switching networks (or systems) is credited to
Claude Shannon, who applied mathematical logic to describe relay circuits (1938). Relays are controlled
electromechanical switches and they have been replaced by electronic controlled switches called logic gates. A special
case of Boolean Algebra known as Switching Algebra is a useful mathematical model for describing the combinational
circuits. In this section we will briefly discus how the Boolean algebra is applied to the design of digital systems.
Examples of Huntington 's postulates are given below:

Closure

VadX ¥

If X and Y are in set (0, 1) then operations are also in set (0, 1)

Identity
X+0=X X 1=X

Distributive
T+ =X TH+Z - D

XY Zy=(L+Y) (L+Z)

Complement
X+ X =1
X-X=0

Note that for each property, one form is the dual of the other; (zeros to ones, ones to zeros, ." operations to '+' operations,
'+' operations to '.' operations).

From the above postulates the following theorems could be derived.
Associative

X+ (T 42) - @+ +2

X ¥-ZL=3H "Y) 2

Idempotence

K=K

X+¥=X

Absorption

X+ (X 7)) =X

X (X+Y) =X

Simplification

X+ (X1) =x+Y

X (X+¥) =% ¥

Consensus

XY +XZ2+TEZ=XT+X2Z

(X+¥) - (X+Z) - (Y+Z) = (X+Y) - (X+2)
Adjacency

X YT+X- T =X

(3 4+ ¥y - ( + ?} =

Demorgans .
% www.FirstRanker.com
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In general form
Foo4 L KD =Gl LKL KD
Very useful for complementing function expressions; for example
F=X+%vVZ F=X+YZ
-% ¥z F-%-(T+2)
S XT+TZ

| |

Switching Algebra Operations

A set is a collection of objects (or elements) and for example a set Z {0, 1} means that Z is a set containing two elements
distinguished by the symbols 0 and 1. There are three primary operations AND , OR and NOT.

NOT
It is anary complement or inversion operation. Usually shown as over bar ( X ), other forms are Hand ~X

X | X 1 _
0o 1 x—l So— X \# %x
1] 0

AND

Also known as the conjunction operation; output is true (1) only if all inputs are true. Algebraic operators are "', '&', " '

OR
Also known as the disjunction operation; output is true (1) if any input is true. Algebraic operators are '+, "', ' ="'

AND and OR are called binary operations because they are defined on two operands X and Y. Not is called a unary
operation because it is defined on a single operand X. All of these operations are closed. That means if one applies the
operation to two elements in a set Z {0, 1}, the result will be always an element in the set B and not something else.

Like standard algebra, switching algebra operators have a precedence of evaluation. The following rules are useful in this
regard.

1. NOT operations have the highest precedence

2. AND operations are next

3. OR operations are lowest

4. Parentheses explicitly define the order of operator evaluation and it is a good practice to use parentheses

especially for situations which can cases doubt.

Note that in Boolean algebra the operators AND and OR are not linear group operations; so one cannot solve equations by
"adding to" of "multiplying" on both sides of the equal sign as is done with real, complex numbers in standard algebra.

www.FirstRanker.com




» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

1.1 Introduction

MNumber system is a basis for counting various items. On hearing the word
‘number’, all of us immediately think of the familiar decimal number system with its
10 digits : 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Modern computers communicate and operate with binary numbers which use only
the digits (0 and 1. Let us consider decimal number 18. This number is represented in
binary as 10010. In the example, if decimal number is considered, we require only two
digits to represent the number, whereas if binary number is considered we require
five digits. Therefore we can say that, when decimal quantities are represented in the
binary form, they take more digits. For large decimal numbers people have to deal
with very large binary strings and therefore, they do not like working with binary
numbers. This fact gave rise to three new number systems : Octal, Hevadecimal and
Binary Coded Decimal (BCD). These number systems represent binary number in a
compressed form. Therefore, these number systems are now widely usod bo compress
long strings of binary numbers.

In this chapter, we discuss binary, octal, hexadecimal, and BCD number systems,

and we will see how to convert from decimal to binary, octal and hexadecimal, and
vice versa. In the later section of this chapter we are going to see binary, hexadecimal,

Excess-3 and BCD arithmetic.

1.2 Decimal Number System

Before considering any number system, let us consider familiar decimal number
system. In decimal number system we can express any decimal number in units, tens,
hundreds, thousands and so on. When we write a decimal number say, 56789, we
know it can be represented as

5000 + 600 + 70 + 8 + 0.9 = 56789

Binary Number System

We know that decimal system with its ten digits is a base-ten system. Similarly,
binary system with its two digits is a base-two system. The two binary digits (bits) are
1 and 0. Like digital system, in binary system each binary digit commonly known as
bit, has its own value or weight.

Octal Number System

We know that the base of the decimal number system is 10 because it uses the
digits 0 to 9, and the base of binary number system is 2 because it uses digits 0 and 1.
The octal number system uses first eight digits of decimal number system : 0, 1, 2, 3,
4,5, 6, and 7. As it uses 8 digits, its base is 8.

www.FirstRanker.com
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Hexadecimal Number System

The hexadecimal number system has a base of 16 having 16 digits : 0, 1, 2, 3, 4, 5,
6,7,89 A, B C D,E and F. It is another number system that is particularly useful
for human communications with a computer. Although it is somewhat more difficult
to interpret than the octal number system, it has become the most popular. Since its
base is a power of 2 (2%), it is easy to convert hexadecimal numbers to binary and vice
versa.

Converting any Radix to Decimal
In general, numbers can be represented as
N = A _, " "+A "+ .+ Ar+A "
+ A A L L C
Number in decimal
Digit

where N
A

r = Radix or base of a number system
n = The number of digits in the integer portion of number
m = The number of digits in the fractional
portion of number

From this general equation we can convert number with any radix into its decimal
equivalent.

Conversion of Decimal Numbers to any Radix Number

We have to carry out the conversion of decimal number to any radix number in
two steps. In step 1, we have to convert integer part and in step 2 we have to convert
fractional part. The conversion of integer part is accomplished by successive division
method, and the conversion of fractional part is accomplished by successive
multiplication method.

Successive Division for Integer Part Conversion

In this method we repeatedly divide the integer part of the decimal number by r
(the new radix) until quotient is zero. The remainder of each division becomes the
numeral in the new radix. The remainders are taken in the reverse order to form a
new radix number. This means that the first remainder is the least significant digit
(LSD) and the last remainder is the most significant digit (MSD) in the new radix
number.

www.FirstRanker.com
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Successive Multiplication for Fractional Part Conversion

Conversion of fractional decimal numbers to another radix number is
accomplished using a successive multiplication method. In this method, the number to
be converted is multiplied by the radix of the new number, producing a product that
has an integer part and a fractional part. The integer part (carry) of the product
becomes a numeral in the new radix number. The fractional part is again multiplied
by the radix and this process is repeated until fractional part reaches 0 or until the
new radix number is carried out to sufficient digits. The integer part (carry) of each
product is read downward to represent the new radix number.

Complement Representation of Negative Numbers

In digital computers, to simplify the subtraction operation and for logical
manipulation complements are used. There are two types of complements for each
radix system : The radix complement and diminished radix complement. The first is
referred to as the r's complement and the second as the (r-1)'s complement. For
example, in binary system we substitute base value 2 in place of r to refer
complements as 2's complement and 1's complement. In decimal number system, we
subshitute base value 10 in place of r to refer complements as 10's complement and 9's
complement.

1's Complement Representation

The 1's complement of a binary number is the number that results when we
change all 1's to zeros and the zeros to ones.

2's Complement Representation

The 2's complement is the binary number that results when we add 1 to the 1's
complement. It is given as

2's complement = 1's complement + 1

The 2's complement form is used to represent negative numbers.

Rules for Binary Addition

A B SUM CARRY
0 + 0 ] 0
0 + 1 1 0
1 + 0 1 ]
1 + 1 0 1

www.FirstRanker.com
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Rules for Binary subtraction

A B Diff. Borrow
0 - 0 0 0
o - 1 1 1
1 - 0 1 ]
1 -1 0 0
Classification of Binary Codes
'l:al;tei
Weighted Mon-welghled Flisflactive Saquential Alphanumerie  Erfor detecting
and cormecling
Parity Hamming
Excess-3 Gray _Five-bit et Bose)
BCD codes
! ' ASCIl  EBCDIC Hollerith
2421 5211 Excess-d .

| |

Binary BCD

|
R T T T N A %

B421 2421 3321 4Z21 B 511 5421 G311 421 7421 B4y

Excess-3 Code

Excess-3 code is a modified form of a BCD number. The Excess-3 code can be
derived from the natural BCD code by adding 3 to each coded number. For example,
decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each digit we
get Excess-3 code as 0100 0101 (12 in decimal).

Table shows excess-3 codes to represent single decimal digit

.L_:z‘w' e Chias s '-4‘_,5“;‘ &is ) & =
'gigM‘k gt T iateital _mﬁ.‘.;‘ﬁm
0 0 0 1 1
1 0 1 0 0
2 0 1 0 1
3 0 1 1 0
4 0 1 1 1
5 1 0 0 0
6 1 0 0 1
7 1 0 1 0
8 1 0 1 1
9 1 1 0 0
Excess-3 code

www.FirstRanker.com
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Excess-3 Addition

To perform Excess-3 addition we have to

m  Add two Excess-3 numbers

» If Carry

Excess-3 Subtraction

0 — subtract 3

1 — add 3 to the sum of two digits

To perform Excess-3 subtraction we have to
» Complement the subtrahend

Gray Code

Add complemented subtrahend to minuend
If carry =1 Result is positive. Add 3 and end around carry
If carry = 0 Result is negative. Subtract 3.

Gray code is a special case of unit-distance code. In unit-distance code, bit patterns
for two consecutive numbers differ in only one bit position. These codes are also

called cyclic codes.

Decimal
Code

Gray code

m m < ;M o Ak W R =

- & -k ok
B oW KR = O

&

0009
0001
o011
0010
0110
o111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

4JEJLJLJL[TTTI[JLJLMJLJL

www.FirstRanker.com
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Gray-to-Binary Conversion

The gray to binary code conversion can be achieved using following steps.
1. The most significant bit of the binary number is the same as the most
significant bit of the gray code number. So write it down.

2. To obtain the next binary digit, perform an exclusive-OR-operation between the
bit just written down and the next gray code bit. Write down the result.

3. Repeat step 2 until all gray code bits have been exclusive-ORed with binary
digits. The sequence of bits that have been written down is the binary
equivalent of the gray-code number.

Binary to Gray Conversion
Let us represent binary number as
By B2 BaBy ... By and its equivalent gray code as
Gi G:Gi Gy ... G
With this representation gray code bits are obtained from the binary bits

follows :
G, = B
Gy, = B® B
Gy = B,® B,
Gy, = B;® By
Gn = Bn—l D Bn
Parity Bit

A parity bit is used for the purpose of detecting errors during transmission of
binary information. A parity bit is an extra bit included with a binary message to
make the number of 1s either odd or even. The message, including the parity bit is
transmitted and then checked at the receiving end for errors. An error is detected if
the checked parity does not correspond with the one transmitted. The circuit that
generates the parity bit in the transmitter is called a parity generator and the circuit
that checks the parity in the receiver is called a parity checker.

In even parity the added parity bit will make the total number of 1s an even
amount. In odd parity the added parity bit will make the total number of 1s an odd

amount.

www.FirstRanker.com
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Linear Block Codes

Block codes are not necessarily linear, but general all block codes used in practice
are linear. A linear block code consists of k message bits and r check bits. These r
check bits are derived from the original k message bits to form a n-bit block code, as
shown in the Fig. The addition of the r check bils introduces redundancy into the
code, thus enabling some form of error control. Such a code is designated as an (n, k)
code. At the receiving end, the check bits are used to decide the validity of the
received message.

ek —~] k1 —
Message =] Encoder =1 Message | Check bits

Generation of an (n, k) block code

www.FirstRanker.com
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Matrix Representation of Linear Block Codes
In this method, matrices are used to encode the massage. Now before going to see
generalized equations for  matrix encoding we will see the illustration of matrix
encoding with the help of example.

Let us assume that we have to transmit 2-bit binary codes. So we can only have
four symbols in our word set. Let our message be :

”{‘" = m“ uh" - 'U]... Ncn - I-D_, Hdi’ = 11

Now we have to encode these messages by coding matrix. Coding matrix is also
called the generation matrix. It has the form

G = [Lia],,.
where
Iy is the identity matrix of order k and

A is an arbitrary k x (n = k) sub-matrix.

When the arbitrary sub-matrix A has been specified, the (n, k) block code can be
defined completely so that an important step in the design of an (n, k) block code is
the structure of A. One of the important criterion in the choice of A is that the
resulting code should allow the correction of a codeword received in error.

As an example of the construction of an (n, k) block code, consider the A
sub-matrix (2, 2} as

o fo]

We know that generation matrix is given as

1 0:1 1

G=[L | A]= [ﬂ 150 1 ** k = message length = 2

]{hxn-ll‘{l

Let us see how to find block code for each message. The block code for each
message can be given as, :

C = DG
where C = Block code
D = Message bits
G = Generation matrix
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Case 1 : Message ‘00

1 0i1 1
100] [-:r 1: 0 1}

[0-1+0-0 0-0+0-1 0-14+0-0 0-14+0-1]
[000O0]
Case 2 : Message ‘01

1 0:1 1
CH P
[0-1+1-0 0-0+1-1 0-1+1-0 0-1+1-1]

[01 01]
Case 3 : Message '10/

C

C

1 0i1 1
C=110] [ﬂl-’ﬂl]

= [1-1+40:0 1-0+0-1 1:1+0.-0 1-1+0:1]

=[1011]
Case 4 : Message "1 1

(11] ll 0:1 1}

¢ 0 1:0 1

[1-1+1-0 1-0+1-1 1-1+1-0 1-1+1-1]

=[1110]
The above calculations give the block codes for all messages and are listed in
Table
Message Code words
Message Check bits
P, P,
0 o 0 ] o 0
0 1 0 1 0 1
1 0 1 ] 1 1
1 1 1 1 -1 0

The (4, 4) code constructed from a specified G matrix
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Generalized Steps for Construction of Code
1. Construct G matrix as
G = [L:iA], .,
where I, : Identity matrix of order k

A ¢ Arbitrary matrix

100..0 Ay Agp.. Ay

010..0  ApAy . A,
[C4.Cp....Ca1=10y .0y ... 6] 001..0  AgpAy..Ay

T '
n-code bits k- message bits

Qog ... 1 Ay Ao L
B 1k Aak o Ak _J“n
I A

2. Determine all possible combinations of code using
C=DG
In general for this can be written as

Note : We have seen that for matrix multiplication we have to use MOD 2
arithmetic, i.e. 1 + 1 = 0. For multiple additions this can be generalized as 1® 1 =10,
orl@l@l=1leorl@la@al®al=_q0

Decoding the Received Codewords

At the receiving end the receiver does not know the transmitted word. However, it
knows A matrix used for generation of code words. Its function is to check the
message bits using check bit along with it. This can be done with the following

procedure.
1. From the matrix H as
H = [ATI,]
where AT : Transpose (interchanging row and columns) of sub-matrix A

I; = Identity matrix of the order of r ( r = number of check bits)
Matrix H is called parity-check matrix.

2. Now if H RT= () Received word is correct ie. R = C
HR" # 0 Error in the received code i.e. R # C
where R : Received code

R . Transpose of R
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Error Correction

It is assumed that the coding/decoding system has been designed to correct single
error only. In order to correct the codeword we multiply received codeword with
transpose of parity-check matrix to get syndrome. Then result of RHT, ie. syndrome is
compared with the row of transpose of parity-check matrix (H7). Matching row
number is the number of bit in error. Error bit is then inverted to get the correct code.

The procedure is given below :
1. Find S = RHT
where R @ Received code
H' : Transpose of T
5 = [5,, 5, 5;...] is called syndrome.

2. Match the result, ie. S with row of HT. The number of row where the match
occur gives the number of bit in error. This bit is inverted to correct the error.

Hamming Code

Hamming code not only provides the detection of a bit error, but also identifies
which bit is in error so that it can be corrected. Thus Hamming code is called error
detecting and correcting code. The code uses a number of parity bits (dependent on
the number of information bits) located at certain positions in the code group. Follows
sections describe how Hamming code can be constructed for single error correction,

Number of Parity Bits

As mentioned earlier, number of parity bits depend on the number of information
bits. If the number of information bits is designed x, then the number of parity bits, P
is determined by the following relationship :

¥ 2 x+p+1 (1)

For example, if we have four information bit, i.e. x = 4, then P is found by trial
and error using equation 1. Let p = 2. Then

2P = 2=y

and

44+24+41=7

Since 27 must be equal to or greater than x + p + 1, the relationship in equation 1
is not satisfied. Hence we have to try with next value of p. Let p = 3.
Then

X+p+1

? = 2=8
and
x+p+l = 4+3+1=8
This value of p satisfies the relationship given is equation 1, and therefore we can
say that three parity bits are required to provide single error correction for four
information bits.
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Locations of the Parity Bits in the Code

Now we know that how to calculate the number of parity bits required to provide
single error correction for given number of information bits. In our example we have
four information bits and three parity bits. Therefore, the code is of seven bits. The
right-most bit is designated bit 1, the next bit is bit 2, and so on, as shown below :

Bit 7, Bit 6, Bit 5, Bit 4, Bit 3, Bit 2, Bit 1

The parity bits are located in the positions that are numbered corresponding to
ascending powers of two (1, 2, 4, 8§ ...}. Therefore, for 7 - bit code, locations for parity
bits and information bit are as shown below :

D?i D&er*rP4r D]-rP'erI

where symbol P. designates a particular parity bit, D, desigpates a particular
information bit, and n is the location number.

Assigning Values to Parity Bits

Now we know the format of the code. Let us see how to determine 1 or 0 value to
each parity bit. In Hamming code, each parity bit provides a check on certain other
bits in the total code, therefore, we must know the value of these others in order to
assign the parity bit value. To do this, we must write the binary number for each
decimal location number as shown in the third row of table,

Bit designation D; Dg D Py D, P, P,
Bit Iocation 7 & 5 4 3 2 1
Binary location number 111 110 101 100 o1 010 001

Information bits (D)
Parity bits (P,,)

Bit position table for a seven bit error correcting code

Assignment of P; : Looking at the Table 3.4 we can see that the binary location
number of parity bit Py has a 1 for its right-most digit. This parity bit checks all bit
locations, including itself, that have 1s in the same location in the binary location
numbers, Therefore, parity bit Iy checks bit locations 1, 3, 5 and 7, and assigns P,
according to even or odd parity. For even parity Hamming code, it assigns P; such
that bit locations 1, 3, 5, and 7 will have even parity.

Assignment of P; : Looking at the Table 3.4 we can see that the binary location
number of parity bit P> has a 1 for its middle bit. This parity bit checks all bit
locations, including itself, that have 1s in the middle bit. Therefore, parity bit I;
checks bit locations 2, 3, 6 and 7 and assigns Pz according to even or odd parity.

Assignment of Py : Looking at the Table 34 we can see that the binary location
number of parity bit Py has a 1 for its left-most digit. This parity bit checks all bit
locations, including itself, that have 1s in the left-most bit. Therefore, parity bit Ps
checks bit locations 4, 5, 6 and 7 and assigns Py according to even and odd parity.
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Detecting and Correcting an Error

In the last section we have seen how to construct Hamming code for given
number of information bits. Now we will see how to use it to locate and correct an
error. To do this, each parity bit, along with its corresponding group of bits must be
checked for proper parity. The correct result of individual parity check is marked by 0
whereas wrong result is marked by 1. After all parity checks, binary word is formed
taking resulting bit for Py as LSB. This word gives bit location where error has
occurred. If word has all bits 0 then there is no error in the Hamming code.

UNIT-II
Boolean Postulates and Laws

The postulates of a mathematical system from the basic assumption from which it
is possible to deduce the rules, law theorems, and properties of the system. Boolean
algebra is formulated by a defined set of elements, together with two binary operators,
+ and -, provided that the following postulates are satisfied.

n  Closure (a) : Closure with respect to the operator +

When two binary elements are operated by operator + the result is a unique binary
element.

s Closure (b} : Closure with respect to the operator - (dot).

When two binary clements are operated by operator - (dot), the result is a unigue
binary element.

s An identity element with respect to +, designated by 0 :

A+0=0+A=A
w An identity element with respect to-, designated by 1: A-1=1-A=A
»  Commutative with respectto+: A+ B=B + A
s Commutative with respectto-: A-B=B-A
» Distributive property of - over + :

A B+C) = (A-By+(A-C)
= Distributive property of + over - :

A+(B-C) = (A+B)-(A+0QC)
= For every binary element, there exists complement element. For example, if A

is an element, we have A is a complement of A. ie. if A=0, A =1 and if
A=1 A=0D

s There exists at least two elements, say A and B in the set of binary elements
such that A = B.
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Rules in Boolean Algebra

1. The symbol which represent an arbitrary elements of an Boolean algebra is
known as wvariable. Any single variable or a function of several variables
can have either a 1 or 0 value. For example, in expression ¥ = A + BC,
variables A, B and C can have either a 1 or 0 value, and function Y also can
have either a 1 or 0 value; however its value depends on the value of
Boolean expression. '

2. A complement of a variable is represented by a "bar” over the letter. For
example, the complement of a variable A will be denoted by A.Soif A=
1, A=0and if A = 0, A = 1. Someétimes a prime symbol (') is used to
denote the complement. For example, the complement of A can be written
as A'. -

3. The logical AND operator of two variables is represented either by writing
a dot () between two variables, such as A-B or by simply writting two

variables, such as AB. Similarly, AND operation between three variables can
be represented as A -B-C or ABC.

4. The logical OR operator of two variables is represented by writing a "+ sign
between the two variables such as A + B. Similarly, OR operation between
three variables can be represented as A + B + C.

5. The logical OR operator in the Boolean algebra with variables having value
either a 0 or a 1 gives following results.

0+0=0 1+0=1

0+1=1 1+1=1

From the above results following rules are defined in the Boolean algebra.

gl + 10| = 0
Rule 1: = 0+A=AocrA+0=A
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1 = 1

Rule 2 : = 1+A=1lorA+1=1
1 = 1
0] + (&|=|0

Rule3: [* =» A+A=A
1l + i1 = |1
,{1 + %i; = 1

Rule 4 : % 54’% = A+A=lorA+A=1
1]+ ;i:l_.,f =1

6. The logical AND operator in the Boolean algebra with variables having
value either a 0 or a 1 gives following results.

0-0=0 1:0=0
0-1=0 1-1=1

From the above result following rules are defined in the Boolean algebra.

0 - 0= 10
(e
Rule 5 : B = 0-A=00rA-0=0
o - f1l= o0
1 0l =1i0
Rule 6 : = 1-A=AocrAl=A
1 1 = |
0] - [o] = [0]
Rule 7 : =» AA=A
1] - )=
o -1 = 0
Rule8:| | [+ - A-A=0orA-A=0
Al - ol = o
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7. The NOT operator in the Boolean algebra with variable having value either
a 0 or a 1 gives following results.

0=10=0
T=01=1
From the previous result following rule is defined in Boolean algebra
0 0
Rule 9 : TR o
1 = 1

Laws of Boolean Algebra
Three of the basic laws of Boolean algebra are the same as in ordinary algebra:
the commutative laws, associative laws, and the distributive law.
Commutative Laws
LAW 1: A + B =B + A : This states that the order in which the variables are

ORed makes no difference in the output. The truth tables are identical. Therefore, A
OR B is same as B OR A.

A B A+B B A B+A
0 0 0 0 0 0
0 1 1 = 0 1 1
1 0 1 1 0 1
1 1 1 1 1 1

Truth table for commutative law for OR aates
LAW 2 : AB = BA : The commutative law of multiplication states that the order in
which the variables are ANDed makes no difference in the output. The truth tables
are identical. Therefore, A AND B is same as B AND A.

A B AB B A BA
0 0 0 0 0 0
0 1 0 - 0 1 0
1 0 0 1 0 0
1 1 1 1 1 2]

Truth table for commutative law for AND gates

It is important to note that the commutative laws can be extended to any number
of variables. For example, since A + B=B + A, it follows that A+ B+ C=B+A+C,
and since A+ C=C+ A, itis true that B+ A + C = B + C + A. Similarly,

ABCD = BACD = BADC = ABDC, and so on.
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Associative Laws

LAW1: A + (B + C) = (A + B) + C: This law states that in the ORing of several
variables, the result is the same regardless of the grouping of the variables. For three
variables, A OR B ORed with C is the same as A ORed with B OR C.

A|B|C A+B (A+B)+C A | B |C B+C A+ (B + C)
0|0 | O 0 0 o |o | o 0 0
0| 0 1 0 1 0| o 1 1 1
0 1 0 1 1 0 1 0 1 1
0 1 1 1 1 = | 0 1 1 1 1
1 0|0 1 1 1 0] 0 0 1
1 0 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1

Truth tables for associative law for OR gates
LAW 2 : (AB) C = A (BC) : The associative law of multiplication states that it
makes no difference in what order the variables are grouped when ANDing several
variables. For three variables, A AND B ANDed with C is the same as A ANDed with

B and C.
AlBE e AB (AB) C A|lB|cC BC A (BC)
o |o ]| o 0 0 o |lo| o 0 0
o | o 1 0 0 0o| o 1 0 0
0 1 0 0 0 0 1 0 0 0
0 1 1 0 0 = | 0 1 1 1 0
1 0| o 0 0 1 0| o 0 0
1 0 1 0 0 1 0 1 0 0
1 1 0 1 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1

UNIT-III

GATE LEVEL MINIMIZATION

@Karnaugh Maps

Karnaugh maps provide a systematic method to obtain simplified sum-of-products (SOPs)
Boolean expressions. This is a compact way of representing a truth table and is a technique
that is used to simplify logic expressions. It is ideally suited for four or less variables,

becoming cumbersome for five or more variables. Each square represents either a minterm
www.FirstRanker.com
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or maxterm. A K-map of n variables will have 2 squares. For a Boolean expression, product
terms are denoted by 1's, while sum terms are denoted by O's - but O's are often left blank.

A K-map consists of a grid of squares, each square representing one canonical minterm
combination of the variables or their inverse. The map is arranged so that squares
representing minterms which differ by only one variable are adjacent both vertically and
horizontally. Therefore XY'Z' would be adjacent to X'Y'Z' and would also adjacent to XY'Z
and XYZ'.

+’+ Minimization Technique

Based on the Unifying Theorem: X + X' = 1
The expression to be minimized should generally be in sum-of-product form (If
necessary, the conversion process is applied to create the sum-of-product form).
The function is mapped onto the K-map by marking a 1 in those squares
corresponding to the terms in the expression to be simplified (The other squares may
be filled with Q's).
Pairs of 1's on the map which are adjacent are combined using the theorem Y (X+X")
=Y where Y is any Boolean expression (If two pairs are also adjacent, then these
can also be combined using the same theorem).
The minimization procedure consists of recognizing those pairs and multiple pairs.
o These are circled indicating reduced terms.
o Groups which can be circled are those which have two (2') 1's, four (22) 1's,
eight (23) 1's, and so on.
o Note that because squares onone edge of the map are considered adjacent
to those on the opposite edge, group can be formed with these squares.
o Groups are allowed to overlap.
The objective is to cover all'the1's on the map in the fewest number of groups and to
create the largest groups to.do this.
Once all possible groups.have been formed, the corresponding terms are identified.
o A group of two1's eliminates one variable from the original minterm.
o A group of four 1's eliminates two variables from the original minterm.
o A group of eight 1's eliminates three variables from the original minterm, and
SO on.
o The variables eliminated are those which are different in the original minterms
of the group.

t:f 2-Variable K-Map

In any K-Map, each square represents a minterm. Adjacent squares always differ by just
one literal (So that the unifying theorem may apply: X + X' = 1). For the 2-variable case
(e.g.: variables X, Y), the map can be drawn as below. Two variable map is the one which
has got only two variables as input.

www.FirstRanker.com
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4 Equivalent labeling

K-map needs not follow the ordering as shown in the figure above. What this means is that
we can change the position of m0, m1, m2, m3 of the above figure as shown in the two
figures below.

Position assignment is the same as the default k-maps positions. This is the one which we
will be using throughout this tutorial.

The K-map for a function is specified by putting a '1' in the square corresponding to a
minterm, a '0' otherwise.

4 Example- Carry and Sum of a half adder

In this example we have the truth table as Input, and we have two output functions.
Generally we may have n owigw.fupstiRasKer . oomput variables. Since we have two output
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functions, we need to draw two k-maps (i.e. one for each function). Truth table of 1 bit adder
is shown below. Draw the k-map for Carry and Sum as shown below.

x v fsim ____Jcary |
0 0 0

0

1

1

o -~ -~ O
o O

—_—

++ Grouping/Circling K-maps

The power of K-maps is in minimizing the terms, K-maps can be minimized with the help of
grouping the terms to form single terms. When forming groups of squares, observe/consider
the following:

e Every square containing 1 must be considered at least once.
o A square containing 1 can be included in as many groups as desired.
e A group must be as large as possible.

« If a square containing 1 cannot be placed in a group, then leave it out to include in
final expression.

e ,ie. 248, www.FirstRanker.com
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« The map is considered to be folded or spherical, therefore squares at the end of a
row or column are treated as adjacent squares.

o The simplified logic expression obtained from a K-map is not always unique.
Groupings can be made in different ways.

« Before drawing a K-map the logic expression must be in canonical form.

In the next few pages we will see some examples on grouping.

4 Example of invalid groups

4 Example - X'Y+XY www.FirstRanker.com
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In this example we have the equation as input, and we have one output function. Draw the
k-map for function F with marking 1 for XY and XY position. Now combine two 1's as shown
in figure to form the single term. As you can see X and X' get canceled and only Y remains.

F=Y

4 Example - X'Y+XY+XY'

In this example we have the equation as input, and we have one output function. Draw the
k-map for function F with marking 1 for X'Y, XY and XY position. Now combine two 1's as
shown in figure to form the two single terms.

F=X+Y

+’+ 3-Variable K-Map

There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable K-
map. One important thing to note is that K-maps follow the gray code sequence, not the
binary one.

www.FirstRanker.com
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Using gray code arrangement ensures that minterms of adjacent cells differ by only ONE
literal. (Other arrangements which satisfy this criterion may also be used.)

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-
variable K-map has n adjacent neighbours.

There is wrap-around in the K-map

X'Y'Z' (m0) is adjacent to X'YZ' (m2)
o XY'Z'(m4) is adjacent to XYZ' (m6G)

www.FirstRanker.com
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4 Example

F=XYZ'+XYZ+X'YZ

F=XY+YZ
4+ Example

F(X,Y,Z) = £(1,3,4,5:6,7)

01

F=X+Z

www.FirstRanker.com
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++4-Variable K-Map

There are 16 cells in a 4-variable (W, X, Y, Z); K-map as shown in the figure below.

There are 2 wrap-around: a horizontal wrap-around and a vertical wrap-around. Every cell
thus has 4 neighbours. For example, the cell corresponding to minterm m0 has neighbours
m1, m2, m4 and m8.

4+ Example

F(W,X,Y,Z) = (1,5,12,13)

www.FirstRanker.com
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F=WYZ+W'Y'Z

4+ Example

F(W,X,Y,Z) = (4, 5, 10, 11, 14, 15)

00 01 11

F = WXY' + WY

@& QUINE-McCLUSKEY MINIMIZATION

Quine-McCluskey minimization method uses the same theorem to produce the solution as
the K-map method, namely X(Y+Y')=X

+.+ Minimization Technique
www.FirstRanker.com
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4 Example

The expression is represented in the canonical SOP form if not already in that form.
The function is converted into numeric notation.

The numbers are converted into binary form.

The minterms are arranged in a column divided into groups.

Begin with the minimization procedure.

Each minterm of one group is compared with each minterm in the group
immediately below.

Each time a number is found in one group which is the same as a number in
the group below except for one digit, the numbers pair is ticked and a new
composite is created.

This composite number has the same number of digits as the numbers in the
pair except the digit different which is replaced by an "x".

The above procedure is repeated on the second column to generate a third column.
The next step is to identify the essential prime implicants, which can be done using a
prime implicant chart.

Where a prime implicant covers a minterm, the intersection of the
corresponding row and column is marked with a cross.

Those columns with only one cross identify the essential prime implicants. ->
These prime implicants must be in the final answer.

The single crosses on a column are circled and all the crosses on the same
row are also circled, indicating that these crosses are covered by the prime
implicants selected.

Once one cross on a column is circled, all the crosses on that column can be
circled since the minterm is now_covered.

If any non-essential prime implicant has all its crosses circled, the prime
implicant is redundant and need not be considered further.

o Next, a selection must be madefrom the remaining nonessential prime implicants, by
considering how the non-cireled crosses can be covered best.

One generally would take those prime implicants which cover the greatest
number of crosses on their row.

If all the crosses in one row also occur on another row which includes further
crosses, then the latter is said to dominate the former and can be selected.
The dominated prime implicant can then be deleted.

Find the minimal sum of products for the Boolean expression, f=2:(1,2,3,7,8,9,10,11,14,15),
using Quine-McCluskey method.

Firstly these minterms are represented in the binary form as shown in the table below. The
above binary representations are grouped into a number of sections in terms of the number
of 1's as shown in the table below.

Binary representation of minterms

Minterms ___Ju v w x|
1 0 0 0 1

2

0 www.FirdtRanker.com 1 0
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3 0 0 1 1
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
14 1 1 1 0
15 1 1 1 1

Group of minterms for different number of 1's

Noof1's __ Minterms _u v w [ |

1 0 0 0 1
1 2 0 0 1 0
1 8 1 0 0 0
2 3 0 0 1 1
2 g 1 0 0 1
2 10 1 0 1 0
3 7 0 1 1 1
3 11 1 0 1 1
3 14 1 1 1 0
4 15 1 1 1 1

Any two numbers in these groups which differ from each other by only one variable can be
chosen and combined, to get.2-cell combination, as shown in the table below.

2-Cell combinations

Combinations ____

(1,3)
(1,9)
(2,3)
(2,10)
(8,9)
(8,10)
(

(

(

(

o

oo oooo

1 1 1 1
o

OoOll= = |1

3,7)
3,11)
9,11)
10,17)

@ |=2] -
.
—l=T=]=] -

0 1 -
www.FirstRanker.com 1
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(7,15) - 1 1 1
(11,15) 1 - 1 1
(14,15) 1 1 1 -

From the 2-cell combinations, one variable and dash in the same position can be combined
to form 4-cell combinations as shown in the figure below.

4-Cell combinations

____

(1,3,9,11)

(2,3,10,11) - o 1 -
(8,9,10,11) 1 0 - -
(3,7,11,15) - - 1 1
(10,11,14,15) 1 - 1 -

The cells (1,3) and (9,11) form the same 4-cell combination as the cells (1,9) and (3,11).
The order in which the cells are placed in a combination does not have any effect. Thus the
(1,3,9,11) combination could be written as (1,9,3,11).

From above 4-cell combination table, the prime_implicants table can be plotted as shown in
table below.

Prime Implicants Table

Prime
Impllcants

(1,3,9,11) N X

(2,3,10,11) X x - - N X X E -
(8,9,10,11) - - - - X X X X E -
(3,7,11,15) - - - - - N X X X X
- X X - X X N N N X -

The columns having only one cross mark correspond to essential prime implicants. A yellow
cross is used against every essential prime implicant. The prime implicants sum gives the
function in its minimal SOP form.

Y=V'X+VW+UV'+ WX + UW
UNIT-IV

Combinational Logic

@Introduction www.FirstRanker.com




:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

UNIT-6

REGISTERS AND COUNTERS

Flip-flop is a 1 bit memory cell which can be used for storing the digital data. To increase the storage capac
bits, we have to use a group of flip-flop. Such a group of flip-flop is known as a Register. The n.

of n number of flip-flop and it is capable of storing an n-bit word.

The binary data in a register can be moved within-the register from one flip-flop to another. The regis
transfers are called as shift registers. There are four mode of operations of a shift register.

o Serial Input Serial Output

e Serial Input Parallel Output
o Parallel Input Serial Output
o Parallel Input Parallel Output

Serial Input Serial Output

Let all the flip-flop be initially in the reset condition i.e. Qs = Q2= Q1 = Qo = 0. If an entry of a four bit
made into the register, this number should be applied to Din bit with the LSB bit applied first. The D
connected to serial data input Din. Output of FF-3 i.e. Q3 is connected to the input of the next flip-flop i.e. D;
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Block Diagram

D. |

—s D: Q: D: Q: }—= D: Q: D- Q —

‘ Qutput
L FF-3 5 FF-2 FF-1 5 EF-0

CLK
Operation

Before application of clock signal, let Q3 Q2 Q1 Qo = 0000 and apply LSB bit of the number to be enterec
Apply the clock. On the first falling edge of clock, the FF-3 is set, and stored word in the register is Q3Q2 Q1

0 0 0

D- QG ——

= Q: ——{D: Q: ‘
Output

D: Q.

H FF-3 ) FF-2 b FF-1 o FF-0

Apply the next bit to Din. So Din = 1. As soon as the next negative edge of the clock hits, FF-2 will set and 1
Q3 Q2 Q1 Qo =1100.
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D- 1

— i Q: D: Q: -1 ./D. a -9 Ip. a2,
K

Qutput

5 EF3 5 FF2 5 FF 5 FF0

CL
Apply the next bit to be stored i.e. 1 to Din. Apply the cloek pulse. As soon as the third negative clock edge
output will be modified to Q3 Q2 Q1 Qo =1110.

D.

—D:

-

FF-3

Q:

D:

=)

FF-2

Q:

1

D:

Q-

| 0

—_—

Output

CLK
JUL

Similarly with Din = 1 and with the fourth negative clock edge arriving, the stored word in the register is Qs

LP

P

FE-3

D:

s

FE-2

D:

FF-0

1

—

Output

ICLK

:
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TRUTH TABLE

CLK |D-=Q. [Q:=D: |Q:=D: [Q:=D: Q:

Initially 0 0 0 0
Ml | [ O a7 i, [l

@] | o [T [Te |0

i) | | 1 1 0

(| | o T [ [

—» Direction of data travel
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Stored word

1 2 3 4
CLK

Do | 0000
1000

Q: g
1100

Q: g
1110

Q g
1111

Q: g

Serial Input Parallel Output

e Insuch types of operations, the data is entered serially and taken out in parallel fashion.
o Data is loaded bit by bit. The outputs are disabled as long as the data is loading.

e As soon as the data loading gets completed, all the flip-flops contain their required data, the outputs :

loaded data is made available over all the output lines at the same time.

o 4 clock cycles are required to load a four bit word. Hence the speed of operation of SIPO mode is same as

www.FirstRanker.com
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Block Diagram
|
D. —{ D Q: D Q: (—{D: Qs | Ds Q:
b FF-3 b FF-2 2 FF-1 FF-0
CLK
. s iy d 1y
------------- Parallel output ——===========

Parallel Input Serial Output (P1ISO)

o Data bits are entered in parallel fashion.

e The circuit shown below is@afour bit parallel input serial output register.

o Output of previous Flip Flop is connected to the input of the next one via a combinational circuit.
e The binary input word Bo, B1, B2, B3 is applied though the same combinational circuit.

e There are two modes in which this circuit can work namely - shift mode or load mode.
LLoad mode

When the shift/load bar line is low (0), the AND gate 2, 4 and 6 become active they will pass B, Bz, B3z

flip-flops. On the low going edge of clock, the binary input Bo, B1, B2, Bz will get loaded into the corre:
parallel loading takes place.

Shift mode

www.FirstRanker.com
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When the shift/load bar line is low (1), the AND gate 2, 4 and 6 become inactive. Hence the parallel loa
impossible. But the AND gate 1,3 and 5 become active. Therefore the shifting of data from left to right bi
clock pulses. Thus the parallel in serial out operation takes place.

Block Diagram

Parallel inputs
Shift/Load BI: B. B: B:

| !
1 rz_] 3) la ) ts/ 6

Y

-
———

\,/ N

Output

D: Q; |

/
’ Q | | D: Q. ].
) ‘ v FF1 5 FF-2 FF-3
CLK

JUL

Parallel Input Parallel Output (PIPO)

In this mode, the 4 bit binary input Bo, B1, B2, B3 is applied to the data inputs Do, D1, D2, D3 respectively
soon as a negative clock edge is applied, the input binary bits will be loaded into the flip-flops simultaneot

appear simultaneously to the output side. Only clock pulse is essential to load all the bits.
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Block Diagram

CLK

—aEEs FF-2 } —  FF1

—,  FF0

Bidirectional Shift Register

If a binary number is shifted left by one position then it is equivalent to multiplying the original number

number is shifted right by one position then it is equivalent to dividing the original number by 2.

Hence if we want to use the shift register to multiply and divide the given binary number, then we shoul

in either left or right direction.
Such a register is called bi-directional register. A four bit bi-directional shift register is shown in fig.

There are two serial inputs namely the serial right shift data input DR, and the serial left shift data ing

select input (M).

Block Diagram

www.FirstRanker.com
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Mode control (M)
o

M : Input

N
l//‘-

Input
D &)
-

A

Operation

S.N.  Condition Operation

! With M =1 = Shift right operation If M = 1, then the AND gates 1, 3, 5 and 7 are

enabled whereas the remaining AND gates 2, 4,
6 and 8 will be disabled.

The data at Dr is shifted to right bit by bit from
FF-3 to FF-0 on the application of clock pulses.
Thus with M = 1 we get the serial right shift

operation.
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2 With M = 0 — Shift left operation When the mode control M is connected to 0 then

the AND gates 2, 4, 6 and 8 are enabled while 1,
3, 5and 7 are disabled.

The data at Dy is shifted left bit by bit from FF-0
to FF-3 on the application of clock pulses. Thus

with M =0 we get the serial right shift operation.

Universal Shift Register

A shift register which can shift the data in only one direction is called a uni-directional shift register. A shi
the data in both directions is called a bi-directional shift register. Applying the same logic, a shift register w
both directions as well as load it parallely, is known as a universal shift register. The shift register is ci

following operation —

o Parallel loading
o  Lift shifting
o Right shifting
The mode control input is connected to logic 1 for parallel loading operation whereas it is connected to C

mode control pin connected to ground, the universal shift register acts as a bi-directional register. For serial

applied to the serial input which goes to AND gate-1 shown in figure. Whereas for the shift right operation,
to D input.

Block Diagram

www.FirstRanker.com
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Parallel input

o =
A B C D
Mode control (M) A
1/4- ‘./\l o > b
Serial | r : x | :
input |1 l @ J 7 | 8 ',l
= [ lﬁ/ {
L 7
Clock 1 ——M—lifls\.., [
Right shift > I
Clock 2 _:Eg;_l_ [
Lift shift R R
cK cK CK
T <
S Q: S Q-
Q: Q
B

Qutputs

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known counte
application of flip-flops. It is a group of flip-flops with a clock signal applied. Counters are of two types.

e Asynchronous or ripple counters.

« Synchronous counters.

Asynchronous or ripple counters

www.FirstRanker.com



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are being used. B
flop also with J and K connected permanently to logic 1. External clock is applied to the clock input of flif
applied to the clock input of the next flip-flop i.e. FF-B.

Logical Diagram
L T: Q: — Output

\\ T Q- :
ck —J FF-A L FF-B

Logic1

Operation

S.N. Condition Operation

1 Initially let both the FFs be in the reset state QeQa = 00 initially

2 After Ist negative clock edge As soon as the first negative clock edge is

applied, FF-A will toggle and Qa will be
equal to 1.

Qa is connected to clock input of FF-B.
Since Qa has changed from 0 to 1, it is
treated as the positive clock edge by FF-
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3 After 2nd negative clock edge

4 After 3rd negative clock.edge

5 After 4th negative clock edge

www.FirstRanker.com

B. There is no change in Qg because FF-

B is a negative edge triggered FF.

QsQa = 01 after the first clock pulse.

On the arrival of second negative clock

edge, FF-A toggles again and Qa = 0.

The change in Qa acts as a negative clock
edge for FF-B. So it will also toggle, and
Qewill be 1.

QsQa = 10 after the second clock pulse.

On the arrival of 3rd negative clock edge,
FF-A toggles again and Qa become 1
from 0.

Since this is a positive going change, FF-
B does not respond to it and remains
inactive. So Qg does not change and
continues to be equal to 1.

QsQa = 11 after the third clock pulse.

On the arrival of 4th negative clock edge,
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FF-A toggles again and Qa becomes 1

from 0.

This negative change in Qaacts as clock
pulse for FF-B. Hence it toggles to
change Qgfrom 1 to 0.

QsQa = 00 after the fourth clock pulse.

Truth Table
ek Counter output State Deciimal
Q- Q. number | Counter output
Initially 0 0 - 0
1st 0 1 1 1
2nd 1 0 2 2
3rd 1 1 3 3
4th 0 0 4 0
Synchronous counters

If the "clock™ pulses are applied to all the flip-flops in a counter simultaneously, then such a counter is callec

2-bit Synchronous up counter
The Ja and Ka inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. The Jg and Kg inpi

www.FirstRanker.com
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Logical Diagram

FF-B
Operation
S.N. Condition

1

2

www.FirstRanker.com

Logic1

Q-

FF-A

Ja

Initially let both the FEs'be in the reset state

After 1st negative clock edge

www.FirstRanker.com

CLK

Operation

QeQa =00 initially.

As soon as the first negative clock edge is
applied, FF-A will toggle and Qa will
change from 0 to 1.

But at the instant of application of
negative clock edge, Qa, Je= Kg= 0.
Hence FF-B will not change its state. So

Qg will remain 0.
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3 After 2nd negative clock edge

4 After 3rd negative clock edge

5 After 4th negative clock edge

www.FirstRanker.com

QsQa = 01 after the first clock pulse.

On the arrival of second negative clock
edge, FF-A toggles again and Qa changes
from1to 0.

But at this instant Qa was 1. So Jg = Kg=
1 and FF-B will toggle. Hence
Qs changes from 0 to 1.

QsQa = 10 after the second clock pulse.

On application of the third falling clock
edge, FF-A will toggle from 0 to 1 but
there is no change of state for FF-B.

QsQa = 11 after the third clock pulse.

On application of the next clock pulse,
Qa will change from 1 to 0 as Qg will

also change from 1 to 0.

QsQa = 00 after the fourth clock pulse.
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CLASSIFICATION OF COUNTERS

Depending on the way in which the counting progresses, the synchronous or asynchronous counters are clas:

e Up counters
o Down counters

e Up/Down counters
UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode control (M)

select either up or down mode. A combinatienal circuit is required to be designed and used between each p.
achieve the up/down operation.

» Type of up/down counters

e UP/DOWN ripple counters

e UP/DOWN synchrenous counter
UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-flops or JK flip-
LSB flip-flop receives clock directly. But the clock to every other FF is obtained from (Q = Q bar) output of

UP counting mode (M=0) — The Q output of the preceding FF is connected to the clock of the next st:
achieved. For this mode, the mode select input M is at logic 0 (M=0).

DOWN counting mode (M=1) — If M = 1, then the Q bar output of the preceding FF is connected to the
the counter in the counting mode.
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Example

3-bit binary up/down ripple counter.

3-bit — hence three FFs are required.

UP/DOWN — So a mode control input is essential.

For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next one.

For a ripple up counter, the Q output of preceding EF is connected to the clock input of the next one.

For a ripple down counter, the Q bar output'of preceding FF is connected to the clock input of the next on

Let the selection of Q and Q bar output of the preceding FF be controlled by the mode control input |
counting. So connect Q to CLK.-1f M = 1, DOWN counting. So connect Q bar to CLK.

Block Diagram

Mode control

(M)
Outpout of a Combinational Y
u pou. o B om .|na -lona CLK of next
the previous circuit
— FF

Truth Table
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Inputs Outputs
M |a |a y
P
0 0 0 0 Y=Q
0 0 1 0 \~ forup
0 1 0 1 counter
0 1 1 1 _
o s
1 0 0 0 Y=Q
1 4 - : >~ foru
1 1 0 0 counfer
1 1 1 1 2
Operation
S.N.  Condition Operation

1 Case 1 — With M =0 (Up counting mode)

If M =0 and M bar = 1, then the AND
gates 1 and 3 in fig. will be enabled
whereas the AND gates 2 and 4 will be
disabled.

Hence Qa gets connected to the clock
input of FF-B and Qggets connected to
the clock input of FF-C.

These connections are same as those for
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the normal up counter. Thus with M = 0

the circuit work as an up counter.

2 Case 2: With M =1 (Down counting mode) If M = 1, then AND gates 2 and 4 in fig.

are enabled whereas the AND gates 1 and
3.are disabled.

Hence Qa bar gets connected to the clock
input of FF-B and Qg bar gets connected
to the clock input of FF-C.

These connections will produce a down
counter. Thus with M = 1 the circuit

works as a down counter.

Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as MOD-8 counte
ripple counter is called as modulo-N counter. Where, MOD number = 2"

Type of modulus

e 2-bit up or down (MOD-4)
e 3-bit up or down (MOD-8)
e 4-bit up or down (MOD-16)
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APPLICATIONS OF COUNTERS

e Frequency counters

o Digital clock

e Time measurement

o Ato D converter

o Frequency divider circuits

o Digital triangular wave generator.

Ring and Johnson Countek

Two most important types of shift'register counters are Johnson counter and Ring counter. These shift register c
are connected to serial inpyts to produce particular pattern of sequences. These shift registers are used as counte

sequence of states.

Ring Counter

Ring counter is a basic application of shift registers. It is formed by the feedback of the output to its own input
where N denotes the number of flip-flops in the ring counter.
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A 4 bit ring counter circuit is shown in the figure above. It consists of 4 D-flipflops, FFA, FFB, FFC and FFD.
has an input D and output Q. At first, a CLEAR signal is applied to the flip-flops to RESET the outputs to zerc
applied to the flip-flop FFA before the clecK pulse is given. This step allows putting the value ‘1’ to the ring coun
the clock pulse is given, the counter,circulates the data among all the four flip-flops. Modulo-4 or mod-4 counter

ring counter. Each output value of;this counter has a frequency % th of the main frequency value.
Advantages

e Can be implemented using D and JK flip-flops.
e Itis aself-decoding circuit.

Disadvantages

e Only four of the 15 states are being utilized.

Johnson Counter

Johnson Counter also known as Twisted Ring Counter is another basic application of shift registers with a feec
given from the inverted output of the last flip flop to the input of the first flip-flop.Figure below shows a 4-bit Jof
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four flip-flops FFO, FF1, FF2 and FF3. Here the inverted output of the last flip-flop FF3 is given as feedback to tr
FFO. Here, at first four logic zeros will be passed to the flip-flops. When clock pulses are given <1000, “1100

“00117, 00017, “0000” outputs will be obtained and the sequence will repeat for the next clock pulses.

OO0 = = a0

Advantages

e More outputs than ring counter.
o Disadvantages

e Only 8 of the 15 states are being used.
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