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UNIT -I:

Mathematical Logic:

Propositional Calculus: Statements and Notations, Connectives, Well
Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas,
Duality Law, Tautological Implications, Normal Forms, Theory of
Inference for Statement Calculus, Consistency of Premises, Indirect
Method of Proof. Predicate Calculus: Predicative Logic, Statement
Functions, Variables and Quantifiers, Free and Bound Variables,
Inference Theory for Predicate Calculus.

UNIT -II:

Set Theory:

Introduction, Operations on Binary Sets, Principle of Inclusion and
Exclusion, Relations: Properties of Binary Relations, Relation Matrix and
Digraph, Operations on Relations, Partition and Covering, Transitive
Closure, Equivalence, Compatibility and Partial Ordering Relations,
Hasse Diagrams, Functions: Bijective Functions, Composition of
Functions, Inverse Functions, Permutation Functions, Recursive
Functions, Lattice and its Properties.

UNIT- III:

Algebraic Structures and Number Theory:

Algebraic Structures: Algebraic Systems, Examples, General Properties,
Semi Groups and Monoids, Homomorphism of Semi Groups and
Monoids, Group, Subgroup, Abelian Group, Homomorphism,
Isomorphism, Number Theory: Properties of Integers, Division Theorem,
The Greatest Common Divisor, Euclidean Algorithm, Least Common
Multiple, Testing for Prime Numbers, The Fundamental Theorem of
Arithmetic, Modular Arithmetic (Fermat‘s Theorem and Euler‘s Theorem)
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Unit -1

Mathematical Logic
INTRODUCTION
Proposition: A proposition or statement is a declarative sentence which is either
true or false but not both. The truth or falsity of a proposition is called its truth-value.
These two values true‘ and false‘ are denoted by the symbols T and F respectively.
Sometimes these are also denoted by the symbols 1 and O respectively.

Example 1: Consider the following sentences:
Delhi is the capital of India.
Kolkata is a country.
5 is a prime number.
2+3=4.
These are propositions (or statements) because they are either true of false.
Next consider the following sentences:
How beautiful are you?
Wish you a happy new year
X+y=2
Take one book.

These are not propositions as they are not declarative in nature, that is, they do not
declare a definite truth value 7 or F.

Propositional Calculus is also known as statement calculus. It is the branch of
mathematics that is used to describe a logical system. or structure. A logical system
consists of (1) a universe of propositions, (2) truth tables (as axioms) for the logical
operators and (3) definitions that explain equivalence and implication of propositions.

Connectives
The words or phrases or symbols which are used to make a proposition by two or more
propositions are called logical connectives or simply connectives. There are five basic
connectives called negation, conjunction, disjunction, conditional and biconditional.
Negation

The negation of a statement is generally formed by writing the word _not‘ at a
proper place in the statement'(proposition) or by prefixing the statement with the phrase
_It is not the case that‘.<If p denotes a statement then the negation of p is written as p and
read as _not p°. If the-truth value of p is T then the truth value of p is F. Also if the truth
value of p is F then the truth value of p is T.

Table 1. Truth table for negation

p -p
F T
T F
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Example 2: Consider the statement p: Kolkata is a city. Then —p: Kolkata is not a city.
Although the two statements _Kolkata is not a city‘ and _It is not the case that Kolkata is a

city‘ are not identical, we have translated both of them by p. The reason is that both these
statements have the same meaning.

Conjunction

The conjunction of two statements (or propositions) p and ¢ is the statement p A g which is

read as ;8 and ¢°‘. The statement p A Fg has the truth value 7 whenever both p and g have the truth
value 7. Otherwise it has truth value F.

Table 2. Truth table for conjunction

4 q PAg
T T T
T F F
F T F
F F F

Example 3: Consider the following statements p : It
is raining today.
q : There are 10 chairs in the room.
Then p A g : It is raining today and there are 10 chairs in the room.
Note: Usually, in our everyday language the conjunction "and‘ is used between two statements
which have some kind of relation. Thus a statement _It.is raining today and 1 + 1 = 2° sounds odd,
but in logic it is a perfectly acceptable statement formed from the statements _It is raining today*
and _1+1=2°
Example 4: Translate the following statement:
_Jack and Jill went up the hill*-into symbolic form using conjunction.
Solution: Let p : Jack went up the hill, q +Jill went up the hill.
Then the given statement can be written in symbolic form as p A q.

Disjunction

The disjunction of two ‘statements p and q is the statement p V %WhiCh isread as _porq°.
ave t

The statement p V g has the truth value F only when both p and g h e truth value F. Otherwise
it has truth value T.

Table 3: Truth table for disjunction

B!

q rVvVgq

NN

TN
NSNS

Example 5: Consider the following statements p : I shall go to the game.

q : I shall watch the game on television.

] 5
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Then p V ¢ : I shall go to the game or watch the game on television.

Conditional proposition

If p and g are any two statements (or propositions) then the statement p — g which is read as,

_If p, then ¢° is called a conditional statement (or proposition) or implication and the connective
is the conditional connective.

The conditional is defined by the following table:

Table 4. Truth table for conditional

<
_Q

p—q

NN
NNTN

NN

In this conditional statement, p is called the hypothesis or premise or antecedent and g is
called the consequence or conclusion.

To understand better, this connective can be looked as a conditional promise. If the promise
is violated (broken), the conditional (implication) is false. Otherwise it is true. For this reason, the
only circumstances under which the conditional p — ¢ is false is when p is true and g is false.

Example 6: Translate the following statement:

‘The crop will be destroyed if there is a flood’ into symbolic form using conditional
connective.

Solution: Let ¢ : the crop will be destroyed; f: there is a flood.
Let us rewrite the given statement as

_If there is a flood, then the crop will;be destroyed‘. So, the symbolic form of the
given statement is f — c.

Example 7: Let p and q denote the statements:

p : You drive over 70 km per hour.

q : You get a speeding ticket.

Write the following statements into symbolic forms.

(1) You will get a speeding ticket if you drive over 70 km per hour.
Driving over 70 km per hour is sufficient for getting a speeding ticket.
If you do not drive over 70 km per hour then you will not get a speeding ticket.
Whenever you get a speeding ticket, you drive over 70 km per hour.

Solution: (i) p —» q (i) p—>q@ii)) p—q@v)q—p.

Notes: 1. In ordinary language, it is customary to assume some kind of relationship between
the antecedent and the consequent in using the conditional. But in logic, the antecedent and the

www.FirstRanker.com



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

consequent in a conditional statement are not required to refer to the same subject matter. For
example, the statement _If I get sufficient money then I shall purchase a high-speed computer*
sounds reasonable. On the other hand, a statement such as _If I purchase a computer then this pen is
red’ does not make sense in our conventional language. But according to the definition of
conditional, this proposition is perfectly acceptable and has a truth-value which depends on the
truth-values of the component statements.

Some of the alternative terminologies used to express p — ¢ (if p, then g) are the
following: (i) p implies g

(ii) p only if g (_If p, then ¢g* formulation emphasizes the antecedent, whereas _p only if
g‘ formulation emphasizes the consequent. The difference is only stylistic.)

(iii) g if p, or g when p.
(iv) g follows from p, or ¢ whenever p.

(v) p is sufficient for g, or a sufficient condition for g is p. (vi) ¢ is necessary for p, or a necessary
condition for p is g. (vii) q is consequence of p.
Converse, Inverse and Contrapositive

If P — Q is a conditional statement, then
(1). Q — P s called its converse
(2). =P — —Q is called its inverse
(3). "Q — —P is called its contrapositive.

Truth table for Q — P (converse of P — Q)

Q[0

ssH CER ol e

= (=]

T
F
T
F|F
Truth table for =P — =@ (inverse of P — Q)

Plo|-P|-0]|-P—>-0

T|T| F F T
T|F | F T T
F|I|T| T F F
FI|F| T T T
Truth table for =Q — =P (contrapositive of P — Q)
PlO|-0)|-P|-Q—-P
T|T| F F T
TI|F | T F F
F|T| F T T
F|F | T T T

www.FirstRanker.com
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Example: Consider the statement
P : It rains.
Q: The crop will grow.

The implication P — Q states that
R: If it rains then the crop will grow.

The converse of the implication P — Q, namely Q — P sates that S: If
the crop will grow then there has been rain.

The inverse of the implication P — Q, namely =P — —(Q sates

that U: If it does not rain then the crop will not grow.

The contraposition of the implication P — Q, namely =Q — —P states that T":
If the crop do not grow then there has been no rain.

Example 9: Construct the truth table for (p — q) \ (g —p)

p q pP—q q—p pP—q)N(q—p)
T T T T T
T F F T F
F T T F F
F F T T T

Biconditional proposition
If p and g are any two statements (propositions), then the statement p<> g which is read as _p if and
only if ¢* and abbreviated as _p iff ¢° is called a biconditional statement and the connective is the
biconditional connective.
The truth table of p«>q is given by the following table:

Table 6. Truth table for biconditional

pP<q

SIEIEIEIS
SISIETEIS
SIEEIE

It may be noted that p g is true only when both p and g are true or when both p and g are
false. Observe that p ¢ is true:when both the conditionals p — ¢ and ¢ — p are true, i.e., the truth-

values of (p — q) A (g —p), given in Ex. 9, are identical to the truth-values of p g defined here.

Note: The notation p < ¢ is also used instead of p<q.
TAUTOLOGY AND CONTRADICTION

Tautology: A statement formula which is true regardless of the truth values of the statements
which replace the variables in it is called a universally valid formula or a logical truth or a
tautology.

Contradiction: A statement formula which is false regardless of the truth values of the
statements which replace the variables in it is said to be a contradiction.

Contingency: A statement formula which is neither a tautology nor a contradiction is known
as a contingency.

8
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Substitution Instance
A formula A is called a substitution instance of another formula B if A can be obtained form
B by substituting formulas for some variables of B, with the condition that the same
formula is substituted for the same variable each time it occurs.

Example: Let B: P —> (JAP).
Substitute RS for P in B, we get

TR S) > (UARDS))
Then A is a substitution instance of B.

Note that (R <> S) — (J AP) is not a substitution instance of B because the variables

P in J A P was not replaced by R < S.

Equivalence of Formulas
Two formulas A and B are said to equivalent to each other if and only if A<> B is
a tautology.

If A—B is a tautology, we write A < B which is read as A is equivalent to B.

Note : 1. < is only symbol, but not connective.

A < Bis a tautology if and only if truth tables of A and B are the same.
Equivalence relation is symmetric and transitive.

Method 1. Truth Table Method: One method to determine whether any two
statement formulas are equivalent is to construct their truth tables.

Example: Prove P VQ < =(=P A =Q).

Solution:
PlO|PVvQ |-P |-Q | PA=Q | 7(=PAN=Q) | (P VQ) (=P A-Q)
TI|T T F F F T T
T |F T F T F T T
F|T T T F F T T
F .F . F T . T T F T

AsP vQ —(=P A1 =Q) is a tautology, then P VQ < =(=P A =Q).
Example: Prove (P — Q) < (=P vV Q).

Solution:
PlOQ|PoQ | =P |2PVO | (P—0Q) (=P VO
T|T T F T T
T|F F F F T
F|T T T T T
F |F T T T T

As (P — Q) (=P Vv Q) is a tautology then (P — Q) < (-P V Q).

www.FirstRanker.com
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Equivalence Formulas:
1. Idempotent laws:

(@ PVPeP b)YPAP &P
2. Associative laws:

@ P VQ) VR <P V(QVR) ®YPAQ)AR <P A(QAR)
3. Commutative laws:

@PVvQeQVP O®YPAQ QAP
4. Distributive laws:

PV(QAR) P VQO) AP VR PA(QVR)ePAQ)V(PAR)

5. Identity laws:

@@@PVFeP GPVT T

®)GPAT <P ()PAF <F

6. Component laws:

@Q@OPV-PaT (i) PA-P &F
(b) 1) ~=P P ) TeF, FeT
7. Absorption laws:

@PVPAQ) =P b)yPA(PVQO) &P
Demorgan‘s laws:

(@ ~(PVvQ) &-PA-0 ®) AP 1Q) <P V-0

Method II. Replacement Process: Consider a formula A : P — (Q — R). The formula Q — Ris a
part of the formula A. If we replace Q =R by an equivalent formula =Q VR in A, we get another

formula B : P — (= QVR). One can easily verify that the formulas A and B are equivalent to each
other. This process of obtainingB from A as the replacement process.

Example: Prove that P -(Q - R) @ P — (-Q VR) (P A1 Q) — R.
Solution: P > (Q —>R) P —>(-Q VR) [ QO —>R < -Q VR]
“PV(QVR) [ P—Q < -PVQ]
(=P v-=Q) VR [by Associative laws]
(P AQ) VR [by De Morgan‘s laws]
(PAQ)—R[P—Q«<-PVQ]
Example: Prove that (P — Q) A/ (R — Q) < (P VR) — Q.
Solution: P> AR—->Q) <(-PVO)A(—RVQ)
< (-PA-R) VO <

“(PVR)vQ &PV
R— Q0

www.FirstRanker.com
10



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

Example: Prove that P - (Q - P ) & P — (P — Q).
Solution: P> (Q—>P)=e-PV(Q—P)
“PV(-QVP)
(~PVP)V-Q
TVv-Q
T
and
P—>P—Q)e(-P)V(P—0)
P V(EPVQO) &
(PVvaP)YVQ &T
Vo
eT
So,P—>(Q—P)e-P—(P—0).

***Example: Prove that (=P A (=Q AR)) V(Q AR) V(P AR) &R
Solution:

(AP A(—~Q AR)) V(QAR) V(P AR)
S((~PA-Q)AR) V((Q VP) AR) [Associative and Distributive laws]
c(=(PVQOQ)AR) V(Q VP)AR) [De Morgan‘s laws]
(P VO VPVQO)AR [Distributive laws]
TAR[.-PVP &T]
R

**Example: Show (P VQ) A =(=P A (=Q V-R))) V(=P A -0Q) V(=P A —=R) is tautology.
Solution: By De Morgan‘s laws; we have
“PA-Q <-(PVQ)

-“PV-R & (PAR)
Therefore
(P AN=Q) V(=P A-R) e-(PVQ) V(P AR)

& =((P VQ) A(P VR))
Also
(2P A(2Q V-R)) @ (P A=(Q AR))
<P V(QAR)
<P VQ)A(P VR)
Hence (P VQ) A =(=P A(mQ V-R)) PV AP VQO)A(P VR)
SPVO)A(P VR

Thus (P VQ) A =(=P A (=Q V=R))) V(=P A=0Q) V(=P A =R)

www.FirstRanker.com
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S[(PVQ) AP VR)] VA[(P VQ) A(P VR)]

T

Hence the given formula is a tautology.
Example: Show that (P /1 Q) — (P V Q) is a tautology.

Solution: (PAQ) > (P VQ) - (PAQ) V(P VQO) [ P—Q < -P VQ]
(=P Vv-Q) V(P VQ) [by De Morgan‘s laws]

(=P VP) v(=Q vQ) [by Associative laws and commutative
laws]

(T vT)[by negation laws]

T
Hence, the result.

Example: Write the negation of the following statements.
(a). Jan will take a job in industry or go to graduate school.
(b). James will bicycle or run tomorrow.
(c). If the processor is fast then the printer is slow.
Solution: (a). Let P : Jan will take a job in industry.
Q: Jan will go to graduate school.

The given statement can be written in the symbolic as P V Q.
The negation of P V' is given by =(P V Q).
(P vQ) =P A-0.

=P A =Q: Jan will not take a job in industry and he will not go to graduate school.
(b). Let P : James will bicycle.
Q: James will run tomorrow.

The given statement can be written in the symbolic as P V Q.
The negation of P VVQ is.given by =(P V Q).
(P vQ) P A-Q.

=P A =Q: James will not bicycle and he will not run tomorrow.

(c). Let P : The processor is fast.
Q: The printer is slow.
The given statement can be written in the symbolic as P — Q.

The negation of P — Q is given by =(P — Q).
“(P—> Q) (-PVQ) <P A-Q.

P A =Q: The processor is fast and the printer is fast.

Example: Use Demorgans laws to write the negation of each statement.
(a). I want a car and worth a cycle.
(b). My cat stays outside or it makes a mess.
(c). Ive fallen and I can‘t get up.
(d). You study or you don‘t get a good grade.
Solution: (a). I don‘t want a car or not worth a cycle.
(b). My cat not stays outside and it does not make a mess.

www.FirstRanker.com
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(c). I have not fallen or I can get up.
(d). You can not study and you get a good grade.
Exercises: 1. Write the negation of the following statements.
(a). If it is raining, then the game is canceled.
(b). If he studies then he will pass the examination.
Are (p — q) — r and p — (¢ — r) logically equivalent? Justify your answer by using the
rules of logic to simply both expressions and also by using truth tables. Solution: (p — ¢q) —
rand p — (g — r) are not logically equivalent because Method I: Consider

pP—q —>re(CpVveg —r
o a(ap Vg) Vr e
(pANA—g) Vr

pAr) V(ng Ar)
and

p—(@—r)ep—(ngVr)
o p V(ng Vr)

p Vg Vr
Method II: (Truth Table Method)

plglr|p=q|l@o2g@—or |gor|po(@—or)
T|T|T T T T
T|T |F T F F

T|F |T F T T T
T |F |F F T T T
F|T|T T T T T
F|T |F T F F T
F|F |T T T T T
F|F |F T F T T

Here the truth values (columns) of (p — ¢) — rand p — (¢ — r) are not identical.
Consider the statement: |If you study hard, then you will excell. Write its converse,
contra positive and logical negation in logic.
Duality Law

Two formulas A and A * are said to be duals of each other if either one can be obtained from the

other by replacing A by Vand Vby A. The connectives Vand A are called duals of each other. If the

formula A contains the special variable T or F', then A * its dual is obtained by replacing 7 by F and

F by T in addition to the above mentioned interchanges.
Example: Write the dual of the following formulas:

www.FirstRanker.com
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1. (PVQ) AR (). PAQ) vT (iii). P 1 Q) V(P V=(Q A S))
Solution: The duals of the formulas may be written as
(). (P A0Q) VR Gi). P VO)AF  (iii). P VO) A (P A —~(Q V~S))
Result 1: The negation of the formula is equivalent to its dual in which every variable

is replaced by its negation.
We can prove

—A(P1, P2, ..., Pn) &A*(=P1, =P2, ..., =Pn)
Example: Prove that (a). = (P A1 Q) — (=P V(=P v Q)) < (=P vQ)
(0). (PVO) AP A(mP AQ)) < (=P A0)

Solution: (a).=7(P A Q) = (mP V(=P VQ)) (P AQ) V(mP V(=P VvQ)) [ P— Q <P v(]
PAQV(EPVO)
PAQ)V-PVQ
(PAQ) V-P)) VO
(P V-P)AQ V-P)) VO
(TA(QV=P)) VO
QVv-P)VvQ
Q v-P

P VvQ
(b). From (a)
PAQ)V(PVEP VQ) P VO
Writing the dual
PVOACPAEPAQ) & (=P AQ)

Tautological Implications
A statement formula-A is said to tautologically imply a statement B if and only if A — B
is a tautology.

In this case we write A = B, which is read as ‘A implies B*.
Note: =1is not a connective, A = B is not a statement formula.
A = B states that A — B is tautology.
Clearly A = B guarantees that B has a truth value 7 whenever A has the truth value T .

One can determine whether A = B by constructing the truth tables of A and B in the same manner as

was done in the determination of A < B. Example: Prove that (P — Q) = (=Q — —P).

www.FirstRanker.com
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PO | =P —|Q P—)Q -Q — P (P—)Q)—)(ﬂQ—)ﬂP)
T|T F F T T T
T|F F T F F T
F|T T F T T T
F|F T T T T T

Since all the entries in the last column are true, (P — Q) — (-Q — —P)isa
tautology.

Hence (P — Q) = (-Q — —P).

In order to show any of the given implications, it is sufficient to show that an assignment of the truth value 7 to the antecedent of the corresponding condi-

tional leads to the truth value 7 for the consequent. This procedure guarantees that
the conditional becomes tautology, thereby proving the implication.

Example: Prove that =Q A (P — Q) = ~P.

Solution: Assume that the antecedent =Q A (P — Q) has the truth value T, then both =Q and P —

0 have the truth value 7', which means that Q has the truth value ¥, P — Q has the truth value T .
Hence P must have the truth value F .
Therefore the consequent =P must have the'truth value 7.

~0 AP — Q)>-P.

Another method to show A = B is to assume that.the consequent B has the truth value F and then

show that this assumption leads to A having the-truth value F . Then A — B must have the truth
value T'.

Example: Show that -(P — Q) = P.
Solution: Assume that P has the truth'value F . When Phas ', P— Q has T, then =(P — Q) has F/
. Hence =(P — Q) —»> Phas T«

-(P— Q) >P

Other Connectives

We introduce the connectives NAND, NOR which have useful applications in the design of
computers.
NAND: The word NAND is a combination of ‘NOT* and ‘AND*‘ where ‘NOT" stands for
negation and ‘AND° for the conjunction. It is denoted by the symbol 1.

If P and Q are two formulas then

P1Qe~(PAQ)
The connective 1 has the following equivalence:
PtPe—=(PAP)e-P VAP =P,

15
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PTOTPTO e~(PT1Q) @~(~(PAQ) <P AQ.
PTP)T(QTQ) P10 e(=PA=Q) =P V.

NAND is Commutative: Let P and Q be any two statement formulas.
(P1Q) &~(PAQ)
&=(QAP) &
(Q1P)
NAND is commutative.
NAND is not Associative: Let P, Q and R be any three statement formulas.

Consider TQTR) &=(PAQTR) & =(PA(=(Q 1K)
-P V(Q AR))

PTOTRe~(PAOD)TR
A(7(PAQ)AR) &
(PAQ) V-R
Therefore the connective 1 is not associative.
NOR: The word NOR is a combination of ‘NOT* and ‘OR* where ‘NOT* stands for negation and

_OR‘ for the disjunction. It is denoted by the symbol |.
If P and Q are two formulas then

PlQe~(PVO)

The connective | has the following equivalence:
P|Pe-(PVP)ePA-P &P,
PlOIPLOe(PlQ) eGP VO) <PV
PLP)L(QLlOQ) &P | Q0 2(=PV2Q) =P AQ.

NOR is Commutative: Let P and'Q-be any two statement formulas.
PlO)e-(PVO)
< (QVP) e
QlP)

NOR:'is commutative.

NOR is not Associative: Let P, Q and R be any three statement formulas.
Consider P| (Q | R) < —~(P V(Q | R))

< (P V(=(Q VR)))
P A (Q VR)
PLOIRe(PVO) IR
=(=(P VQ) VR) &
(P VQ) AR

Therefore the connective | is not associative.

Evidently, P 1 Q and P | Q are duals of each other.
Since

www.FirstRanker.com
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Solution:

Solution:

Truth Tables
Example: Show that (A @ B) V(A | B) < (A 1 B). (May-2012)

Solution: We prove this b

www.FirstRanker.com

Yo

~(PAQ) & =P V=0

(P VvQ) &-PA-Q.
Example: Express P | Q interms of 1 only.

Qe=(PVO

PVvOTP VO

[(PTP)TQTOITIPTP)T(Q1TO)]
Example: Express P 1 Q interms of | only. (May-2012)

10e~(PAQ)

PAQD) L (PAO)
[(PLP)L@QLODILIPLP)L(Q] Q)]

y constructing truth table.

Al BlA@B|A|B| A@B) v(A|B) | A1B
T| T| F F F F
T| F| T F T T
Fl T| T F T T
F| F| F T T T

As columns (A @ B) V(A | B) and (A 1 B) are identical.
(A&®B) V(A| B) (A 1B).

Normal Forms

n
If a given statementformula A(p1, p2, ...py) Involves n atomic variables, we have 2

www.FirstRanker.com

possible combinations of truth values of statements replacing the variables.

The formula A:is a tautology if A has the truth value 7 for all possible assignments of the

truth values to.the variables p{, p2, ...p;; and A is called a contradiction if A has the truth
value F for all possible assignments of the truth values of the n variables. A is said to be satis

able if A has the truth value T for atleast one combination of truth values assigned to p1, p2,

...pn.
The problem of determining whether a given statement formula is a Tautology, or a

Contradiction is called a decision problem.

The construction of truth table involves a finite number of steps, but the construc-tion
may not be practical. We therefore reduce the given statement formula to normal form and
find whether a given statement formula is a Tautology or Contradiction or atleast satisfiable.

It will be convenient to use the word Iproductl in place of Iconjunctionl and Isuml in

place of Idisjunctionl in our current discussion.

www.FirstRanker.com
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A product of the variables and their negations in a formula is called an elementary
product. Similarly, a sum of the variables and their negations in a formula is called an
elementary sum.

Let P and Q be any atomic variables. Then P, =P AQ, =QAP =-P , P =P, and Q N =P
are some examples of elementary products. On the other hand, P, =P VQ,-Q VP V=P, P

A A-P, and Q VP are some examples of elementary sums.

Any part of an elementary sum or product which is itself an elementary sum or product is
called a factor of the original elementary sum or product. Thus =Q,41 =P , and =Q A P are
some of the factors of " Q AP A —-P.

Disjunctive Normal Form (DNF)

A formula which is equivalent to a given formula and which consists of a sum of elementary
products is called a disjunctive normal form of the given formula.

Example: Obtain disjunctive normal forms of
(@ P A(P— Q) () (P VQ) < (PAO).
Solution: (a) We have
PAP—Q)eP AP VQ)

(PA=PY) V(P AQ)
(P VO) (P A0Q)

(~(P VO) AP AQ) V(L VQO) A~(P AQ)) [using
R— S & (R AS) V(=R A~S)

(AP N=2Q) A(PAQ)) V(P VQ) A(—P V—Q))
(CPA2QAPAQ) V(P VQO)A-P) V(P VQ)A-Q)
(P A=OAPAQ) V(PA=P) V(QA=P) V(P A=Q) V(Q A-0)

which is the required disjunctive normal form.

Note: The DNF of a given formula is not unique.

Conjunctive Normal Form (CNF)

A formula which is equivalent to a given formula and which consists of a product of elementary
sums is called a conjunctive normal form of the given formula.

The method for obtaining conjunctive normal form of a given formula is similar to the one
given for disjunctive normal form. Again, the conjunctive normal form is not unique.

. ~ www.FirstRanker.com
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(@ PA(P— Q) (®) ~(P VQ)=> (P QO).
Solution: (a). PA(P — Q) @ P AN (=P VQ)
(b).~(P VQ)> (P NQ)
P VO = PAD) AP AQ)— (P VQ)
PV VPAD) AP AQ) V(P V)
[(PVQVP)AP VO VOIA[(=P V-Q) V(=P A~Q)]
(PVQVPYAP VQVQ)A(=P V-Q V-P)A(=P V-0 V-0Q)

Note: A given formula is tautology if every elementary sum in CNF is tautology.
Example: Show that the formula Q V(P A1 =Q) V(=P A —~Q) is a tautology.
Solution: First we obtain a CNF of the given formula.
QVPA=Q) V(=P A=Q) 2 Q V(P VP)A=Q)
S (Q V(P VaP) A(Q V-0)
< (Q VP V=P)A(Q V-0O)
Since each of the elementary sum is a tautology, hence the given formula is tautology.

Principal Disjunctive Normal Form
In this section, we will discuss the concept of prineipal disjunctive normal form (PDNF).

Minterm: For a given number of variables, the minterm-consists of conjunctions in which
each statement variable or its negation, but not both,.appears only once.

2
Let P and Q be the two statement variables. Then there are 2 minterms given by P 1 Q, P A =0,
=P AAQ,and =P A -Q.
Minterms for three variables P, Q andRare PAQ AR, PAQ A-R,PA-Q AR,PA-0Q AR, =P

OAR, " PAQAN-R,~PA7Q AR and =P A ~Q A —R. From the truth tables of these
minterms of P and Q, it is clear that

Plo|PaQ | PA-Q | -PAQ | -PA-Q
T|T| T F F F
T|F| F T F F
F|lT| F F T F
F|F| F F F T

(i). no two minterms are equivalent
(i1). Each minterm has the truth value T for exactly one combination of the truth values of the
variables P and Q.
Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms only
is called the Principal disjunctive normal form of the formula.
The principle disjunctive normal formula is also called the sum-of-products canonical form.

www.FirstRanker.com
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Methods to obtain PDNF of a given formula

(a). By Truth table:

(i). Construct a truth table of the given formula.

(ii). For every truth value T in the truth table of the given formula, select the minterm which
also has the value T for the same combination of the truth values of P and Q.

(iii). The disjunction of these minterms will then be equivalent to the given formula.

Example: Obtain the PDNF of P — Q.

Solution: From the truth table of P —

0

P |O | P—Q | Minterm
T|T T PAQ

T |F F PA-Q
F|T T AP AQ
F |F T P A=Q

The PDNF of P —> Qis (P A Q) V(=P A Q) V(=P A=Q).
P—>Q&cPAQ) V(=P AQ) V(=P A-Q).
Example: Obtain the PDNF for (P 1 Q) V(=P AR) V(QAR).

www.FirstRanker.com

Solution:
PO |R Minterm PAQ [(-PAR | QAR PAQ)V(-PAR)V(QAR)
T|T|T PAQ AR T F T T
T|T |F PAQ AR T F F T
T|F |T PA-Q AR F F F F
T|F |F P A-Q AR F F F F
FIT|T “PAQAR F T T T
F[T |F SPAQAN-R F F F F
F|F |T “PA-Q AR F T F T
F|F |F | “"PA-Q A-R F F F F

The PDNF of (P A Q) V(=P AR) V(Q AR) is
(PAQAR) VIPAQA-R) V(P AQ AR) V(=P A=Q AR).

(b). Without constructing the truth table:

In order to obtain the principal disjunctive normal form of a given formula is con-

structed as follows:

www.FirstRanker.com
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(1). First replace —, by their equivalent formula containing only A, Vand —.

(2). Next, negations are applied to the variables by De Morgan‘s laws followed by the
application of distributive laws.

(3). Any elementarily product which is a contradiction is dropped. Minterms are ob-tained in
the disjunctions by introducing the missing factors. Identical minterms appearing in the
disjunctions are deleted.

Example: Obtain the principal disjunctive normal form of
(@) =PV Q: (b) (P AQ) V(<P AR) V(Q AR).
Solution:
(a) “PVQ&(PAT)V(QAT) [FAAT oA]
(P AQ V=) V(QAMP V-P)) [P VP <T]
(P AQ) V(=P A=Q) V(QAP) V(Q A=P)
[PA(QVR) & (PAQ) V(PAR)
SEPAQ) V(-PA-Q)VPAQ) [P VP &P](b)
(PAQ) V(=P AR) V(QAR)
PAQAT)V(PARAT)V(QARAT)
PAQARVAR) V(mPARA(Q V-Q)) VIQARA(P V-P))
PAQAR) VIPAQAN-R) V(7P ARAQ) P AR AN-Q)
(QARAP)V(QARAN=P)
PAQAR) VIPAQAN-R) V(7PANQ AR) V(=P N-Q AR)

PV(PAQ) &P

PV(=PAQ) <P VO
Solution: We write the principal disjunctive normal form of each formula and com-pare these
normal forms.

@P VPAQ) &(PAT) V(P AQ) ["PAQ &P]
SPAQV-Q) V(P AQ) [-PV-aPoT]
S((PAQ) V(P A=Q)) V(P AQ) [by distributive laws]
SPAQVPA-Q)[ PVP &P
which is the required PDNF.
Now, <sPAT
PAQ V-0)

(PAQ) V(P A=Q)
which is the required PDNF.
Hence,P V(PAQ) < P.

www.FirstRanker.com
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(BYP V(=P AQ) & (PAT) V(=P A Q)
(PAQ V—-Q) V(P AQ)

PAQ) V(P A=Q) V(=P AQ)
which is the required PDNF.

Now,
PvOQePAT)vQAT)

(PA(Q V=Q) V(QAP V-P))
PAQ) VIPA=Q)V(QAP) V(QA-P)

PAQ) VP A-Q) V(=P AQ)
which is the required PDNF.

Hence, Pv(=PAQ) <P V.
Example: Obtain the principal disjunctive normal form of

P—(P—>Q)A~(=Q V-P)).
Solution: Using P — Q < =P VQ and De Morgan‘s law, we obtain

(P—> Q) N~(=Q VAP)) &P
(=P VQ) N (Q AP))

&P V(=PIAQAP)VQAQAP)) &
-P VFE V(P /A Q)

=P V(P AQ)

(-PAT) V(P AQ)

("P A (Q V-Q)) V(P AQ)

("PANQ) V(mPA=Q) V(P AQ)
Hence (P A Q) V(=P A Q) V(=P A =Q) is the required PDNF.

Principal Conjunctive Normal Form

The dual of a minterm is called a Maxterm. For a given number of variables, the maxterm consists
of disjunctions in which each variable or its negation, but not both, appears only once. Each of the
maxterm has the truth value F for exactly one com-bination of the truth values of the variables. Now
we define the principal conjunctive normal form.

www.FirstRanker.com
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For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is
known as its principle conjunctive normal form. This normal form is also called the product-of-sums
canonical form.The method for obtaining the PCNF for a given formula is similar to the one
described previously for PDNF.

Example: Obtain the principal conjunctive normal form of the formula
(=P—R)A(Q-P)

Solution:
(=P > R)A(Q < P)
[~(=P) VRIA[(Q — P) A (P — Q)]
P VR)A[(2Q VP ) A (=P V)]
(PVRVF)A[(RQ VPVF)A(RP VQ VF)]
[(P VR) V(Q A= A[=Q VP) V(RA-R)] A[(=P VQ) V(R A-R)]
(PVRVQ)AMP VR V-Q)A(P V-Q VR)A(P V-0 V-R)
(P VQ VR)A(~P VQ V-R)

PVOQVRYNP VAQ VRYANP V-Q VAR)A(=P VQ VR)A(=P VQ V-R)
which is required principal conjunctive normal form.

Theory of Inference for Statement Calculus

Definition: The main aim of logic is to/provide rules of inference to infer a
conclusion from certain premises. The theory associated with rules of inference is known
as inference theory .

Definition: If a conclusion.is derived from a set of premises by using the accepted
rules of reasoning, then such a‘process of derivation is called a deduction or a formal proof
and the argument is called a valid argument or conclusion is called a valid conclusion.

Note: Premises means set of assumptions, axioms, hypothesis.

Definition: et A and B be two statement formulas. We say that IB logically
follows from Al'or IB is a valid conclusion (consequence) of the premise Al iff A — Bis a
tautology, thatis A = B.

We say that from a set of premises {H1, Hz, - - -, Hn}, a conclusion C
Jfollows logically iff HHAH2 A ... AHn = C

Note: To determine whether the conclusion logically follows from the given premises, we use
the following methods:

Truth table method

Without constructing truth table method.
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Validity Using Truth Tables

Given a set of premises and a conclusion, it is possible to determine whether the
conclusion logically follows from the given premises by constructing truth tables as follows.

Let Pq, P, - - -, Py be all the atomic variables appearing in the premises H{, H2, - - -, Hy, and in
the conclusion C. If all possible combinations of truth values are assigned to P{, P2, - - -, Py and if the
truth values of H1, H), ..., Hy, and C are entered in a table. We look for the rows in which all H 1,

H»y, - - -, Hy, have the value T. If, for every such row, C also has the value T, then (1) holds. That is,
the conclusion follows logically.

Alternatively, we look for the rows on which C has the value F. If, in every such row, at

least one of the values of H{, H), - - -, Hy,; 1s F, then (1) also holds. We call such a method a
_truth table technique® for the determination of the validity of a conclusion.

Example: Determine whether the conclusion C follows logically from the premises

H{ and H).

(a@H1:P—>0 Hy:P C:Q
(b)H|:P—Q Hy:-P C:Q

(ooH :P—Q Hy:=(PAQ) C: =P
1
(d)H : =P Hy:P QC:~(PAQ)
1
(e)H1:P—Q Hy:0C:P
Solution: We first construct the appropriate truth table, as shown in table.
PlO|P—Q | P| ~(PAQ) P Q
T T F F T
T|F F F T F
F|T T T T F
F|F T T T T
25
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(a) We observe that the first row is the only row in which both the premises have the value T
. The conclusion also has the value T in that row. Hence it is valid.

In (b) the third and fourth rows, the conclusion Q is true only in the third row, but not in the
fourth, and hence the conclusion is not valid.
Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e).

Rules of Inference
The following are two important rules of inferences.
Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by
one or more of the preceding formulas in the derivation.

Implication Formulas
1

1:PAQ=>P (simplification)
h:PAQ >0
I : P>PVvQ

3
I4:0=>PVQ

I5:-P=>P—>Q
I : 0=>P—>0

I7:~(P—Q)=P
Ig : ~(P— Q) > -Q
Ig: P,O=>PANQ

o P,PVvQO=Q (disjunctive syllogism)
I
n: PP—0=0 (modus ponens)
I
n: Q. P—=0="P (modus tollens)
I
3 P20 0—>R=>P—>R (hypothetical syllogism)
I
u: PVO,P—>R Q—R=R (dilemma)
Example: Demonstrate that R is a valid inference from the premises P — Q, Q — R, and P .
Solution:
{1} (HP—Q Rule P
{2} 2) P Rule P,
{1, 2} 3) 0 Rule T, (1), (2), and 113
{4} 4 O—R Rule P
[1,2, 4} B)R Rule T, (3), (4), and /13

Hence the result.
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Example: Show that R 1§ follows logically from the premises C VD, (C VD) — =-H, -H — (A A
=B),and (A A —B) — (R VS).

Solution:
{1} (1) (CvD)— -H Rule P
{2} (2) -H— (A A-B) Rule P
{1, 2} (3) (CvD)— (A A-B) Rule T, (1), (2), and 113
{4} 4 AA-B)— (R VS) Rule P
{1, 2,4} B)(CVvD)— (R VS) Rule T, (3), (4), and 113
{6} (6) CvD Rule P
{1,246} (7) RVvS Rule T, (5), (6), and I11

Hence the result.

Example: Show that § VR is tautologically implied by (P VO)A(P — R)A(Q — S).

Solution:

{1} (1) PvQ Rule P

{1} 2) "P—0 Rule T, ()P — Q =P VQ
{3} 3)0—S Rule P

{1, 3} 4) =P —S Rule T, (2), (3), and 113

{1, 3} S)S—P Rule T, 4),P —> Q & -~Q — -P
{6} (6) P—R Rule P

{1, 3,6} (7) =S - R Rule T, (5), (6), and 113

{1, 3,6} (8) S VR Rule T, (7)and P —» Q &P VQ

Hence the result.

Example: Show that R A (P v Q) is a valid conclusion from the premises P V Q,

Q— R, P— M, and -M.

Solution:

{1} 1 P->M Rule P

{2} 2 -M Rule P

{1, 2} 3) -P Rule T, (1), (2), and 11
{4} 4 PvQ Rule P

{1, 2,4} 5 0 Rule T, (3), (4), and Iy
{6} 6) O—R Rule P
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{1,246}/ (1) R Rule T, (5), (6), and I1]
{1,2,4,6}) (8 RAMPVQ) Rule T, (4), (7) and Ig

Hence the result.

Example: Show I12 : =0, P — Q = —-P.

Solution:

{1} (H) P—>0 Rule P

{1} 2) - Q— P Rule T, (1),and P —» Q & -Q — —P
{3} 3) -0 Rule P

{1, 3} 4) =P Rule T, (2), (3), and I

Hence the result.
Example: Test the validity of the following argument:

IIf you work hard, you will pass the exam. You did not pass. Therefore, you did not work
hardl.

Example: Test the validity of the following statements:
ITf Sachin hits a century, then he gets a free car. Sachin does not get a free car.

Therefore, Sachin has not hit a centuryl.

Rules of Conditional Proof or Deduction Theorem

We shall now introduce a third inference rule, known as CP or rule of conditional proof.

Rule CP: If we can derive S from R and-a-set of premises, then we can derive R — S from the set
of premises alone.

Rule CP is not new for our purpose her because it follows from the equivalence

www.FirstRanker.com
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(PAR)—» S &P — (R—YS)

Let P denote the conjunction of the set of premises and let R be any formula. The above
equivalence states that if R is included as an additional premise and S is derived from P A/ R, then
R — § can be derived from the premises P alone.

Rule CP is also called the deduction theorem and is generally used if the conclu-sion of the form

R — §. In such cases, R is taken as an additional premise and S is derived from the given
premises and R.

Example: Show that R — S can be derived from the premises P — (Q — §), =R VP, and Q.

(Nov. 2011)

Solution: Instead of deriving R — S, we shall include R as an additional premise and show
S first.

{1} ()R VP Rule P

{2} 2) R Rule P (assumed premise)

{1, 2} 3 P Rule T, (1), (2), and I1(

{4} 4) P—(Q—Y9 Rule P

{1,2 4} B 0—S Rule T, (3);.(4), and 171

{6} © 0 Rule P

{1,246} 7 S Rule T, (5), (6), and 11

{1, 2 4,6} @8 R—S Rule CP

Example: Show that P — § can be derived from the premises =P V0, -0 VR, and R — §.
Solution: We include P as an-additional premise and derive S.

{1} (1) P VO Rule P

{2} 2)\P Rule P (assumed premise)
{1, 2} 3) 0 Rule T, (1), (2), and I1(
{4} 4) -QVR Rule P

{1, 2,4} 5) R Rule T, (3), (4), and I7()
{6/ 6) R—S Rule P

{1,246} 7 S Rule T, (5), (6), and 11
{1,246} @& P—S Rule CP

Example: _If there was a ball game, then traveling was difficult. If they arrived on time, then

traveling was not difficult. They arrived on time. Therefore, there was no ball game*. Show that

these statements constitute a valid argument. Solution: Let us indicate the statements as follows:
P : There was a ball game.

RThey arrived on time.
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Hence, the given premises are P — Q, R — —=Q, and R. The conclusion is =P .

{1 (1) R— -0 Rule P

{2} (2)R Rule P

(1,2} (3) =0 Rule T, (1), (2), and I

{4} 4)P—-Q Rule P

{4 (5) ~Q — —P Rule T, (4), and P — Q & ~Q — =P
(1,2, 4} (6) =P Rule T, (3), (5), and I

Example: By using the method of derivation, show that following statements con-stitute a valid
argument: |If A works hard, then either B or C will enjoy. If B enjoys, then A will not work hard.
If D enjoys, then C will not. Therefore, if A works hard, D will not enjoy.

Solution: Let us indicate statements as follows:

Given premises are P — (QVR), Q — =P, and § — —R. The conclusion is P — .
We include P as an additional premise and derive —S.

{1} (HP Rule P (additional premise)

{2} (2)P— (Q VR) Rule P

[1,2) Ohil Rule T, (1), (2), and I |

{1, 2} 4) -Q—>R Rule T, 3)and P > Q <P vQ
{1,2} (5) "R—Q Rule T, (4),and P — Q < -Q — =P
{6} 6) Q—-P Rule P

{1, 2 6} (7) -R— =P Rule T, (5), (6), and 113

{1, 2 6} 8 P—R Rule T, (7)and P — Q & -Q — =P
{9} 9 S—>=R Rule P

{9} (10) . R— =S RuleT,(9)and P —> Q & -0 — =P
{1,2,6,9} (1) P— =S Rule T, (8), (10) and /13

{1,2,6,9}) (12) S Rule T, (1), (11) and /71

Example: Determine the validity of the following arguments using propositional logic:
ISmoking is healthy. If smoking is healthy, then cigarettes are prescribed by physi-
cians. Therefore, cigarettes are prescribed by physiciansl. (May-2012)

Solution: Let us indicate the statements as follows:
P : Smoking is healthy.

Q: Cigarettes are prescribed by physicians.

Hence, the given premises are P , P — Q. The conclusion is Q.
{1} (HLP—Q Rule P
{2} )P Rule P

www.FirstRanker.com
30



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

{1, 2} 30 Rule T, (1), (2), and I1 |
Hence, the given statements constitute a valid argument.

Consistency of Premises
A set of formulas H{, Hp, - - -, Hy, is said to be consistent if their conjunction has the
truth value T for some assignment of the truth values to the atomic variables appearing in H],

H2, s Hm.
If, for every assignment of the truth values to the atomic variables, at least one of the

formulas Hq, H), - - -, Hy, is false, so that their conjunction is identically false, then the formulas
H{, Hy, - - -, Hy, are called inconsistent.
Alternatively, a set of formulas H{, H), - - -, Hy;, is inconsistent if their conjunction implies

a contradiction, that is,
H{ NH) AN---NHpy, >R A-R
where R is any formula.

Example: Show that the following premises are inconsistent:
(1). If Jack misses many classes through illness, then he fails high school.
(2). If Jack fails high school, then he is uneducated.
(3). If Jack reads a lot of books, then he is not uneducated.
(4). Jack misses many classes through illness and reads a lot of books.
Solution: Let us indicate the statements as follows:
E: Jack misses many classes through illness.
S: Jack fails high school.
A: Jack reads a lot of books.
H: Jack is uneducated.

The premises are E — S, S — H, A— —H,and E N A.

{1} 1) E—-S Rule P

{2} 2) S—H Rule P

{1, 2} (3) E>H Rule T, (1), (2), and 113

{4) 4)A— -H Rule P

{4} 5) H— -A Rule T, (4),and P —» Q & -Q — P
{1,2 4} 6) E—-A Rule T, (3), (5), and 113

{1,2 4} (7) ~EV-A Rule T, (6)and P — Q < —~P vV Q
{1,2 4} &) ~(EnA) Rule T, (7), and ~(P N Q) < =P V-0
{9} (9) EnA Rule P

{1,2,49) (10) =~(EAA)A(EAA) RuleT, (8),(9)andIg

Thus, the given set of premises leads to a contradiction and hence it is inconsistent.
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Example: Show that the following set of premises is inconsistent: |If the contract is valid, then
John is liable for penalty. If John is liable for penalty, he will go bankrupt. If the bank will loan
him money, he will not go bankrupt. As a matter of fact, the contract is valid, and the bank will
loan him money.|

Solution: Let us indicate the statements as follows:
V : The contract is valid.
L: John is liable for penalty.
M: Bank will loan him money.

B: John will go bankrupt.

{1} (1) VoL Rule P

{2} 2) L—B Rule P

(1,2} (3) V>B Rule T, (1), (2), and I13

{4} 4 M— -B Rule P

{4) (5) M—-M Rule T, (4), and P — Q & —~Q — —P
{1,2,4)  (6) V—>-M Rule T, (3), (5), and 113

{1, 2,4} (7 ~Vv-M Rule T, (6)and P > Q & P V(Q
(1,2 4) ®) ~(VAM) Rule T, (7), and =(P 1 Q) & =P V=0
{9} 9 VvaMm Rule P

{1,2,4,9) (10) ~(VAM) A(VAM)Rule T, (8), (9) and Ig
Thus, the given set of premises leads to'a contradiction and hence it is inconsistent.

Indirect Method of Proof

The method of using the‘rule of conditional proof and the notion of an inconsistent set
of premises is called the indirect method of proof or proof by contradiction.

In order to show. that a conclusion C follows logically from the premises H{, Hp, - - -,

Hy,, we assume that C is false and consider —C as an additional premise. If the new set of
premises is inconsistent, so that they imply a contradiction. Therefore, the assump-tion that =C is
true does not hold.

Hence, C is true whenever H{, H), - - -, Hy, are true. Thus, C follows logically

from the premises Hq, Hp, - - -, Hy,.
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Example: Show that =(P A/ Q) follows from =P A =Q.

Solution: We introduce = —(P AQ) as additional premise and show that this additional premise

leads to a contradiction.

{1} (1) ==(P 1 0)
{1 Q)P0

{1} 3P

{4} (4)~P A=0
{4} ()P

{1, 4} (6) P NP

Hence, our assumption is wrong.

Rule P (assumed)

Rule T, (1), and =—P < P
Rule T, (2), and I

Rule P

Rule T, (4), and I

Rule T, (3), (5), and Ig

Thus, =(P 2 Q) follows from =P A =Q.

Example: Using the indirect method of proof, show that P
— 0, Q0—R (PAR), P VR >R.
Solution: We include =R as an additional premise. Then we show that this leads to

a contradiction.

{1} (HP—0
{2} (2)Q0—R
71,2} (3)P—>R
{4} (4) R
{1,2, 4 (5) =P

{6} (6) P VR
{1,246} (DR
{1,246} (8 RA-R

Rule P

Rule'P

Rule T, (1), (2), and I13
Rule P (assumed)

Rule T, (4), and 112
Rule P

Rule T, (5), (6) and I
Rule T, (4), (7), and Ig

www.FirstRanker.com

Hence, our assumption is wrong.

P—-(QVR),Q—-P,S— —-R, P>P— =S.

Example: Show that the following set of premises are inconsistent, using proof by contradiction

Solution: We include =(P — —§) as an additional premise. Then we show that this leads to a

contradiction.
(P — 2S) & (=P V-S) ePAS.
{1} (1) P—>(Q VR) Rule P
{2} )P Rule P
{1, 2} (3) Q VR Rule T, (1), (2), and Modus Ponens
{4} 4 PAS Rule P (assumed)
{1,2, 4} S)S Rule T, (4),and PN Q = P

www.FirstRanker.com
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{6/
{1,246}
{1,246}
{9}

{1,246}
{1,246}
{1,2 4, 6}
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6) S— -R Rule P
(7) =R Rule T, (5), (6) and Modus Ponens
®) 0 Rule T, (3), (7), and P A Q, ~Q = P
9 Q—-P Rule P
(10) -P Rule T, (8), (9),and P A Q, -0 =P
an Fa7r Rule T, (2), (10), and P, Q =P A Q

Rule T, (11),and P A =P & F

(12) F
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The Predicate Calculus

Predicate

A part of a declarative sentence describing the properties of an object is called a
predicate. The logic based upon the analysis of predicate in any statement is called
predicate logic.
Consider two statements:
John is a bachelor
Smith is a bachelor.
In each statement lis a bachelorl is a predicate. Both John and Smith have the same

property of being a bachelor. In the statement logic, we require two diff erent symbols
to express them and these symbols do not reveal the common property of these
statements. In predicate calculus these statements can be replaced by a single statement
Ix is a bachelorl. A predicate is symbolized by a capital letters which is followed by
the list of variables. The list of variables is enclosed in parenthesis. If P stands for the
predicate lis a bachelorl, then P (x) stands for Ix is a bachelorl,where x is a predicate
variable.

*The domain for P (x) : x is a bachelor, can be taken as the set of all human
names. Note that P (x) is not a statement, but just an expression. Once a value is
assigned to x, P (x) becomes a statement and-has the truth value. If x is Ram, then P (x)
is a statement and its truth value is true.

Quantifiers

Quantifiers: Quantifiers are words that are refer to quantities such as ‘some* or ‘all‘.
Universal Quantifier: The phrase ‘forall‘ (denoted by V) is called the universal
quantifier.
For example, consider the sentence IAll human beings are mortall.

Let P (x) denote*‘x is a mortal ‘.
Then, the above sentence can be written as

(W €S)P (x) or VxP (x)

where S denote the set of all human beings.
Px represents each of the following phrases, since they have essentially the same for
all x

For every x
For each x.

Existential Quantifier: The phrase ‘there exists‘ (denoted by 7) is called the exis-
tential quantifier.

For example, consider the sentence

IThere exists x such that x =5.

(Fx, € R)P CvaZPiF$tRanker.com

where P (x) : x =5.
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Zx represents each of the following phrases

There exists an x
There is an x

For some x

There is at least one x.

Example: Write the following statements in symbolic form:
(1). Something is good
(i1). Everything is good
(ii1). Nothing is good
(iv). Something is not good.
Solution: Statement (i) means IThere is atleast one x such that, x is goodl.
Statement (ii) means IForall x, x is goodl.
Statement (iii) means, IForall x, x is not goodl.
Statement (iv) means, IThere is atleast one x such that, x is not good.
Thus, if G(x) : x is good, then

statement (i) can be denoted by (Fx)G(x)
statement (ii) can be denoted by ( Fx)G(x)
statement (iii) can be denoted by ( VA)—~G(x)

statement (iv) can be denoted by (Fx)~G(x).

Example: Let K(x) : x is a man
L(x) : x is mortal
M(x) : x is an integer
N(x) : x either positive or,negative
Express the following using quantifiers:
All men are mortal
Any integer is either positive or negative.
Solution: (a) The given statement can be written as
for all x, if x is a man,.then x is mortal and this can be expressed as
(0)(K(x) — L(x)).
The given statement can be written as
for all x, if x is an integer, then x is either positive or negative and this can be
expressed as (x)(M(x) — N(x)).

35
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Free and Bound Variables
Given a formula containing a part of the form (x)P (x) or (Fx)P (x), such a part is called

an x-bound part of the formula. Any occurrence of x in an x-bound part of the formula is
called a bound occurrence of x, while any occurrence of x or of any variable that is not a
bound occurrence is called a free occurrence. The smallest formula immediately

following ( Vx) or (Fx) is called the scope of the quantifier.
Consider the following formulas:

(V)P (x, y)
)P (x) = O(x))

(P (x) = ()R, )

(P (x) = R(x)) V(x)(R(x) — O(x))
()P (x) 1 O())

(FOP (x) A O(x).

In (1), P (x, y) is the scope of the quantifier, and occurrence of x is bound
occurrence, while the occurrence of y is free occurrence.

In (2), the scope of the universal quantifier is P (x) — Q(x), and all concrescences of x are
bound.

In (3), the scope of (x) is P (x) — (Fy)R(x, y), while the scope of (F) is R(x, y). All
occurrences of both x and y are bound occurrences.

In (4), the scope of the first quantifier is'P,(x) — R(x) and the scope of the second
is R(x) — Q(x). All occurrences of x-are bound occurrences.

In (5), the scope (Fx) is P (x) A Q(x).
In (6), the scope of (Fx)\is P (x) and the last of occurrence of x in Q(x) is free.

Negations of Quantified Statements
1. ()P (x) < ()P (x)

(ii). ~(LIP (x) & (X)(=~P (x)).
Example: Let P (x) denote the statement lx is a professional athletel and let Q(x) denote the
statement [x plays soccerl. The domain is the set of all people.
(a). Write each of the following proposition in English.
(P (x) = O(x)
()P (x) 2 O(x))

(P (x) VO(x))
(b). Write the negation of each of the above propositions, both in symbols and in words.
Solution:
(a). (). For all x, if x is an professional athlete then x plays soccer.
IA1l professional athletes plays soccerl or IEvery professional athlete plays
soccerl.
(i1). There exists an x such that x is a professional athlete and x plays soccer.

www.FirstRagger.com
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ISome professional athletes paly soccerl.
(iii). For all x, x is a professional athlete or x plays soccer.
IEvery person is either professional athlete or plays soccerl.

(b). (i). In symbol: We know that
()P (x) = O(x)) < (F)(P (x) = Qx)) < (Fx)~(=(P (x)) VO(X))
< ()P (x) A =0(x))

There exists an x such that, x is a professional athlete and x does not paly soccer.
In words: ISome professional athlete do not play soccerl.

(ii). ~(2)(P (x) 21 Q(x)) & (O)(=P (x) V=0(x))
In words: IEvery people is neither a professional athlete nor plays soccerl or All people
either not a professional athlete or do not play soccerl.

(iiD). 2()(P (x) VOX)) & (Fx)(=P (x) A =Q(x)).

In words: ISome people are not professional athlete or do not paly soccerl.

Inference Theory of the Predicate Calculus

To understand the inference theory of predicate calculus, it is important to be famil-
iar with the following rules:

Rule US: Universal specification or instaniation
(DAX) = A(®y)
From (x)A(x), one can conclude A(y).
Rule ES: Existential specification

(FAX) = A()

From (7x)A(x), one can conclude‘A(y).
Rule EG: Existential generalization

A(X) 2(HA®Y)
From A(x), one can conclude (#y)A(y).
Rule UG: Universal generalization

A(x) = (MA®Y)
From A(x), one can conclude (y)A(y).

Equivalence formulas:
E31 : (F0)[Ax) VB(x)] < (Fx)A(x) V(Ix)B(x)
E37 : (0[A(x) 4 B()] < (0)A(x) A (x)B(x)
E33 : =(Fx)A(x) < (x)—A(x)
E34 : ~(0)A(x) < (Fx)-A(x)
E35: (x)(A VB(x)) <A V(x)B(x)
E36 : (Ix)(A N B(x)) & A A (Fx)B(x)
E37: WA() — B & ()(AR) — B)
E38 : (Ix)A(x) — B < (x)(A(x) — B)
E39:A — (x)B(x) < (x)(A — B(x))

www.FirstRanker.com
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Eq0 1 A — (X)B(x) < (Ix)(A — B(x))
Eqq1 1 (Fx0)(A(x) = B(x)) < (x)A(x) — (Ix)B(x)
Eq2 1 (F0A(x) — (0)B(X) & (0)(A(x) — B(X)).

Example: Verify the validity of the following arguments:
IA1l men are mortal. Socrates is a man. Therefore, Socrates is mortall.
or
Show that (x)[H(x) — M(x)] A H(s) = M(s).
Solution: Let us represent the statements as follows:
H(x) : x is a man
M(x) : x is a mortal
s : Socrates

Thus, we have to show that (x)[H(x) — M(x)] A H(s) = M(s).

{1} (1) WH(x) — M(x)] Rule P

{1} (2) H(s) — M(s) Rule US, (1)

{3} (3) H(s) Rule P

71,3} @) M(s) Rule T, (2), (3), and I

Example: Establish the validity of the following argument:|All integers are ratio-nal numbers.
Some integers are powers of 2. Therefore, some rational numbers are powers of 2I.

Solution: Let P (x) : x is an integer
R(x) : x is rational number
S(x) : x is a power of 2

Hence, the given statements becomes

()P (x) = RX)), (TP (x) A5(x)) = (D)(R(x) A S(x))

Solution:

{1} (1) ()P (x) AS(x)) Rule P

{1} (2) P(y)AS(0) Rule ES, (1)

{1} 3) P®) Rule T, 2)and P AQ > P

{1} 4) Sy Rule T, 2)and PN Q = Q

{5} (5) (X)(P (x) > R(x)) Rule P

{5} (6) P(y)— R(Y) Rule US, (5)

{1,5} (7) R(y) Rule T, (3), (6)and P, P — Q = Q
{1, 5} &) R(y) AS8@y) Rule T, @), (7)and P, Q > P A Q
{1,5) 9) (F)(R(x) A S(x)) Rule EG, (8)

Hence, the given statement is valid.
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Example: Show that (x)(P (x) — Q(x)) N1 (x)(Q(x) — R(x)) = (x)(P (x) = R(x)).

Solution:
{1}
{1}
{3}
{3}

(1,3}
{1, 3}

(1) )P (x) = O(x))
@) Py — 00
(3) (N(Q(x) — R(x))
4 0(») = R(y)

) P (y) = R(O)
(6) (X)(P (x) — R(x))

Rule P
Rule US, (1)
Rule P
Rule US, (3)

Rule T, (2), (4), and 113
Rule UG, (5)

Example: Show that (Fx)M(x) follows logically from the premises
(x)(H(x) — M(x)) and (Fx)H(x).

Solution:

{1}
{1
{3}
{3}
(1,3}
{1, 3}

(1) (FHE)

(2) Hy)

(3) (O(HE) — M(x))
4) H(y) — M)

(5) M(y)
(6) ()M(x)

Hence, the result.
Example: Show that (Fx)[P (x) 1 Q(x)] = (F)PX) A (Fx)0(x).

Solution:

{1
{1
{1
{1}
{1
{1}
{1}

(D) (F)(P (x) 2 Ox))
Q) P () 400)
3P

(4 ()P (x)

) 0

(6) () Q(x)

(7) (FP (x) A (F)Q(x)

Hence, the result.
Note: Is the converse true?

{1
{1

{1
{1

{1}

(1) (FOP (x) A (F)Q(x)
(2) ()P (x)

(3) (F90(x)
@ Py)

(5) Os)

Rule P

Rule ES, (1)

Rule P

Rule US, (3)

Rule T4 (2), (4), and 17
Rule EG, (5)

Rule P

Rule ES, (1)

Rule T, (2), and I
Rule EG, (3)

Rule T, (2), and I
Rule EG, (5)

Rule T, (4), (5) and Ig

Rule P
Rule T, (1) and I7

Rule T, (1), and I1
Rule ES, (2)

Rule ES, (3)
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Here in step (4), y is fixed, and it is not possible to use that variable again in step (5).
Hence, the converse is not true.

Example: Show that from ( Zx)[F (x) AS(x)] — (y)[M(y) — W (y)] and (Fy)[M(y) A =W (y)] the
conclusion (x)[F (x) — —S(x)] follows.

{1} (1) (M) A=W ()] Rule P
{1} (2) [M(z) A=W (2)] Rule ES, (1)
{1} (3) —[M(z) > W (2)] Rule T, (2), and ~(P — Q) < P A =Q
{1} @ ()~ MQy) — W] Rule EG, (3)
{1} 5) ~MIMy) — W] Rule T, (4), and ~(x)A(x) & (Fx)-A(x)
{1} 6) ([F () AS()] — MIM(y) = W (y)IRule P
{1,6} (7)) ~(I)[F (x) 15x)] Rule T, (5), (6) and 112
{1, 6} (8) (x)~[F (x)AS(x)] Rule T, (7), and ~(x)A(x) < (Fx)-A(x)
{16} (9 ~[F(2)A5(2)] Rule US, (8)
{1,6} (10) —F (z) V-S(2) Rule T, (9), and De Morgan‘s laws
{1,6}) (11) F(z) — ~S(2) Rule T, (10),and P —» Q & =P V(Q
{1,6} (12) (X)(F (x) = ~S(x)) Rule UG, (11)
Hence, the result.

Example: Show that (x)(P (x) VQ(x)) = (x)P (x)-V(Fx)Q(x). (May. 2012)

Solution: We shall use the indirect method of proof by assuming —((x)P (x) U Fx)Q(x)) as an
additional premise.

{1} (1) ~((x)P (x) V-(Z)O(x)) Rule P (assumed)

{1} 2) ()P (x) A =(Fx)O(x) Rule T, (1) ~(P vQ) & -~P A-Q

{1} 3) —~(xX)P(x) Rule T, (2), and I1

{1} @) (Fx)~P (x) Rule T, (3), and ~(x)A(x) & (Fx)-A(x)
{1} 5) =(F)0(x) Rule T, (2), and I

{1} 6) ()0 Rule T, (5), and ~(Zx)A(x) < (x)-A(x)
{1} (7) =P (y) Rule ES, (5), (6) and 112

{1} ®) -0 Rule US, (6)

{1} 9) P () A-0®) Rule T, (7), (8)and Ig

{1} 10) (P () vOO)) Rule T, (9), and ~(P vQ) &P N0
{11} (11) ()P (x) VOXx)) Rule P

{11} 12y (P vOo®m)) Rule US

[1,11) (13) ~(P ) VOO A (P () VOX) Rule T, (10), (11), and Iy

{1, 11} (14) F Rule T, and (13)
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which is a contradiction.Hence, the statement is valid.

Example: Using predicate logic, prove the validity of the following argument: |Every
husband argues with his wife. x is a husband. Therefore, x argues with his wifel.

Solution: Let P (x): x is a husband.

Q(x): x argues with his wife.

Thus, we have to show that (x)[P (x) — Q(x)] A1 P (x) = Q(y).

{1} ()P x) — 0x) Rule P

(1 Py — 0y Rule US, (1)

{1} B3)P () Rule P

{1} 4) 0 Rule T, (2), (3), and I1

Example: Prove using rules of inference

Duke is a Labrador retriever.
All Labrador retriever like to swim.
Therefore Duke likes to swim.

Solution: We denote

L(x): x is a Labrador retriever.
S(x): x likes to swim.

d: Duke.

We need to show that L(d) A (x)(L(x)~—>'S(x)) = S(d).

{1} (1) ()(L(x) — Sx)) Rule P

{1} (2) L(d) — S(@d) Rule US, (1)

{2} (3) L(d) Rule P

{1,2) (4 S Rule T, (2), (3), and I1 1.

JNTUK Previous questions

Test the Validity of the Following argument: —All dogs are barking. Some animals are
dogs. Therefore, some animals are barkingl.
Test the Validity of the Following argument:
—Some cats are animals. Some dogs are animals. Therefore, some cats are dogsl.
Symbolizes and prove the validity of the following arguments :

Himalaya is large. Therefore every thing is large.

Not every thing is edible. Therefore nothing is edible.

a) Find the PCNF of (~pr) A(qep) ?

Explain in brief about duality Law?

Construct the Truth table for ~(~p~~q)?
Find the disjunctive Normal form of ~(p — (gq”'r)) ?

Define Well Formed Formula? Explain about Tautology with example?

Explain-in-detat-about-the Logical Connectives-with-Examples?
www.FirstRanker.com
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MULTIPLE CHOICE QUESTIONS

1: Which of the following propositions is tautology?
A.(pvq—q B. p v (q—p) Cpv D.Both (b) & (¢)
(P—q)
Option: C

2: Which of the proposition is p* (~ p v q)
is A.A tautology B.A C.Logically equivalent to p * q D.All of above
contradiction
Option: C

3: Which of the following is/are tautology?
Aavb—b"c Ba”rb—byv Cavb—(b— D.None of these
C c)
Option: B

Logical expression (A*B) - (C'*"A) - (A=1)is
A.Contradiction B.Valid C.Well-formed formula D.None of these
Option: D
5: Identify the valid conclusion from the premises Pv Q,Q - R, P —
M, ™M
APARVR) BPA(PAR) CRAPVvQ) DQANPVR)
Option: D
Let a, b, ¢, d be propositions. Assume that the equivalence a < (b v Tb) and b <> ¢ hold. Then

truth value of the formula (a * b) — ((a * ¢) v d) is always

A.True B.False C.Same as the truth value of'a® D.Same as the truth value of b

Option: A
7: Which of the following is a declarative statement?

A. It's right B. He says C.Two may-not be an even integer D.I love you

~ Option: B

P — (Q — R) is equivalent to
A.(P"Q)—R B.PvQ)— C.PvQ) — D.None of these
R 1R
Option: A

9: Which of the following aretautologies?
A(PvQr"Q=QB(PvQ"rTP)—» C.(PvQ)"P)—  D.Both(a) & (b)

Q P

Option: D
If F1, F2 and F3 are propositional formulae such that F1 * F2 — F3 and F1 * F2—F3 are
both

tautologies, then which of the following is TRUE?

A.Both F1 and F2 are tautologies B.The conjuction F1 * F2 is not satisfiable
C.Neither is tautologies D.None of these

42
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Option: B
Consider two well-formed formulas in propositional logic
F1:P—>1PF2: (P —1P) v ( 1P —) Which of the following statement is correct?

A F1 is satisfiable, F2 is unsatisfiable B.F1 is unsatisfiable, F2 is
satisfiable C.F1 is unsatisfiable, F2 is valid D.F1 & F2 are both
satisfiable
Option: C
12: What can we correctly say about proposition P1 : (p v 1q) * (q —r) v (r v p)

A.P1 is tautology B.P1 is satisfiable
C.If pis true and q is false and r is false, the P1 is
true D.If p as true and q is true and r is false, then P1
is true
Option: C

PvQ) " (P —R)N(Q —S) is equivalent to
AS”? B.S— CSv D.All of above
R R R
Option: C

14: The functionally complete set
isA.{1,~ v} B.{|,~}C.{1} D.None of these

Option: C

Pv Q)" (P—R)"(Q — R)is equivalent to
AP BQ CR DTrue=T
Option: C

1(P — Q) is equivalent to
AP~1Q BPA"QC.IPvQ D.None of these
Option: A

In propositional logic , which of the following is equivalent to p — q?
A~p—q B.~pvq C~piv~q D.p —q
Option: B

Which of the following is FALSE? Read * as And, v as OR, ~as NOT, —as one way

implication and <> as two way implication?
A(x = YA X) >y Bll~x =N (~x A =y))oy C.x = (x V) D(x vy) o(~x v
~y))
Option: D

19: Which of the following well-formed formula(s) are valid?

A(P—->QPQMQ—R)— (P—R) B.P— Q) —(1P - 1Q)
C.Pv(TPv1Q)) —P D.(P—-R)v(Q—R))— (PvQ}—R)
Option: A

Let p and q be propositions. Using only the truth table decide whether p <> q does not imply

P

1qis
A.True B.False C.None D.Both A and B
Option: A
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UNIT-2
Set Theory

Set: A set is collection of well defined objects.

In the above definition the words set and collection for all practical purposes are Synonymous.
We have really used the word set to define itself.
Each of the objects in the set is called a member of an element of the set. The objects themselves
can be almost anything. Books, cities, numbers, animals, flowers, etc. Elements of a set are
usually denoted by lower-case letters. While sets are denoted by capital letters of English
larguage.
The symbol € indicates the membership in a set.

e [f—ais an element of the set Al, then we write a € A.
The symbol € is read —is a member of | or —is an element of |.
The symbol [7 is used to indicate that an object is not in the given set.
The symbol [ is read —is not a member of | or —is not an element of .
If x is not an element of the set A then we write x [J A.
Subset:
A set A is a subset of the set B if and only if every element of A is also an element of B. We also say that A is
contained in B, and use the notation A C B.

Proper Subset:
A set A is called proper subset of the set B. If (i) A is subset of B and (if) B is not a subset A i.e., A is said to be
a proper subset of B if every element of A belongs to the set B, but there is atleast one element of B, which is

not in A. If A is a proper subset of B, then we denote it by A C B.

Super set: If A is subset of B, then B is called a superset of A;

Null set: The set with no elements is called an empty set ornull set. A Null set is designated by the symbol ¢@.
The null set is a subset of every set, i.e., If A is any set-then ¢ < A.

Universal set:
In many discussions all the sets are considered to be subsets of one particular set. This set is called the

universal set for that discussion. The Universal set is often designated by the script letter £ . Universal set in
not unique and it may change from‘ne discussion to another.

Power set:
The set of all subsets of a set-A is called the power set of A.
The power set of A is denoted by P (A). If A has n elements in it, then P (A) has 2. elements:

Disjoint sets:
Two sets are said to be disjoint if they have no element in common.

Union of two sets:
The union of two sets A and B is the set whose elements are all of the elements in A or in B or in both.

The union of sets A and B denoted by A U B is read as —A union Bl.

Intersection of two sets:
The intersection of two sets A and B is the set whose elements are all of the elements common to both A and B.

The intersection of the sets of —Al and —Bl is denoted by A B and is read as —A intersection Bl

Difference of sets:
If A and B are subsets of the universal set U, then the relative complement of B in Ais the set of

all elements in A which are not in A. It is denoted by A — B thus: A — B= {x | x € A and x¢ B}

www.FirstRanker.com
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Complement of a set: .
If U is a universal set containing the set A, then U — A is called the complement of A. It is denoted by A .

Thus A' = {x: x¢ A}

Inclusion-Exclusion Principle:

The inclusion—exclusion principle is a counting technique which generalizes the familiar method of obtaining

the number of elements in the unionof two finite sets; symbolically expressed as
IA UBI=IAl+IBlI-1A N BI

Fig.Venn diagram showing the
union of sets A and B

where A and B are two finite sets and |S| indicates the cardinality of a set S (which may be considered as the
number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of
the two sets may be too large since some elements may be counted twice. The double-counted elements are
those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.

The principle is more clearly seen in the case of three sets, which for the sets A, B and C is given by

IA'U BU BCI = Al + BI+ ICI= 1A N BI- IC N BI- A N CHIA NBNCL

Fig-Inclusion—exclusion illustrated by a
Venn diagram for three sets

This formula can be verified by counting how many times each region in the Venn diagram figure is included
in the right-hand side of the formula. In this case, when removing the contributions of over-counted
elements, the number of elements in the mutual intersection of the three sets has been subtracted too often, so
must be added back in to get the correct total.

In general, Let Al, - - -, Ap be finite subsets of a set U. Then,
U U U = D 1ad= ) |a, NAy|+
l=isp l=i)<izx=p

> AL N, NAG =+ 1P A N A2 N N A,
1 :'.l'j <|‘g €|'3 =p
Example: How many natural numbers n < 1000 are not divisible by any of 2, 3?
Let Ay ={n € NIn <1000, 2ln} and A; = {n € N I n < 1000, 3In,
Then, IA; U Azl =1A,l + 1A31 = [A; N A3l =500 + 333 — 166 = 667.
So, the required answer is 1000 — 667 = 333.
Example: How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?7
Forie {2,3,5, 7}, let A;={n € NIn<10000,in}.
Therefore, the required answer is 10000 — 1A, U A; U As U Ayl =2285.

45
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Relations
Definition: Any set of ordered pairs defines a binary relation.

We shall call a binary relation simply a relation. Binary relations represent
relationships between elements of two sets. If R is a relation, a particular ordered pair, say (x,

y) € R can be written as xRy and can be read as —ux is in relation R to yl.

Example: Give an example of a relation. .,
Solution: The relation —greater thanl for real numbers is denoted by > . If x and y are any
two real numbers such that x > y, then we say that (x, y) €>. Thus the relation > is { } >= (x,

y) : x and y are real numbers and x > y
Example: Define a relation between two sets A = {5, 6, 7} and B = {x, y).

Solution: If A = {5, 6, 7} and B = {x, y/, then the subset R = {(5, x), (5, y), (6, x), (6, y)} is a
relation from A to B.

Definition: Let S be any relation. The domain of the relation S is defined as the set of all
first elements of the ordered pairs that belong to S and is denoted by D(S).

DES)={x:(x,y) €S, forsome y }

The range of the relation S is defined as the set of all second elements of the ordered pairs
that belong to S and is denoted by R(S).

R(S) ={y: &y S5, for some x}

Example: A = {2, 3, 4} and B={3, 4, 5, 6, 7}. Define-a relation from A to B by (@, b) eR if a
divides b.
Solution: We obtain R ={(2, 4), (2, 6), (3, 3),.(3, 6), (4, 4)}.

Domain of R = {2, 3, 4} and range-of R = {3, 4, 6}.

Properties of Binary Relations in a Set

A relation R on a set-X is said to be

Reflexive relation if xRx or (x, x) €R, tx €X
Symmetric relation if xRy then yRx, Vx, y € X
Transitive relation if xRy and yRz then xRz, Vx, y, z € X

Irreflexive relation if x Rx or (x, x) ¢ R, Vx €X
Antisymmetric relation if for every x and y in X, whenever xRy and yRx, then x = y.

Examples: (). If R] ={(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be arelationon A = {1, 2, 3}, then R is

a reflexive relation, since for every x €4, (x, x) eR].

(). If Ry ={(1, 1), (1, 2), (2, 3), (3, 3)} be arelationon A = {1, 2, 3/, then Ry is not a
reflexive relation, since for every 2 €A, (2, 2) ¢ R).

(). fR3={(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} be arelationon A = {1, 2, 3/, then R3 is
a symmetric relation.
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(v). If Ry ={(1, 2), (2, 2), (2, 3)} on A ={1, 2, 3} is an antisymmetric.

Example: Given S ={1, 2, ..., 10} and a relation R on S, where R = {(x, y)| x + y = 10/.
What are the properties of the relation R?

Solution: Given that
S=/1,2 .. 10}

={(x, yIx+y=10/
={(1,9), 0, 1),(28),8,2),3,7),(73),46), (64,595,

(i). For any x € S and (x, x) ¢ R. Here, 1 e Sbut (1, 1)¢R.
the relation R is not reflexive. It is also not irreflexive, since (5, 5) €R.
(i1). (1,99 eR =9, 1) eR
2,8) eR=>(8,2) eR.....
the relation is symmetric, but it is not antisymmetric. (iii). (1, 9) e Rand (9, 1) eR
(I, 1)¢R

The relation R is not transitive. Hence, R is symmetric.

Relation Matrix and the Graph of a Relation

Relation Matrix: A relation R from a finite set X to a finite.set ¥ can be repre-sented by a matrix
is called the relation matrix of R.

Let X = {x1, x2, ..., x;p} and Y = {y1, y2, ..., ¥,/ be finite sets containing m and n elements,
respectively, and R be the relation from A toB. Then R can be represented by an m X n matrix
MR = [rjj ], which is defined as follows:
1, if (xi,yi)e R

roo=3
j 0. if(g.y)eR
Example. Let A = {1, 2, 3, 4}.and B = {b1, b), b3}. Consider the relation R = {(1, b)), (1, b3),
(3, b2), (4, b1), (4, b3)}..Determine the matrix of the relation. Solution: A ={1, 2, 3, 4}, B =
{b1, b2, b3/.

Relation R = {(1, bp), (1, b3), (3, bp), (4, b1), (4, b3)).

Matrix of the relation R is written as

( 0 11\|
ThatisM:I 0 OOI
10 10]
| |

L1 01)
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Example: Let A = {1, 2, 3, 4}. Find the relation R on A determined by the matrix

|(1 0 10\|
MR=I00 10{
110 00|
L1101/

Solution: The relation R = {(1, 1), (1, 3), (2, 3), 3, 1), (4, 1), (4, 2), (4, 4)}.

Properties of a relation in a set:
(). If a relation is reflexive, then all the diagonal entries must be 1.

(ii). If a relation is symmetric, then the relation matrix is symmetric, i.e., rij = rjj for every i and ;.

(iii). If a relation is antisymmetric, then its matrix is such that if r;; = 1 then rj; = 0 for i /.

Graph of a Relation: A relation can also be represented pictorially by drawing its graph. Let R
be a relation in a set X = {x], x2, ..., x;;;/. The elements of X are represented by points or circles
called nodes. These nodes are called vertices. If (x;, Xj ) €R, then we connect the nodes x; and X

by means of an arc and put an arrow on the arc in the direction from x; to Xj This is called an

edge. If all the nodes corresponding to the ordered pairs in R are connected by arcs with proper
arrows, then we get a graph of the relation R.

Note: (i). If x;Rx; and x;j Rx;, then we draw two arcs between x; and xj with arrows pointing in
both directions.

(ii). If x;Rx;, then we get an arc which starts from node x; and returns to node x;. This arc is called
i"xg g i i
loop.

Properties of relations:

(). If a relation is reflexive, then there:must be a loop at each node. On the other hand, if the
relation is irreflexive, then there is no loop at any node.

(ii). If a relation is symmetric and.if one node is connected to another, then there must be a return
arc from the second node to the first.

(ii1). For antisymmetric relations, no such direct return path should exist.

(iv). If a relation is transitive, the situation is not so simple.

Example: Let X = {1, 2, 3, 4} and R={(x, y)| x > y}. Draw the graph of R and also give its matrix.
Solution: R={(4, 1), (4, 3), (4, 2), 3, 1), (3, 2), (2, 1)}.
The graph of R and the matrix of R are

1
2
3 4
Graph of R
|(0 0 00\‘
MR:II 0 00}
|1 1 OO|
| |
\1 1 10/
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Partition and Covering of a Set
Let Sbe a givensetand A = {A1, Ap, - - -, A;yf whereeach Aj, i=1, 2, - - -, mis a subset of S and

A =8,

=1

Then the set A is called a covering of S, and the sets Aq, Ap, - - -, Ay, are said to cover S. If, in
addition, the elements of A, which are subsets of S, are mutually disjoint, then A is called a
partition of S, and the sets A, Ap, - - -, Ay, are called the blocks of the partition.

Example: Let S = {a, b, ¢} and consider the following collections of subsets of S. A = {{a, b}, {b,
c}},B={la}, {a c}},C={{a}, {b c}}.D={{a b, c}},E={{a}, {b}, {c}}, and F = {{a}, {a, b},

{a, c}}. Which of the above sets are covering?

Solution: The sets A, C, D, E, F are covering of S. But, the set B is not covering of S, since their
union is not S.

Example: Let S = {a, b, ¢} and consider the following collections of subsets of S. A = {{a, b}, {b,
c}}, B={{a}, {b, c}}, C={{a b c}}, D={{a}, {b}, {c}}, and E={{a}, {a, c}}.

Which of the above sets are covering?

Solution: The sets B, C and D are partitions of S and also they are covering. Hence, every partition
is a covering.

The set A is a covering, but it is not a partition of a set, since the sets {a, b} and {b, c} are not
disjoint. Hence, every covering need not be a partition.

The set E is not partition, since the union of the subsets is not S. The partition C has one block
and the partition D has three blocks.

Example: List of all ordered partitions:S'={a, b, c, d} of type (1, 2, 2).

Solution:
({a}, (D}, {c, d}), ({b}, {a}, {c, d})
({a}, {c}, {b, d}), ({c}, {a}, {D, d})
({a}, {d}, {b, c}), ({d}, {a}, {b, c})
({b}, {c}, {a, d}), ({c}, (b}, {a, d})
({b}, {d}, {a, c}), ({d}, (b}, {a, c})
({c}, {d}, {a, b)), ({d}, {c}, {a, D))

Equivalence Relations
A relation R in a set X is called an equivalence relation if it is reflexive, symmetric and transitive.
The following are some examples of equivalence relations:

1.Equality of numbers on a set of real numbers.

2. Equality of subsets of a universal set.

Example: Let X={1,2,3,4)and R=={(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)/.
Prove that R is an equivalence relation.
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The corresponding graph of R is shov&frjl in figure:

Clearly, the relation R is reflexive, symmetric and transitive. Hence, R is an equivalence relation.
Example: Let X ={1, 2, 3, ..., 7} and R =(x, y)| x — y is divisible by 3. Show that R is an

xxxxxxxxxx

XRx
R is reflexive.
(ii). For any x, y €X, if xRy, then x — y is divisible by 3.
—(x — ) is divisible by 3.
y — x is divisible by 3.
YRx
Thus, the relation R is symmetric.
(iii). For any x, y, z € X, let xRy and yRz.
(x —y) + (y — 2) is divisible by 3
x — z is divisible by 3

xRz

Hence, the relation R is transitive.

Thus, the relation R is an equivalence relation.
Congruence Relation: Let / denote the set of all positive integers, and let i be apositive
integer. For x el and y €1, define R as R = {(x, y)| x — y is divisible by m }
The statement Ix — y is divisible by ml is equivalent to the statement that both x and y have the
same remainder when each is divided by m.
In this case, denote R by = and to write xRy as x =y (mod m), which is read as lx equals to y
modulo ml. The relation = is called a congruence relation. Example: 83 = 13(mod 5), since
83-13=70 is divisible by 5.
Example: Prove that the relation —congruence modulo ml over the set of positive integers is
an equivalence relation.

Solution: Let N be the set of all positive integers and m be a positive integer. We define
the relation Icongruence modulo ml on N as follows:

Letx, y e N. x =y (mod m) if and only if x — y is divisible by m.
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Let x, y, z € N. Then
1).x—-x=0.m

x =x (mod m) forall x e N
(ii). Let x =y (mod m). Then, x — y is divisible by m.
—(x —y) =y — x is divisible by m.
i.e., y =x (mod m)

The relation = is symmetric.

x —yandy — z are divisible by m. Now (x — y) + (y — z) is divisible by m. i.e., x —
is divisible by m.

x = z (mod m)

The relation = is transitive.

Since the relation = is reflexive, symmetric and transitive, the relation congruence modulo m is an
equivalence relation.

Example: Let R denote a relation on the set of ordered pairs of positive integers such that
(x,y)R(u, v) iff xv = yu. Show that R is an equivalence relation.

Solution: Let R denote a relation on the set of ordered pairs of positive integers.
Let x, y, u and v be positive integers. Given (x, y)R(u, v) if and only if xv = yu.
(). Since xy = yx is true for all positive integers

(x, Y)R(x, y), for all ordered pairs (x, y).of positive integers.
The relation R is reflexive. (ii).-Let (x, y)R(u, v)

XV =yu =yu

XV > uy = vx

(u, VIR(x, y)

The relation R is.symmetric.

(iii). Let x, y, u, v, m and n be positive integers
Let (x, y)R(u;,.v) and (u, v)R(m, n)

xv =ywand un = vm
Xvun = yuvm

xn = ym, by canceling uv
(x, Y)R(m, n)

The relation R is transitive.

Since R is reflexive, symmetric and transitive, hence the relation R is
an equivalence relation.
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Compatibility Relations

Definition: A relation R in X is said to be a compatibility relation if it is reflexive and symmetric.
Clearly, all equivalence relations are compatibility relations. A compatibility relation is
sometimes denoted by ~.

Example: Let X = {ball, bed, dog, let, egg/, and let the relation R be given by R = {(x,
Wl x, y € X AxRy if x and y contain some common letter}.

Then R is a compatibility relation, and x, y are called compatible if xRy.

Note: ball~bed, bed~egg. But ball~¢gg. Thus = is not transitive.

Denoting Iballl by x1, Ibedl by xp, Idogl by x3, lletl by x4, and leggl by x5, the graph of = is
given as follows:

x
2
&5

A3
A
x4
Maximal Compatibility Block:
Let X be a set and = a compatibility relation on X. A subset A €X is called a maximal

compatibility block if any element of A is compatible to every other element of A and no element
of X — A is compatible to all the elements of A.

Example: The subsets {x1, x2, x4/, {x2, x3, x5}, {xD, x4,X5}, {x1, x4, x5} are maximal
compatibility blocks.

Example: Let the compatibility relation on a set {x], x, ..., xg/ be given by the matrix:

x2 1

x31 1

x40 0 1

x50 0 1 1

x6 1 0 1 0 1

X1 X2 A3 X4 X5
Draw the graph and find the maximal compatibility blocks of the relation.
Solution: 7
s X3

%5
A

X,
The maximal compatibility blocks are {x1, x2, x3 },{;cl, x3, X6/,{x3, x5, X6/,{x3, x4, x5/.
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Composition of Binary Relations
Let R be a relation from X to Y and S be a relation from Y to Z. Then a relation written as R © S is

www.FirstRanker.com

called a composite relation of R and S where RoS = {(x, z)| x € X, 7 € Z, and there exists y €

with (x, y) eRand (y, z) €S }.

Theorem: If R is relation from A to B, S is a relation from B to C and T is a relation from C to
DthenTe (S°R)=(T>S)°R

Example: Let R = {(1, 2), 3, 4), (2, 2)j and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. Find R
©S,S°R,R°(S°R), R°S)°R,R°R,S°S,and (R°R)°R.
Solution: Given R = {(1, 2), (3, 4), (2, 2)} and S={(4, 2), (2, 5), (3, 1), (1, 3)}.

R°S={(1,5), (3 2), (2 5)}

S R={(42),32),(1,4))=RS

(R°S8)°R={(3,2)}
c(§°R)={(3,2)}=(R°S)

RR°R={(1,2), (2 2)

R°R OS:{(4r 5)’ (3r 3)! (1’ 1)}

Example: Let A = {a, b, ¢}, and R and S be relations on A whose matrices are as

given below:

(1 01) (1 00)
\ \ | \
MRZ} O 1 O IandMS=|| 1 0 II
L1 11) Lo 11)

Find the composite relations R S, S ° R, R ° R, §.°.5 and their matrices.

Solution:

R ={(a, a), (4, ¢), (b, a), (b;b), (b, ¢), (c, b)}

S={(a, a), (b, b), (b, ¢)/(c, 'a), (c, c)}. From these, we find that

°S={(a, a), (g c), bra), (b b), (b c), (c, b), (c, c)}

°R={ (621, a), (a, ¢), (b, b), (b, a), (b, ¢), (¢, a), (¢, b), (c, ©)}
R°R=R ={(a, a%, (a, ¢), (a, b), (b, a), (b, ¢), (b, b), (c, a), (c,
b), (c, )} $285=8 ={(a, a), (b, b), (b, c), (b, a), (c, a), (c, c)}.

The matrices of the above composite relations are as given

below:
(1 01) (10 1)
| | | |
”’Ros:l\ 0 1 1] ;Msor=I111] |
UL 1y Ut
‘(1 00\|
Msos:||1 OII
1
U1

|(111\|

iMpogr=1111];

|
Ut
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Transitive Closure N 5 3
Let I{( be any finite set and R be a relation in X. The relation R =RUR UR U -
-UR in X is called the transitive closure of R in X.
Example: Let the relation R = {(1, 2), (2, 3), (3, 3)} on the set {1, 2, 3). What is the transitive closure of
R?
Solution: Given that R = {(1, 2), (2, 3), (3, 3)/.
+ 2 3
The transitive closure of RisR =RUR UR U---=
5 R={(1, 2), (2 3), (3, 3)}
R =R°R={(1,2),(2,3),(3,3)}{(,2), 2 3), 3B 3)}={(1,3),
(23 3), g 3)}
R4 =R3 °R=1{(1, 3), (2, 3), (3, 3)/
R :R OR: {(lr 3)! (2’ 3)! (3r 3)}
+ 2 3 4
R =RUR UR UR U..
{(1,2),(23),3,3)}U{,3),(23), (3 3)] V{1 3)23),3 3)) v..
={(1, 2), (1, 3),_{_2, 3), (3, 3)}.
Therefore R ={(1, 2), (1, 3), (2, 3), (3, 3)/.
+
Example: Let X = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4)} be a relation on X. Find R .
Solution: Given R = {(1, 2), (2, 3), (3, 4)}
R3= {(1,3), 2 4)
R 4= {1, 4)}
R+ ={(1, 4)}
R ={(1,2),(23),34),(3) 24, d4d)
Partial Ordering

A binary relation R in a set P is called a partial order relation or a partial ordering in P iff R
is reflexive, antisymmetric, and transitive.'i.e.,

aRa for all a e P
aRb and bRa = a=b

aRb and bRc-=aRc

A set P together with a partial ordering R is called a partial ordered set or poset. The relation R is
often denoted by the symbol < which is diff erent from the usual less than equal to symbol. Thus,
if

is a partial order in P , then the ordered pair (P, <) is called a poset.

Example: Show that the relation Igreater than or equal tol is a partial ordering on the set of
integers.

r s

Solution: Let Z be the set of all integers and the relation R = >

(1). Since a > a for every integer a, the relation > is reflexive.

Let aRb and bRa =2 a>band b >a
a=b

The relation > is antisymmetric. (iii).
Let a, b and ¢ be any three integers.
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Let aRb and bRc =a>band b > ¢

azc

! !

The relation > is transitive.
’ ’

! ’
Since the relation > is reflexive, antisymmetric and transitive, > is partial ordering on the set
of integers. Therefore, (Z, >) is a poset.

Example: Show that the inclusion €is a partial ordering on the set power set of a set S.
Solution: Since (i). A €A for all A €8, <is reflexive.

(ii). A €Band B €A = A = B, S'is antisymmetric.

(ii1). A €Band B £C = A £C, S£is transitive.
Thus, the relation £'is a partial ordering on the power set of S.
Example: Show that the divisibility relation / is a partial ordering on the set of positive integers.
Solution: Let Z+ be the set of positive integers.

Since (i). a/a for all a € Z , / is reflexive.
(i1). a/b and b/a = a = b, / is antisymmetric.

(iii). a/b and b/c = a/c, / is transitive.

+ +
It follows that /is a partial ordering on Z and (Z;./) is a poset.

Note: On the set of all integers, the above relation is-not'a partial order as a and —a both divide
each other, but a = —a. i.e., the relation is not antisymmetric. Definition: Let (P, <) be a partially
ordered set. If for every x, y € P we have eithet x <y Vy <x, then <is called a simple ordering or
linear ordering on P , and (P, <) is called a fotally ordered or simply ordered set or a chain.
Note: It is not necessary to have x <yor'y <x for every x and y in a poset P . In fact, x may not be
related to y, in which case we say that x and y are incomparable. Examples:

(1). The poset (Z, <) is a totally ordered.

Since a < b or b <awhenever a and b are integers.
(i1). The divisibility relation /is a partial ordering on the set of positive integers.

+
Therefore (Z , /) is a poset and it is not a totally ordered, since it contain elements that are
incomparable, such as-5.and 7, 3 and 5.

Definition: In a poset (P, <), an element y € P is said to cover an element x € P if x < y and if

there does not exist any element z € P such that x <z and z <y; thatis, ycovers x @ (x <y A (x <z

y=x=zVz=y).

Hasse Diagrams
A partial order <on a set P can be represented by means of a diagram known as Hasse diagram
of (P, <). In such a diagram,

(i). Each element is represented by a small circle or dot.

(ii). The circle for x € P is drawn below the circle for y € P if x < y, and a line is drawn

between x and y if y covers x.
(ii1). If x < y but y does not cover x, then x and y are not connected directly by a single line.
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Note: For totally ordered set (P, <), the Hasse diagram consists of circles one below the other. The
poset is called a chain.

Example: Let P ={1, 2, 3, 4, 5} and < be the relation lless than or equal tol then the Hasse diagram
is:

It is a totally ordered set.

Example: Let X = {2, 3, 6, 12, 24, 36/, and the relation < be such that x <y if x divides y. Draw the
Hasse diagram of (X, <). Solution: The Hasse diagram is is shown below:

36 24

It is not a total order set.

Example: Draw the Hasse diagram for.the relation R on A = {1, 2, 3, 4, 5} whose relation
matrix given below:

S O O = O
S O = = o=
—
=)

Solution:
R=/(1, 1), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (5.5)}.

Hasse diagram for MR is

N
o
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Example: A partial order R on the set A = {1, 2, 3, 4} is represented by the following digraph.

Draw the Hasse diagram for R. /}L
h |

Solution: By examining the given digraph , we find that
R={(1, 1), (1,2),(1,3),(1,4), 2 2), 2 4), 3 3), 44,
We check that R is reflexive, transitive and antisymmetric. Therefore, R is partial order
relation on A.
The hasse diagram of R is shown below:

4
2</3
1

Example: Let A be a finite set and p(A) be its power set. Let €be the inclusion relation on

the elements of p(A). Draw the Hasse diagram of p(A);~S) for

A={a}
A={a, bj.
Solution: (i). Let A = {a}
pA)={4, a}
Hasse diagram of (p(A), <€) is.shown in Fig: A={a}
¢
(ii). Let A = {a, b}.p(A) = [, {a}, [b}, {a, b})}.
The Hasse diagram for (p(A), €) is shown in fig:
{a, b} {a, b}
{a} {b} {b} {a}
¢ ¢

Example: Draw the Hasse diagram for the partial ordering <€ on the power set P (S) where S = {aq,
b, c}.
Solution: S = {a, b, cj.
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P (S)={¢, {a}, [}, [c}, {a, b}, {a, c], [D, ¢}, {a, b, c}]}.

Hasse diagram for the partial ordered set is shown in fig:

A={§. b, c}

Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D3g).

Solution: We have D3¢ ={1, 2, 3,4, 6, 9, 12, 18, 36/ if and only a divides b. The Hasse
diagram for R is shown in Fig.

Minimal and Maximal elements(members): Let (P, <) denote a partially or-dered set. An
element y € P is called a minimal member of P relative to <if fornox e P,isx < y.

Similarly an element y € P is called a maximal member of P relative to the partial ordering < if

fornox eP,isy <x.

Note:
(1). The minimal and maximal members of a partially ordered set need not unique.
(i1). Maximal and minimal elements are easily calculated from the Hasse diagram.
They are the top' and 'boftem’' elements in the diagram.

Example:

In the Hasse diagram, there are two maximal elements and two minimal elements.
The elements 3, 5 are maximal and the elements 1 and 6 are minimal.
Example: Let A = {a, b, ¢, d, ¢} and let the
partial order on A in the natural way. ¢
The element a 1s maximal.
The elements d and e are minimal. e

Upper and Lower Bounds: Let (P, <) be a partially ordered set and let A € P . Any element x € P

is called an upper bound for A if for all a € A, a <x. Similarly, any element x € P is called a
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lower bound for A if for all a € A, x < a. Example: A = {1, 2, 3, ..., 6/ be ordered as pictured in
figure.

6

If B = {4, 5} then the upper bounds of B are 1, 2, 3. The lower bound of B is 6.

Least Upper Bound and Greatest Lower Bound:
Let (P, <) be a partial ordered set and let A € P . An element x € P is a least upper bound or
supremum for A if x is an upper bound for A and x <y where y is any upper bound for A.
Similarly, the the greatest lower bound or in mum for A is an element x € P such that x is a lower

bound and y <x for all lower bounds y.
Example: Find the great lower bound and the least upper bound of {b, d, g/, if they exist in the
poset shown in fig:

Solution: The upper bounds of {b, d, g} are g and h. Since g < h, g is the least upper bound. The
lower bounds of {b, d, g} are a and b. Since a <-b, b is the greatest lower bound.
Example: Let A = {a, b, ¢, d, e, f, g h} denote a partially ordered set whose Hasse diagram is

shown in Fig:
g h

If B={c, d, e} then f, g, h are upper bounds of B. d e
The element fis least upper.bound. 2
a b

Example: Consider the poset A = {1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in Fig and
let B={3,4,5} 8

The elements 1, 2, 3 are lower bounds of B. 3
3 is greatest lower bound.

il
n
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Functions
A function is a special case of relation.
Definition: Let X and Y be any two sets. A relation f from X to Y is called a function if for every x

X, there is a unique element y € Y such that (x, y) €f. Note: The definition of function requires

that a relation must satisfies two additional conditions in order to qualify as a function. These
conditions are as follows:

For every x € X must be related to some y €Y, i.e., the domain of f must be X and nor merely
a subset of X.
(i1). Uniqueness, i.e., (x, y) efand (x, 2) ef =2y =z.

The notation f: X — Y, means fis a function from X toY .

Example: Let X = {1, 2,3}, Y={p, ¢, v} and f={(1, p), (2, q), 3, r)} then (1) = p, (2) = q, f(3)
= r. Clearly fis a function from X to Y. 7

=y

g ¥
Domain and Range of a Function: If f: X — Y is a function, then X is called the Domain of f and

the set Y is called the codomain of f. The range of fis defined as the set of all images under f.
It is denoted by f(X) = {yl for some x in X, f{x) =y} and is called the image of X in Y. The Range

fis also denoted by Rf.

2
Example: If the function f'is defined by fix)=x + 1 on theset {-2, —1, 0, 1, 2/, find the range of
/ 2
Solution: f(-2)=(-2) +1=5

2
f-D=(=1)"+1=2

f0)=0+1=1
fih=1+1=2
f2)=4+1=5

Therefore, the range of f={1, 2, 5}.

Types of Functions

One-to-one(Injection): A mapping f: X — Y is called one-to-one if distinct elements of X are
mapped into distinct elements of Y, i.e., f is one-to-one if

x1 =k = fix)) fx)
or equivalently fix1) = fix) =x1 =xp forxy, xp €X.

&
N
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Example: f: R — R defined by f(x) = 3x, Vx €R is one-one, since
fix1) =fixp) =23x1 =3xp =x1 =x2, Vx1, x2 €R.
2
Example: Determine whether f: Z — Z given by fix) = x , x € Zis a one-to-One function.

Solution: The function f: Z — Z given by f(x) =x , x € Zis not a one-to-one function. This is

because both 3 and -3 have 9 as their image, which is against the definition of a one-to-one
function.

Onto(Surjection): A mapping f: X — Y is called onto if the range set Re=7Y.

If f: X — Yis onto, then each element of Y is f~image of atleast one element of X.
ie, {fx):xeX}=Y.
If fis not onto, then it is said to be into.

ff
J -
= -
o -
bs Y
be ¥
Surjective Not Surjective

Example: f: R — R, given by f(x) = 2x, Vx € R is onto;

Bijection or One-to-One, Onto: A mapping [+ X — Y is called one-to-one, onto or bijective if it is
both one-to-one and onto. Such a mapping is also called a one-to-one correspondence between X
and Y.

S

L
B
T

& ¥

Example: Show that a mapping f: R — R defined by f(x) = 2x + 1 for x € R is a bijective
map from R to R.

Solution: Let f: R — R defined by f(x) = 2x + 1 for x € R. We need to prove that f is a bijective

map, i.e., it is enough to prove that fis one-one and onto.
Proof of fbeing one-to-one
Let x and y be any two elements in R such that f{x) = f(y)

2x+1=2y+1
xX=y
Thus, fix) =fy) =2x=y

This implies that fis one-to-one.
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Proof of fbeing onto
Let y be any element in the codomain R

fx) =y
2x+ 1=y
x=(y-1)/2

Clearly, x = (y-1)/2eR

Thus, every element in the codomain has pre-image in the domain.

This implies that fis onto

Hence, fis a bijective map.
Identity function: Let X be any set and f'be a function such that f: X — X is defined by f{x) = x
for all x € X. Then, f1is called the identity function or identity transformation on X. It can be

denoted by / or I,.
Note: The identity function is both one-to-one and onto.

Let I)(x) = I(y)
x=y
I, is one-to-one

I s onto since x = I;(x) for all x.
Composition of Functions

Letf: X — Yand g : Y — Z be two functions. Then the composition of fand g denoted by g ° f,
is the function from X to Z defined as

(g ° H(x) = g(fix)), for all x € X.
Note. In the above definition it is assumed that the range of the function fis a subset of Y (the
Domain of g), i.e., RfEDg. g f1is called'the left composition g with f.
Example: Let X ={1, 2, 3}, Y={p, g} and’Z={a, b}. Alsoletf: X — Ybe f={(1, p), (2, ¢), (3,
¢g)} and g : Y — Z be given by g = {(p, ), (g, b)}. Find g ° f. Solution: g ° f={(1, b), (2, b), (3, b).

Example: Let X = {1, 2, 3} and f,-g, h and s be the functions from X to X
given by
f=1{(1,2),(23),G D/g={(1,2), (2 1), 3 3)}h=
(L 1), (22,6 Dfs={(1,1),(22), 3 3))
Findfefigof,foehog;scog;ge°s;ses;andfes.

Solution:
feg=1{(1,3),(22),3 D}
gof={(1,1),23),3,2)}7fg
feheg=fe(heg)=fc{(1,2),(2 1), G 1)/
{(1,3),(2,2),3,2)}s
cg={(1,2),21),3,3)}=g
gos=1{(1,2),(2 1), 3 3)}
§°g=8°5=¢
ses={(1,1),2,2),@3,3))=s

fes={(1,2),(23),3 D}
Thus,ses=s,feg#geof,seg=ges=gandhes=sch=h.
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Example: Let fix) = x + 2, g(x) =x — 2 and h(x) = 3x for x € R, where R is the set of real
numbers. Find g f; feg;fefige g fehiheg hefiandfeheg.

Solution: f: R — R is defined by fix) =x + 2
R — R is defined by g(x) =x — 2

h: R — R is defined by h(x) = 3x
g°f:R—R
Let x € R. Thus, we can write
(g°NX)=g(fx) =gx+2)=x+2-2=x
(g °NX)={(x, x)| x €R}
(feg)x)=flgl) =flx =2)=(x-2)+2=x
fog={x, x)xeR)}
Fe PO =ffX)=fx+2)=x+2+2=x+4
fef={(x, x+4)x eR}
(g°8)x)=g(g)=gx-2)=x-2-2=x-4
>g°g={(x, x—4)|x eR}
(f e h)(x) = flh(x)) = f(3x) = 3x + 2
feh={x 3x+2)lx eR}
(hog)x)=h(gx)=h(x-2)=3(x=-2)=3x-6
heg={(x 3x—6)lx eR}
heoHX)=h({fx)=h(x+2)=3x+2)=3x+6hof=
{(x, 3x + 6)l x eR}

(feheg)x)=[f°(he°g)lx)
flhog(x)=f3x—6)=3x—-6+2=3x -4

fehog={(x 3x—4)x eR).
Example: What is composition of functions? Let fand g be functions from R to R, where R is a

set of real numbers defined by fixX)=x + 3x+ 1 and g(x) = 2x — 3. Find the composition
of functions: 1) f° fii) fo g iii) g f.
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Inverse Functions

-1
A function f: X — Y is aid to be invertible of its inverse function f  is also function from
the range of finto X.

Theorem: A function f: X — Y is invertible < fis one-to-one and onto.

Example: Let X = {fl, b, c,d}and Y={(1, 2, 3,4} and let f: X — Y be given by f = {(a, 1), (b, 2),
(c, 2), (d, 3)}. Isf afunction?

Solution: f ={(1, a), (2, b), (2, ¢), (3, d)}. Here, 2 has two distinct images b and c.

Example: Let R be the set of real numbers and f: R — R be given by f={(x, xz)l x €R}. Is f_1
a function?

. . . .. . ~1 2
Solution: The inverse of the given function is defined as f = {(x , x)l x eR}.
Therefore, it is not a function.
Theorem: If f: X — Yand g: Y — Xbesuchthatg o f=1 andf° g :Iy, then f and g are
-1 -
both invertible. Furthermore, f =gandg =f

Example: Let X = {1, 2, 3, 4} and f and g be functions from X to X given by f={(1, 4), (2, 1),
(3,2), 4, 3)}and g ={(1, 2), (2, 3), (3, 4), (4, 1)}. Prove that fand g are inverses of each other.
Solution: We check that

(g°N()=g(f(l)) =g =1 =I(1), (feg)1) =fg(l)=A2)=1=II).
(8°N2)=g(f(2)) =g(1) =2 =Ix(2), (feg)2) =fg2)=f3)=2=1I1x2).
(8 °N3) = g(f3) =g(2) =3=LQ), (fo93) =fgB)=f4)=3=L3)
(g 2N = g(fi4) = g(3) =4=L4), (foo@) =flg)=A1)=4=I4)

Thus, for all x €X, (g ° /)(x) = [,(x) and.(f 2 )g)(x) = I,(x). Therefore g is inverse of fand fis
inverse of g.

173
Example: Show that the functions fix) =x and g(x) =x  for x € R are inverses of one another.

3
Solution: f: R — R is definedby fix) =x ;f{: R — R is defined by g(x) =
1 173 3(173)
x o (fee)) =flg) =fix  )=x =x = I(x)
ie., (fo 9)(x) = Iyx)
3 3(173)
and (g ° Hx) = g(flx)) = g(x ) =x =x = Ix(x)
Le., (g °NHx) = Ix(x)

-1

Thus,f=g org=f
i.e., fand g are inverses of one other.

*#*Example: f: R — R is defined by fix) = ax + b, for a, b € R and a 50. Show that fis
invertible and find the inverse of f.
First we shall show that fis one-to-one
Let x1, x2 €R such that fix1) =f(x2)
ax\+b=axy)+b

ax| = ax)
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X1 =x2
f1s one-to-one.
To show that fis onto.

y=ax+b
ax=y—->b
x=(y-b)a
Given y € R(codomain), there exists an element x = (y-b)/a € R sueh that f{(x) = y.
fis onto
fis invertible and f_ 1()c)= (x-b)/a

3 -1
Example: Let f: R — Rbe given by fix) =x —2.Findf .
(i) First we shall show that fis one-to-one

Let x1, x2 €R such that fix1) = f(x))
3

3
X1-2=x2

-2 :>x31 = x32
X1 =x2
.. fis one-to-one.
To show that fis onto.

>y=x =2

>x =y+2 >

X=3 / y\+ 2
Given y € R(codomain), there exists an element x = 31 vy + 2 R such that fix) = y.

fis onto

~1 —
fis invertible and'f\  (x) =% /x+2

Floor and Ceiling functions:
Let x be a real number, then the least integer that is not less than x is called the CEILING of x.

The CEILING of x is denoted by 'x 1.
Examples: [2.151=3, V51=3, =7.41=-7,T21=-2

Let x be any real number, then the greatest integer that does not exceed x is called the Floor of x.
The FLOOR of x is denoted by | x .

Examples: |5.14 =5, | \N5,=2, -7.6)=-8,16,=6, =3 =-3

Example: Let fand g abe functié)ns from the positive real numbers to positive real numbers
defined by f(x) = /2x 4, g(x) =x . Calculate f~ gand g ° f.

Solution: f ° g(x) = f(g(x)) =f(x2)=L2x2 ]

2
° f(x) = g(f(x)=g(1 2x P=(1 2x J)
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Recursive Function
Total function: Any function f: N — N is called rotal if it is defined for every n-tuple in N .

n
Partial function: If f: D — N where D €N , then fis called a partial function.
Example: g(x, y) = x — y, which is defined for only x, y € N which satisfy x > y.
Hence g(x, y) is partial.
Initial functions:
The initial functions over the set of natural numbers is given by

Zero function Z: Z(x) = 0, for all x.
Successor function S: S(x) = x + 1, for all x.

n o n
Projection function U; : U; (x1, x2, ..., x,) = x; for all n tuples (x{, x2, ..., x),
1<i<n.

Projection function is also called generalized identity function. For
example, U 11 (x) = x for every x € N is the identity function.;
Ulan=xU’@69=2U%@269=6U%@69=9

Composition of functions of more than one variable:
The operation of composition will be used to generate the other function.

Let f1(x, ¥), f2(x, ¥) and g(x, y) be any three functions. Then the composition of g with f1 and f>
is defined as a function h(x, y) given by

h(x, y) = g(f1(x, y), f2(x, ¥)).
In general, let f1, f2, ..., f; each be partial function of m variables and g be a partial function of n
variables. Then the composition of g with f1, f2, ..., fj; produces a partial function & given by

h(x1, X2, .., Xpp) = 8 TX XD, oy X)), oo S(X 1, X2, o Xg)).
Note: The function 4 is total iff f1, f2, s Jfn and g are total.

Example: Let f1(x, y) =x + y, /H(x, y) =xy+ ¥ and g(x, y) = xy. Then
h(x, y) = g(f1(x, y), f2(x, )
gl +y, xy + %
(x+ )y +y )
Recursion: The following operation which defines a function f(x1, x2, ..., xp, y) of n + 1 variables

by using other functions g(x1, x2, .., x;) and h(x{, x2, ..., X, ¥, z) of n and n + 2 variables,
respectively, is called recursion.

fx1, x2, ..., x5, 0) = g(x1, x2, ..., Xp)
fx1, x2, oo, X, y + 1) = h(x1, X2, ..., xXp, ¥, X1, X2, .., Xy, V)
where y is the inductive variable.

Primitive Recursive: A function fis said to be Primitive recursive iff it can be obtained from the
initial functions by a finite number of operations of composition and recursion.

***Example: Show that the function f(x, y) = x + y is primitive recursive. Hence compute
the value of f(2, 4).
Solution: Given that f(x, y) = x + y.
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Here, f(x, y) is a function of two variables. If we want f to be defined by recursion, we
need a function g of single variable and a function # of three variables. Now,

foxy+D=x+0@+1)
=(x+y)+1

=fix, y)+ 1.

Also, fix, 0) = x.
We define f(x, 0) as

fxo=x=U",
= S(fx, )
=s(U°; .y, fix, y))

If we take g(x) = Uj 1()c) and h(x, y, 7) = S(U33(x, ¥, 7)), we get fix, 0) = g(x) and fix, y + 1)
= h(x, y, 2). 1 3
Thus, fis obtained from the initial functions U] , U3 , and S by applying composition once
and recursion once.
Hence f'is primitive recursive.
Here,
f2,0)=2
2, 4)=S(A2, 3))
=5(S(2, 2)))
=S(S(S(A2, 1))
=S(S(S(S(A2-0)))))
=S(S(S65(2)))
=S(8(5(3))
=S5(5(4))
=505
=6
Example: Show that fix, y) =x #y is primitive recursion.

Solution: Given that f{x, y) = x_*y.

Here, f(x, y) is a function of two variables. If we want fto be defined by recursion, we
need a function g of single variable and a function / of three variables. Now, fix, 0) =0
and

fxy+D=x*(y+1)=x+*y

Sl y) +x
We can write
fix, 0) =0=Z(x) and

fox y+1) =f1(U33(x, y foe ), U 13(x, ¥ flx, y)))
where f1 (x3 y)=x+Yy, \%hich is primitive recursive. By taking g(x) = Z(x) = 0 and A defined by A(x, y,
2=f1U3 (x, ¥, 2, Ul (x, ¥, 2))=f(x, y+ 1), we see that f defined by recursion. Since g and & are
primitive recursive, fis primitive recursive. Example: Show that f(x, y) = x* is primitive

recursive function. Solution: Note that x =1 for x 50 and we putx =0 for x = 0.

+1
Also, xy :xy *X

Here fix, y) = xy is defined as
fix, 0) = 1 =5(0) = S(Z(x))
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S, y+1)=x *f()% y) ;
U1 gx, ¥ flx, ) *U3 (x,y, fix, y))

3 )
h(x, y, fix, y) =f1(U1 (% y, fix, y), U3 (x, y, fix, y))) where f1(x, y) = x *y, which
is primitive recursive.

fx, y) is a primitive recursive function.

Example: Consider the following recursive function definition: If x < y then fix, y) =0, if y <
x then f(x, y) = fix — y, y) + 1. Find the value of f(4, 7), f(19, 6).
0x<y

Solution: Given f(X, Y) = { fx-y,y)+1;y<x

f4,7H=0 [.4<7]
f(19,6)=£19 - 6,6) + 1
=f(13,6) + 1
f13,6)=£13-6,6) + 1
=f(7,6)+1
f(1,6)=f7-6,6)+1
=f(1,6)+1
=0+1
=1
f3,6) =17, 6) +1
=1 +1
=2
f(19,6) =2+ 1
=3
Example: Consider the following recursive function definition: If x < y then f{x, y) =0, if y <
x then f(x, y) = fix — y, y) + 1. Find the value of f(86, 17)

Permutation Functions
Definition: A permutation is a one-one mapping of a non-empty set onto itself.

Let S ={ajq, ap, ..., ay/ be afinite set and p is a permutation on S, we list the elements of S and

the corresponding functional values of p(ay), p(a), ..., p(ay) in the following form:
a a ... oa
| 1 2 n |
' pta) pla ) .- pla I
L 1 2 n )
If p : § — S is a bijection, then the number of elements in the given set is called the degree of its
permutation.
Note: For a set with three elements, we have 3! permutations.
Example: Let S = {1, 2, 3}. The permutations of S are as follows:

(23 (1 23 (1 23 (1 23 (1 23 (1 23)
=l i Po=| liPs=1 l:Py=] l;Ps=| s Pe=1 |‘
27 217 L2 37 \3 2 Y \3 12) ¢ 32)
Example: Let S={1,2, 3,4}andp : S — S be given by f(1) =2, f(2) =1, f(3) =4, f(4) =3. Write
this in permutation notation.

Solution: The function can be written in permutation notation as given below:

Py
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f=| |
|

2 14
3 | )
Identity Permutation: If each element of a permutation be replaced by itself, then such
a permutation is called the identity permutation.

a a e a |, . ) .
Example: Let S={a ,a ,,a jthenl=| ! ) . ‘15 the identity permutation on S.
1 2 n 'a a .. a
N 2 n)

Equality of Permutations: Two permutations fand g of degree n are said to be equal if and
only if fla) = g(a) for all a €.

Example: LetS={1,2 3 4}
(1 234 (41 32

f=|‘ ‘I e=1 ‘ ‘I

¢ 1 2 4) 43 21)

We have fH)=g(1)=3
f2)=g(2)=1
f3)=g(3)=2
fid) =g4)=4

ie., fla) = g(a) for all a €.

Product of Permutations: (or Composition of Permutations)

b .. _h b.. N )
Let S={a,b,...h}and let|( a4 \|,g:|( 4 |
| | |
\f(@ fD) s ray s@ gb) ... el
We define the composite of f and g asfollows:
((a b .. h) ([ a b.. h)
f‘og:l‘ ‘Iol‘ ‘|
@ fD) o ) g@ g0) g(h))
q a b h \I
= | |
\/(s(@) fgb)). ... Flgh)
Clearly, f° g is a permutation.
(123 4 (123 4)
Example: Let S = {1, 2, 3, 4) and et /= | | | and g = | Findfogandg e
N 2143 \a1 23
fin the permutation from.
(12 3 4) (1234 )
Solution: fo g =| ‘ ‘| gef= ‘| !
3241 ) 1342 )

Note: The product of two permutations of degree n need not be commutative.
Inverse of a Permutation:

a a
If fis a permutationon S={a ,a ,,a }suchthatf | 2 b ‘
1 2 n l
k 1 2 ] n) |
then there exists a permutation called the inverse f, denoted f_ such that f f_ = f_ °f
= [ (the identity permutation on S)
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Solution: f = 2
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2 3 4 henfind /", and show that fof L =/ of= 1

b e b))
1 2 n‘
a
a, .. )
4 3 1)
4 3 1\|:|( |
| |
2 3 4)\4
1 2

3 1) 4 1

3 4\|

3 2)
4 23 4
2) U 2 3 4)
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Cyclic Permutation: Let S = {a{, ap, ..., ay/ be a finite set of n symbols. A permutation f
defined on S is said to be cyclic permutation if fis defined such that

flap) = ap, flap) = a3, ..., flap—1) = ap and flay) = aj.
Example: Let S ={1, 2, 3, 4.

(1 2 3 4)

Then | | =(1 4)(2 3) is a cyclic permutation.
‘\ 4 3 2 1)
Disjoint Cyclic Permutations: Let S = {a|, a), ..., ay/. If f and g are two cycles on S such
that they have no common elements, then fand g are said to be disjoint cycles.
Example: Let S ={1, 2, 3,4, 5, 6}.
Iff=(145)and g =(2 3 6) then fand g are disjoint cyclic permutations on S.
Note: The product of two disjoint cycles is commutative.

(1 2 3 4 5 6 7

Example: Consider the permutation f = | ‘ |‘
L2 3 4 5 1 7 6
The above permutation f can be written as f= (12 3 4 5)(6 7). Which is a product of two disjoint

cycles.

Transposition: A cyclic of length 2 is called a transposition.

Note: Every cyclic permutation is the product of transpositions.

(1 2 3 4, C°5)
Example: = | [=(1 24)(35)=(14)(12)3)53).

\ 2 4 5 1 3)
Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, we write
its elements in the reverse order.

70
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-1
For example, (1234) =(4321).
Even and Odd Permutations: A permutation fis said to be an even permutation if f can be
expressed as the product of even number of transpositions.

A permutation fis said to be an odd permutation if fis expressed as the product of odd number of
transpositions.

Note:

An identity permutation is considered as an even permutation.
A transposition is always odd.

(iii). The product of an even and an odd permutation is odd. Similarly the product of

an odd permutation and even permutations is odd.

Example: Determine whether the following permutations are even or odd permutations.

(1 2 3 4 5)

@ f=| ‘ !

\2 4 3 1 5)
.. (1 2 3 4 5 6 7 8)
(11)g=; |
\ 2 5 7 8 6 1 4 3)

(1 2 3 4 5)

(iii) h=| ‘ [

\ 4 301 2 5)

(1 2 3 4 5\|

Solution: (i). For f=| =(124)=(14)12)

L2 4 3.9 35)

= f is an even permutation
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(1 2 3 4 5 6 7 8)
(ii). For g =| | l
\ 2 5 7 8 6 1 4 3)
(1256)3748)=(16)(15)(12)38)34)37)=gis an even permutation.
(1 2 3 4 5)
(iii) h=| g=(1423)=(1 3)(12)14)

\ 4 3 1 2 5)
Product of three transpositions

= h is an odd permutation.

. 7
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Lattices
In this section, we introduce lattices which have important applications in the theory and
design of computers.

Definition: A lattice is a partially ordered set (L, <) in which every pair of elements a, b €L has
a greatest lower bound and a least upper bound.

Exa_Elple: Let Z+ denote the set of all positive integers and let R denote the _rFelation ‘division’

in Z , such that for any two elements a, b € Z , aRb, if a divides b. Then (Z , R) is a lattice in

which the join of @ and b is the least common multiple of a and b, i.e.
aVb=a@b=LCMofaandb,

and the meet of @ and b, i.e. a *b is the greatest common divisor (GCD) of @ and b i.e.,

aNb=a*b=GCD of a and b.

We can also write a+b = a Wb = a@b=LCM of a and b and a.b = anb = a*»=GCD of a and b.
Example: Let n be a positive integer and S, be the set of all divisors of n If n = 30, S30=/{1, 2,

3,5, 6, 10, 15, 30/. Let R denote the relation division as defined in Example 1. Then (S3(), R) is
a Lattice see Fig:

el

30
o
1

Example: Let A be any set and P (A) be-its.power set. The poset P (A), €) is a lattice in which the

meet and join are the same as the operations N and U on sets respectively.
S={a},P(A)={9, {a}}
A= {a}

¢
S={a, b}, P(A)={4, {a}, {a], S}.

{a, b}

{a} {b}

www.FirstRanker.com
73



» FirstRanker.com

A Firstranker's choice

www.FirstRanker.com www.FirstRanker.com

Some Properties of Lattice
Let (L, <) be a lattice and *and & denote the two binary operation meet and join on (L, <). Then

for any a, b, ¢ €L, we have

(L1):axa=a, (L1)':aa=a(Idempotent laws)

’

(L2): b*a=b*a, (L2) :a @b =>b+ a (Commutative laws)
(L3) : (a*b)*c = axb*), (L3) : (aPb)Bc = a@(b + ¢) (Associative laws)

(I4) :a*a + b) =a,(L4) : ad(a*b) = a (Absorption laws).
The above properties (L1) to (L4) can be proved easily by usir,1g definitions of meet and

join. We can apply the principle of duality and obtain (L1) to (I4) .
Theorem: Let (L, <) be a lattice in which *and & denote the operations of meet and join
respectively. Forany a, €L, a <b & a *b=a < a @ b = b. Proof: We shall first prove that a <b
<a*b=>b.
In order to do this, let us assume that a < b. Also, we know that a <a.
Therefore a < a *b. From the definition of a *b, we have a *b <a.
Hencea <b =a *b=a.
Next, assume that a *b = a; but it is only possible if a <b, thatis,a *b=a > a <b.
Combining these two results, we get the required equivalence.
It is possible to show that a <b < a @ b =/b.in a similar manner.
Alternatively, from a *b = a, we have
b&(a*b)y=b Pa=a @b
butb &(a *b)=>b
Hence a @ b = b follows froma*b = a.
By repeating similar steps,-we can show that a *b = a follows froma @ b = b.
Therefore a <b oa*b=a <a @b =>b.
[a*b<a*c

Theorem: Let (L, <) be a lattice. Then bee :%

La@bSa@c

Proof: By above theorema <b < a *b=a <a &b =>b.
To show that a *b <a *c, we shall show that (a *b) *(a *c)=a *b
(a *b) *(a *c)=a *(b *a) *c

=a *(a *b) *c
=(a *a) *(b *¢)
=a *(b *c)
=a*b

Ifb<cthenaxb<a=xcNext,letb<c=b&c=c.

To show that a &b <a @ c. It sufficient to show that (a @ b) @ (a Pc)=a Pc.
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Consider,(a @b) @ (a Pc)=a P (b Fa) Pc
a@(a®db) dc
(a@a) @b &c)
a@b @dc)
a@b

Ifb<cthena ®b<a PDc.

Note: The above properties of a Lattice are called properties of Isotonicity.
Lattice as an algebraic system:
We now define lattice as an algebraic system, so that we can apply many concepts
associated with algebraic systems to lattices.

Definition: A lattice is an algebraic system (L, *,) with two binary operation _*‘and _&* on

L which are both commutative and associative and satisfy absorption laws.

Bounded Lattice:

A bounded lattice is an algebraic structure (L,A,Vv,0,1) sucha that (L,A,V) is a lattice, and
the constants 0,1< L satisfy the following:

for all xe L, xAl=x and xv1=1

for all xe L, xA0=0 and xv0=x.

The element 1 is called the upper bound, or top of L .and the element O is called the lower
bound or bottom of L.
Distributive lattice:
A lattice (L,V,A) is distributive if the following additional identity holds for all x,
v, and zin L:
AyVz=xAy)V(xAZ)

Viewing lattices as partially ordered-sets, this says that the meet peration preserves nonempty
finite joins. It is a basic fact of dattice theory that the above condition is equivalent to its dual

xVOAZD)=xVyYy AWVz) forallx,y, and zin L.
Example: Show that the following simple but significant lattices are not distributive.

a) 1 b) 1

b

0 0

Solution a) To see that the diamond lattice is not distributive, use the middle elements of the
lattice:aA(bVc)=aAl=abut(aAb)V(aAnc)=0v0=0, and a #0.

Similarly, the other distributive law fails for these three elements.
b) The pentagon lattice is also not distributive
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Example: Show that lattice is not a distributive lattice.
P
O\
Om
/

n

10

¥

Sol. A lattice is distributive if all of its elements follow distributive property so let we verify the
distributive property between the elements n, [ and m. GLB(n, LUB(l, m)) = GLB(n, p) [ LUB(/, m) =

rl
= n (LHS)
also LUB(GLB(n, I), GLB(n, m)) = LUB(0, n); [+ GLB(n, [) = 0 and GLB(n, m) = n]
=n (RHS)

so LHS = RHS.

But GLB(m, LUB(!, n)) = GLB(m, p) [-- LUB(l, n) = p]
=m (LHS)
also LUB(GLB(m, ), GLB(m, n)) = LI(JI?P(IOS’ n); [~ GLB(m, ) = 0 and GLB(m, n) = n]
=n )

Thus, LHS # RHS hence distributive property doesn‘t hold by the lattice so lattice is not
distributive.

Example: Consider the poset (X, <) where X = {1, 2, 3, 5, 30} and the partial ordered relation <
is defined as i.e. if x and y €X then x <y means _x divides y‘. Then show that poset (I+, <) is a
lattice.

Now we can construct the operation table I and table TI-for GLB and LUB respectively and
the Hasse diagram is shown in Fig.

Table I Table II
LUB 1 2 3 5 | 30 GLB 1 2 3 5| 30
1 1 2 3 5 | 30 1 1 1 1 1 1
2 2 2 | 30 | 30 | 30 2 1 2 1 1 2
3 3 | 30 3 | 30 | 30 3 1 1 3 1 3
5 5 |30 | 30 5 | 30 5 1 1 1 5 5
30 |30 |30 |30 | 30 | 30 30 1 2 3 5| 30

40

%

1
Test for distributive lattice, i.e.,
GLB(x, LUB(y, z)) = LUB(GLB(x, y), GLB(x, z))
Assume x =2, y=3 and z =5, then
RHS:GLB(2, LUB(@3, 5)) = GLB(2, 30) =2
LHS: LUB(GLB(2, 3), GLB(2, 5)) =LUB(1, 1) =1
SinceRHS # LHS, hence lattice is not a distributive lattice.
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Complemented lattice:

A complemented lattice is a bounded lattice (with least element O and greatest element 1), in
which every element a has a complement, i.e. an element b satisfyingaVb=1andaAb=
0. Complements need not be unique.

Example: Lattices shown in Fig (a), (b) and (c) are complemented lattices.

1 1 Q
& O
I'_H_\/ \ “\.!; .-"\/ \ / \\
al_} Ob ail_) Ob @ O Oe (b
® o O
0

0
{a) (b) ()
Sol.
For the lattice (a) GLB(a, b) = 0 and LUB(x, y) = 1. So, the complement a is b and vise versa.
Hence, a complement lattice.

For the lattice (b) GLB(a, b) = 0 and GLB(c, ) = 0 and LUB(a, ) = 1 and LUB(c, b) = 1; so
both a and ¢ are complement of b.
Hence, a complement lattice.

In the lattice (¢) GLB(a, ¢) =0 and LUB(a, c) = 1; GLB(a,b) = 0 and LUB(a, b) = 1. So,
complement of a are b and c.

Similarly complement of ¢ are a and b also a and ¢ are complement of b.

Hence lattice is a complement lattice.
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Multiple choice questions

1.A is an ordered collection of objects.
a) Relation  b) Function c) Set d) Proposition
Answer: ¢

2.The set O of odd positive integers less than 10 can be expressed by .
a){1,2,3} b){1,3,57,9} c){1,2,5,9} d){1,5,7,9,11}
Answer: b

3.Power set of empty set has exactly subset.
a) One b) Two c) Zero d) Three
Answer: a

4.What is the Cartesian product of A = {1, 2} and B = {a, b}?
a) {(1, a), (1, b), (2, a), (b, b)} b) {(1, 1), (2, 2), (a, ), (b, b)}
c) {(1, a), (2, a), (1, b), (2, b)} d) {(1, 1), (a, a), (2, a), (1, b)}

Answer: ¢

5.The Cartesian Product B x A is equal to the Cartesian product A x B. Is it True or False?
a) True b) False
Answer: b

6. What is the cardinality of the set of odd positive integers less than 10?
a)10 b)5 ¢)3d)20

Answer: b

7.Which of the following two sets are equal?
a)A={1,2}and B = {1} b)A={1,2} and B={1, 2, 3}
c)A={1,2,3}andB=1{2,1,3} d)A={1,2,4}and B={1, 2, 3}
Answer: ¢

8.The set of positive integers is .
a) Infinite b) Finite ¢) Subset d) Empty
Answer: a

78
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9. What is the Cardinality of the Power set of the set {0, 1, 2}.
a)8 b6 ¢o7 d)9
Answer: a
The members of the set S = {x | x is the square of an integer and x < 100} is-----
{0,2,4,5,9,58,49,56,99, 12} b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
c) {1,4,9, 16, 25, 36, 64, 81, 85, 99} d) {0, 1,4,9, 16, 25, 36, 49, 64, 121}
Answer: b

Let R be the relation on the set of people consisting of (a,b) where aa is the parent of b. Let S
be (}he réalation on the set of people consisting of (a,b) where a and b are siblings. What are SoR
and RoS»

A) (a,b) where a is a parent of b and b has a sibling; (a,b) where a is the aunt or uncle of b.
B) (a,b) where a is the parent of b and a has a sibling; (a,b) where a is the aunt or uncle of b.
C) (a,b) where a is the sibling of b's parents; (a,b) where aa is b's niece or nephew.
D) (a,b) where a is the parent of b; (a,b) where a is the aunt or uncle of b.
On the set of all integers, let (x,y)ER(x,y)ER iff xy>1xy>1. Is relation R reflexive
symmetric, antisymmetric, transitive?
A) Yes, No, No, Yes B) No, Yes, No, Yes
C) No, No, No, Yes D) No, Yes, Yes, Yes E) No, No, Yes, No
Let R be a non-empty relation on a collection of sets defined by ARB if and only if AN B
(Then (pick the TRUE statement)

A R is relexive and transitive B.R is symmetric and not transitive
C.R is an equivalence relation D.R is not relexive and not symmetric
Option: B

Consider the divides relation, m | n, on the set A ={2,3,4, 5,6, 7, 8,9, 10}. The cardinality
of the covering relation for this partial order relation((i.e., the number of edges in the
Hasse diagram) is
@4 ®6 (©S5 @8 (7
Ans:e
Consider the divides relation, m | n, on the'set A = {2, 3,4,5,6,7, 8,9, 10}. Which of
the following permutations of A is not a topological sort of this partial order relation?

(a) 7,2,3,6,9,5,4,10,8 (b)2,3,7,6,9,5,4,10,8

(c) 2,6,3,9,5,7,4,10,8 (d) 3,7,2,9,5,4,10,8,6
3,2,6,9,5,7,4,10,8

Ans:c
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22. Hasse diagrams are drawn for
A.partially ordered sets B lattices C.boolean Algebra  D.none of these
Option: D
23. A self-complemented, distributive lattice is called
A.Boolean algebra B.Modular lattice C.Complete lattice D.Self dual lattice Option:
A
Let D30= {1, 2, 3,5, 6, 10, 15, 30} and relation I be a partial ordering on D30. The lub of
10 and 15 respectively is
A.30 B.15 C.10 D.6 Option: A
25: Let X ={2, 3, 6, 12, 24}, and < be the partial order defined by X <Y if X divides Y.
Number of edges in the Hasse diagram of (X, <) is
A3 B4 C.5  D.None of these
Option: B
26. Principle of duality is defined as
A.<isreplaced by > B.LUB becomes GLB
C.all properties are unaltered when <is replaced by >
D.all properties are unaltered when < is replaced by > other than O and 1 element.

Option: D

27.Different partially ordered sets may be represented by the same Hasse diagram if they are
A.same B.lattices with same order ~ C.isomorphic D.order-isomorphic
Option: D

28.The absorption law is defined as
Aa*(a*b)=Db Ba*(a@®b)=>b Ca*(a*b)=a@bDa*(adb)=a

Option: D
A partial order is deined on the set S = {x, aj, ap, az;...... ap, vy} asx<aiforalliand aj
y for all i, where n > 1. Number of total orders on the set S which contain partial
order <is
Al Bn Cn+2 D.n! Option: D

30. Let L be a set with a relation R which is transitive, antisymmetric and reflexive and for
any two elements a, b € L. Let least u]_ﬁ)er bound lub (a, b) and the greatest lower
bound glb (a, b) exist. Which of the following is/are TRUE ?

A.L is a Poset B.L is a boolean-algebra C.L is a lattice D.none of these
Option: C
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UNIT-3

Algebraic Structures

Algebraic Systems with One Binary

Operation Binary Operation
Let S be a non-empty set. If f: § x S — S is a mapping, then fis called a binary
operation or binary composition in S.

The symbols +, -, % @ etc are used to denote binary operations on a set.
Fora, b €S =a+ b €S = + is a binary operation in S.
Fora, b €S =a-b €S =-is a binary operation in S.
Fora, b €S =a°b €S = - is a binary operation in S.

Fora, b €S =a *b €S = *is a binary operation in S.

This is said to be the closure property of the binary operation and the set S is said to
be closed with respect to the binary operation.

Properties of Binary Operations

Commutative: *is a binary operation in a set S. If fora, b €S, a *b =b *a, then *is said to be
commutative in S. This is called commutative law.

Associative: *is a binary operation in a set S. If for a, b, ¢ €S, (a*h) *c = axb+*c), then *is said
to be associative in S. This is called associative law.

Distributive: o, *are binary operations in S. If for a, b, c€S, (i) a° (b *c)=(a° b) *(a ° ¢), (i)
(b *c)oa=(b-°a) *(cea), then ° is said to be distributive w.r.t the operation *

Example: N is the set of natural numbers.

+, - are binary operations in N, since fora, b e N,a+b eNanda-b eN. In
other words N is said to be closed w.r.t the operations + and -.
+, - are commutative in.V, since fora, b eN,a+b=b+aanda-b=>b-a.
+, - are associative.in N, since fora, b, ¢ €N,
a+(b+c)=(@+b)+canda-(b-c)=(a-b)-c.
(iv) is distributive.w.r.t the operation + in N, since fora, b, c e N,a- (b+c)=a-b+a -
cand(b+c)-a=b-a+c-a.
(v) The operations subtraction (—) and division (<) are not binary operations in N, since
for 3, 5 €N does not imply 3 — 5 € N and 35 eN.
Example: A is the set of even integers.

+, - are binary operations in A, since fora, b €A,a+b A anda- b €A.
+, - are commutative in A, since fora, b €A, a+b=b+aanda-b=>b - a.

+, - are associative in A, since for a, b, ¢ €A,
a+b+c)=@+b)+canda-(b-c)=(a-b)-c.

- is distributive w.r.t the operation + in A, since for a, b, c €A, a
-(b+c)=a-b+a-cand(b+c)-a=b-a+c-a.
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Example: Let S be a non-empty set and ° be an operation on S defined by a ° b =a fora, b 8.
Determine whether ° is commutative and associative in S.

Solution: Since a°b=afora, b eSandb°a=>bfora, b €S.
a°b=b-a.
° is not commutative in S.
Since (a°b)°c=a°c=a
a°(bec)y=a°b=afora, b, c €8S.
° is associative in S.

Example: ° is operation defined on Z such thata e b =a + b — ab for a, b € Z. Is the operation ° a
binary operation in Z? If so, is it associative and commutative in Z?

Solution: If a, b € Z, wehavea+b e€Z, abeZanda+b — ab €Z.
a°b=a+b-ab e”Z.

° is a binary operation in Z.

a°b=>b-°a.
° 1s commutative in Z.
Now
(a°b)ec=(a°b)+c—(a-°b)
a+b—-abtc— (a+b - ab)
=a+b-ab+c - ac — bc+ abc
and

ac(beoc)y=a+Abec)—albec)
=a+b+c—-bc—-alb+c-bc)
=a+b+c—-bc—-ab-ac+ abc
=a+b—-ab+c—-ac - bc + abc

(a°b)yec=a-(b-°c)...
18 associative in Z.

rr

Example: Fill in blanks in the. following composition table so that ° is associative in S = {a,b,c,d}.

clal|b|c|d
ala|b|c|d
blbla|c|d
clc c|d
d

Solution: dea=(c°b)°al[. c°b=d]

=ce°(beoa) [. eisassociative]

=c°b

=d
deb=(ceob)eb=ce(beb)=cca=c.
dec=(c°b)ec=ceo(bec)=cec=c.
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ded=(c°b)o(c°b)

=ceo(boc)eb

=ce°ce°b

=co(c°b)

=ceod

=d

Hence, the required composition table is

°cla|b|c|d
ala|b|c|d
b|lbla|c|d
cleld|c|d
d|d|c|c|d

Example: Let P (S) be the power set of a non-empty set S. Let N be an operation in P (S). Prove
that associative law and commutative law are true for the operation in P (S).

HS\(ﬁ){lﬁl\)Jtion: P(S)= Set of all possible subsets of S.
N is a binary operation in P (S).
AlsoANB=BNA

N is commutative in P (S5).
AgaimnANB,BNC,(ANB)NCand A N (B'QC) are subsets of S.

ANBYNCANBNC) P
(S). Since ANB)NC=AN (B NC)

N is associative in P (5).

Algebraic Structures

Definition: A non-empty set G'equipped with one or more binary operations is called
an algebraic structure or an algebraic system.

If - is a binary operation on.G, then the algebraic structure is written as (G, °).
Example: (N, +), (Q, —),\(R, +) are algebraic structures.

Semi Group

Definition: An algebraic structure (S, °) is called a semi group if the binary oper-ation °
is associative in S.
That is, (S, °) is said to be a semi group if

abeS=a°beSforalla beS

(aeb)ecc=ac°(boc)foralla, b, c €
S. Example:

1. (V, +) is a semi group. Fora, b e N 2a+b eNanda, b, c N = (a+ b) + c =a+ (b + ¢).
(Q, —) is not a semi group. For 5,3/2 , 1 € Q does not imply (5§ —3/2) -1 =5 —(3/2 -1).

(R, +) is a semi group. Fora, b eR a+b eRanda, b,c eR = (a+ b) +c=a+ (b +c).

) 83
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Example: The operation ° is defined by a ° b = a for all a, b €S. Show that (S, °) is a semi group.
Solution: Leta, b €S 2a°b=a €S.
° is a binary operation in S. Leta, b, c €S,a°(bec)=a° b=
a(a@a°b)ec=ac°c=a.
= is associative in S.
(S, °) is a semi group.
Example: The operation ° is defined by a e b =a + b — ab for all a, b € Z. Show that (Z, °) is a
semi group.
Solution: Leta, beZ »a°b=a+b —ab €Z.

° is a binary operation in
Z leta, b, c eZ
(@a°b)cc =(a+b-ab)ecc
=a+b—-ab+c—- (a+b - ab)
=a+b+c—-ab - bc - ac+ abc

a°Mb-°c) ac(b+c-bc)
=a+(b+c—bc)—alb+c - bc)
=a+b+c—-bc—ab-ac+

abc 2 (@°b)°ec=a-°(b°c).
° is associative in Z. .". (Z, °) is semi group.

Example: (P (S), N) is a semi group, where P (S) is the power set of a non-empty set S.
Solution: P (S)= Set of all possible subsets of S.

Let A, B €P (S).
Since A ES,BSS=>ANBCSS=>ANBeP(S).
N is a binary operation in P (S): Let A, B, C € P (S).

ANBNC,ANMBNQC.EP(S). Since(ANB)N
C=ANMBNO
N is associative in P ().
Hence (P (S), N) is a semi group.
Example: (P (S), V) is a semi group, where P (S) is the power set of a non-empty set S.
Solution: P (S)= Set of all possible subsets of S.

Let A, B €P (S).

Since ASS,BES=>AUBZSS=>AUBEeP(S).
U is a binary operation in P (S). Let A, B, C € P (S).
(AUB)UC,AuBUC)eP(S).Since (AuB)UC=AUBUC)
U is associative in P (S).

Hence (P (S), V) is a semi group.
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Example: Q is the set of rational numbers, ° is a binary operation defined on Q such thata °b=a
b+ ab for a, b € Q. Then (Q, °) is not a semi group.
Solution: For a, b, ¢ €0,
(@aeb)ycc=(@°b)—c+(a-°b)
=a—-b+ab—-c+(a-b+ab)
=a—b+ab—-c+ac- bc+ abc
a°becy=a-(beoc)y+alb-c)

=a—(b-c+bc)+alb-cpe)
=a—-b+c—-bc+ab - ac + abc.
Therefore, (a°b)°c=a- (b-°c).

Example: Let (4, #) be a semi group. Show thatfora, b, cin Aifa *c=c *aand b *c=c *b,
then (a *b) *c=c *(a *b).
Solution: Given (A, #) be a semi group, a *c =c *aand b *c =c *b.
Consider
(a *b) *c=a *(b *c) [ A is seme group]
=a *(c *b) [ b *c=c *b]
=(a *c) *b [ A is seme group]
=(c *a) *b[. a *c=c *a]
=c *(a *b) ['+A'is seme group].
Homomorphism of Semi-Groups
Definition: Let (S, #) and (7, °) be any two semi-groups. A mapping f: § — 7 such that for any
two elements a, b €8, fla *b) = f(a) ° f(b) is-called a semi-group homomorphism.
Definition: A homomorphism of a semi-group into itself is called a semi-group en-domorphism.
Example: Let (S1, *1), (S2, *) and (83, *3) be semigroups and f: S| — §7 and g : S — §3 be
homomorphisms. Prove that the'mapping of g e f: §1 — §3 is a semigroup homomorphism.
Solution: Given that (S1, #1),($2, *) and (S3, #3) are three semigroups and f: §] —
$2 and g : S2 — $3 be homomorphisms.
Let a, b be two elements of S1.
(g °Pla # b) =glfla =1 b)]
= g[fla) 2 f(b)] (- fis a homomorphism)
= g(fla)) s g(f(b)) (" g is a homomorphism)
=(g ° Hla) B (g > H(D)
.. g ° fis a homomorphism.

Identity Element: Let S be a non-empty set and ° be a binary operation on S. If there exists an
element e € S such thata° e =e °a=a, for a €85, then e is called an identity element of S.
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Example:
In the algebraic system (Z, +), the number O is an identity element.
In the algebraic system (R, -), the number 1 is an identity element.
Note: The identity element of an algebraic system is unique.

Monoid

Definition: A semi group (S, °) with an identity element with respect to the binary operation °
is known as a monoid. i.e., (S, °) is a monoid if S is a non-empty set and ° is a binary
operation in S such that ° is associative and there exists an identity element w.r.t °. Example:

(Z, +) is a monoid and the identity is O.
(Z, -) is a monid and the identity is 1.

Monoid Homomorphism
Definition: Let (M, #) and (7, °) be any two monoids, e;; and e; denote the identity elements
of (M, #) and (T, °) respectively. A mapping f: M — T such that for any two elements a, b €
M,

fla *b) = fla) ° fib) and

flem) = ¢

is called a monoid homomorphism.

Monoid homomorphism presents the associativity,“and identity. It also preserves

commutative. If « e M is invertible anda € M is the inverse of a in M, then f(a_ ) is the
-1 -1
inverse of fla), i.e., fla )=[fa)] .

Sub Semi group
Let (S, #) be a semi group and T be a-subset of S. Then (7, #) is called a sub semi group of (S,

#) whenever T'is closed under % 1.e.,a *b €T, foralla, b €T .

Sub Monoid

Let (S, #) be a monoid with e is the identity element and 7 be a non-empty subset of S. Then
(T, #) is the sub monoid of (S, #*)ife e T anda *b €T, whenever a, b €T . Example:

Under the usual addition, the semi group formed by positive integers is a sub semi group of
all integers.

Under the usual addition, the set of all rational numbers forms a monoid. We denote it
(Q, +). The monoid (Z, +) is a submonid of (Q, +).

Under the usual multiplication, the set E of all even integers forms a semi group.
This semi group is sub semi group of (Z, -). But it is not a submonoid of (Z, -), because 1=E.

Example: Show that the intersection of two submonoids of a monoid is a monoid.
Solution: Let S be a monoid with e as the identity, and S1 and $9 be two submonoids of S.

Since S1 and S7 are submonoids, these are monoids. Therefore e €51 and e €5).

]6
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Since S1 NS7 is a subset of S, the associative law holds in §1 NS, because it holds in S.
Accordingly S1 N $7 forms a monoid with e as the identity.

Invertible Element: Let (S,°) be an algebraic structure with the identity element e in S w.r.t
°. An element a €S is said to be invertible if there exists an element xe S such thatac x =x°
a=e.
Note: The inverse of an invertible element is unique.
From the composition table, one can conclude
Closure Property: If all entries in the table are elements of S, then S closed under .
Commutative Law: If every row of the table coincides with the corresponding
column, then ° is commutative on S.
Identity Element: If the row headed by an element a of S coincides with the top row, then
a is called the identity element.
Invertible Eleme’nt’: If the identity element e is Plyaced in the table at the intersection of

-1
the row headed by g and the column headed by b ,thenb =aanda =5b.
Example: A ={1, w, w }.

Il o | @2

1l 1 e |d

o | o ||l

w2 || 1 0}

From the table we conclude that
Closure Property: Since all entries in the table are elements of A. So, closure property
is satisfied.

. . St n Fi .. ...st nd F
Commutative Law: Since 1 ,2 and 3 <rows coincides with1 ,2 and 3 columns
respectively. So multiplication is commutative on A.
Identity Element: Since row headed by 1 is same as the initial row, so 1 is the

identity element.
-1 -1 2 2-1
Inverses: Clearly 1 =1, 0" =0 ,(0w) =o.

Groups
Definition: If G is a non-empty set and ° is a binary operation defined on G such that
the following three laws are satisfied then (G, °) is a group.

Associative Law: For a, b, c €G, (a°b)°c=a°(b°c)
Identity Law: There exists e e G such thata > e =a =e ° a forevery a €G, e is called an
identity element in G.

Inverse Law: For each a € G, there exists an element b € G such that a°b = bea = e, b is called

an inverse of a.
Example: The set Z of integers is a group w.r.t. usual addition.

(i). Fora,beZ >a+beZ
(i1). Fora, b,ceZ, (a+b)+c=a+ (b +c¢)

(iii). 0 eZsuchthatO0+a=a+0=aforeacha € G
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www.FirstRanker.com



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

0 is the identity element in Z.
(iv). For a €Z, there exists —a € Zsuch that a + (—a) = (—a) + a=0.

—a is the inverse of a. (Z, +) is a

group.
Example: Give an example of a monoid which is not a group.
Solution: The set NV of natural numbers w.r.t usual multiplication is not a group.

(i). Fora, b eN = a - b.

(i1). Fora, b,c eN,(a-b)-c=a-(b-c).

(iii). 1 eNsuchthatl-a=a-1=a,foralla eN.
(N, +) is a monoid.

(iv). Thereisnon e Nsuchthata-n=n-a=1fora €N.
Inverse law is not true.

The algebraic structure (N, -) is not a group.
Example: (R, +) is a group, where R denote the set of real numbers.

Abelian Group (or Commutative Group): Let (G, #) be a group. If *is com-mutative that is
a *b=>b *aforall a, b €G then (G, #) is called an Abelian group.
Example: (Z, +) is an Abelian group.

Example: Prove that G = {1, o, @ } is a group with respect to multiplication where 1, @, @
are cube roots of unity.
Solution: We construct the composition table as follows:

2
1 o (0]
1 1 (0] wz
Z
10} ® 0] o =1
3 4
| | =1l |lw =w

K)
The algebraic system is (G,+) where @ = 1 and multiplication - is the binary opera-tion on
G. From the composition-table; it is clear that (G, -) is closed with respect to the oper-ation
multiplication and the operation - is associative.

1 is the identity element in G suchthat 1 -a=a=a- 1, Va €G. Each
element of G is invertible

1- 1 =1=11isits own inverse.

2 3 2
o-® =0 =1=>o istheinverse of ® and o is the inverse of ® in G.

(G, )isagroupanda-b=>b-a, Va, b €G, that is commutative law holds in
G with respect to multiplication.

(G, -) is an abelian group.
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Example: Show that the set G = {1, -1, i, —i} where i = /=1 is an abelian group with respect
to multiplication as a binary operation. Solution: Let us construct the composition table:

From the above composition, it is clear that the algebraic structure (G, -) is closed and
satisfies the following axioms:

Associativity: For any three elements a, b, c €G, (a-b)-c=a- (b - ¢).

Since
1-(-1-)=1--i=-i
1--1)-i=-1-i=-i
1-(-1-D=(1--1)-i
Similarly with any other three elements of G the properties holds.

Associative law holds in (G, -).
Existence of identity: 1 is the identity element in (G, ) suchthat 1 -a=a=a- 1, Va €G.
Existence of inverse: 1 - 1=1=1-1 =1 is inverse of-1.
(- -(-1)=1=(-1)-(-1) = —1is the inverse of (—1)
i-(—i)=1=—i-i>-iis the inverse'of iin G.
—i-i=1=1i-(-i) >iis the inverseof —i in G.

Hence inverse of every element in G exists.
Thus all the axioms of a group are satisfied.

Commutativity: a - b=b - a, Va,b G hold in G.
l-1=1=1-1; -1:-1=-1=1--1
i-l=i=1-i;i-—i=—i-i=1etc.
Commutative law is satisfied.
Hence (G, ) is an abelian group.

Example: Prove that the set Z of all integers with binary operation *defined by a *b=a + b

+ 1, Va, b €Z1is an abelian group. Solution:

Closure: Leta, b €Z.Sincea+beZanda+b+1 €Z.

Z is closed under *
Associativity: Let a, b, c € Z.
Consider (a *b) *c=(a+b+1) #c
=a+b+1+c+1

=a+b+c+?2
also

Q9
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a*b*c)=a*b+c+1)
=a+b+c+1+1
=a+b+c+?2

Hence (a *b) *c=a *(b *c) fora, b, c €Z.
Existence of Identity: Leta €Z. Lete €Zsuchthate *a=a *e=a,ie.,a+e+ 1
a
e=-1
e = —1 is the identity element in Z.
Existence of Inverse: Leta € Z. Let b e Zsuch thata *b =e.
a+b+1=-1
b=-2-a
.. For every a €Z, there exits —2—a € Z such that a®(—2—a) = (-2-a)*a = 1.
(Z, #) is an abelian group.
Example: Show that the set Q4 of all positive rational numbers forms an abelian group under
the composition defined by ° such that a > b = ab/3 for a, b € Q4. Solution: Q4 of the set of
all positive rational numbers and for a, b € O, we have the operation ° such thata ° b =

ab/3. Assomatwlty a, b ceQ+=>(ac°b)ycc=a°(b-°c).

e a0t a

Slnce(a b)oc—(ab/3) c=lab/3 .cll3=a/3(bc/3)=a3 (b°c)=a°(b-°c).
Existence of Identity: Leta € Q4. Let e € Q4 such thate ° a = a.

ie,eal3=a
ea—3a=0=(€-3)a=0
2e—-3=0 (. a=0)
e=3

e =3 is the identity element in Q.

=ab/3 =3
b=9a (. a=0)
For every a € O, there exists 9/a € Q4 such thata ° 9/a =9/a > a = 3.

Commutativity: Leta, b e Q4 =a°b=b-a.
Since a ° b = ab/3=ba/3 =b - a.
(O4+ ©) is an abelian group.

Exercises: 1. Prove that the set G of rational numbers other than 1 with operation & such

thata @b =a+ b — ab for a, b € G is abelian group.
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Consider the algebraic system (G, #), where G is the set of all non-zero real numbers and *

a
is a binary operation defined by: a *b="4, Va, b € G. Show that (G, #) is an
Addition modulo m

We shall now define a composite known as —addition modulo ml where m is fixed integer.
If @ and b are any two integers, and r is the least non-negative reminder obtained by dividing
the ordinary sum of @ and b by m, then the addition modulo m of @ and b is r symbolically

a+yub=r, 0<r<m.

Example: 20 +¢ 5 = 1, since 20 + 5 = 25 = 4(6) + 1, i.e., 1 is the remainder when 20+5 is
divisible by 6.

Example: =15 +5 3 =3, since =15 +3 = -12=3(-5) + 3.

Multiplication modulo p

If a and b are any two integers, and r is the least non-negative reminder obtained by dividing
the ordinary product of a and b by p, then the Multiplication modulo p of a and b is r
symbolically

apr:r, 0<r<p.
Example: Show that the set G = {0, 1, 2, 3, 4} is an abelian group with respect to addition

modulo 5.
Solution: We form the composition table as follows:

+
510
0
1

Sl B Wl NI

)

Ol B W] Nl —]—
S|l | W|W
WINN| =] &>

0
1
2)
3
4

| v o
p—
[\®)

Since all the entries in the composition table are elements of G, the set G is closed with
respect to addition modulo’5:

Associativity: For any three elements a, b, ¢ €G, (a +5 b) +5 c and a +5 (b +5 c) leave the
same remainder when divided by 5.

ie,(@a+35b)+5c=a+5(b+5c¢)

(1453)+54=3=1+5 3 +54)etc.

Existence of Identity: Clearly O € G is the identity element, since we have
0459=4=9+50,Va eG.

Existence of Inverse: Each element in G is invertible with respect to addition modulo 5.

0 is its own inverse; 4 is the inverse of 1 and 1 is the inverse of 4.
2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 5 in G.

Commutativity: From the composition table it is clear that a+5 b = b+5a, Va, b €G.

Hence (G, +5) is an abelian group.
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Example: Show that the set G= {1, 2, 3, 4} is an abelian with respect to multipli-cation

modulo 5.
Solution: The composition table for multiplication modulo 5 is
X
s| 1| 2] 3] 4
I 1] 21 3| 4
21 2 4 1] 3
31 3] 1] 4] 2
41 4 31 21 1

From the above table, it is clear that G is closed with respect to the operation x5 and the

binary composition x4 is associative; 1 is the identity element.
Each element in G has a inverse.

1 1s its own inverse

2 1s the inverse of 3

3 is the inverse of 2

4 is the inverse of 4, with respect to the binary operation X 5.
Commutative law holds good in (G, x5).

Therefore (G, x5) is an abelian group.
Example: Consider the group, G ={1, 5, 7, 11, 13, 17} under mul%iplicaltion IIlOdliIIO 18.

Construct the multiplication table of G and find the values. of: 5 ,7 and 17 .
Example: If G is the set of even integers, i.e., G={---,"—4, =2, 0, 2, 4, - - - } then prove that

G is an abelian group with usual addition as the opetation. Solution: Let g, b, ¢ €G.

We can take a = 2x, b =2y, ¢ =2z, where x, y, 2 €Z.
Closure: a, b €G = a+ b €G.

Sincea+b=2x+2y=2(x+y) €G.

Associativity: a, b, c eG za+ (b+e)=(a+b) +
¢ Since
+b+c)=2x+Q2y+22)
2[x+ (y+2)]
=2[(x+y) + 7]
=(2x +2y) + 2z
=(a+b)+c

Existence of Identity: a € G, there exists 0 e G such thata+0=0+a =a. Sincea + 0
=2x+0=2x=aand0+a=0+2x=2x=a

0 is the identity in G.
Existence of Inverse: a € G, there exists —a € G such that a+(—-a) = (-a)+a = 0.
Sincea+ (-a)=2x+ (-2x)=0and (-a) + a = (-2x) + 2x = 0.

(G, +) is a group.
Commutativity: a, b e G 2a+b=b +a.
Sincea+b=2x+2y=2(x+y)=2(y+x)=2y+2x=b+a.

(G, +) is an abelian group.

Q2
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ab
Example: Show that set G = {x| x=2 3 fora, b €Z} is a group under multipli-cation.
r.s [ m
Solution: Let x, y, z € G. We can take x = 2p3q, y=23,z=23 ,wherep, g r,s5 [, meZ
We know that (). p+r, g+ s €Z
). p+nN+l=p+@F+D, (@+s)+m=q+ (s+m).
Closure: x, y EG >x-y eG.

P+ g+s

Slncex-y—(23)(23)— 3  eG. Associativity: x, y,z€eG=>(x-y)-z2=x-(y-2)

:2(p+r)+l 3 (g+s)+m

:2pl-+-(r:+l)3f]+(\s+rlnm)
—=(23)2323)

00
Existence of Identlty Letx EG We know that e =2 3 EG since 0 € Z.
+0_g+0
B i A B D i LI O SR

suchthatx-e=e-x=x

00
e=2 3 is the identity element in G.

-p.— 00 -p_— 00
y=2P30 3T 5 Cpand y x=2 P33T 2073 e,
For everyx:2p3q € G there exists y =2 p3 qEG suchthatx-y=y-x=e... (G, )

is a group.

Example: Show that the sets of all ordered pairs (a, b) of real numbers for which a =0 w.r.t
the operation *defined by (a, b)* (c, d) = (ac, bc + d) is a group. Is the commutative?
Solution: Let G = {(a, b)| a;.b€ R and a 50}. Define a binary operation *on G by (a, b) *(c,
d) = (ac, bc + d), for all (a; b), (¢, d) € G. Now we show that (G, #) is a group. Closure: (a, b),
(c, d) €G =(a, b) *(c, d) = (ac, bc +d) €G.

Since a 50, ¢ 50 = ac 0.

Associativity: (a, b), (¢, d), (e, /) €G = {(a, b) *(c, d)} *(e, ) = (a, b) *{(c, d) He, )}.
Since {(a, b) *(c, d)} *(e, ) = (ac, bc + d) *(e, f)
(ace, (bc + d)e + )

(ace, bce + de + f)

(a(ce), b(ce) + de + f)
(ace, bce + de + f)

Existence of Identity: Let (a, b)eG. Let (x, y)e G such that (x, y)%(a, b)=(a,b)(x, y)=(a, b)
(xa, ya + b) = (a, b)
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xa=a,ya+b=>b

x=1,(Cas0)andya=0=>x=1andy=0 (. a=0)
(1, 0) e G such that (a, b) *(1, 0) = (a, b).
(1, 0) is the identity in G.
Existence of Inverse: Let (a, b) € G. Let (x, y) € G such that (x, y) *(a, b) = (1, 0)
(xa, y(;)+ b)=(1, 0)

xa=l,ya+b=0=>x=,4 ,y="4

The inverse of (a, b) exits and it is (1/a,-b/a ).

G is a group but not commutative group w.r.t *

-1 -1
Example: If (G, #) isa groupthen (a *b) =b *a foralla, b eG.

Solution: Let a, b € G and e be the identity element in G.

-1 -1 -1
LetaeG=>a €eGsuchthataa =a *a=eandbeG b eeGsuchthatbs =b *b=

e.

-1
Nowa, b eG »a *beGand (a *b) €G.

Consider . . .
(a*b)y*(b *a )=a*b*b *a )] (by associativity law)
-1 _
=a*[(b*b )*a ]
-1 -1
=a*(e*a )b*b =e)
-1
=a*a (e is the identity)
=e
and

b *a )*(a+*b)=b- *[a 1*(0 *D)]
=t *[(a_l *a) *b]
_b 4o #b)
-1
b b

=e

-1 -1 -1 -1
=2@*b)y*b *a )=b *a )*@*b)=e
-1 -1 -1
(a*b) =b *a forall a, b €G.
No(tzil -l
a =a
- -1 -1 -1
(abc) =c¢c b a
If (G, +) is a group, then —(a + b) = (-b) + (—a)
—(a+b+c)=(-c)+(=b)+ (—-a).
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Theorem: Cancelation laws hold good in G, i.e., for alla, b, c e Ga *b=a *c = b =c (left

cancelation law) b *a = ¢ *a = b = ¢ (right cancelation law).

Proof: G is a group. Let e be the identity element in G.
- -1 -1
aeG=a €eGsuchthata*a =a *a=e.

Consider

a*b=a *c

a *(a *b):a_ (a *¢)

- -1

(@ *a)*b=(a *a) *c (by associative law)
e*b=c¢e *c (a_ is the inverse of a in G)
b = c (e is the identity element in G)

and

b*a=c *a

-1
b*a)ya =(c *a)*a
b*(a*a )=c=*(@+a ) (by associative law)

b*e=c*e(. a*a =e)
b = c (e is the identity element in G)
Note:
If G is an additive group,a+b=a+c>b=candb+a=c+a=>b=c.

In a semi group cancelation laws may not hold:Let S be the set of all 2 x 2 matrices over
integers and let matrix multiplication be the binary operation defined on S. Then S is a semi
group of the above operation.

l(l 0) (0 0) |(0 0)

. B=| [:.C= Ixthen A, B, C €S and AB = AC, we observe that left
| | | | | |
\00/) Vo1) 10

cancellation law is not true in the-semi group.

If A=

3. (N, +) is a semi group. For.a,'b, c e N

a+b=a+c=b+candb+a=c+a=>b=c.
But (&, +) is not'a group.
In a semigroup even if cancellation laws holds, then semigroup is not a group.

Example: If every element of a group G is its own inverse, show that G is an abelian

group. — 1 - 1
-1
Then ab € G and hence (ab) = ab.
Now !
(ab) =ab
-1 -1
b a =ab
ba =ab

G is an abelian group.
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Note: The converse of the above not true.
For example, (R, +), where R is the set of real numbers, is abelian group, but no
element except O is its oyn inverse.

Example: Prove that if a = a, then a = ¢, a being an element of a group G.

Solution: Let a be an element of a group G such that a = a. To prove thata =

2
e.a =a=>aa=a
-1 -1 -1
(aa)a =aa =>a(aa )=e
ae:e['.'aa_ =e]l=za=e[. ae=a]

2
Example: In a group G having more than one element, if x =x, forevery x € G.
Prove that G is abelian.

2 2
Solution: Let a, b € G. Under the given hypothesis, we havea =a,b =b, (ab) =ab.
22 2
a(ab)b = (aa)(bb)=a b =ab = (ab) = (ab)(ab) = a(ba)b

ab = ba (Using cancelation laws)

G is abelian.

2 22
Example: Show that in a group G, fora, b € G, (ab) =a b < G is abelian. (May. 2012)
Solution: Let a, b € G, and (ab) =a b . To prove that G is abelian.

2 22
(ab) =a b
(ab)(ab) = (aa)(bb)

a(ba)b = a(ab)b (by Associative law) = ba = ab, (by cancellation
laws)

G is abelian.

2 2 2

Conversely, let G be abelian. To prove that (ab) =a b .

*#*Example: If a, b are any two-elements of a group (G, -), which commute. Show that

a and b.commute

b _and a commute

a andb commute.

-1 -1
ab=ba=a (ab)=a (ba)

(a a)b= a 1(ba)

eb=(a 1b)a
b= (a_ 1b)a
-1 -1 -1
ba =|(a 7‘b)a]a }
:(ail b)aa )
=(a_Db)e
=a b
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a and b commute.

1 ab=ba = (abb = bayp
> a(bb_ 1) =
bayp >
ae = b(ab_ 1)
sa=blab 1)
-1 -1 -1
=>b a=b [blab )]

-1 -1
= bab )]
=e(ab )

—1
=ab

b_ and a commute.
-1 -1 -1 -1 -1 -1
ab=ba=@b) =0ba) b a =a b

a andb are commute.
Order of an Element

www.FirstRanker.com

Definition: Let (G, #) be a group and a € G, then the least positive integer n if it exists

such that an = ¢ is called the order of a €G.
The order of an element a € G is be denoted by O(a).

Example: G = {1, -1, i, —i} is a group with respect to multiplication. 1 is the identity in G.

=] =1=--=1300)=1

(=1) =(=1) =(=1) =---=120(-1)=2.
4 8

(=) =(=i) = =120(-i)=4%

Example: In a group G, a is an‘element of order 30. Find order of a .

Solution: Given O(a) = 30
30

5
a =e, eis the identity element of G. Let O(a ) =n

Sn
(a) =e
a =e, where n is the least positive integer. Hence 30 is divisor of 5n.
n=06.

5
Hence O(a )=6

Sub Groups

Definition: Let (G, #) be a group and H be a non-empty subset of G. If (H, #) is itself is a

group, then (H, #) is called sub-group of (G, *).
Examples:
(Z, +) is a subgroup of (Q, +).
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The additive group of even integers is a subgroup of the additive group of all

integers.
(N, +) is not a subgroup of the group (Z, +), since identity does not exist in N under
+.
Example: LetG={1, -1,i —i}and H= {1, —1}.

Here G and H are groups with respect to the binary operation multiplication and H is a
subset of G. Therefore (H, -) is a subgroup of (G, ).

Example: Let H = {0, 2, 4} £Zg. Check that (H, +¢) is a subgroup of (Zg, +¢).
Solution: Zg ={0, 1, 2, 3,4, 5).
6 | O 1] 2[ 3] 4 5
0 of 11 2 3] 4 5
1 1 2] 3[ 4 5] O
2 2 3] 4 5 O] 1
3 31 4 51 O 1f 2
4 4 51 of 11 2| 3
5 5| O 1f 2| 3] 4
(Zg, +6) 15 a
group. H={0, 2, 4).
+6 | O 2| 4
0 o 2| 4
2 21 4 O
4 44 0 2

The following conditions are to‘be. satisfied in order to prove that it is a subgroup.
(1). Closure: Leta, b e H = a+g b €H.

0,2eH=0+62=2 €H.
(ii). Identity Element: The row headed by 0 is exactly same as the initial row.

0 is the identity element.

-1 -1 -1
(iii). Inverse: 0 =0,2 =4,4 =2

Inverse exist for each element of (H, +¢).
(H, +g) is a subgroup of (Zg, +¢).
Theorem: If (G, #) is a group and H € G, then (H, #) is a subgroup of (G, #) if and only if

a,beH=>a*b eH,

-1
aeH=a eH.

Proof: The condition is necessary
Let (H, ) be a subgroup of (G, #).
To prove that conditions (i) and (ii) are satisfied.

9]
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Since (H, #) is a group, by closure pro&;erty we havea, b e H = ab €H.

The condition is sufficient:

Let (i) and (ii) be true. To prove that (H, #) is a subgroup of (G, #).
We are required to prove is: #is associative in H and identity e € H.

That *is associative in H follows from the fact that *is associative in G. Since H is nonempty,

let aeH=a eH by (i)
-1 -1 .
a€Ha €H=aa e H (by (1))

= e, where e is the identity in G.)

Example: The set S of all ordered pairs (a, b) of real numbers for which a =0 w.r.t the
operation x defined by (a, b) x (¢, d) = (ac, bc + d) is non-abelian. Let H= {(1, b)l b € R} is
a subset of S. Show that H is a subgroup of (S, x).
Solution: Identity element in S'is (1, 0). Clearly (1, 0) € H.
Inverse of (a, b) in S'is (1/a,-b/a ) (. a S0)
Inverse of (1, ¢) in S'is (1, -¢/1), i.e., (1, —c)
-1
Clearly (I, c) eH=>(,c) =(1, —¢) €H.
Let (1, b) €H.
-1

(Lb)yx,¢c) =(,b)x(, —c)

(1.1,bl-¢c)=(1,b—c)eH( " b—-c€R)

-1

(1,b),(1,c)eH=>(,b)x(1,¢c) €H. Hisa
subgroup of (S, x).
Note: (1,b)x(, c)=(1.1, bd +0)

=(1,b+¢)

=1, c+b)
Z(1, ¢) x (1, b)

H is an abelian subgroup:of the non-abelian group (S, X).

Theorem: If H] and Hy-are two subgroups of a group G, then H1 N H7 is also a subgroup
of G.

Proof: Let H] and Hp be two subgroups of a group G.
Let e be the identity element in G.

ec€Hiande €H)...e €H|
N Hy.
=H1 N Hp =4.
Leta e H1 N Hyand b e H| N H).
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a€H|,aeHyand b eH|, b e H).

-1
Since H1 is a subgroup,a e H] and b e H] =ab €H].
Similarly ab € Hp.

ab €H| NH).

-1
Thus we have,a e H| N Hy, b e H] N Hy) =ab  €H| N H).
H1 N H is a subgroup of G.
Example: Let G be the group and Z={x € G| xy=yx for all yeG}. Prove that Z is a subgroup of
G.
Solution: Since e € G and ey = ye, for all y € G. It follows that e € Z.
Therefore Z is non-empty.
Take any @, b € Z and any y € G. Then
(ab)y = a(by)
=a(yb), since b €Z, by = yb
=(ay)b
=(ya)b
=y(ab)
This show that ab € Z.
Leta €eZ > ay=yaforally €G.
-1 -1 -1 -1
a (ay)a =a (yaa

-1 -1 -1 -1
(a a%(yd ) 1= (a y)(cid )
eva )=(a ye=a y=ay
-1
This shows thata €Z.

Thus, whena, b €Z, wehave ab.eZanda €Z.
Therefore Z is a subgroup of G
This subgroup is called the center of G.

Homomorphism

!

Homomorphism into: Let (G, #) and (G, -) be two groups and f be a mapping from G into
G . Iffora, b €G, fla*b) = fla)-f(b), then f1is called homomorphism G into G .
Homomorphism onto: Let (G, # and (G, -) be two groups and f'be a mapping from G

onto G . If for a, b € G, fla*b) = fla)-f(b), then fis called homomorphism G onto G .
Also then G'is said to be a homomorphic image of G. We write this as f{G) = G'.

If for a, b €G, fla *b) =f(a) - f(b), then fis said to be an isomorphism from G onto G .
Endomorphism: A homomorphism of a group G into itself is called an endomor-phism.
Monomorphism: A homomorphism into is one-one, then it is called an monomor-phism.
Epimorphism: If the homomorphism is onto, then it is called epimorphism.
Automorphism: An isomorphism of a group G into itself is called an automorphism.
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!

Example: Let G be the additive group of integers and G be the multiplicative group. Then
mapping f: G — G given by fix) =2 isa group homomorphlsm of G intoG .

Solution: SmcexyeG:x+y eGandZ 2 eG :>2 2 €eG.

fary=2""=2" 2" =0y

f1s a homomorphism of G into G .

!

Example: Let G be a group of positive real numbers under multiplication and G be a group

of all real numbers under addition. The mapping f: G — G given by f(x) =log1( x. Show
that f'is an isomorphism.

Solution: Given f(x) = log1 x.

!

Leta, b € G = ab €G. Also, fla), f(b) €G.

flab) =logj(y ab =1log1( a +log1( b = fla) +
f(b). = fis a homomorphism from G into G .
Let x1, x2 € G and fix1) =f(x2)

>log x=log x
10 1 10 2

log x log x
=10

10 I= 10 2
X1 =x2
fis one-one.

107 = 10g10(10) y-

For ever y € G, there exists 10 € G such'that f(lO )=y
fis onto.

!

fan isomorphism from G to G .
+
Example: If R is the group of real numbers under the addition and R is the group of positive

+ X
real numbers under the multiplication. Let f: R — R be defined by f(x) = e , then show that
f1is an isomorphism.

+ X
Solution: Let f: R— R be defined by fix)=¢ .

is one-one: Let @, b € G and f{a) = f(b)
a b

e =e

a b
loge =loge

aloge=bloge
a=b
Thus fis one-one.
, + log ¢
fisonto: If c eR thenlogc eR and fllogc) =e =c

+
Thus each element of R has a pre-image in R under f and hence fis onto.
atb a
is Homomorphism: fla + b) = e =e .e =fla).f(b) Hence fis an isomorphism.
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-1
Example: Let G be a multiplicative group and f: G — G such that fora €G, fla)=a .
Prove that f'is one-one and onto. Also, prove that fis homomorphism if and only if G is

commutative.

Solution: f: G — G is a mapping such that fla) =a , fora €G.

(i). To prove that fis one-one.

Leta, b eG.a , p! cGand fa), fib) €G.
Now fla) =f({9)

a =b

(a—l)—l = (b—l)—l
a=b

f1is one-one.

(ii). To prove that f'is onto.

Leta €G..a \ G such thatf(a_l) =(a ) =a
fis onto.

(iii). Suppose fis a homomorphism.

For a, € G, ab € G. Now flab) = fla)f(b)

-1 -1 -1
(ab) =a b :)b—la—l — a—lb—l
(b-1a-1)-1 = (a-1b-1)-1

(a-1)-1(b-1)-1 = (b-1)-1(a-1)-1
ab =ba
G is abelian.
(iv). Suppose G is abelian'= ab = ba, Va, b €G.
Fora, b €G, flab) = (ab)_l
b-a-
=a-1b-1

=fla)f(b)

f1s a homomorphism.
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Number Theory

Properties of Integers

Let us denote the set of natural numbers (also called positive integers)by N and the set of
integers by Z.

e, N={1,2,3..}JandZ={..., -2, -1,0, 1, 2... ..

The following simple rules associated with addition and multiplication of these inte-gers are
given below:

(a). Associative law for multiplication and addition

(a+b)+c=a+ (b+c)and (ab)c = a(bc), for all a, b, ¢ €Z.

(b). Commutative law for multiplication and addition a + b = b + a and ab = ba, for alla, b €
Z.

(c). Distritbutive law a(b + ¢) = ab + ac and (b + ¢)a = ba + ca, forall a, b, c €
Z. (d). Additive identity O and multiplicative identity 1

a+0=0+a=aanda.l=1l.a=a,foralla €Z.
(e). Additive inverse of —a for any integer a
+(-a)=(-a)+a=0.
Definition: Let a and b be any two integers. Then a is said to be greater than b if a — b is
positive integer and it is denoted by a > b. a > b can also be denoted by b < a.

Basic Properties of Integers

Divisor: A non-zero integer a is said to be divisor or factor of an integer b if there exists an
integer g such that b = agq.

If a is divisor of b, then we will write a/b (read asa is a divisor of b). If a is divisor of b, then
we say that b is divisible by a or a is a factor.of 'b.or b is multiple of a. Examples: (a). 2/8,
since 8 =2 x 4.

(b). —4/16, since 16 = (=4) x (-4).

(¢). a/0 for all a € Z and a =0, because 0 = a.0.

Theorem: Let a, b, ¢ €Z, the set of integers. Then,

(1). If a/b and b =0, then lal <\b].
(i1). If a/b and b/c, then a/c.
(iii). If a/b and a/c, then'a/b + ¢ and a/b — c.
(iv). If a/b, then for any integer m, a/bm.
(v). If a/b and a/c, then for any integers m and n, a/bm + cn.
(vi). If a/b and b/a then a = +b.
(vii). If a/b and a/b + ¢, then a/c.
(viii). If a/b and m =0, then ma/mb.
Proof:
(i). We have a/b = b = aq, where q €Z.
Since b =0, therefore g =0 and consequently Igl > 1.

Also, Igl > 1 = lallgl > lal
bl > lal.
(i1). We have a/b = b = aqq, where q1 €Z.
b/c = c =bqy, where q) € Z.
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¢ =bqp =(aq1)q2 = alq192) = aq, where g = q1q2 €Z. =
a/c. (iii). We have a/b = b = aq], where q] € Z.
a/c = c =aq), where g €Z.

a/b + c.

a/b — c.
(iv). We have a/b = b = aq, where g € Z.
For any integer m, bm = (aq)m = a(qm) = aq, where a = gm €Z.

a/bm.

(v). We have a/b = b = aq, where q| €Z.
a/c = c =aq), where gy €Z.

Now bm + cn = (aq1)m + (ag)n = a(qym + qyn) = aq, where g =qym+ qyn €Z

a/mb + cn.
(vi). We have a/b = b =aqq, where q1 €Z.

b/a = a = bq), where gy €Z.
b=aq1 =(bq2)q1 =bq291)
=b(l —q2q1)=0
q2q1=1=q2=q1=1lorgp=q1=-1
a=bora=-bie.,azxb. (vii). Wehavea/b > b
=aq1, where g1 €Z.
a/b +c =>b+ c=aq), where g eZ
Now, ¢ =b - aqp = aqq ~'aq2 = a(q] — q2) = aq, where g =q1 — g3 € Z.
a/c.
(viii). We have a/b = b = aq, where q| €Z.
Since m =0, mb = m(aq1) = ma(q1)
ma/mb.

Greatest Common Divisor (GCD)

Common Divisor: A non-zero integer d is said to be a common divisor of integers a and b

if d/a and d/b.

Example:
(1). 3/ — 15 and 3/21 = 3 is a common divisor of 15, 21.

(2). £1 is a common divisor of a, b, where a, b €Z.
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Greatest Common Divisor: A non-zero integer d is said to be a greatest common
divisor (gcd) of a and b if

(). d is a common divisor of a and b; and

(ii). every divisor of a and b is a divisor of d.

We write d = (a, b)=gcd of a, b.

Example: 2, 3 and 6 are common divisors of 18, 24.

Also 2/6 and 3/6. Therefore 6 = (18, 24).
Relatively Prime: Two integers a and b are said to be relatively prime if their greatest
common divisor is 1, i.e., gcd(a, b)=1.
Example: Since (15, 8) =1, 15 and 8 are relatively prime.
Note:

(). If aq, b are relatively prime then a, b have no common divisors.

(ii). a, b €Z are relatively prime iff there exists x, y € Z such that ax + by = 1.

Basic Properties of Greatest Common Divisors:
(1). If ¢/ab and gcd(a, c) = 1 then c¢/b.

Solution: We have c/ab = ab =cq1, q1 €Z.
(a, ¢) =1 > there exist x, y € Z such that
ax+cy=1.
ax+cy=1=>blax+cy)=>b
(ba)x + b(cy) =b = (cq1)x + b(cy) =b =clqg1x+ byl =b
cq = b, where g = q1x + by €Z = c/b.

(2). If (a, b) =1 and (a, ¢) = 1, then (a, bc) = 1.
Solution: (a, b) = 1, there exist x1, y] €Z such that

ax1+by1 =1

byl =1 - ax]——— (1)
(a, ¢) = 1, there exist xp, yp €Z such that
ax) +byy =1

cy2=1-axp
(2) From (1) and (2), we have

bypleyp) =1 - ax){ - axp)
bey1yp=1—-alx) +x3)+a x1xp =alx] +xp —

ax1x2) + bc(y1yp) =1
ax3 + bcy3 =1, where x3 = x1 + x —ax1x2 and y3 = y]y) are integers.
There exists x3, y3 €Z such that ax3 + bcy3 = 1.

(3). If (a, b) = d, then (ka, kb) = lkld., k is any integer.
Solution: Since d = (a, b) = there exist x, y € Z such that
ax+by=d.

k(ax) + k(by) = kd = (ka)x + (kb)y = kd
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(ka, kb) = kd = k(a, b)
). 1 (@ by=d, then &y, 2y =1.
Solution: Since (@, b) = d = there exist x, y € Z such that ax + by = d.
>(ax+by)/d =1

(a/d)x + (b/dyy =1
Since d is a divisor of both a and b, a/d and b/d are both integers.
Hence (a/d,b/d) = 1.

Division Theorem (or Algorithm)

Given integers a and d are any two integers with b > 0, there exist a unique pair of integers g
and r such that a = dq + r, 0 <r < b. The integer‘s ¢ and r are called the quotient and the
remainder respectively. Moreover, r = 0 if, and only if, bla.

Proof:
Consider the set, S, of all numbers of the form a+nd, where n is an integer.
S ={a-nd:nisaninteger}

S contains at least one nonnegative integer, because there is an integer, n, that ensures a-nd
> 0, namely

n = -lal d makes a-nd = a+lal d2 >a+lal > 0.

Now, by the well-ordering principle, there is a least nonnegative element of S, which we will
call r, where r=a-nd for some n. Let q =(a-r)/d = (a-(a-nd))/d = n. To show that r < Idl,
suppose to the contrary that r > Idl. In that case, either r-ldl=a-md, where m=n+1 (if d is

positive) or m=n-1 (if d is negative), and so r-ld| is an element of S that is nonnegative and
smaller than r, a contradiction. Thus-r< Idl.

To show uniqueness, suppose,there exist q,r,q',r' with 0 <r,r' < [dl

such that a=qd + r and a'=q'd + r".

Subtracting these equations gives d(q'-q) = r'-r, so dIr'-r. Since 0 <r,r' < Idl, the difference r'-r
must also be smaller than d. Since d is a divisor of this difference, it follows that the

difference r'-r must be zero, i.e. r'=r, and so q'=q.

Example: Ifa=16,b=5,then16=3x5+1;0<1<5.
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Euclidean Algorithm for finding the GCD

An efficient method for finding the greatest common divisor of two integers based on the
quotient and remainder technique is called the Euclidean algorithm. The following lemma
provides the key to this algorithm.

Lemma: If a = bg + r, where a, b, q and r are integers, then gcd(a, b)=gcd(b, r).
Statement: When a and b are any two integers (a > b), if r] is the remainder when a is
divided by b, rp is the remainder when b is divided by r |, r3 is the remainder when r] is

divided by r and so on and if rj41 = 0, then the last non-zero remainder ry is the ged(a, b).
Proof:
By the unique division principle, a divided by b gives quotient q and remainder r,

such that a = bg+r, with 0 <r < |bl.

Consider now, a sequence of divisions, beginning with a divided by b giving quotient q;
and remainder by, then b divided by by giving quotient g, and remainder by, etc.

a=bqi+bjy,
b=b1q+b,
b1=byq3+bs,

bn-2=bn-1 qn+bn,
bn-1 =bnqn+ 1

In this sequence of divisions, 0 <b; < Ibl, 0 <bj < Ibyl, etc., so we have the sequence
Ibl > b1l > Ibyl > ... > 0. Since each b is strictly. smaller than the one before it, eventually one
of them will be 0. We will let by, be the last non-zero element of this sequence.

From the last equation, we see by, | by_1;:and then from this fact and the equation before it, we
see that by | by, and from the one before that, we see that by, | by_3, etc. Following the chain
backwards, it follows that by, | b,-and by, | a. So we see that by, is a common divisor of a and b.

To see that by, is the greatest.common divisor of a and b, consider, d, an arbitrary
common divisor of a and-b. From the first equation, a-bq;=b{, we see dlby, and from the
second, equation, b-bjgp=by, we see dlb,, etc. Following the chain to the bottom, we see

that dlb,,. Since an arbitrary common divisor of a and b divides b, we see that b, is the
greatest common divisor of a and b.

Example: Find the gcd of 42823 and 6409.
Solution: By Euclid Algorithm for 42823 and 6409, we
have 42823= 6.6409+ 4369, r1= 4369,
6409= 1.4369+2040, 2= 2040,
4369=2.2040+289, r3 = 289,
2040=7.289+ 17,14 = 17,
289=17.17+ 0,
15=0

r4 = 17 is the last non-zero remainder. .. d = (42823, 6409) = 17.
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Example: Find the gcd of 826, 1890.

Solution: By Euclid Algorithm for 826 and 1890, we
have 1890=2.826+ 238,r1= 238
826=3.238+ 112,12=112
238=2.112+ 14,3 =14
112=8.14+0,14=0

r3 = 14 is the last non-zero remainder. .". d = (826, 1890) = 14.

*#+*+Example: Find the gcd of 615 and 1080, and find the integers x and y such that gcd(615,

1080) = 615x + 1080y.
Solution: By Euclid Algorithm for 615 and 1080, we have

1080 = 1.615 + 465, r1 =465 — — — — — (1)
615=1.465+150,rp =150 — — — — - ()
465=3.150+15r3=15- - - = — = 3)
150=10.15+0,74=0- - - = - — = 4)

r3 = 15 is the last non-zero remainder.

d= (615, 1080) = 15. Now, we find x and y such that

615x + 1080y = 15.
To find x and y, we begin with last non-zero remainder as follows.
d=15=465 + (-3).150; using (3)

=465 + (-3){615 + (=1)465/; using (2)
=(-3).615 + (4).465
=(-3).615 + 4{1080 + (—1).615/; using (1)
=(=7).615 #.4).1080
=615x +1080y
Thus ged(615, 1080) = 15 provided 15 = 615x + 1080y, where x = =7 and y = 4.
Example: Find the gcd of 427 and 616 and express it in the form 427x + 616y.
Solution: By Euclid Algorithm for 427-and 616, we have

616=1.427+189,r1 =189 ......... (1)
427=2.189+49,12 = 49........... 2)
189=13.49+ 42,13 =42.¢..00..... 3)
49= 1424 7,14 = T ()

42=6.7+0,r5=0useccrrrrrs (5)

r5 =7 is the last non-zero remainder.

d= (427, 616) =7. Now, we find x and y such that

427x + 616y =17.
To find x and y, we begin with last non-zero remainder as follows.
d=T7=49 + (-1).42; using (4)
=49 + (-1){189 + (-3).49}; using (3)
=4.49 — 189
=4.{427 + (-2).189} — 189; using (2)
=4.427 + (-8).189 — 189
=4.427 + (-9).189
=4.427 + (-9){616 + (=1)427}; using (1)
=4.427 + (-9).616 + 9.427
=13.427 + (-9).616

108

www.FirstRanker.com



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

Thus ged(427, 616) =7 provided 7 = 427x + 616y, where x = 13 and y = -9.
Example: For any positive integer n, prove that the integers 8n + 3 and 5n + 2 are
relatively prime.

Solution: If n = 1, then gcd(8n + 3, Sn + 2)=gcd(11, 7) = 1.

If n > 2, then we have 8n + 3 > 5n + 2, so we may write

8n+3=1.5n+2)+3n+1, O0<3n+1<5n+2
S5n+2=1.0Cn+1)+2n+1, 0<2n+1<3n+1
3n+1=1.2n+1)+n O<n<2n+1

2n+1=2n+1, O<l<n

n=nl+0.

Since the last non-zero remainder is 1, gcd(8n + 3, 5Sn +2) =1 foralln > 1.
Therefore the given integers 8n + 3 and 5n + 2 are relatively prime.
Example: If (a, b) = 1, then (a + b, a — b) is either 1 or 2.

Solution: Let (a + b, a — b) =d =>dla + b, dla - b.

Thena+b=kid........ (1)

anda — b=kyd.......... (2)
Solving (1) and (2), we have

2a = (k1 + kp)d and 2b = (k1 — kp)d
d divides 2a and 2b

d <gcd(2a, 2b) = 2 ged(a, b) = 2, since gcd(a, b)=1..d=1or 2.
Then 2a + b =kjd........ (D)
anda +2b=kpd.......... )

3a =2k — kp)d and 3b = (2kp — k1)d
d divides 3a and 3b

d <gcd(3a, 3b) =3 ged(a, b) = 3, since.gcd(a, b)=1..d=1o0r2or 3.
But d cannot be 2, since 2a + b and a+2b are not both even [when a is even and b is odd, 2a

b is odd and a + 2b is even; wheén'a is odd and b is even, 2a + b is even and a + 2b is odd;
when both a and b are odd 2a + b and a + 2b are odd.] Hence d = (2a + b, a + 2b) is 1 or 3.

Least Common Multiple (LCM)

Let a and b be two non-zero integers. A positive integer m is said to be a least common
multiple (Icm) of a and b if
m is a common multiple of a and b i.e., a/m and b/m,
and
¢ is a common multiple of a and b, c is also a multiple of
m1.e., if a/c and b/c, then m/c.

In other words, ifa and b are positive integers, then the smallest positive integer that is and
divisible by both a b is called the least common multiple of a and b and is denoted by

Icm(a, b).
Note: If either or both of a and b are negative then Icm(a, b) is always positive.
Example: lem(5, -10)=10, lcm(16, 20)=80.

109

www.FirstRanker.com



:l » FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

Prime Numbers

Definition: An integer n is called prime if » > 1 and if the only positive divisors of n are 1
and n. If n > 1 and if n is not prime, then 7 is called composite.

Examples: The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43,47,53,59, 61, 67,71,73,79, 83, 89, and 97.

Theorem: Every integer n > 1 is either a prime number or a product of prime numbers.

Proof: We use induction on n. The theorem is clearly true for n = 2. Assume it is true for
every integer < n. Then if n is not prime it has a positive divisor d =1, d sf1. Hence n = cd,
where ¢ =h1. But both ¢ and d are < n and > 1 so each of ¢, d is a product of prime numbers,
hence so is n.

Fundamental Theorem of Arithmetic

Theorem: Every integer n > 1 can be expressed as a product of prime factors in
only one way, a part from the order of the factor.

Proof:

There are two things to be proved. Both parts of the proof will use he Well-
ordering Principle for the set of natural numbers.

We first prove that every a > 1 can be written as ajproduct of prime factors. (This
includes the possibility of there being only one factor in case a is prime.)

Suppose bwoc that there exists a integer a > 1 such that a cannot be written as a product of
primes.

By the Well-ordering Principle, there is a smallest such a. Then

by assumption a is not prime so a = bc where'l < b, c < a.

So b and ¢ can be written as products of prime factors (since a is the smallest positive
integer than cannot be.)

But since a = bc, this makes a a.product of prime factors, a contradiction.

Now suppose bwoc that\there exists an integer a > 1 that has two different prime
factorizations, say a = pl.:- ps = ql --- qt, where the pi and qj are all primes. (We allow
repetitions among the pi-and qj . That way, we don‘t have to use exponents.)

Then plla=ql --- qt. Since pl is prime, by the Lemma above, p1l gj for some j

. Since qj is prime and p1 > 1, this means that pl =qj .

For convenience, we may renumber the qj so that pl =ql .

We can now cancel pl from both sides of the equation above to get p2 --- ps=q2 --- qt . But
p2 --- ps < a and by assumption a is the smallest positive integer with a non—unique prime
factorization.

It follows that s = t and that p2,...,ps are the same as q2,...,qt , except possibly in a different
order.

But since pl = ql as well, this is a contradition to the assumption that these were two
different factorizations.

Thus there cannot exist such an integer a with two different factorizations

4
Example: Find the prime factorisation of 81, 100 and 289. Solution: 81 =3 x3 x3 x 3 =3
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2 2
100=2%x2x%x5%x5=2 x5

Z
280=17x17=17 .

ak Dk
Theorem: Letm=p a1 pa..p = andn=p b1 pe..p  .Then
min(a ,b ) min(a2,b 2 min(a b )
X ... X pk k k
i , Where min(a, b) represents the minimum of the two numbers a and b.
uaa\u U )
lemm n)=pl 1 1 xp2 max@b2) x .. x prmaxtagbfo

= max(ai,b .
11 Di x(ah l), where max(a,b) represents the maximum of the two numbers a and b.

d =pl 11
ged(m, m) 2 [D [ Ia, D>l<)p

Theorem: If a and b are two positive integers, then gcd(a, b).lcm(a, b) = ab.

Proof: Let prime factorisation of a and b be

al a?2 a b1l b2 b k
m=p | p2 Pk andn=p | po .pk

mm(a b) mm(a b)) mm(a b

Then ged(a, b) =» 1 Y k™K W and

max(a,,b ) max(a

lcm(m, n) =p! 1’1 max(a,,b,)

2% ™

We observe that if min(a;, b;) is aj(or b;) then max(aj;, b;) is bj(or a;), i =1, 2..,

n. Hence gcd(a, b).Icm(a, b)

min(a ,b ) min(a b ) min(aK,bK) max( a,b) max( a,b) max( a,b)
= pl 1T xp2 2 2><...><pk Xp 11 1.p 22 2P k k&
[min(a ,b )+max(a,b )] [min(a ,b )+max(a,b )] [min(a,b )+max(a,b )]
=p] 11 11 'p2 2 2 22 "'pk k' k k Kk
(a+b) (a+b) (a+b)
=p] 11 .p2 2 2 pk k ok
=(p aypay..p ag J(p brp by ..p bk
=ab.

Example: Use prime factorisation to find the greatest common divisor of 18 and 30.
Solution: Prime factorisation of 18 and 30 are

18=2 x3 x5 and30=2"%x3 x5.

ged(18, 30) = 2min(l, 1) x.g3min(2,1) x smin(0,1)
=2 x3 x5
=2x3x1

Example: Use prime factorisation to find the least common multiple of 119 and 544.
Solution: Prime factorisation of 119 and 544 are

0 1 1 5 0 1
119=2 x7 x17 and544=2 x7 x 17 .
lcm(l 19 544) 2max(0 5 X 7max(l 0) X 17max(l n

=2 x7 ><17
=32 x7x17

Example: Using prime factorisation, find the gcd and lcm of
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(1). (231, 1575) (i1). (337500, 21600). Verify also gcd(m, n). lem(m, n) = mn.

Example: Prove that log3 5 is irrational number.
Solution: If possible, let log3 5 is rational number.

log3 5 =u/v, where u and v are positive integers and prime to each other.
u/v

37 =5
. u v
ie,3 =5 =n,say.
This means that the integer n > 1 is expressed as a product (or power) of prime numbers (or a
prime number) in two ways.
This contradicts the fundamental theorem arithmetic.

log3 5 is irrational number.

Example: Prove that\ 5 is irrational number.

Solution: If possible, letV 5 is rational number.

=5 = u/v, where i and v are positive integers and prime to each other.
U2 =5V2eoieeennen (1)
u?2 is divisible by 5

u is divisible by S i.e., u = Sm......... )
~ From (1), we have 5v2=25m2 or v2 =
Sm2i.e., v2 and hence v is divisible by 5

From (2) and (3), we see that u and v have a common factor 5, which contradicts the
assumption.

Testing of Prime Numbers

Theorem: If n > 1 is a composite integer, then-there exists a prime number p such
that p/n and p <\n.

Proof: Since n > 1 is a composite integer, n can be expressed as n = ab, where

1 <a<b<n. Thena<\n.

If a >\/n, then b > a >\n.

n=ab >\n. \/n_ =n, i.e. n > n,which is a contradiction.
Thus n has a positive divisor (=.a) not exceedingy..

a > 1, is either prime or by the Fundamental theorem of arithmetic, has a primefactor. In ither
ase, n has a prime factor<vn.

Algorithm to test whether an integer n > 1 is prime:

Step 1: Verify whether n is 2. If n is 2, then #n is prime. If not goto step 2.

Step 2: Verify whether 2 divides n. If 2 divides n, then n is not a prime. If 2 does not
divides n, then goto step (3).

Step 3: Find all odd primes p < \n.If there is no such odd prime, then 7 is prime
otherwise, goto step (4).

Step 4: Verify whether p divides n, where p is a prime obtained in step (3). If p divides n,
then 7 is not a prime. If p does not divide n for any odd prime p obtained in step (3),
then 7 is prime.
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Example: Determine whether the integer 113 is prime or not. )
Solution: Note that 2 does not divide 113. We now find all odd primes p such that p < 113.
These primes are 3, 5 and 7, since 7 < 113 < 11.

Hence, 113 is a prime.

Example: Determine whether the integer 287 is prime or not. )
Solution: Note that 2 does not divide 287. WS now find allzodd primes p such that p <287.

These primes are 3, 5,7, 11 and 13, since 13 <287 < 17 .
7 divides 287.
Hence, 287 is a composite integer.

Modular Arithmetic

Congruence Relation

If a and b are integers and m is positive integer, then a is said to be congruent to b modulo m,
if m divides a — b or a — b is multiple of m. This is denoted as

a= b(mod m)

m is called the modulus of the congruence, b is called the residue of a(mod m). If a is not
congruent to » modulo m, then it is denoted by a =h(mod m). Example:

(1). 89 = 25(mod 4), since 89-25=64 is divisible by 4. Consequently 25 is the residue of
89(mod 4) and 4 is the modulus of the congruent.

(i1). 153 = —-7(mod 8), since 153-(-7)=160 is.divisible by 8. Thus -7 is the residue
of 153(mod 8) and 8 is the modulus of the-congruent.

(iii). 24 /23(mod 5), since 24-3=21 is not divisible by 5. Thus 24 and 3 are incon-gruent
modulo 5

Note: If a = b(mod m) < a —.b = mk, for some integer k
a = b + mk, for some integer k.
Properties of Congruence

Property 1: The relation ICongruence modulo ml is an equivalence relation. i.e., for all
integers a, b and c, the relation is

Reflexive: For any integer a, we have a = a(mod m)
Symmetric: If a = b(mod m), then b = a(mod m)

Transitive: If a = b(mod m) and b = c(mod m), then a = c(mod
m).

Proof: (i). Let a be any integer. Then a — a = 0 is divisible by any fixed positive integer m.
Thus a = a(mod m).

113

www.FirstRanker.com



:l » FirstRanker.com

Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

The congruence relation is reflexive.
(i1). Given a = b(mod m)
=a — bisdivisible by m = —(a — b) is

divisible by m = b — a is divisible by
m
i.e., b = a(mod m).
Hence the congruence relation is symmetric.
(iii). Given a = b(mod m) and b = c(mod m)
a — b is divisible of m and b — c is divisible by m. Hence (a —
b) + (b — ¢c) =a — cis divisible by m
i.e., a = c(mod m)
The congruence relation is transitive.
Hence, the congruence relation is an equivalence relation.
Property 2: If a = b(mod m) and c is any integer, then
(1). a £¢c = b £ c(mod m)
(i1). ac = bc(mod m).
Proof:
(). Since a = b(mod m) = a — b is divisible by m.
Now (a +¢) — (b £¢) =a — b is divisible by m.
a*xc=b xc(mod m).

(ii). Since a = b(mod m) = a — b is divisible by m.
Now, (a — b)c = ac — bc is also divisible by m.
ac = bc(mod m).

Note: The converse of property (2) (ii) is nottrue always.

Property 3: If ac = bc(mod m), then a = b(mod m) only if gcd(c,m) = 1. In fact, if ¢ is an
m

1nteger Wthh d1V1des m, and if ac =bc(mod m), then a = b mod| ng(C m) ]

ie., ac — bc = pm where p is an‘integer.

m
a-b=p("¢c)

m m
a=b[mod (T ¢ )], provided that" ( is an integer.

Since ¢ divides m, gcd(c, m) = c.
m

Hence, a = b mod [ ng(C, m) ]
But, if ged(c, m) = 1, then a = b(mod m).

Property 4: If a, b, ¢, d are integers and m is a positive integer such that a = b(mod m) and ¢
d(mod m), then

(1). a £¢ = b £d(mod m)

(i1). ac = bd(mod m)

n n
(iii)). a = b (mod m), where n is a positive integer.
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Proof: (i). Since a = b(mod m) = a — b is divisible by m.

Also ¢ = d(mod m) = ¢ — d is divisible by m.

(a — b) £(c — d) is divisible by m. i.e., (a £¢) —
(b £d)is divisible by m.i.e.,a tc=b £
d(mod m).

(ii). Since a = b(mod m) = a — b is divisible by m.
(a — b)c is also divisible by m.
(c — d)b is also divisible by m.
(a — b)c + (c — d)b = ac — bd is divisible by m. i.e., ac — bd is divisible by m.

i.e., ac = bd(mod m)......cccceeeeeeennnnn... (1)

(ii1). In (1), put ¢ = @ and d = b. Then, we get

a» = b.(mod m)................ (2)

Also a = b(mod m)................ 3) 3 3
Using the property (ii) in equations (2) and (3), we have a =b (mod
m)

Proceeding the above process we get

n_n
a =b (mod m), where n is a positive integer.

Fermat’s Theorem

If pis a prime and (a, p) = 1 then ap — 11is divisible-by p i.e., ap =1 (mod p).
Proof

We offer several proofs using different techniques to prove the statement a’ =a (mod p),
If ged (a’a p) = 1, then we can cancel a factor of afrom both sides and retrieve the first

version of the theorem.

Proof by Induction

The most straightforward way to prove this theorem is by by applying the induction principle. We
fix P as a prime number. The base case, 1" =1 (mod p), is obviously true. Suppose the

statement @° = @ (mod p) is true. Then, by the binomial theorem,
Pl o1 p —2 p
a+ 1) =a? a? e a+ 1.
(a+1) +(1) +(2) i +(p_1) e

(p)

Note that P divides into any binomial coefficient of the form k for | <k <p—1 This
py_ 1

k]~ Kl(p—k)

follows by the definition of the binomial coefficient as ; since P is prime,

then P divides the numerator, but not the denominator.
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Taken MOd P, all of the middle terms disappear, and we end up
with (a -+ 1)p =a”+1 (mod p). Since we also know that @° = @ (mod p),
then (a -+ 1)p =a+1 (mod p)’ as desired.

Example: Using Fermag‘g 2theorem, compute the values of
3 mod 5),
(302 )

3  (mod7)and

302
3 (mod11).

Solution: By Fermat* s theorem, 5 is a prime number and 5 does not divide 3, we have
35—41E 1 (mod 5)

3 =1 (mod>5)

3300= 1 (mod 5)

2
3302= 3" =9 (mod 5)

3302= 4 (mod 5)...Cn...... (1)
Similarly, 7 is a prime number and 7 doessnot divide 3;-we have
3 =1 (mod7)

300
3 =1(mod 7)
302 2
3 =3 =9 (mod7)
302
3 =2 (mod 7).....c....... 2)
and 11 is a prime number and 11-does not divide 3, we have

3 =1(modll)

1030 30

3) =1 (mod 11)

302 2
37 =3" =9 mod 1 1)............ 3)

201
Example: Using Fermat‘s theorem, find 3 ~ (mod 11).

Example: Using Fermat‘s theorem, prove that 413332 =16 (mod 13331). Also, give
an example to show that the Fermat theorem is true for a composite integer. Solution:
(). Since 13331 is a prime number and 13331 does not divide 4.

Bxlfermat‘s theorem, we have

4 = 1 (mod 13, 331

13330 1 )

4 = 1 (mod 13, 331)
13331

4 = 4 (mod 13, 331)
13332

4 = 16 (mod 13, 331)

(ii). Since 11 is prime and 11 does not divide 2.
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Bl)i Fermat‘s theorem, we have
2 = 1 (mod 11)
ie.,2 =1(modl11)

340
2 =1 (mod 11)............. (D)
Also, ‘
2 =1 (mod 31)
340
2 =1 (mod 31)............. 2)
From (1) and (2)3 X\(r)e get

2 3—41 is divisible by 11 x 31 =341, since ged(11, 31) = 1.

0
ie., 2 =1 (mod 341).
Thus, even though 341 is not prime, Fermat theorem is satisfied.

Euler’s totient Function:

Euler's totient function counts the positive integers up to a given integer n that are
relatively prime to n. It is written using the Greek letter phi as ¢(n), and may also be called
Euler's phi function. It can be defined more formally as the number of integers k in the range
1 <k <n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this
form are sometimes referred to as totatives of n.

Computing Euler's totient function:
/ 1 3

a(n)="]_|[1 - ‘]

P P

1 19 1
:n(l— ~)[1- —]m(l— ~],

, Py Pz Py ;

where the product is over the distinct prime numbers dividing

Example: Find ¢(21), ¢(35), #(240)
Solution:

$(21) =93 x 7)

1 1
21(1=— 3)(I= 7)
12
$(35) = ¢(5 x 7)
1 1
35(1=§)= 7)

24

$(240) = ¢(15 x 16)
pGx5x 2
=3x5x2)

1
=240 (1— )(1— X1- )
305 2

1
Tt
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¢(n)

Euler’s Theorem: If a and n > 0 are integers such that (a, n) = 1 then a = 1(mod n).
Proof:

Consider the elements I , I ,..., I' g ( p) of (Z/n) the congruence classes of integers
that are relatively prime to n.
For ae (Z/n) the claim is that multiplication by a is a permutation of this set; that is, the

set { ary, ary,..., ar g ( ) } equals (Z/n). The claim is true because multiplication by a is a

function from the finite set (Z/n) to itself that has an inverse, namely multiplication by 1/a (mod n)
Now, given the claim, consider the product of all the elements of (Z/n), on one hand, it

isT1I2,...T ¢ (p) . Onthe other hand, itis ary ary ...ar 4 p) . So these products are
congruent mod n

I(n..rgp) =aran ...ar 4(p)

a¢ (n)

I‘11‘2...I’¢(n) = I12...Tg(n)

=asrm
where, cancellation of the rj is allowed because they all have multiplicative inverses(mod

n) Example: Find the remainder 29202 when divided by 13.
Solution: We first note that (29,13)=1.
Hence we can apply Euler's Theorem to get that 9¢( 3 =1(mod13).
Since 13 is prime, it follows that ¢(13)=12, hence 29 "=1(mod13).
We can now apply the division algorithm between 202 and 12 as follows:
202=12(16)+10

Also we note that 29 can be(fedﬂ)ced to 3 (mod 13), Qnd hence:
=59049=3(mod13)

Hence when 29 1s divided by 13,'the-remainder leftover is 3.

Example: Find the remainder of 99999999 when divided by 23.

Solution: Once again we note that (99,23)=1, hence it follows that 99¢(23)
=1(mod23). Once again, since 23 is prime, it goes that ¢(23)=22, and
more

appropriately 9922=1(mod23).

We will now use the division algorithm between 999999 and 22 to get that:

999999=22(45454)+11

Hence 1t follows that

Hence the remainder of 99999999 when divided by 23 is 22.

Note that we can solve the final congruence a little differently as:
There are many ways to evaluate these sort of congruences, some easier than
others.

Example: What is the remainder when 13 1s divided by 19?

Solution: If y¢ @ is divided by z, the remainder will always be 1; if y, z are co-
prime In this case the Euler number of 19 is 18
(The Euler number of a prime number is always 1 less than the number).
As 13 and 19 are co-prime to each other, the remainder will be 1.
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Example: Now, let us solve the question given at the bzez%l(l)l(%?g of the article using the
concept of Euler Number: What is the remainder of 19 /237
Solution: The Euler Number of the divisor i.e. 23 is 22, where 19 and 23 are co-prime.

Hence, the remainder will be 1 for any power which is of the form of 220000.
The given power is 2200002.
Dividing that power by 22, the remaining poyer will be 2.
Your job remains to find the remainder of 19 /23.
As you know the square of 19, just divide 361 by 23 and get the remainder as 16.

Example: Find the last digit of 555. 5 s
Sol: We first note that finding the last digit of 55~ can be obtained by reducing 55~ (mod
10), that is evaluating 55 (mod10).

We note that (10, 55) =5, and hence this pair is not relatively prime,

however, we know that 55 has a prime power decomposition of

55=5x11. (11,¢](9 = 1,
hence it follows that 11 E1£1r1‘10d10).
Wenotethat¢(10)=4 Hence 11 =1(mod10), and more appropriately:

Hence the last digit of 55 is 5.

Example: Find the last two digits of 33334444.

Sol: 4444
We first note tﬂéz& Iinding the last two digits of 3333 can be obtained by

reducing 3333 (mod 100).
Since (3333, 100) = 1, we can app&y thia theorem.
We first calculate that ¢(100)=¢(2")p(5 )=(2)(5)£g)=40.

Hence it follows from Euler's theorem that 3333 =1(mod100).
Now let's apply the division algorithm on,4444 and 40 as follows:

4444=A40111)+4
HencE 11 4followst at:
4 40.111 4 1 4 4
3333 =(3333 8) -3333 E(1)1 %ﬁ% (mod100)=33 =1185921=21(mod

100) Hence the last two digits of 3333 are 2 and 1.
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Previous questions
Prove that a group consisting of three elements is an abelian group?
Prove that G={-1,1,i,-i} is an abelian group under multiplication?
Let G= {-1,0,1} . Verify that G forms an abelian group under addition?
Prove that the Cancellation laws holds good in a group G.?
Prove that the order of a-1 is same as the order of a.?
Explain in brief about fermats theorem?
Explain in brief about Division theorem?
Explain in brief about GCD with example?
Explain in brief about Euler’s theorem with examples?
Explain in brief about Principle of Mathematical Induction with examples?
Define Prime number? Explain in brief about the procedure for testing of
prime numbers?
Prove that the sum of two odd integers is an even integer?
Find 117 mod 13 using modular arithmetic.

Multiple choice questions

1. If alb and blc, then alc.

a) True b) False
Answer: a
2. GCD(a,b) is the same as GCD(lal,|bl).
a) True b) False
Answer: a
3. Calculate the GCD of 1160718174 and 316258250 using Euclidean algorithm.
a) 882 b) 770 c) 1078 d) 1225
Answer: ¢

4. Calculate the GCD of 102947526 and 239821932 using Euclidean algorithm.
a)ll b)12 ¢)8 d)6
Answer: d

Calculate the GCD of 8376238 and 1921023 using Euclidean algorithm.
13 b)12 ¢)17 d)7

Answer: a

6. Whatis 11 mod 7 and -11 mod 7?
a)4and 5b)4 and 4 c¢) 5 and 3 d) 4 and -4 Answer: d

Which of the following is a valid property for concurrency?
a =b (mod n) if nl(a-b)b) a = b (mod n) implies b = a (mod n)
a=>b (modn) and b = ¢ (mod n) implies a = ¢ (mod n)
All of the mentioned

Answer: d
[(a mod n) + (b mod n)] mod n = (a+b) mod n
a) True b) False
9. [(a mod n) — (b mod n)] mod n = (b —a) mod n
a) True b) False
Answer:b
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10. 11" mod 13 =
a)3b) 7 c)5d) 15
Answer: d
11. The multiplicative Inverse of 1234 mod 4321 is
a) 3239 b) 3213 c) 3242 d) Does not exist
Answer: a
12. The multiplicative Inverse of 550 mod 1769 is
a) 434 b) 224 ¢) 550 d) Does not exist
Answer: a
13. The multiplicative Inverse of 24140 mod 40902 is
a) 2355 b) 5343 c) 3534 d) Does not exist
Answer: d
14. GCD(a,b) = GCD(b,a mod b)
a) True b) False
Answer: a
Define an equivalence relation R on the positive integers A = {2, 3,4, ...,20} by m R n if

the largest prime divisor of m is the same as the largest prime divisor of n. The number
of equivalence classes of R is
M 109 11(e)7
Ans:a
The set of all nth roots of unity under multiplication of complex numbers form a/an

A.semi group with identity B.commutative semigroups with identity
C.group D.abelian group
Option: D

17. Which of the following statements is FALSE ?
A.The set of rational numbers is an abelian.group under addition
B.The set of rational integers is an abelian group under addition
C.The set of rational numbers form an abelian group under multiplication
D.None of these
Option: D

18.In the group G = {2, 4, 6, 8) under'multiplication modulo 10, the identity element is
A6 B8 C4 D2

Option: A
19. Match the following
A. Groups I. Associativity
B. Semi groups II. Identity
C. Monoids [I. Commutative

D. Abelian Groups IV Left inverse

Ivinom 1mrI Iviao omrIIiv I I IV
Option: A
Let (Z,*) be an algebraic structure, where Z is the set of integers and the operation * is
defined by n*m = maximum(n,m). Which of the following statements is TRUE for (Z,*)?

A.(Z, *) is amonoid B.(Z, *) is an abelian group C.(Z, *) is a group D.None
Option: D
21. Some group (G,0) is known to be abeEan. Then which of the follgwing is TRUE for G ?
3|
g=g foreveryg€GB.g=g foreveryg€ GC.(goh) =go
h™ for every g,h € G D.G is of finite order
Option: C
If the binary operation * is deined on a set of ordered pairs of real numbers as (a, b)*(c, d)
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(ad + bc, bd) and is associative, then (1, 2) * (3, 5) * (3, 4) equals
A.(74,40) B.(32,40) C.(23,11) D.(7,11) Option: A

The linear combination of gcd(252, 198) = 18 is
a) 252%4 — 198*5 b) 252*5 — 198*4 c) 252%5 — 198*2 d) 252*%4 — 198*4
Answer:a

The inverse of 3 modulo 7 is

-1b)-2¢)-3d)-4

Answer:b
The integer 561 is a Carmichael number.

a) True b) False
Answer:a

26.The linear combination of gcd(117, 213) = 3 can be written as
a) 11*213 + (-20)*117 b) 10*¥213 + (-20)*117
c) 11*117 + (-20)*213 d) 20*213 + (-25)*117
Answer:a

27.The inverse of 7 modulo 26 is
a) 12 b) 14 c) 15 d) 20
Answer:c

28.The inverse of 19 modulo 141 is
a) 50 b) 51 c) 54 d) 52
Answer:d

29.The value of SNUJ mod 7 is
a)3 b) 4 c)8 d)9
Answer:a

30.The solution of the linear congruence 4x = 5(mod 9) is
a)6(mod9) b)8(mod9) ¢)9(mod9) d) 10(mod9)
Answer:b

31.The linear combination of gcd(10,11) = 1 can be written as
a) (-1)*10 + 1*11 b) (-2)*10 + 2*11
c) I*10 + (-1)*11 d) (-1)*10 + 2*11
Answer:a
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FREQUENTLY ASKED QUESTIONS

UNIT-1
1.Define well formed formulas? and Explain with one example?

2. Demonstrate the Tautologies and equivalence of formulas?

Unit-2

1.Analyze the principle of inclusion and exclusion with one example?
2.Demonstrate the Hasse diagrams and it properties?

Unit-3

1Define the semi groups and monoids and homomorphism with suitable examples?
2.Analyze the fundamental theorem of Arithmetic?
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MODULE - |
Algebra

Not%“

PERMUTATIONS
AND COMBINATIONS

The other day, | wanted to travel from Bangaloreto Allahabad by train. Thereisno
direct train from Banga oreto Allahabad, but therearetrainsfrom Bangaloreto Itars
andfrom Itars to Allahabad. From therailway timetable| found that therearetwotrains
from Bangaoreto Itars and threetrainsfrom Itars to Allahabad. Now, in how many
wayscan | travel from Bangaloreto Allahabad?

Thereare counting problemswhich come under the branch of Mathematicscalled
combinatorics.

Supposeyou havefivejarsof spicesthat you want to arrange on ashdf in your kitchen.
You would liketo arrangethejars, say threeof them, that you will beusing oftenina
more access ble position and theremainingtwo jarsin aless accessible position. In how
many wayscanyoudoit?

Inanother situation suppose you are painting your house. If aparticular shade or colour
Isnot available, you may beableto createit by mixing different coloursand shades.
While creating new colours this way, the order of mixing is not important. It isthe
combination or choice of coloursthat determinethe new colours; but not the order of
mixing.

To giveanother similar example, when you go for ajourney, you may not takeall your
dresseswith you. You may have 4 sets of shirtsand trousers, but you may take only 2
sets. In such acaseyou are choosing 2 out of 4 setsand the order of choosing the sets
doesn’t matter. In these examples, we need to find out the number of choices in which it
can bedone.

Inthislessonweshall consider simple counting methods and usethem in solving such
smplecounting problems.

MATHEMATICS 237

www.FirstRanker.com



:l » FirstRanker.com

Firstranker's choice

MODULE - |
Algebra

Notes

238

www.FirstRanker.com www.FirstRanker.com

mutations And Combination

After studyingthislesson, you will beableto:
. find out the number of waysinwhich agiven number of objects can bearranged;
«  daetheFundamental Principleof Counting;

. definen! and evauateit for defferent valuesof n;

Statethat permutation isan arrangement and writethemeaning of "P ;

n n!
statethat B = m and apply thisto solve problems;

showthat (i) (n+2) "P, =""P, (ii) "P,,=(n-r)"P

Statethat acombinationisase ection and writethemeaningof "C, ;

distinguish between permutationsand combinations,

n!

= ——r)l and apply theresult to solve problems,

. HC
derive “ r(n

derivetherdaion "P. =r!"C,;

verifythat "C. ="C,_, andgiveitsinterpretation; and

derive "C, +"C . =""'C_ and apply theresult to solve problems.

EXPECTED BACKGROUND KNOWLEDGE

. Number Systems

. Four Fundamental Operations

7.1COUNTING PRINCIPLE

L et usnow solvethe problem mentionedin theintroduction. Wewill writet , t, todenotetrains
fromBangdoretoltars andT,, T,, T,, for thetrainsfrom Itarsi to Allahabad. Suppose| take
t, totravel from Bangaloreto Itarsi. Then from Itarsi | can tekeT, or T, or T,. Sothepossibilities
are t T,tT,andt,T,wheret T denotestravel fromBangaloreto Itarsi byt, andtravel from

Itarsi toAIIahabad byT S|m|IarIy, if | taket, to travel from Bangaloreto Itarsi, then the
possihilitiesaret, T, t,T,andt,T.. Thus, indl thereare 6(2x 3) possiblewaysof travelling

21

from Bangaoreto Allahabad.

Herewe had asmall number of trainsand thus could list all possibilities. Had there been 10
transfrom Bangaoreto Itars and 15 trainsfrom Itars to Allahabad, thetask would have been

MATHEMATICS
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Per mutationsAnd Combinations

very tedious. HeretheFundamental Principleof Countingor simply the Counting Principle
comesinuse:

MODULE -
Algebra

If any event can occur in m ways and after it happensin any one of these ways, a
second event can occur in n ways, then both the events together can occur in mxn
ways.

SCINNEYME How many multiplesof 5aretherefrom 10t0 95 ?

Solution : Asyou know, multiplesof 5areintegershaving 0 or 5inthedigit to theextremeright
(i.e. the unit’s place).

Thefirst digit fromtheright can bechosenin2 ways.
The second digit can beany oneof 1,2,3,4,5,6,7,8,9.
i.e. Thereare 9 choicesfor the second digit.

Thus, thereare 2x9 =18 multiplesof 5from 10to 95.

=VET WA | N a city, the busroute numbers consist of a natural number lessthan 100,
followed by one of thelettersA,B,C,D,E and F. How many different busroutesare possible?

Solution : Thenumber can be any oneof the natural numbersfrom 1 to 99.
Thereare 99 choicesfor the number.

Theletter can be chosenin 6 ways.

[0 Number of possible busroutesare 99x 6 =594.

. CHECK YOUR PROGRESS 7.1

(@ How many 3 digit numbersaremultiplesof 5?
(b) A coinistossed thrice. How many possible outcomesarethere?

(¢) If you have 3 shirtsand 4 pairsof trousersand any shirt can bewornwith any pair of
trousers, in how many ways can you wear your shirtsand pairsof trousers?

(d) A tourist wantsto go to another country by ship and return by air. She hasachoi ce of
5 different shipsto go by and 4 airlinesto return by. In how many ways can she perform
thejourney?

2. (@ Inhow many ways can two vacancies befilled from among 4 men and 12 womeniif
onevacancy isfilled by aman and the other by awoman?

(b) Flooring and painting of thewalls of aroom needsto be done. Theflooring can be
donein 3 coloursand painting of wallscan bedonein 12 colours. If any colour combination
isalowed, find the number of ways of flooring and painting thewalls of theroom.

Sofar, we have applied the counting principlefor two events. But it can be extended to
threeor more, asyou can seefrom thefollowing examples:
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There are 3 questionsin aquestion paper. If the questions have 4,3 and 2
solutionsvely, find thetotal number of solutions.

Solution : Herequestion 1 has4 solutions,
guestion 2 has 3 solutions

and question 3has 2 solutions.

0  Bythemultiplication (counting) rule,
total number of solutions

4x3%x2
=24

SETo] (W28 Consider theword ROTOR. Whichever way you read it, from left to right or
fromright to left, you get the same word. Such aword isknown as palindrome. Find the
maximum possi ble number of 5-letter palindromes.

Solution : Thefirst letter from the right can be chosen in 26 ways because there are 26
alphabets.

Having chosen this, the second | etter can be chosenin 26 ways

[0 Thefirsttwoletterscan chosenin 26x 26 = 676 Ways

Having chosenthefirst two letters, thethird | etter can be chosenin 26 ways.
(1 All thethreeletterscan bechosenin 676x 26 =17576 Ways.

It impliesthat the maximum possiblenumber of fiveletter palindromesis 17576 becausethe
fourth letter isthe same asthe second | etter and thefifth | etter isthe sameasthefirst letter.

SETNo][SFASE How many 3-digit numberscan beformed withthedigits1,4,7,8and 9 if the
digitsarenot repesated.

Solution : Three digit number will have unit’s, ten’s and hundred’s place.

Out of 5 given digits any one can take the unit’s place.

Thiscan bedonein 5ways. .. (1)

After filling the unit’s place, any of the four remaining digits can take the ten’s place.
Thiscan bedonein4ways. .. (i)

After filling in ten’s place, hundred’s place can be filled from any of the three remaining digits.
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[0 By counting principle, thenumber of 3digit numbers= 5x4x3 = 60
Let usnow statethe General Counting Principle

If therearen eventsand if thefirst event can occur in m ways, the second event can

occur in m, ways after thefirst event has occured, thethird event can occur in m,
waysafter the second event hasocurred, and so on, then all then eventscan occur in

M, Xm, X ... Xm,_, XM, ways.

SENNEYEN Suppose you cantravel from aplace Ato aplace B by 3 buses, from place B
to place C by 4 buses, from place C to place D by 2 busesand from place D to place E by 3
buses. In how many ways can you travel fromAto E?

Solution : Thebusfrom Ato B can besdlectedin 3ways.
Thebusfrom B to C can be selected in 4 ways.
Thebusfrom Cto D can besdected in 2 ways.
Thebusfrom D to E can be selectedin 3ways.

S0, by the General Counting Principle, onecantravel fromAtoEin 3x4x2x3 ways=72
ways.

. CHECK YOUR PROGRESS 7.2

(8 What isthe maximum number of 6-letter palindromes?

(b) What isthe number of 6-digit palindromic numberswhich do not haveOinthefirst
digit?
2. (a) Inaschool thereare5 Englishteachers, 7 Hindi teachersand 3 French teachers. A

threemember committeeistobeformed with oneteacher representing each language. In
how many ways can this bedone?

(b) Inacollege students union dection, 4 sudentsare contesting for the post of President.
5 studentsare contesting for the post of Vice-president and 3 studentsare contesting for
the post of Secretary. Find the number of possibleresults.

3. (&) Howmanythreedigit numbersgreater than 600 canbeformed usngthedigits1,2,5,6,8
without repeating thedigits?

(b) A person wantsto makeatimetablefor 4 periods. He hasto fix oneperiod each for
English, Mathematics, Economicsand Commerce. How many different timetablescan
he make?

7.2PERMUTATIONS

Suppose you want to arrange your bookson ashelf. If you have only onebook, thereisonly
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oneway of arranging it. Suppose you have two books, one of History and one of Geography.

You can arrange the Geography and History booksin two ways. Geography book first and the
History book next, GH or History book first and Geography book next; HG. In other words,
there aretwo arrangements of thetwo books.

Now, supposeyou want to add a Mathematics book also to the shelf. After arranging History
and Geography booksin one of thetwo ways, say GH, you can put M athematics book in one
of thefollowingways: MGH, GMH or GHM. Similarly, corresponding to HG, you havethree
other waysof arranging thebooks. So, by the Counting Principle, you can arrangeMathematics,

Geography and History booksin 3x 2ways= 6 ways.

By per mutation wemean an arrangement of objectsin aparticular order. Intheaboveexample,
wewere discussing the number of permutations of one book or two books.

Ingenerd, if youwant to find the number of permutations of n objects n>1, how canyou do
it?Let usseeif wecan find an answer tothis.

Similar to what we saw in the case of books, there is one permutation of 1 object, 2x1
permutations of two objectsand 3x 2x1 permutationsof 3 objects. It may bethat, thereare
nx(n-1)x(n-2)x...x 2x1 permutations of n objects. Infact, itisso, asyou will scewhen
weprovethefollowing result.

Ao gs WA Thetotal number of permutations of nobjectsisn(n—-1) ....2.1.

Proof : Wehaveto find the number of possiblearrangements of ndifferent objects.

Thefirg placein an arrangement can befilled inn different ways. Onceit hasbeen done, the
second place can befilled by any-of the remaining (n-1) objects and so this can be done in
(n=1) ways. Similarly, once the first two places have been filled, the third can be filled in (n-2)
waysand so on. Thelast placeinthe arrangement can befilled only in oneway, becauseinthis
caseweareleft with only one object.

Using the counting principle, the total number of arrangements of n different objectsis
n(n —1) (n - 2) ........ 21 . (7.1)

The product n (n— 1) ... 2.1 occurs so often in Mathematics that it deserves a name and
notation. Itisusually denoted by n! (or by |n read asn factorial).

nt=n(n-1)..321

Hereisan exampleto help you familiariseyoursdlf with thisnotation.

Evaluate (a) 3! ()21 +4 (0 2x3

Solution: () 3=3x2x1=6
(b) 22=2x1=2

4 = 4x3x2x1=24
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Therefore, 2+ 4 =2+24=26

MODULE - |
Algebra

(0 21x 31 =2x6 =12
Noticethat n! satisfiestherdation

n! = nx(n-1)! ..(7.2)

Thisisbecause,n(n-1)!=n[(n-1).(n-2)...2.1]
=n.(n-1).(n-2)..2.1
=n!

Of course, theaboverdationisvaidonly for n> 2 because0! hasnot been defined sofar. Let
usseeif wecan define 0! to be consistent with thereation. Infact, if wedefine

o=1 .. (7.3)
thenthereation 7.2 holdsforn=1aso.

=en]o] [SWESN Suppose you want to arrange your English, Hindi, Mathematics, History,
Geography and Science bookson ashelf. Inhow many wayscanyoudoit?

Solution : We haveto arrange 6 books.
The number of permutationsof nobjectsisn! =n. (n-1).(n-2)...2.1

Heren =6 and therefore, number of permutationsis6.5.4.3:2,1 =720

N
Le:‘ CHECK YOUR PROGRESS 7.3

1. (a)EBvauate: (i)6! (i) 7! (iii).74'+3! (iv)6! x 4 (v) %
(b) Which of thefollowing statements aretrue?
() 2'x 3! =6! (i) 2! +4! = 6!
(iii) 3! divides4! (iv) 41-21 =2

2. (@) 5studentsare staying in adormitory. In how many ways can you alot 5 bedsto
them?

(b) In how many ways can the letters of the word ‘TRIANGLE’ be arranged?

(¢) How many four digit numberscan beformed with digits1, 2, 3and 4 and with distinct
digits?

7.3PERMUTATION OFr OBJECTSOUT OFn OBJECTS

Suppose you havefive story books and you want to distribute one each to Asha, Akhtar and
Jasvinder. In how many ways can you do it? You can give any one of thefive booksto Asha
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and after that you can give any one of the remaining four booksto Akhtar. After that, you can
give oneof the remaining three booksto Jasvinder. So, by the Counting Principle, you can

distributethebooksin 5x4x3ie60 ways.

More generaly, supposeyou haveto arranger objectsout of n objects. In how many ways can
youdoit?Let usview thisin thefollowing way. Supposeyou haven objectsand you haveto
arranger of theseinr boxes, one object in each box.

nways n-—1 ways n—-r+ 1ways

r boxes
Fig.7.1

Supposethereisonebox. r = 1. You can put any of then objectsinit and thiscanbedonein
nways. Supposetherearetwo boxes. r =2. You can put any of theobjectsin thefirst box and
after that the second box can be filled with any of the remaining n— 1 objects. So, by the
counting principle, thetwo boxescan befilledinn (n— 1) ways. Similarly, 3 boxes can be filled
inn(n-1) (n—-2) ways.

Ingenerd, wehavethefollowing theorem.

ol WA T he number of permutationsof r objectsout of n objectsis
n(n-1).-.-(n—-r+1).

Thenumber of permutations of r objectsout of n objectsisusualy denoted by "P .

Thus,
"P =n(n-1)(n-2).(n=r+1) ..(7.4)

Proof : Supposewe haveto arranger objectsout of ndifferent objects. Infactitisequivaent
tofilling r places, each with one of the objects out of the givenn objects.

Thefirst place can befilled in n different ways. Oncethishas been done, the second place can
befilled by any one of theremaining (n—1) objects, in (n-1) ways. Similarly, the third place
can befilledin (n—2) ways and so on. The last place, the rth placecan befilled in[n—(r-1)] i.e.
(n—r+1) different ways. You may easily see, astowhy thisisso.

Using the Counting Principle, we get the required number of arrangementsof r out of nobjects
isn(n-1)(n-2)............ (n-r+1)

4

P
EXIE) Evalvate: (2P, ()P, (© 5p  (d) Rx°P,
2

Solution : @ ‘P, =4(4-1)=4x3=12.

()  °P,=6(6-1) (6-2) = 6x5x4=120.
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‘P _4(4-D(4-2) _4x3x2 Algebra
©  3p 77 33— 3x2

(d) °P,x°P, =6(6-1) (6-2)x5(5-1)

=6x5x4x5x4 = 2400

S Y] If you have 6 New Year greeting cards and you want to send them to 4 of your
friends, in how many ways can thisbe done?

Solution : We haveto find number of permutations of 4 objectsout of 6 objects.
Thisnumberis°P, =6(6-1) (6-2) (6-3) =6.5.4.3=360
Therefore, cards can be sent in 360 ways.

Consider theformulafor "P , namely,"P_ =n(n-1) ... (n—r + 1). Thiscan be obtained by
removingthetermsn—r,n—r—1,...,2, 1 from the product for n!. The product of these terms
is(n-r)(n-r-1)..2.1,i.e, (n-r)l.

n! nin-H)(n-2)....n-r+1)(n-r)...2.1
Now, (n=r)! = (n=-r)(n-r-1..21

= n(n-)(n-2)...(n—-r +1)

= "p

r

So, usingthefactorial notation, thisformulacan bewritten asfollows:

|
"B n!

" (n-r)!

=S ENJEYMEL Find thevaueof "P.

Solution : Herer =0. Using relation 7.5, we get

.. (75)

e N
0 _H =1
SEPJEyMvy Show that (n+1)"P = ™P
nl (n+)n!
i : n = n+1 -
Solution: (n+1)"P, = ( )(n—r)! n-n!
(n+1)! N

= Th+D-(r +1)! [writingn—ras[(n+1)—(r +1)]
= "R, (By definition)
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\
L°:¢ CHECK YOUR PROGRESS 7.4

1 (@@ Evauate: (i) ®, (i) P, (iii)g—ff (iv) *BxP, (V) "P,

(b) Verify each of thefollowing statements:
0 6x°P, = °P, @  ax'm="PR
(i) Rx'm =R, i) °P+P="P,
2. (3 (i) What isthe maximum possible number of 3- letter wordsin English that do not
contain any vowe ?

(i) What isthe maximum poss ble number of 3- |etter wordsin English which do not have
any vowel other than ‘a’?

(b) Supposeyou have 2 cotsand 5 bedspreadsin your house. In how many ways can
you put the bedspreads on your cots?

(c) Youwant to send Diwali Greetingsto 4 friendsand you have 7 greeting cardswith
you. In how many wayscanyou doit?

3. Showthat "P,_, ="P,.

n

4. Showthat (n-r)"P ="P

r+#1¢

74PERMUTATIONSUNDER SOME CONDITIONS

Wewill now see examplesinvol ving permutationswith someextraconditions.

SEINJWMER Suppose 7 students are staying in ahall in ahostel and they are allotted 7
beds. Amongthem, Parvin does not want abed next to Anju because Anju snores. Then, in
how many-ways can you allot the beds?

Solution : Let thebedsbenumbered 1to 7.
Casel: Suppose Anjuisalotted bed number 1.
Then, Parvin cannot be allotted bed number 2.
So Parvin can beallotted abed in 5ways.

After alloting abed to Parvin, theremaining 5 students can bedlotted bedsin 5! ways.
S0, inthis casethebeds can beadlotted in 5x5!ways= 600 ways.

Case?2: Anjuisallotted bed number 7.

Then, Parvin cannot be all otted bed number 6

AsinCase 1, the bedscan beallotted in 600 ways.
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Case 3: Anjuisallotted one of the beds numbered 2,3,4,5 or 6.

MODULE - |
Algebra

Parvin cannot be allotted the beds on the right hand side and left hand side of Anju’s bed. For
example, if Anjuisalotted bed number 2, bedsnumbered 1 or 3 cannot beallotted to Parvin.

Therefore, Parvin can beallotted abed in 4 waysin al these cases.

After alotting abed to Parvin, the other 5 can be allotted abed in 5! ways.
Therefore, in each of these cases, thebedscan beallottedin 4x5 = 480 ways.
0  Thebedscanbedlottedin

(2% 600+ 5% 480) ways= (1200 + 2400) ways= 3600 Ways.

=il [P | N how many ways can ananima trainer arrange5lionsand 4 tigersinarow
sothat no two lionsaretogether?

Solution : They haveto bearrangedinthefollowingway :

L T L T L T L T L

The 5 lions should be arranged in the 5 places marked ‘L.
Thiscanbedonein 5! ways.

The 4 tigers should be in the 4 places marked ‘T".
Thiscanbedonein 4! ways.

Therefore, thelionsand thetigers can be arranged in 5! x 4! ways= 2880 ways.

SEJCYMIE T here are 4 booksonfairy tales, 5novelsand 3 plays. In how many wayscan
you arrange these so that books on fairy tal esaretogether, novel saretogether and playsare
together and inthe order, books on fairytales, novelsand plays.

Solution : Thereare4 bookson fairy tales and they haveto be put together.

They can bearranged in 4! ways.
Similarly, thereare5noves.
They can bearranged in 5! ways.
Andthereare 3 plays.

They can bearrangedin 3! ways.

S0, by the counting principleall of them together canbearrangedin 4!x5!x 3! ways= 17280
ways.

Supposethere are4 booksonfairy tales, 5 novelsand 3 playsasin Example
7.15. They haveto bearranged so that thebookson fairy taesaretogether, novel saretogether
and playsaretogether, but weno longer requirethat they should bein aspecific order. Inhow
many ways can thisbe done?
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Solution : First, we consider thebooksonfairy tales, novelsand playsas single objects.
Thesethree objects can bearranged in 3!ways= 6 ways.

Let usfix one of these 6 arrangements.

Thismay giveusaspecific order, say, novels _, fairytales _. plays.

Given thisorder, the books on the same subj ect can bearranged asfollows.

The4 bookson fairy tales can be arranged among themselvesin 4! =24 ways.

The5 novelscanbearrangedin 5! = 120 ways.

The 3 playscan bearranged in 3! = 6 ways.

For agiven order, thebooks can bearranged in 24x120x 6 =17280 ways.

Therefore, for al the 6 possible orders the books can be arranged in 6x17280 = 103680
ways.

SEnlJ[¥MVAI n how many ways can 4 girlsand 5 boysbearranged inarow sothat al the
four girlsaretogether?

Solution : Let 4 girlsbeoneunit and now thereare6 unitsinal.
They can bearrangedin 6! ways.
In each of these arrangements4 girlscan bearranged in 4! ways.
(]  Tota number of arrangementsinwhich girlsare awaystogether
=6! x 4!
=720 x 24
= 17280
How many arrangements of the letters of the word ‘BENGALI’ can be made
(i) if thevowe sare never together.
(i) if thevowel sareto occupy only odd places.
Solution : There are 7 letters in the word ‘Bengali; of these 3 are vowels and 4 consonants.

(i) Considering vowelsa, e, i asoneletter, wecan arrange4+1 lettersin 5! waysin each
of which vowelsaretogether. These 3 vowels can be arranged among themselvesin 3!
ways.

5 x 3!
120 x 6 =720

0  Tota number of words

(ii) Thereare4 odd places and 3 even places. 3 vowelscan occupy 4 odd placesin P
3

ways and 4 constants can bearranged in “pP, ways.
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O  Number of words = "Byx°P,=24x24 Algebra

= 576.

rew
\ ¥ § CHECK YOUR PROGRESS 7.5

1.  Mr. GuptawithMs. Guptaandther four childrenistravelling by train. Twolower berths,
two middleberthsand 2 upper berthshave been dl otted to them. Mr. Guptahasundergone
akneesurgery and needsalower berth while M s. Guptawantsto rest during thejourney
and needs an upper berth. In how many ways can the berths be shared by the family?

2. Considertheword UNBIASED. How many wordscan beformed with theletters of the
word inwhich no two vowelsaretogether?

3. Thereare4booksonMathematics, 5 bookson English and 6 books on Science. In how
many ways can you arrange them so that books on the same subject are together and
they arearranged intheorder Mathematics — English - Science.

4.  Thereare 3 Physicsbooks, 4 Chemistry books, 5 Botany booksand 3 Zoology books.
In how many ways can you arrange them so that the books on the same subject are
together?

5.  4boysand 3girlsareto beseated in 7 chairs such that no twe boysaretogether. In how
many ways can thisbe done?

6.  Findthe number of permutations of the letters of the word ‘“TENDULKAR?, in each of
thefollowing cases:

(i) beginningwith T and endingwith R.
(i) vowe sare dwaystogether.

(iii) vowel sare never together.

7.5 COMBINATIONS

Let usconsider theexampleof shirtsand trousers asstated in theintroduction. Thereyou have
4 setsof shirtsand trousersand you want to take 2 setswith youwhile going on atrip. In how
many wayscanyoudoit?

Let usdenotethesetsby S, S, S,, S,. Thenyou can choosetwo pairsinthefollowingways:
1 {s.s} 2. {s.s} 3 {s.s}
4. {s, s} 5. {s..s.} 6. {s,.s}

[Observethat {S, S,} isthesameas {S,, S}1. So, thereare 6 ways of choosing thetwo sets

that you want to takewith you. Of course, if you had 10 pairsand you wanted totake 7 pairs,
it will bemuch moredifficult towork out the number of pairsinthisway.
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Now asyou may want to know the number of ways of wearing 2 out of 4 setsfor two days, say
Monday and Tuesday, and the order of wearing is aso important to you. We know from

section 7.3, that it can bedonein “P, =12 ways. But notethat each choice of 2 setsgivesus
two ways of wearing 2 setsout of 4 setsasshown below :

1. {S,S} - SonMondayandS, onTuesday or S, on Monday and S, on Tuesday
2. {S,S} - SonMondayandS,onTuesday or S,on Monday and S, on Tuesday
3. {S,S} - S onMondayandS, onTuesday or S,on Monday and S, on Tuesday
4. {S,S} - SonMondayand S, onTuesday or S, on Monday and S, on Tuesday
5
6

{S,S} - S onMonday and S, on Tuesday or S, on Monday and S, on Tuesday
{S,S} - S onMonday and S, on Tuesday or S, on Monday and S, on Tuesday
Thus, thereare 12 ways of wearing 2 out of 4 pairs.

Thisargument holdsgood in genera aswe can seefrom thefollowing theorem.

Ao g el | et >1 beaninteger and r < n. Let us denote the number of ways of
choosingr objectsout of nobjectsby "C. . Then

C, =—t .. (7.6)

Proof : We can chooser objects out of nobjectsin "C_ ways. Each of ther objects chosen

can be arranged in r! ways. The humber of ways of arranging r objectsisr!. Thus, by the
counting principle, the number of waysof choosingr objectsand arranging ther objectschosen

canbedonein "C r! ways. But, thisisprecisely "P . Inother words, wehave
"P =r1"C - (7.7)
Dividing both'sidesby r!, we get theresultinthetheorem.

Hereisan exampleto helpyouto familiariseyoursef with "C .

=reinlo NIl Eval uate each of thefollowing:

(@ °c, (b) °C,
6
(0) “C,+“C, @ 7,
2
5 5
. 5 P2 54 5 P3 543
‘(@) °C, =—2=>"=10 = T,
Solution: (8) "¢, === 17 0 =5 7123
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4 4
(C) 4C3+ 4C2:£+ﬁ:ﬁ+£=4+6:10
3 2 123 12

6
. P, 654 o A3
=_3="""=-90 C, ==
G 3 123 d % 1.2
°C,_20_10
‘c, 6 3

el [l Find the number of subsets of the set {1,2,3,4,5,6,7,8,9,10,11} having 4
dements.

Solution : Here the order of choosing the elements doesn’t matter and this is a problem in
combinations.

Wehaveto find the number of waysof choosing 4 ementsof thisset which has11 elements.
By relation (7.6), thiscan bedonein

11.10.9.8
ug - 211098 _aq
“T 1234 Ways.

e[ WMl 12 pointslieon acircle. How many cyclic quadrilateral s can be drawn by
usingthesepoints?

Solution : For any set of 4 pointswe get acyclic quadrilateral. Number of waysof choosing 4
pointsout of 12 pointsis *C, = 495. Therefore, wecan draw 495 quadrilaterals.

=ET (WA | N abox, there are 5 black pens, 3 white pensand 4 red pens. In how many
ways can 2 black pens, 2 white pensand 2 red pens can be chosen?

Solution : Number of waysof choosing 2 black pensfrom 5 black pens
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(1 BytheCountingPrinciple, 2 black pens, 2 white pens, and 2 red pens can be chosenin
10x3x6 =180 ways.

A question paper consists of 10 questionsdividedinto two partsAand B.
Each part containsfive questions. A candidate isrequired to attempt six questionsin al of
which at least 2 should befrom part A and at least 2 from part B. In how many ways can the
candidate select the questionsif hecan answer al questionsequally well?

Solution : Thecandidate hasto select six questionsinal of which at least two should befrom
Part A and two should befrom Part B. He can select questionsin any of thefollowingways:

Part A Part B
i) 2 4
i) 3 3
i) 4 2

If the candidate follows choice (i), the number of ways in which he can do so is
°C,x °C, =10x5=50

If the candidate follows choice (ii), the number of ways in which he can do so is
°C,x °C, =10x10=100.

Similarly, if thecandidatefollowschaice(iii), then the number of waysinwhichhecando sois
°C,x °C, =50.
Therefore, the candidate can sel ect the question in 50 + 100 + 50 = 200 ways.

SENMZBA committee of 5 personsisto beformed from 6 men and 4 women. In how

many ways can this be donewhen

(i) atleast 2 women areincluded?

(i) amost 2 women areincluded?
Solution (i) When at |east 2women areincluded.
The committeemay consist of

3women, 2men: It canbedonein “C, x °C, ways.
or, 4women, 1 man: Itcanbedonein “C, x °C, ways.
or, 2women, 3men: It canbedonein “C, x °C, ways.
0  Tota number of waysof formingthe committee

=“C,.°C,+°C,°C,+"C,.°C,

=6x20 + 4x15 + 1x6

=120 + 60 + 6 =186
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(it ) When atmost 2 women areincluded

The committeemay consist of

2women, 3men: It can bedonein *C,.°C, ways
or, 1woman,4men:Itcanbedonein ‘C .°C, ways

or, 5men:Itcanbedonein °C, ways
0  Tota number of waysof formingthe committee
=“C,.°C,+°C,.°C,+°C,
=6x20 + 4x15+ 6
=120+ 60+ 6 =186
The Indian Cricket team consistsof 16 players. It includes 2 wicket keepers

and 5 bowlers. In how many ways can acricket eleven be selected if we haveto select 1
wicket keeper and atleast 4 bowlers?

Solution : Weareto choose 11 playersincluding 1 wicket keeper and 4 bowlers
or, 1lwicket keeper and5bowlers.
Number of waysof selecting 1 wicket keeper, 4 bowlersand 6 other players

=°C,5C,°C,

2% 5X4X3X2.1X Ox8x7x6%x5%4
4.3.2.1. 6X5x4x3%x2x1

9x8x7

3x2x1

=2x5x =840

Number of waysof selecting 1 wicket keeper, 5bowlersand 5 other players
=’C,.°C..°C,

Ox8x7x6%x5 Ox8x7x6
X = 2X]IX— =

=2x1 = =
5x4x3x2x1 4x3x2x1

252

[0  Tota number of waysof selectingtheteam
= 840 + 252 = 1092
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. CHECK YOUR PROGRESS 7.6

€) Evduate:

9

(i) =*C, (i) °C, (iii) °C, + °C, (iv) G_Cz

(b) Verify each of thefollowing statement :

@ °C,="C, (i) ‘C,x°C,="C,

(iii) ‘C,+°C,=°C, vy C,+%c,="C,

Find the number of subsets of the set {1, 3, 5, 7, 9, 11, 13, ..., 23} each having 3

dements.

Thereare 14 pointslying on acircle. How many pentagons can be drawn using these
points?

Inafruit basket thereare 5 apples, 7 plumsand 11 oranges. You haveto pick 3fruitsof
each type. In how many ways can you make your choice?

A question paper consistsof 12 questionsdivided into two partsA and B, containing 5
and 7 questionsrepectively. A student isrequired to attempt 6 questionsin al, selecting
at least 2 from each part. In how many ways can astudent sel ect aquestion?

Out of 5 men and 3 women, acommittee of 3 personsisto beformed. In how many
wayscan it beformed selecting (i) exactly 1 woman. (ii) atleast 1 woman.

A cricket team consists of 17 players. It includes 2 wicket keepersand 4 bowlers. In
how many ways can aplaying eleven be selected if we haveto select 1 wicket keeper
and atleast 3 bowlers?

Tofill up5vacancies, 25 applicationswererecieved. Therewere7 S.C. and 8 O.B.C.
candidates among the applicants. If 2 postswerereserved for S.C. and 1 for O.B.C.
candidates, find the number of waysinwhich selection could be made?

7.6 SOME SIMPLE PROPERTIESOF"C,

Inthissectionwewill provesomesimplepropertiesof "C_ whichwill makethe computations
of these coefficientssmpler. Let usgo back againto Theorem 7.3. Using relation 7.7 we can
rewritetheformulafor "C_ asfollows:

"C = n!
r'(n—r)!

(78)
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Solution : Herer =0. Therefore, 'Cy = — =—=1,

sincewe havedefined O! =

Theformulagivenin Theorem 7.3 wasused inthe previous section. Aswewill seeshortly, the
formulagivenin Equation 7.8 will beuseful for proving certain propertiesof "C. .

r'Cr ="C (79)

n-r

Thismeansjust that the number of waysof choosingr objectsout of n objectsisthesameas
the number of ways of not choosing (n—r) objectsout of n objects. In theexample described
intheintroduction, it just meansthat the number of ways of selecting 2 sets of dressesisthe
same as the number of ways of rejecting 4 —2 = 2 dresses. In Example 7.20, this means that
the number of ways of choosing subsetswith 4 € ementsisthe same asthe number of ways of
rejecting 8 elements since choosing aparti cular subset of 4 elementsisequivalent to rejecting
itscomplement, which has8 dements.

Let usnow provethisrelation using Equation 7.8. Thedenominator of theright hand sideof this
equationisr! (n—r)!. Thisdoesnot changewhenwereplacer by n—r.

(n=r).[n=(n=r)]'=(n-r)L.r!
Thenumerator isindependent of r. Therefore, replacingr by n—r in Equation 7.8 we get result.

How istherelation 7.9 useful ? Using thisformula, we get, for example, *C, isthesameas
1%C.,,. The second valueismuch more easier to cal cul ate than thefirst one.

Example7.27 |ISVEIECR
@ 'C © *C

(b) lng (d) 12C9

Solution : (8) Fromrelation 7.9, we have

(b)Smilaly *C,=*C,_,=%C, =10

© HC,="C,="'C, = % =55

12.11
(d) YCu="Cpy="C, = =15 - =66
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Mgl[;lélt_)lfa- ' | Therisanother rdation et iedby "C, whichisasouseful. Wehavethefollowingrelation:
"IC,,+"C.="C, ...(7.10)
(n-1! (n-1)!
n-1, n- f— +
Notes C_,+"C = (=D)I(r=1!  (n-r -1)ir!

(n=-1)! N (n-1)!
(n=-r)(n=-r=-Di(r-9! r(n-r-Di(r-1)!

) (n-! 01 1iC
T (n-r-D(r-1'Eh-r rE

(n=1)! O n LC
(n=r=D!(r-1D! E{n—r)r E

n(n-1)!
(n=r)(n=r=D!r(r -1)!

n!
T (n-nrt T C
Evaluate:
(@ °c,+°C, (b) ®C,+°C,
(©) °C,+°C, (d) *C,+°C,

Solution : (38) Let ususerelation (7.10) withn=7,r = 2. So, °C,+°C,="C, =21
(b) Heren= 9, r = 2. Therefore, °C, + °C, = °C, =36
(c) Heren= 6, r = 3. Therefore, °C,+°C,=°C, =20

(d) Heren= 11, r = 3. Therefore, *°C, +° C, =*'C, =165

Tounderstand therelation 7.10 better, let us go back to Example 7.20 Inthisexamplelet us
calculate the number of subsetsof theset, {1, 2, 3,4,5, 6,7, 8,9, 10, 11} . Wecan subdivide
them into two kinds, those that contain a particular element, say 1, and those that do not
contain 1. Thenumber of subsetsof the set having 4 elementsand containing 1 isthesameas
thenumber of subsetsof {2, 3,4, 5,6, 7, 8,9, 10, 11} having 3 elements. Thereare *°’C, such

subsets,
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The number of subsets of the set having 4 elements and not containing 1 isthe same asthe
number of subsetsof theset{2,3,4,5,6,7,8,9,10,11,} having4 elements. Thisis*°C, . So, the
number of subsetsof {1,2,3,4,5,6,7,8,9, 10, 11} havingfour elementsis*°C,+°C, . But,
thisis'C, aswehaveseenintheexample. So, *°C,+*°C,="'C, . Thesameargument works
for the number of r—element subsetsof aset withn elements.

MODULE - |
Algebra

Thisreletion was noticed by the French M athematician Blai se Pascal and wasusedintheso
caled Pascal Triangle, given below.

n=0 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1
n=>5 1 5 10 10 5 1

Thefirst row consists of singleelement °C, =1. The second row consists of ‘C;and 'C, .
From thethird row onwards, therulefor writing the entriesis asfollows. Add consecutive
elementsinthe previousrow and writetheanswer between thetwo entries. After exhausting all
possiblepairs, put the number 1 at the begining and the end of therow. For example, thethird
row isgot asfollows. Second row contains only two el ements and they add up to 2. Now, put
1 before and after 2. For the fourth row, we have 1+ 2=3, 2+ 1 = 3. Then, we put
1+2=3,2+1=3. Thenweput 1 at the beginning and the end. Here, we are able to
calculate, for example, °C , °C..., from*C , °C , °C, by-using therelation 7.10. Theimportant
thingisweareableto do it using addition alone,

Thenumbers "C, occur ascoefficentsinthebinomia expansions, and therefore, they areaso

caled binomial coefficentsaswewill seeinlesson 8. In particular, the property 7.10 will be
used inthe proof of thebinomia theorem.

=elnldiywael If "C ="C,-findn,

Solution: Using "C.="C,_, weget
n-10=12
o, n=12+10=22
MATHEMATICS 257
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. CHECK YOUR PROGRESS 7.7

() Findthevalueof "C_.1s"C,,="C, ?  (b) Showthat "C, ="C,

2. Evduae:
(@ °C (b) “Cy
(0) “C, (d) *Cy,
3. Evduae:
(@ 'C,+ 'C, (b) ’C, + °C,
(¢ °C,+°C, (d) *C,+ *C,

4. If *C =*C,,,, findthevalueofr. 5.1f ¢ =*C , find 'C,
PROBLEMSINVOLVING BOTH PERMUTATIONSAND COMBINATIONS

Sofar, wehave studied problemsthat involve either permutation a one or combination alone,
Inthissection, wewill consider some examplesthat need both of these concepts.

SENYEOR There are 5 novels and 4:biographies. In how many wayscan 4 novelsand 2
bi ographies can be arranged on ashelf ?

Soluton : 4 novels can be selected out of 5in °C, ways. 2 biographies can be selected out of
4in “C, ways.
Number of ways of arranging novelsand biographies

= °C,%C,=5x6=30

After selecting any 6 books (4 novel sand 2 biographies) in one of the 30 ways, they can be
arranged onthe shelf in 6! = 720 ways.

By the Counting Principle, thetotal number of arrangements= 30x 720 = 21600

SEITo][SWHR From 5 consonants and 4 vowel s, how many words can beformed using 3
consonantsand 2 vowels?

Solution : From 5 consonants, 3 consonants can be selected in °C, ways.
From 4 vowels, 2 vowels can be selected in “C, ways.

Now with every selection, number of waysof arranging 5l ettersis °P,
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MODULE -
— 5 4 5
L) Tota number of words = °C,x*C,x’P, Algebra
_ 5><4x4><3x5!
2x1 2x1

= 10x6x5x4x3x2x1= 7200

. CHECK YOUR PROGRESS 7.8

Thereare5 Mathematics, 4 Physicsand 5 Chemistry books. In how many ways can you
arrange 4 Mathematics, 3 Physicsand 4 Chemistry books.

(@) if the books on the same subjects are arranged together, but the order in which the
books are arranged within a subject doesn’t matter ?

(b) if bookson the same subjectsare arranged together and the order inwhich booksare
arranged within subject matters?

2.  Thereare9consonantsand 5 vowes. How many wordsof 7 |etters can beformed using
4 consonentsand 3 vowels?

3. Inhow many wayscanyouinviteat least oneof your six friendsto adinner?

4.  Inanexamination, anexamineeisrequired to passinfour different subjects. In how many
wayscan hefail?

. Fundamental principleof counting states.

If there aren eventsand if thefirst-event can occur inm, ways, the second event can
occur inm, ways after thefirst event has occurred, the third event can occur inm, ways
after the second event has occurred and so on, then all then events can occur in

m xm, x m x ... xim _, x m ways.
o  Thenumber of permutationsof nobjectstakenal at atimeisn!

e N
* " (n-n)!
° nPn = nl

n n!

«  Thenumber of waysof selectingr objectsout of nobjects C; = f(n—r)!
° nCr = nC:n—r
. I’lc:r +nCr_l - n+1Cr
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e SUPPORTIVE WEB SITES

http: //www.wikipedia.org

http: //mathwor |d.wolfram.com

q1 TERMINAL EXERCISE

1
2.

10.

11.

12.

13.

14.
15.

Thereare8 true- fal sequestionsin an examination. How many responsesare possible ?

The six faces of adie are numbered 1,2,3,4,5 and 6. Two such dice are thrown
simultaneoudy. In how many ways can they turnup ?

A restaurant has 3 vegetables, 2 salads and 2 types of bread. If a customer wants 1
vegetable, 1 salad and 1 bread, how many choicesdoeshe have ?

Supposeyou want to paper your wals. Wall papersareavailablein 4 diffrent backgrounds
colourswith 7 different designs of 5 different col ours onthem. In how many wayscan
you select your wall paper ?

In how many ways can 7 students be seated inarow on 7 seats ?

Determinethe number of 8 letter wordsthat can beformed from thelettersof theword
ALTRUISM.

If you have 5 windowsand 8 curtainsin your house, in how many ways can you put the
curtainsonthewindows?

Determi nethe maximum number of 3- letter wordsthat can beformed from theletters of
theword POLICY.

Thereare 10.athletes participating in araceand thereare three prizes, 1st, 2nd and 3rd
to be awarded. In how many ways can these beawarded ?

In how many ways can you arrange the | etters of theword ATTAIN so that the Tsare
together?

A group of 12 friends meet at a party. Each person shake hands oncewith all others.
How many hand shakeswill bethere. ?

Supposethat you own ashopwhich sdlstdevisons. Y ou aresdling 5 different kinds of
television sets, but your show case has enough spacefor display of 3televisonsetsonly.
In how many ways can you sel ect thetelevision setsfor the display ?

A contractor needs4 carpenters. Five equally qualified carpentersapply for thejob. In
how many ways can the contractor makethe selection ?

In how many ways can acommitte of 9 can be selected from agroup of 13?

In how many ways can acommittee of 3 men and 2 women be selected from agroup of
15 men and 12 women ?
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In how ways can 6 persons be selected from 4 grade 1 and 7 grade |1 officers, soasto
includeat | east two officersfrom each category ?

Out of 6 boysand 4 girls, acommittee of 5 hasto beformed. In how many wayscanthis
bedoneif wetake:

(@ 2girls.
(b) atleast 2girls.
The English a phabet has 5 vowel sand 21 consonants. What isthe maximum number of

words, that can be formed from the al phabet with 2 different vowelsand 2 different
consonants?

From 5 consonantsand 5 vowel s, how many words can be formed using 3 consonants
and 2 vowels?

Inaschool annua day function avariety programmewas organi sed. It was planned that
therewould be 3 short plays, 6 recitalsand 4 dance programmes. However, the chief
guestinvited for thefunction took much longer timethan expected tofinish hisspeech. To
finishintime, it wasdecided that only 2 short plays, 4 recitalsand 3 dance programmes
would be perfomed, How many choiceswere availableto them ?

(@) if the programmes can be perfomed in any order ?
(b) if the programmes of the same kind were perfomed at astretch?

(c) if theprogrammes of the same kind were perfomed at astrech and considering the
order of performanceof the programmes of the samekind ?
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G| ANSWERS
CHECK YOUR PROGRESS7.1
1. (a)180 (b) 8 () 12 (d) 20
Notes
2. (a)48 (b) 36
CHECK YOUR PROGRESS7.2
1. (@ 17576 (b) 900
2. @ 105 (b) 60
3. (@@ 24 (b) 24
CHECK YOUR PROGRESS7.3
1.  (@()720 (i) 5040 (iii) 5046 (iv)17280  (v) 10
(b) (i) False (i) Fase (i) True (iv) Fdse
2. (8120 (b) 40320  (c)24
CHECK YOUR PROGRESS7.4
1. @(@)12 (i) 120 (iii) 4 (iv) 7200 (v)n!
(b) ()False (i) True (iii) False (iv) Fse
2. (&) (i) 7980 (ii).9240 (b) 20 (c) 840
CHECK YOUR PROGRESS7.5
1. 9 2. 1152 3.2073600 4. 2488320
5. 144 .6.(i)5040  (ii)30240 (iii) 332640
CHECK YOUR PROGRESS7.6
1. (@ (i) 286
(i) 126
(iii) 84
)2
(V) 5
(b) (i) True
(ii) False
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(iv) True
2. 1771
3. 2002
4. 57750 Notes
5. 805
6. () 30
(i) 46
7. 3564
8. 7560
CHECK YOUR PROGRESS7.7
1. (@n,No
2. (a) 126
(b) 1001
(c) 715
(d) 455
3. (a) 56
(b) 126
(c) 120
(d) 286
4, 3
5 56
CHECK YOUR PROGRESS7.8
1 (a)600
(b) 207 3600
2. 6350400
3. 63
4. 15
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MODULE -1 | TERMINAL EXERCISE
Algebra 1 256
2, 36
3. 12
Notes 4. 140
5. 5040
6. 40320
7. 6720
8. 120
9, 720
10. 120
11. 66
12. 10
13, 5
14, 715
15. 30030
16. 371
17. @ 120
(b) 186
18. 50400
19. 12000
20. (8 65318400
(b) 1080
(© 311040
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