www.FirstRanker.com

UNIT -I:

Mathematical Logic:

Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof. Predicate Calculus: Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.

UNIT -II:

Set Theory:

Introduction, Operations on Binary Sets, Principle of Inclusion and Exclusion, Relations: Properties of Binary Relations, Relation Matrix and Digraph, Operations on Relations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering Relations, Hasse Diagrams, Functions: Bijective Functions, Composition of Functions, Inverse Functions, Permutation Functions, Recursive Functions, Lattice and its Properties.

UNIT- III:

Algebraic Structures and Number Theory:
Algebraic Structures: Algebraic Systems, Examples, General Properties, Semi Groups and Monoids, Homomorphism of Semi Groups and Monoids, Group, Subgroup, Abelian Group, Homomorphism, Isomorphism, Number Theory: Properties of Integers, Division Theorem, The Greatest Common Divisor, Euclidean Algorithm, Least Common Multiple, Testing for Prime Numbers, The Fundamental Theorem of Arithmetic, Modular Arithmetic (Fermat's Theorem and Euler's Theorem)

Unit - I

Mathematical Logic

INTRODUCTION

Proposition: A proposition or statement is a declarative sentence which is either true or false but not both. The truth or falsity of a proposition is called its truth-value.

Sometimes these are also denoted by the symbols 1 and 0 respectively.
Example 1: Consider the following sentences:
Delhi is the capital of India.
Kolkata is a country.
5 is a prime number.
$2+3=4$.
These are propositions (or statements) because they are either true of false.
Next consider the following sentences:
How beautiful are you?
Wish you a happy new year
$x+y=z$
Take one book.
These are not propositions as they are not declarative in nature, that is, they do not declare a definite truth value T or F.

Propositional Calculus is also known as statement calculus. It is the branch of mathematics that is used to describe a logical system or structure. A logical system consists of (1) a universe of propositions, (2) truth tables (as axioms) for the logical operators and (3) definitions that explain equivalence and implication of propositions.

Connectives

The words or phrases or symbols which are used to make a proposition by two or more propositions are called logical connectives or simply connectives. There are five basic connectives called negation, conjunction, disjunction, conditional and biconditional.

Negation

The negation of a statement is generally formed by writing the word not‘ at a proper place in the statement (proposition) or by prefixing the statement with the phrase _It is not the case that \cdot If p denotes a statement then the negation of p is written as p and read as _not $p^{〔}$. If the truth value of p is T then the truth value of p is F. Also if the truth value of p is F then the truth value of p is T.

Table 1. Truth table for negation

p	$\neg \mathrm{p}$
F	T
T	F

Example 2: Consider the statement p : Kolkata is a city. Then \neg p: Kolkata is not a city. Although the two statements _Kolkata is not a city ${ }^{\text {© }}$ and _It is not the case that Kolkata is a city‘ are not identical, we have translated both of them by p. The reason is that both these statements have the same meaning.

Conjunction

The conjunction of two statements (or propositions) p and q is the statement $p \wedge q$ which is read as p and q^{c}. The statement $p \wedge q$ has the truth value T whenever both p and q have the truth value T. Otherwise it has truth value F.

Table 2. Truth table for conjunction

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Example 3: Consider the following statements p : It
is raining today.
q : There are 10 chairs in the room.
Then $p \wedge q$: It is raining today and there are 10 chairs in the room.
Note: Usually, in our everyday language the conjunction "and" is used between two statements which have some kind of relation. Thus a statement _It is raining today and $1+1=2^{\prime}$ sounds odd, but in logic it is a perfectly acceptable statement formed from the statements $_$It is raining today ${ }^{\text {‘ }}$ and $_1+1=2^{\text {‘ }}$.
Example 4: Translate the following statement:
Jack and Jill went up the hill into symbolic form using conjunction.
Solution: Let p : Jack went up the hill, q : Jill went up the hill.
Then the given statement can be written in symbolic form as $\mathrm{p} \wedge \mathrm{q}$.

Disjunction

The disjunction of two statements p and q is the statement $p \vee q$ which is read as $\quad p$ or q. The statement $\mathrm{p} \vee \mathrm{q}$ has the truth value F only when both p and q have the truth value F . Otherwise it has truth value T.

Table 3: Truth table for disjunction

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Example 5: Consider the following statements $p: I$ shall go to the game.
$q: I$ shall watch the game on television.

Then $p \vee q$: I shall go to the game or watch the game on television.

Conditional proposition

If p and q are any two statements (or propositions) then the statement $p \rightarrow q$ which is read as, If p, then $q^{\text {' }}$ is called a conditional statement (or proposition) or implication and the connective is the conditional connective.

The conditional is defined by the following table:
Table 4. Truth table for conditional

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

In this conditional statement, p is called the hypothesis or premise or antecedent and q is called the consequence or conclusion.

To understand better, this connective can be looked as a conditional promise. If the promise is violated (broken), the conditional (implication) is false. Otherwise it is true. For this reason, the only circumstances under which the conditional $p \rightarrow q$ is false is when p is true and q is false.

Example 6: Translate the following statement:
'The crop will be destroyed if there is a flood' into symbolic form using conditional connective.

Solution: Let c : the crop will be destroyed f : there is a flood.
Let us rewrite the given statement as
_If there is a flood, then the crop will be destroyed ${ }^{\text {‘ }}$. So, the symbolic form of the given statement is $f \rightarrow c$.

Example 7: Let p and q denote the statements:
p : You drive over 70 km per hour.
q : You get a speeding ticket.
Write the following statements into symbolic forms.
(i) You will get a speeding ticket if you drive over 70 km per hour.

Driving over 70 km per hour is sufficient for getting a speeding ticket.
If you do not drive over 70 km per hour then you will not get a speeding ticket.
Whenever you get a speeding ticket, you drive over 70 km per hour.
Solution: (i) $\mathrm{p} \rightarrow \mathrm{q}$ (ii) $\mathrm{p} \rightarrow \mathrm{q}$ (iii) $\mathrm{p} \rightarrow \mathrm{q}$ (iv) $\mathrm{q} \rightarrow \mathrm{p}$.
Notes: 1. In ordinary language, it is customary to assume some kind of relationship between the antecedent and the consequent in using the conditional. But in logic, the antecedent and the
www.FirstRanker.com
consequent in a conditional statement are not required to refer to the same subject matter. For example, the statement _If I get sufficient money then I shall purchase a high-speed computer ${ }^{6}$ sounds reasonable. On the other hand, a statement such as _If I purchase a computer then this pen is red ${ }^{\text {‘ }}$ does not make sense in our conventional language. But according to the definition of conditional, this proposition is perfectly acceptable and has a truth-value which depends on the truth-values of the component statements.

Some of the alternative terminologies used to express $p \rightarrow q$ (if p, then q) are the following: (i) p implies q
 $q^{\text {}}$ formulation emphasizes the consequent. The difference is only stylistic.)
(iii) q if p, or q when p.
(iv) q follows from p, or q whenever p.
(v) p is sufficient for q, or a sufficient condition for q is p. (vi) q is necessary for p, or a necessary condition for p is q. (vii) q is consequence of p.

Converse, Inverse and Contrapositive

If $P \rightarrow Q$ is a conditional statement, then
(1). $Q \rightarrow P$ is called its converse
(2). $\neg P \rightarrow \neg Q$ is called its inverse
(3). $\neg Q \rightarrow \neg P$ is called its contrapositive.

Truth table for $Q \rightarrow P$ (converse of $P \rightarrow Q$)

P	Q	$Q \rightarrow P$
T	T	T
T	F	T
F	T	F
F	F	T

Truth table for $\neg P \rightarrow \neg Q$ (inverse of $P \rightarrow Q$)

P	Q	$\neg P$	$\neg Q$	$\neg P \rightarrow \neg Q$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Truth table for $\neg Q \rightarrow \neg P$ (contrapositive of $P \rightarrow Q$)

P	Q	$\neg Q$	$\neg P$	$\neg Q \rightarrow \neg P$
T	T	F	F	T
T	F	T	F	F
F	T	F	T	T
F	F	T	T	T

Example: Consider the statement
P : It rains.
Q : The crop will grow.
The implication $P \rightarrow Q$ states that
R : If it rains then the crop will grow.
The converse of the implication $P \rightarrow Q$, namely $Q \rightarrow P$ sates that S : If
the crop will grow then there has been rain.
The inverse of the implication $P \rightarrow Q$, namely $\neg P \rightarrow \neg Q$ sates
that U : If it does not rain then the crop will not grow.
The contraposition of the implication $P \rightarrow Q$, namely $\neg Q \rightarrow \neg P$ states that T :
If the crop do not grow then there has been no rain.
Example 9: Construct the truth table for $(p \rightarrow q) \wedge(q \rightarrow \mathbf{p})$

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \rightarrow q) \wedge(q \rightarrow p)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

Biconditional proposition

If p and q are any two statements (propositions), then the statement $p \leftrightarrow q$ which is read as p if and only if $q^{\text {c }}$ and abbreviated as $_p$ iff q^{*} is called a biconditional statement and the connective is the biconditional connective.
The truth table of $\mathrm{p} \leftrightarrow \mathrm{q}$ is given by the following table:
Table 6. Truth table for biconditional

p	q	$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	T
T	F	F
F	λ	F
F	F	T

It may be noted that $p q$ is true only when both p and q are true or when both p and q are false. Observe that $p q$ is true when both the conditionals $p \rightarrow q$ and $q \rightarrow p$ are true, i.e., the truthvalues of $(p \rightarrow q) \wedge(q \rightarrow p)$, given in Ex. 9, are identical to the truth-values of $p q$ defined here.

Note: The notation $p \leftrightarrow q$ is also used instead of $\mathrm{p} \leftrightarrow \mathrm{q}$.

TAUTOLOGY AND CONTRADICTION

Tautology: A statement formula which is true regardless of the truth values of the statements which replace the variables in it is called a universally valid formula or a logical truth or a tautology.

Contradiction: A statement formula which is false regardless of the truth values of the statements which replace the variables in it is said to be a contradiction.

Contingency: A statement formula which is neither a tautology nor a contradiction is known as a contingency.

Substitution Instance

A formula A is called a substitution instance of another formula B if A can be obtained form B by substituting formulas for some variables of B, with the condition that the same formula is substituted for the same variable each time it occurs.

Example: Let $B: P \rightarrow(J \wedge P)$.
Substitute $R \leftrightarrow S$ for P in B, we get

$$
:(R \leftrightarrow S) \rightarrow(J \wedge(R \leftrightarrow S))
$$

Then A is a substitution instance of B.
Note that $(R \leftrightarrow S) \rightarrow(J \wedge P)$ is not a substitution instance of B because the variables
P in $J \wedge P$ was not replaced by $R \leftrightarrow S$.

Equivalence of Formulas

Two formulas A and B are said to equivalent to each other if and only if $A \leftrightarrow B$ is a tautology.

If $A \leftrightarrow B$ is a tautology, we write $A \Leftrightarrow B$ which is read as A is equivalent to B.
Note : $1 . \Leftrightarrow$ is only symbol, but not connective.
$A \leftrightarrow B$ is a tautology if and only if truth tables of A and B are the same.
Equivalence relation is symmetric and transitive.
Method I. Truth Table Method: One method to determine whether any two statement formulas are equivalent is to construct their truth tables.
Example: Prove $P \vee Q \Leftrightarrow \neg(\neg P \wedge \neg Q)$.
Solution:

P	Q	$P \vee Q$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$	$\neg(\neg P \wedge \neg Q)$	$(P \vee Q) \Leftrightarrow \neg(\neg P \wedge \neg Q)$
T	T	T	F	F	F	T	T
T	F	T	F	J	F	T	T
F	T	T	T	F	F	T	T
F	F	F	T	T	T	F	T

As $P \vee Q \quad \neg(\neg P \wedge \neg Q)$ is a tautology, then $P \vee Q \Leftrightarrow \neg(\neg P \wedge \neg Q)$.
Example: Prove $(P \rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.
Solution:

P	Q	$P \rightarrow Q$	$\neg P$	$\neg P \vee Q$	$(P \rightarrow Q)(\neg P \vee Q)$
T	T	T	F	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

As $(P \rightarrow Q) \quad(\neg P \vee Q)$ is a tautology then $(P \rightarrow Q) \Leftrightarrow(\neg P \vee Q)$.

Equivalence Formulas:

1. Idempotent laws:
(a) $P \vee P \Leftrightarrow P$
(b) $P \wedge P \Leftrightarrow P$
2. Associative laws:
(a) $(P \vee Q) \vee R \Leftrightarrow P \vee(Q \vee R)$
(b) $(P \wedge Q) \wedge R \Leftrightarrow P \wedge(Q \wedge R)$
3. Commutative laws:
(a) $P \vee Q \Leftrightarrow Q \vee P$
(b) $P \wedge Q \Leftrightarrow Q \wedge P$
4. Distributive laws:

$$
P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R) \quad P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)
$$

5. Identity laws:
(a) (i) $P V F \Leftrightarrow P$
(ii) $P \vee T \Leftrightarrow T$
(b) (i) $P \wedge T \Leftrightarrow P$
(ii) $P \wedge F \Leftrightarrow F$
6. Component laws:
(a) (i) $P \vee \neg P \Leftrightarrow T$
(ii) $P \wedge \neg P \Leftrightarrow F$
(b) (i) $\neg \neg P \Leftrightarrow P$
(ii) $\neg T \Leftrightarrow F, \neg F \Leftrightarrow T$
7. Absorption laws:
(a) $P \vee(P \wedge Q) \Leftrightarrow P$
(b) $P \wedge(P \vee Q) \Leftrightarrow P$

Demorgan's laws:
(a) $\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q$
(b) $\neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q$

Method II. Replacement Process: Consider a formula $A: P \rightarrow(Q \rightarrow R)$. The formula $Q \rightarrow R$ is a part of the formula A. If we replace $Q \rightarrow R$ by an equivalent formula $\neg Q V R$ in A, we get another formula $B: P \rightarrow(\neg Q V R)$. One can easily verify that the formulas A and B are equivalent to each other. This process of obtaining B from A as the replacement process.

Example: Prove that $P \rightarrow(Q \rightarrow R) \Leftrightarrow P \rightarrow(\neg Q \vee R) \Leftrightarrow(P \wedge Q) \rightarrow R$.
Solution: $P \rightarrow(Q \rightarrow R) \Leftrightarrow P \rightarrow(\neg Q \vee R) \quad[\because Q \rightarrow R \Leftrightarrow \neg Q \vee R]$

$$
\neg P \vee(\neg Q \vee R)[\because P \rightarrow Q \Leftrightarrow \neg P \vee Q]
$$

$(\neg P \vee \neg Q) \vee R$ [by Associative laws]
$\neg(P \wedge Q) \vee R \quad$ [by De Morgan's laws]
$(P \wedge Q) \rightarrow R[\because P \rightarrow Q \Leftrightarrow \neg P \vee Q]$.
Example: Prove that $(P \rightarrow Q) \wedge(R \rightarrow Q) \Leftrightarrow(P \vee R) \rightarrow Q$.
Solution:

$$
\begin{aligned}
&(P \rightarrow Q) \wedge(R \rightarrow Q) \Leftrightarrow(\neg P \vee Q) \wedge \\
&(\neg R \vee Q) \\
& \Leftrightarrow(\neg P \wedge \neg R) \vee Q \Leftrightarrow \\
& \neg(P \vee R) \vee Q \Leftrightarrow P \vee \\
& R \rightarrow Q
\end{aligned}
$$

Example: Prove that $P \rightarrow(Q \rightarrow P) \Leftrightarrow \neg P \rightarrow(P \rightarrow Q)$.
Solution: $\quad P \rightarrow(Q \rightarrow P) \Leftrightarrow \neg P \vee(Q \rightarrow P)$

$$
\begin{aligned}
& \neg P \vee(\neg Q \vee P) \\
& (\neg P \vee P) \vee \neg Q \\
& T \vee \neg Q \\
& T
\end{aligned}
$$

and

$$
\begin{aligned}
\neg P \rightarrow(P \rightarrow Q) & \Leftrightarrow \neg(\neg P) \vee(P \rightarrow Q) \\
& \Leftrightarrow P \vee(\neg P \vee Q) \Leftrightarrow \\
& (P \vee \neg P) \vee Q \Leftrightarrow T \\
& \vee Q \\
& \Leftrightarrow T
\end{aligned}
$$

So, $P \rightarrow(Q \rightarrow P) \Leftrightarrow \neg P \rightarrow(P \rightarrow Q)$.
***Example: Prove that $(\neg P \wedge(\neg Q \wedge R)) v(Q \wedge R) v(P \wedge R) \Leftrightarrow R$.
Solution:

$$
\begin{aligned}
& (\neg P \wedge(\neg Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \\
& \Leftrightarrow((\neg P \wedge \neg Q) \wedge R) \vee((Q \vee P) \wedge R) \quad \text { [Associative and Distributive laws] } \\
& \Leftrightarrow(\neg(P \vee Q) \wedge R) \vee((Q \vee P) \wedge R) \quad \text { DDe Morgan's laws] } \\
& \Leftrightarrow(\neg(P \vee Q) \vee(P \vee Q)) \wedge R \quad \text { [Distributive laws] } \\
& \quad T \wedge R[\because \neg P \vee P \Leftrightarrow T] \\
& \quad R
\end{aligned}
$$

**Example: Show $((P \vee Q) \wedge \neg(\neg P \wedge(\neg Q \vee \neg R))) v(\neg P \wedge \neg Q) v(\neg P \wedge \neg R)$ is tautology. Solution: By De Morgan's laws, we have

$$
\begin{aligned}
& \neg P \wedge \neg Q \Leftrightarrow \neg(P \vee Q) \\
& \neg P \vee \neg R \Leftrightarrow \neg(P \wedge R)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(\neg P \wedge \neg Q) \vee(\neg P \wedge \neg R) & \Leftrightarrow \neg(P \vee Q) \vee \neg(P \wedge R) \\
& \Leftrightarrow \neg((P \vee Q) \wedge(P \vee R))
\end{aligned}
$$

Also

$$
\begin{aligned}
\neg(\neg P \wedge(\neg Q \vee \neg R)) \Leftrightarrow & \Leftrightarrow(\neg P \wedge \neg(Q \wedge R)) \\
& \Leftrightarrow P \vee(Q \wedge R) \\
& \Leftrightarrow(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

Hence $((P \vee Q) \wedge \neg(\neg P \wedge(\neg Q \vee \neg R))) \Leftrightarrow(P \vee Q) \wedge(P \vee Q) \wedge(P \vee R)$

$$
\Leftrightarrow(P \vee Q) \wedge(P \vee R)
$$

Thus $((P \vee Q) \wedge \neg(\neg P \wedge(\neg Q \vee \neg R))) \vee(\neg P \wedge \neg Q) \vee(\neg P \wedge \neg R)$

$$
\begin{aligned}
& \Leftrightarrow[(P \vee Q) \wedge(P \vee R)] \vee \neg[(P \vee Q) \wedge(P \vee R)] \\
& \Leftrightarrow T
\end{aligned}
$$

Hence the given formula is a tautology.
Example: Show that $(P \wedge Q) \rightarrow(P \vee Q)$ is a tautology.
Solution: $(P \wedge Q) \rightarrow(P \vee Q) \Leftrightarrow \neg(P \wedge Q) \vee(P \vee Q)[\because P \rightarrow Q \Leftrightarrow \neg P \vee Q]$
$\Leftrightarrow(\neg P \vee \neg Q) \vee(P \vee Q) \quad$ [by De Morgan's laws]
$(\neg P \vee P) \vee(\neg Q \vee Q)$ [by Associative laws and commutative laws]
($T \vee T$)[by negation laws]
T
Hence, the result.
Example: Write the negation of the following statements.
(a). Jan will take a job in industry or go to graduate school.
(b). James will bicycle or run tomorrow.
(c). If the processor is fast then the printer is slow.

Solution: (a). Let P : Jan will take a job in industry.

$$
Q: \text { Jan will go to graduate school. }
$$

The given statement can be written in the symbolic as $P \vee Q$.
The negation of $P \vee Q$ is given by $\neg(P \vee Q)$.

$$
\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q .
$$

$\neg P \wedge \neg Q$: Jan will not take a job in industry and he will not go to graduate school.
(b). Let P : James will bicycle.
$Q:$ James will run tomorrow.
The given statement can be written in the symbolic as $P \vee Q$.
The negation of $P \vee Q$ is given by $\neg(P \vee Q)$.

$$
\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q .
$$

$\neg P \wedge \neg Q$: James will not bicycle and he will not run tomorrow.
(c). Let P : The processor is fast.
$Q:$ The printer is slow.
The given statement can be written in the symbolic as $P \rightarrow Q$.
The negation of $P \rightarrow Q$ is given by $\neg(P \rightarrow Q)$.

$$
\neg(P \rightarrow Q) \Leftrightarrow \neg(\neg P \vee Q) \Leftrightarrow P \wedge \neg Q .
$$

$P \wedge \neg Q$: The processor is fast and the printer is fast.
Example: Use Demorgans laws to write the negation of each statement.
(a). I want a car and worth a cycle.
(b). My cat stays outside or it makes a mess.
(c). I've fallen and I can't get up.
(d). You study or you don't get a good grade.

Solution: (a). I don't want a car or not worth a cycle.
(b). My cat not stays outside and it does not make a mess.
(c). I have not fallen or I can get up.
(d). You can not study and you get a good grade.

Exercises: 1. Write the negation of the following statements.
(a). If it is raining, then the game is canceled.
(b). If he studies then he will pass the examination.

Are $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ logically equivalent? Justify your answer by using the rules of logic to simply both expressions and also by using truth tables. Solution: $(p \rightarrow q) \rightarrow$ r and $p \rightarrow(q \rightarrow r)$ are not logically equivalent because Method I: Consider

$$
\begin{aligned}
(p \rightarrow q) \rightarrow & r \Leftrightarrow(\neg p \vee q) \rightarrow r \\
\Leftrightarrow & \neg(\neg p \vee q) \vee r \Leftrightarrow \\
& (p \wedge \neg q) \vee r \\
& (p \wedge r) \vee(\neg q \wedge r)
\end{aligned}
$$

and

$$
\begin{aligned}
p \rightarrow(q \rightarrow r) & \Leftrightarrow p \rightarrow(\neg q \vee r) \\
& \Leftrightarrow \neg p \vee(\neg q \vee r) \Leftrightarrow \\
& \neg p \vee \neg q \vee r .
\end{aligned}
$$

Method II: (Truth Table Method)

p	q	r	$p \rightarrow q$	$(p \rightarrow q) \rightarrow r$		$q \rightarrow r$	$p \rightarrow(q \rightarrow r)$
T	T	T	T		T	T	T
T	T	F	T		F	F	F
T	F	T	F		T	T	T
T	F	F	F		T	T	T
F	T	T	T		T	T	T
F	T	F	T		F	F	T
F	F	T	T		T	T	T
F	F	F	T		F	T	T

Here the truth values (columns) of $(p \rightarrow q) \rightarrow r$ and $p \rightarrow(q \rightarrow r)$ are not identical.
Consider the statement: \|If you study hard, then you will excell. Write its converse, contra positive and logical negation in logic.

Duality Law

Two formulas A and A^{*} are said to be duals of each other if either one can be obtained from the other by replacing Λ by V and V by Λ. The connectives V and Λ are called duals of each other. If the
formula A contains the special variable T or F, then A^{*}, its dual is obtained by replacing T by F and F by T in addition to the above mentioned interchanges.
Example: Write the dual of the following formulas:
(i). $(P \vee Q) \wedge R$
(ii). $(P \wedge Q) \vee T$
(iii). $(P \wedge Q) \vee(P \vee \neg(Q \wedge \neg S))$

Solution: The duals of the formulas may be written as
(i). $(P \wedge Q) \vee R$
(ii). $(P \vee Q) \wedge F$
(iii). $(P \vee Q) \wedge(P \wedge \neg(Q \vee \neg S))$

Result 1: The negation of the formula is equivalent to its dual in which every variable is replaced by its negation.
We can prove

$$
\neg A(P 1, P 2, \ldots, P n) \Leftrightarrow^{A *}(\neg P 1, \neg P 2, \ldots, \neg P n)
$$

Example: Prove that (a). $\neg(P \wedge Q) \rightarrow(\neg P \vee(\neg P \vee Q)) \Leftrightarrow(\neg P \vee Q)$
(b). $(P \vee Q) \wedge(\neg P \wedge(\neg P \wedge Q)) \Leftrightarrow(\neg P \wedge Q)$

Solution: $(\mathrm{a}) . \neg(P \wedge Q) \rightarrow(\neg P \vee(\neg P \vee Q)) \Leftrightarrow(P \wedge Q) \vee(\neg P \vee(\neg P \vee Q))[\because P \rightarrow Q \Leftrightarrow \neg P \vee Q]$

$$
\begin{aligned}
& (P \wedge Q) \vee(\neg P \vee Q) \\
& (P \wedge Q) \vee \neg P \vee Q \\
& ((P \wedge Q) \vee \neg P)) \vee Q \\
& ((P \vee \neg P) \wedge(Q \vee \neg P)) \vee Q \\
& (T \wedge(Q \vee \neg P)) \vee Q \\
& (Q \vee \neg P) \vee Q \\
& Q \vee \neg P \\
& \neg P \vee Q
\end{aligned}
$$

(b). From (a)

$$
(P \wedge Q) \vee(\neg P \vee(\neg P \vee Q)) \Leftrightarrow \neg P \vee Q
$$

Writing the dual

$$
(P \vee Q) \wedge(\neg P \wedge(\neg P \wedge Q)) \Leftrightarrow(\neg P \wedge Q)
$$

Tautological Implications

A statement formula A is said to tautologically imply a statement B if and only if $A \rightarrow B$ is a tautology.
In this case we write $A \Rightarrow B$, which is read as ' A implies B '.
Note: \Rightarrow is not a connective, $A \Rightarrow B$ is not a statement formula.
$A \Rightarrow B$ states that $A \rightarrow B$ is tautology.
Clearly $A \Rightarrow B$ guarantees that B has a truth value T whenever A has the truth value T.
One can determine whether $A \Rightarrow B$ by constructing the truth tables of A and B in the same manner as was done in the determination of $A \Leftrightarrow B$. Example: Prove that $(P \rightarrow Q) \Rightarrow(\neg Q \rightarrow \neg P)$.

Solution:

P	Q	$\neg P$	$\neg Q$	$P \rightarrow Q$	$\neg Q \rightarrow \neg P$	$(P \rightarrow Q) \rightarrow(\neg Q \rightarrow \neg P)$
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Since all the entries in the last column are true, $(P \rightarrow Q) \rightarrow(\neg Q \rightarrow \neg P)$ is a tautology.
Hence $(P \rightarrow Q) \Rightarrow(\neg Q \rightarrow \neg P)$.
In order to show any of the given implications, it is sufficient to show that an assignment of the truth value T to the antecedent of the corresponding condi-
tional leads to the truth value T for the consequent. This procedure guarantees that the conditional becomes tautology, thereby proving the implication.

Example: Prove that $\neg Q \wedge(P \rightarrow Q) \Rightarrow \neg P$.
Solution: Assume that the antecedent $\neg Q \wedge(P \rightarrow Q)$ has the truth value T, then both $\neg Q$ and $P \rightarrow$ Q have the truth value T, which means that Q has the truth value $F, P \rightarrow Q$ has the truth value T. Hence P must have the truth value F.

Therefore the consequent $\neg P$ must have the truth value T.

$$
\neg Q \wedge(P \rightarrow Q) \Rightarrow \neg P .
$$

Another method to show $A \Rightarrow B$ is to assume that the consequent B has the truth value F and then show that this assumption leads to A having the truth value F. Then $A \rightarrow B$ must have the truth value T.
Example: Show that $\neg(P \rightarrow Q) \Rightarrow P$
Solution: Assume that P has the truthovalue F. When P has $F, P \rightarrow Q$ has T, then $\neg(P \rightarrow Q)$ has F . Hence $\neg(P \rightarrow Q) \rightarrow P$ has T

$$
\neg(P \rightarrow Q) \Rightarrow P
$$

Other Connectives

We introduce the connectives NAND, NOR which have useful applications in the design of computers.
NAND: The word NAND is a combination of 'NOT' and 'AND' where 'NOT' stands for negation and 'AND' for the conjunction. It is denoted by the symbol \uparrow.

If P and Q are two formulas then

$$
P \uparrow Q \Leftrightarrow \neg(P \wedge Q)
$$

The connective \uparrow has the following equivalence:

$$
P \uparrow P \Leftrightarrow \neg(P \wedge P) \Leftrightarrow \neg P \vee \neg P \Leftrightarrow \neg P .
$$

$$
\begin{aligned}
& (P \uparrow Q) \uparrow(P \uparrow Q) \Leftrightarrow \neg(P \uparrow Q) \Leftrightarrow \neg(\neg(P \wedge Q)) \Leftrightarrow P \wedge Q . \\
& (P \uparrow P) \uparrow(Q \uparrow Q) \Leftrightarrow \neg P \uparrow \neg Q \Leftrightarrow \neg(\neg P \wedge \neg Q) \Leftrightarrow P \vee Q .
\end{aligned}
$$

NAND is Commutative: Let P and Q be any two statement formulas.

$$
\begin{aligned}
(P \uparrow Q) \Leftrightarrow & \Leftrightarrow(P \wedge Q) \\
& \Leftrightarrow \neg(Q \wedge P) \Leftrightarrow \\
& (Q \uparrow P)
\end{aligned}
$$

NAND is commutative.
NAND is not Associative: Let P, Q and R be any three statement formulas.
Consider $\quad \uparrow(Q \uparrow R) \Leftrightarrow \neg(P \wedge(Q \uparrow R)) \Leftrightarrow \neg(P \wedge(\neg(Q \wedge R)))$

$$
\neg P \vee(Q \wedge R))
$$

$$
(P \uparrow Q) \uparrow R \Leftrightarrow \neg(P \wedge Q) \uparrow R
$$

$$
\neg(\neg(P \wedge Q) \wedge R) \Leftrightarrow
$$

$$
(P \wedge Q) \vee \neg R
$$

Therefore the connective \uparrow is not associative.
NOR: The word NOR is a combination of 'NOT' and 'OR' where 'NOT' stands for negation and =OR' for the disjunction. It is denoted by the symbol \downarrow.

If P and Q are two formulas then

$$
P \downarrow Q \Leftrightarrow \neg(P \vee Q)
$$

The connective \downarrow has the following equivalence:

$$
\begin{aligned}
& P \downarrow P \Leftrightarrow \neg(P \vee P) \Leftrightarrow \neg P \wedge \neg P \Leftrightarrow \neg P . \\
& (P \downarrow Q) \downarrow(P \downarrow Q) \Leftrightarrow \neg(P \downarrow Q) \Leftrightarrow \neg(P \vee Q)) \Leftrightarrow P \vee Q . \\
& (P \downarrow P) \downarrow(Q \downarrow Q) \Leftrightarrow \neg P \downarrow \neg Q \Leftrightarrow \neg(\neg P \vee \neg Q) \Leftrightarrow P \wedge Q .
\end{aligned}
$$

NOR is Commutative: Let P and Q be any two statement formulas.

$$
\begin{aligned}
(P \downarrow Q) \Leftrightarrow & \Leftrightarrow(P \vee Q) \\
& \Leftrightarrow \neg(Q \vee P) \Leftrightarrow \\
& (Q \downarrow P)
\end{aligned}
$$

NOR is commutative.
NOR is not Associative: Let P, Q and R be any three statement formulas.

$$
\begin{aligned}
& \text { Consider } P \downarrow(Q \downarrow R) \Leftrightarrow \neg(P \vee(Q \downarrow R)) \\
& \Leftrightarrow \neg(P \vee(\neg(Q \vee R))) \\
& \neg P \wedge(Q \vee R) \\
&(P \downarrow Q) \downarrow R \Leftrightarrow \neg(P \vee Q) \downarrow R \\
& \neg(\neg(P \vee Q) \vee R) \Leftrightarrow \\
&(P \vee Q) \wedge \neg R
\end{aligned}
$$

Therefore the connective \downarrow is not associative.
Evidently, $P \uparrow Q$ and $P \downarrow Q$ are duals of each other.
Since
www.FirstRanker.com

$$
\begin{aligned}
& \neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q \\
& \neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q .
\end{aligned}
$$

Example: Express $P \downarrow Q$ interms of \uparrow only.
Solution:

$$
\begin{aligned}
& \% \delta \quad Q \Leftrightarrow \neg(P \vee Q) \\
& \quad(P \vee Q) \uparrow(P \vee Q) \\
& \\
& {[(P \uparrow P) \uparrow(Q \uparrow Q)] \uparrow[(P \uparrow P) \uparrow(Q \uparrow Q)]}
\end{aligned}
$$

Example: Express $P \uparrow Q$ interms of \downarrow only. (May-2012)
Solution:

$$
\begin{aligned}
& \uparrow Q \Leftrightarrow \neg(P \wedge Q) \\
&(P \wedge Q) \downarrow(P \wedge Q) \\
& {[(P \downarrow P) \downarrow(Q \downarrow Q)] \downarrow[(P \downarrow P) \downarrow(Q \downarrow Q)] }
\end{aligned}
$$

Truth Tables

Example: Show that $(A \oplus B) V(A \downarrow B) \Leftrightarrow(A \uparrow B)$. (May-2012)
Solution: We prove this by constructing truth table.

A	B	$A \oplus B$	$A \downarrow B$	$(A \oplus B) V(A \downarrow B)$	$A \uparrow B$
T	T	F	F	F	F
T	F	T	F	T	T
F	T	T	F	T	T
F	F	F	T	T	T

As columns $(A \oplus B) \vee(A \downarrow B)$ and $(A \uparrow B)$ are identical.

$$
(A \oplus B) v(A \downarrow B) \Leftrightarrow(A \uparrow B) .
$$

Normal Forms

If a given statement formula $A\left(p_{1}, p_{2}, \ldots p_{n}\right)$ involves n atomic variables, we have 2^{n} possible combinations of truth values of statements replacing the variables.

The formula A is a tautology if A has the truth value T for all possible assignments of the truth values to the variables $p_{1}, p_{2}, \ldots p_{n}$ and A is called a contradiction if A has the truth value F for all possible assignments of the truth values of the n variables. A is said to be satis able if A has the truth value T for atleast one combination of truth values assigned to p_{1}, p_{2},

The problem of determining whether a given statement formula is a Tautology, or a Contradiction is called a decision problem.

The construction of truth table involves a finite number of steps, but the construc-tion may not be practical. We therefore reduce the given statement formula to normal form and find whether a given statement formula is a Tautology or Contradiction or atleast satisfiable.

It will be convenient to use the word \|product| in place of \|conjunctionl and \|sum\| in place of \|disjunctionl in our current discussion.
www.FirstRanker.com

A product of the variables and their negations in a formula is called an elementary product. Similarly, a sum of the variables and their negations in a formula is called an elementary sum.

Let P and Q be any atomic variables. Then $P, \neg P \wedge Q, \neg Q \wedge P \neg P, P \neg P$, and $Q \wedge \neg P$ are some examples of elementary products. On the other hand, $P, \neg P \vee Q, \neg Q \vee P \vee \neg P, P$
$\bar{A} \quad \bar{A} \neg P$, and $Q \vee \neg P$ are some examples of elementary sums.
Any part of an elementary sum or product which is itself an elementary sum or product is called a factor of the original elementary sum or product. Thus $\neg Q, \wedge \neg P$, and $\neg Q \wedge P$ are some of the factors of $\neg Q \wedge P \wedge \neg P$.

Disjunctive Normal Form (DNF)

A formula which is equivalent to a given formula and which consists of a sum of elementary products is called a disjunctive normal form of the given formula.

Example: Obtain disjunctive normal forms of

$$
\text { (a) } P \wedge(P \rightarrow Q) ; \quad \text { (b) } \neg(P \vee Q) \leftrightarrow(P \wedge Q) \text {. }
$$

Solution: (a) We have

$$
\begin{gathered}
P \wedge(P \rightarrow Q) \Leftrightarrow P \wedge(\neg P \vee Q) \\
\neg(P \vee Q) \leftrightarrow(P \wedge Q) \\
(\neg(P \vee Q) \wedge(P \wedge Q)) \vee((P \vee Q) \wedge \neg(P \wedge Q))[\text { using } \\
R \leftrightarrow S \Leftrightarrow(R \wedge S) \vee(\neg R \wedge \neg S) \\
((\neg P \wedge \neg Q) \wedge(P \wedge Q)) \vee((P \vee Q) \wedge(\neg P \vee \neg Q)) \\
(\neg P \wedge \neg Q \wedge P \wedge Q) \vee((P \vee Q) \wedge \neg P) \vee((P \vee Q) \wedge \neg Q) \\
(\neg P \wedge \neg Q \wedge P \wedge Q) \vee(P \wedge \neg P) \vee(Q \wedge \neg P) \vee(P \wedge \neg Q) \vee(Q \wedge \neg Q)
\end{gathered}
$$

which is the required disjunctive normal form.
Note: The DNF of a given formula is not unique.

Conjunctive Normal Form (CNF)

A formula which is equivalent to a given formula and which consists of a product of elementary sums is called a conjunctive normal form of the given formula.

The method for obtaining conjunctive normal form of a given formula is similar to the one given for disjunctive normal form. Again, the conjunctive normal form is not unique.
(a) $P \wedge(P \rightarrow Q)$;
(b) $\neg(P \vee Q) \leftrightarrow(P \wedge Q)$.

Solution: (a). $P \wedge(P \rightarrow Q) \Leftrightarrow P \wedge(\neg P \vee Q)$
(b). $\neg(P \vee Q) \leftrightarrow(P \wedge Q)$

$$
\begin{aligned}
& (\neg(P \vee Q) \rightarrow(P \wedge Q)) \wedge((P \wedge Q) \rightarrow \neg(P \vee Q)) \\
& ((P \vee Q) \vee(P \wedge Q)) \wedge(\neg(P \wedge Q) \vee \neg(P \vee Q)) \\
& {[(P \vee Q \vee P) \wedge(P \vee Q \vee Q)] \wedge[(\neg P \vee \neg Q) \vee(\neg P \wedge \neg Q)]} \\
& (P \vee Q \vee P) \wedge(P \vee Q \vee Q) \wedge(\neg P \vee \neg Q \vee \neg P) \wedge(\neg P \vee \neg Q \vee \neg Q)
\end{aligned}
$$

Note: A given formula is tautology if every elementary sum in CNF is tautology.
Example: Show that the formula $Q v(P \wedge \neg Q) v(\neg P \wedge \neg Q)$ is a tautology.
Solution: First we obtain a CNF of the given formula.

$$
\begin{aligned}
Q \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q) & \Leftrightarrow Q \vee((P \vee \neg P) \wedge \neg Q) \\
& \Leftrightarrow(Q \vee(P \vee \neg P)) \wedge(Q \vee \neg Q) \\
& \Leftrightarrow(Q \vee P \vee \neg P) \wedge(Q \vee \neg Q)
\end{aligned}
$$

Since each of the elementary sum is a tautology, hence the given formula is tautology.

Principal Disjunctive Normal Form

In this section, we will discuss the concept of principal disjunctive normal form (PDNF).
Minterm: For a given number of variables, the minterm consists of conjunctions in which each statement variable or its negation, but not both, appears only once.
Let P and Q be the two statement variables. Then there are 2^{2} minterms given by $P \wedge Q, P \wedge \neg Q$, $\neg P \wedge Q$, and $\neg P \wedge \neg Q$.
Minterms for three variables P, Q and R are $P \wedge Q \wedge R, P \wedge Q \wedge \neg R, P \wedge \neg Q \wedge R, P \wedge \neg Q \wedge \neg R, \neg P$ $Q \wedge R, \neg P \wedge Q \wedge \neg R, \neg P \wedge \neg Q \wedge R$ and $\neg P \wedge \neg Q \wedge \neg R$. From the truth tables of these minterms of P and Q, it is clear that

P	Q	$P \wedge Q$	$P \wedge \neg Q$	$\neg P \wedge Q$	$\neg P \wedge \neg Q$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	F	F	T	F
F	F	F	F	F	T

(i). no two minterms are equivalent
(ii). Each minterm has the truth value T for exactly one combination of the truth values of the variables P and Q.
Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms only is called the Principal disjunctive normal form of the formula.
The principle disjunctive normal formula is also called the sum-of-products canonical form.

Methods to obtain PDNF of a given formula

(a). By Truth table:

(i). Construct a truth table of the given formula.
(ii). For every truth value T in the truth table of the given formula, select the minterm which also has the value T for the same combination of the truth values of P and Q.
(iii). The disjunction of these minterms will then be equivalent to the given formula.

Example: Obtain the PDNF of $P \rightarrow Q$.
Solution: From the truth table of $P \rightarrow Q$

P	Q	$P \rightarrow Q$	Minterm
T	T	T	$P \wedge Q$
T	F	F	$P \wedge \neg Q$
F	T	T	$\neg P \wedge Q$
F	F	T	$\neg P \wedge \neg Q$

The PDNF of $P \rightarrow Q$ is $(P \wedge Q) v(\neg P \wedge Q) v(\neg P \wedge \neg Q)$.

$$
P \rightarrow Q \Leftrightarrow(P \wedge Q) \vee(\neg P \wedge Q) \vee(\neg P \wedge \neg Q)
$$

Example: Obtain the PDNF for $(P \wedge Q) V(\neg P \wedge R) V(Q \wedge R)$.
Solution:

P	Q	R	Minterm	$P \wedge Q$	$\neg P \wedge R$	$Q \wedge R$	$(P \wedge Q) \vee(\neg P \wedge R) \vee(Q \wedge R)$
T	T	T	$P \wedge Q \wedge R$	T	F	T	T
T	T	F	$P \wedge Q \wedge \neg R$	T	F	F	T
T	F	T	$P \wedge \neg Q \wedge R$	F	F	F	F
T	F	F	$P \wedge \neg Q \wedge \neg R$	F	F	F	F
F	T	T	$\neg P \wedge Q \wedge R$	F	T	T	T
F	T	F	$\neg P \wedge Q \wedge \neg R$	F	F	F	F
F	F	T	$\neg P \wedge \neg Q \wedge R$	F	T	F	T
F	F	F	$\neg P \wedge \neg Q \wedge \neg R$	F	F	F	F

The PDNF of $(P \wedge Q) V(\neg P \wedge R) V(Q \wedge R)$ is

$$
(P \wedge Q \wedge R) V(P \wedge Q \wedge \neg R) V(\neg P \wedge Q \wedge R) V(\neg P \wedge \neg Q \wedge R)
$$

(b). Without constructing the truth table:

In order to obtain the principal disjunctive normal form of a given formula is constructed as follows:
(1). First replace \rightarrow, by their equivalent formula containing only Λ, V and \neg.
(2). Next, negations are applied to the variables by De Morgan's laws followed by the application of distributive laws.
(3). Any elementarily product which is a contradiction is dropped. Minterms are ob-tained in the disjunctions by introducing the missing factors. Identical minterms appearing in the disjunctions are deleted.

Example: Obtain the principal disjunctive normal form of
(a) $\neg P \vee Q ;(b)(P \wedge Q) \vee(\neg P \wedge R) V(Q \wedge R)$.

Solution:
(a)

$$
\begin{aligned}
\neg P \vee Q \Leftrightarrow & (\neg P \wedge T) \vee(Q \wedge T) \quad[\because A \wedge T \Leftrightarrow A] \\
& (\neg P \wedge(Q \vee \neg Q)) \vee(Q \wedge(P \vee \neg P))[\because P \vee \neg P \Leftrightarrow T] \\
& (\neg P \wedge Q) \vee(\neg P \wedge \neg Q) \vee(Q \wedge P) \vee(Q \wedge \neg P) \\
& {[\because P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)} \\
\Leftrightarrow & (\neg P \wedge Q) \vee(\neg P \wedge \neg Q) \vee(P \wedge Q)[\because P \vee P \Leftrightarrow P](b)
\end{aligned}
$$

$(P \wedge Q) V(\neg P \wedge R) V(Q \wedge R)$

$$
\begin{aligned}
& (P \wedge Q \wedge T) \vee(\neg P \wedge R \wedge T) \vee(Q \wedge R \wedge T) \\
& (P \wedge Q \wedge(R \vee \neg R)) \vee(\neg P \wedge R \wedge(Q \vee \neg Q)) \vee(Q \wedge R \wedge(P \vee \neg P)) \\
& (P \wedge Q \wedge R) \vee(P \wedge Q \wedge \neg R) \vee(\neg P \wedge R \wedge Q)(\neg P \wedge R \wedge \neg Q) \\
& (Q \wedge R \wedge P) \vee(Q \wedge R \wedge \neg P) \\
& (P \wedge Q \wedge R) \vee(P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R) \vee(\neg P \wedge \neg Q \wedge R) \\
& P \vee(P \wedge Q) \Leftrightarrow P \\
& P \vee(\neg P \wedge Q) \Leftrightarrow P \vee Q
\end{aligned}
$$

Solution: We write the principal disjunctive normal form of each formula and com-pare these normal forms.
(a) $P \vee(P \wedge Q) \Leftrightarrow(P \wedge T) \vee(P \wedge Q) \quad[\because P \wedge Q \Leftrightarrow P]$

$$
\begin{aligned}
& \Leftrightarrow(P \wedge(Q \vee \neg Q)) \vee(P \wedge Q) \quad[\because P \vee \neg P \Leftrightarrow T] \\
& \Leftrightarrow((P \wedge Q) \vee(P \wedge \neg Q)) \vee(P \wedge Q)[\text { by distributive laws }] \\
& \Leftrightarrow(P \wedge Q) \vee(P \wedge \neg Q)[\because P \vee P \Leftrightarrow P]
\end{aligned}
$$

which is the required PDNF.
Now,

$$
\begin{aligned}
\Leftrightarrow & P \wedge T \\
& P \wedge(Q \vee \neg Q) \\
& (P \wedge Q) \vee(P \wedge \neg Q)
\end{aligned}
$$

which is the required PDNF.
Hence, $P \vee(P \wedge Q) \Leftrightarrow P$.
(b) $P \vee(\neg P \wedge Q) \Leftrightarrow(P \wedge T) \vee(\neg P \wedge Q)$

$$
\begin{aligned}
& (P \wedge(Q \vee \neg Q)) \vee(\neg P \wedge Q) \\
& (P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge Q)
\end{aligned}
$$

which is the required PDNF.
Now,

$$
\begin{aligned}
P \vee Q \Leftrightarrow & (P \wedge T) \vee(Q \wedge T) \\
& (P \wedge(Q \vee \neg Q)) \vee(Q \wedge(P \vee \neg P)) \\
& (P \wedge Q) \vee(P \wedge \neg Q) \vee(Q \wedge P) \vee(Q \wedge \neg P) \\
& (P \wedge Q) \vee(P \wedge \neg Q) \vee(\neg P \wedge Q)
\end{aligned}
$$

which is the required PDNF.

Hence, $\quad P \vee(\neg P \wedge Q) \Leftrightarrow P \vee Q$.
Example: Obtain the principal disjunctive normal form of

$$
P \rightarrow((P \rightarrow Q) \wedge \neg(\neg Q \vee \neg P)) .
$$

Solution: Using $P \rightarrow Q \Leftrightarrow \neg P \vee Q$ and De Morgan's law, we obtain

$$
\begin{aligned}
& ((P \rightarrow Q) \wedge \neg(\neg Q \vee \neg P)) \Leftrightarrow \neg P \\
& ((\neg P \vee Q) \wedge(Q \wedge P)) \\
\Leftrightarrow & \neg P \vee((\neg P \wedge Q \wedge P) \vee(Q \wedge Q \wedge P)) \Leftrightarrow \\
\neg & P \vee F \vee(P \wedge Q) \\
& \neg P \vee(P \wedge Q) \\
& (\neg P \wedge T) \vee(P \wedge Q) \\
& (\neg P \wedge(Q \vee \neg Q)) \vee(P \wedge Q) \\
& (\neg P \wedge Q) \vee(\neg P \wedge \neg Q) \vee(P \wedge Q)
\end{aligned}
$$

Hence $(P \wedge Q) V(\neg P \wedge Q) V(\neg P \wedge \neg Q)$ is the required PDNF.

Principal Conjunctive Normal Form

The dual of a minterm is called a Maxterm. For a given number of variables, the maxterm consists of disjunctions in which each variable or its negation, but not both, appears only once. Each of the maxterm has the truth value F for exactly one com-bination of the truth values of the variables. Now we define the principal conjunctive normal form.

For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is known as its principle conjunctive normal form. This normal form is also called the product-of-sums canonical form. The method for obtaining the PCNF for a given formula is similar to the one described previously for PDNF.
Example: Obtain the principal conjunctive normal form of the formula $(\neg \mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \leftrightarrow \mathrm{P})$
Solution:

$$
\begin{aligned}
& (\neg P \rightarrow R) \wedge(Q \leftrightarrow P) \\
& \quad[\neg(\neg P) \vee R] \wedge[(Q \rightarrow P) \wedge(P \rightarrow Q)] \\
& \quad(P \vee R) \wedge[(\neg Q \vee P) \wedge(\neg P \vee Q)] \\
& \quad(P \vee R \vee F) \wedge[(\neg Q \vee P \vee F) \wedge(\neg P \vee Q \vee F)] \\
& [(P \vee R) \vee(Q \wedge \neg Q)] \wedge[\neg Q \vee P) \vee(R \wedge \neg R)] \wedge[(\neg P \vee Q) \vee(R \wedge \neg R)] \\
& (P \vee R \vee Q) \wedge(P \vee R \vee \neg Q) \wedge(P \vee \neg Q \vee R) \wedge(P \vee \neg Q \vee \neg R) \\
& \quad(\neg P \vee Q \vee R) \wedge(\neg P \vee Q \vee \neg R) \\
& (P \vee Q \vee R) \wedge(P \vee \neg Q \vee R) \wedge(P \vee \neg Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(\neg P \vee Q \vee \neg R)
\end{aligned}
$$

which is required principal conjunctive normal form.

Theory of Inference for Statement Calculus

Definition: The main aim of logic is to provide rules of inference to infer a conclusion from certain premises. The theory associated with rules of inference is known as inference theory .

Definition: If a conclusion is derived from a set of premises by using the accepted rules of reasoning, then such a process of derivation is called a deduction or a formal proof and the argument is called a valid argument or conclusion is called a valid conclusion.

Note: Premises means set of assumptions, axioms, hypothesis.

Definition: Let A and B be two statement formulas. We say that $\| B$ logically follows from $A \|$ or $\| B$ is a valid conclusion (consequence) of the premise $A \|$ iff $A \rightarrow B$ is a tautology, that is $A \Rightarrow B$.

We say that from a set of premises $\left\{H_{1}, H_{2}, \cdots, H_{m}\right\}$, a conclusion C follows logically iff $H_{1} \wedge H_{2} \wedge \ldots \wedge H_{m} \Rightarrow C$

Note: To determine whether the conclusion logically follows from the given premises, we use the following methods:

Truth table method
Without constructing truth table method.

Validity Using Truth Tables

Given a set of premises and a conclusion, it is possible to determine whether the conclusion logically follows from the given premises by constructing truth tables as follows.

Let $P_{1}, P_{2}, \cdots, P_{n}$ be all the atomic variables appearing in the premises $H_{1}, H_{2}, \cdots, H_{m}$ and in the conclusion C. If all possible combinations of truth values are assigned to $P_{1}, P_{2}, \cdots, P_{n}$ and if the truth values of $H_{1}, H_{2}, \ldots, H_{m}$ and C are entered in a table. We look for the rows in which all H_{1},
H_{2}, \cdots, H_{m} have the value T. If, for every such row, C also has the value T, then (1) holds. That is, the conclusion follows logically.

Alternatively, we look for the rows on which C has the value F. If, in every such row, at least one of the values of $H_{1}, H_{2}, \cdots, H_{m}$ is F , then (1) also holds. We call such a method a _truth table technique‘ for the determination of the validity of a conclusion.

Example: Determine whether the conclusion C follows logically from the premises
H_{1} and H_{2}.
(a) $H_{1}: P \rightarrow Q \quad H_{2}: P C: Q$
(b) $H_{1}: P \rightarrow Q \quad H_{2}: \neg P C: Q$
(c) $H: P \rightarrow Q$
$H_{2}: \neg(P \wedge Q) C: \neg P$
$\begin{array}{ll}\text { (d) } H_{1}: \neg P & H_{2}: P Q C: \neg(P(C) \\ \text { (e) } H_{1}: P \rightarrow Q & H_{2}: Q C: P\end{array}$
Solution: We first construct the appropriate truth table, as shown in table.

P	Q	$P \rightarrow Q$	$\neg P$	$\neg(P \wedge Q)$	$P Q$
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	T	F
F	F	T	T	T	T

(a) We observe that the first row is the only row in which both the premises have the value T . The conclusion also has the value T in that row. Hence it is valid.

In (b) the third and fourth rows, the conclusion Q is true only in the third row, but not in the fourth, and hence the conclusion is not valid.
Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e).

Rules of Inference

The following are two important rules of inferences.
Rule P: A premise may be introduced at any point in the derivation.
Rule T: A formula S may be introduced in a derivation if S is tautologically implied by one or more of the preceding formulas in the derivation.

```
Implication Formulas
    \(I\)
        \(1: P \wedge Q \Rightarrow P \quad\) (simplification)
    \(I_{2}: P \wedge Q \Rightarrow Q\)
    \(I_{3}: P \Rightarrow P \vee Q\)
    \(I_{4}: Q \Rightarrow P \vee Q\)
    \(I_{5}: \neg P \Rightarrow P \rightarrow Q\)
    \(I_{6}: Q \Rightarrow P \rightarrow Q\)
    \(I_{7}: \neg(P \rightarrow Q) \Rightarrow P\)
    \(I_{8}: \neg(P \rightarrow Q) \Rightarrow \neg Q\)
    I9: \(P, Q \Rightarrow P \wedge Q\)
        \(10 \neg P, P \vee Q \Rightarrow Q\) (disjunctive syllogism)
        I
        \({ }_{11}: P, P \rightarrow Q \Rightarrow Q \quad\) (modus ponens)
    I
    12: \(\neg Q, P \rightarrow Q \Rightarrow \neg P \quad\) (modus tollens)
    I
        13: \(P \rightarrow Q, Q \rightarrow R \Rightarrow P \rightarrow R \quad\) (hypothetical syllogism)
    I
        14: \(P \vee Q, P \rightarrow R, Q \rightarrow R \Rightarrow R \quad\) (dilemma)
```

Example: Demonstrate that R is a valid inference from the premises $P \rightarrow Q, Q \rightarrow R$, and P. Solution:
\{1\}
(1) $P \rightarrow Q$
Rule P
\{2\}
(2) P
Rule P,
$\{1,2\}$
(3) Q
Rule T, (1), (2), and I_{13}
\{4\}
(4) $Q \rightarrow R \quad$ Rule P
$\{1,2,4\}$
(5) R
Rule T, (3), (4), and I_{13}

Hence the result.

Example: Show that $R V S$ follows logically from the premises $C V D,(C V D) \rightarrow \neg H, \neg H \rightarrow(A \wedge$ $\neg B)$, and $(A \wedge \neg B) \rightarrow(R \vee S)$.
Solution:

$\{1\}$	$(1)(C \vee D) \rightarrow \neg H$	Rule P
$\{2\}$	(2) $\neg H \rightarrow(A \wedge \neg B)$	Rule P
$\{1,2\}$	(3) $(C \vee D) \rightarrow(A \wedge \neg B)$	Rule T, (1), (2), and I_{13}
$\{4\}$	$(4)(A \wedge \neg B) \rightarrow(R \vee S)$	Rule P
$\{1,2,4\}$	(5) $(C \vee D) \rightarrow(R \vee S)$	Rule T, (3), (4), and I_{13}
$\{6\}$	(6) $C \vee D$	Rule P
$\{1,2,4,6\}$	(7) $R \vee S$	Rule T, (5), (6), and I_{11}
Hence the result.		

Example: Show that $S V R$ is tautologically implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.
Solution:
(1)
(1) $P \vee Q$
Rule P
\{1\}
(2) $\neg P \rightarrow Q$
Rule T, (1) $P \rightarrow Q \Leftrightarrow \neg P \vee Q$
\{3\}
(3) $Q \rightarrow S$
Rule P
\{1, 3\}
(4) $\neg P \rightarrow S$
Rule T, (2), (3), and I_{13}
\{1, 3\}
(5) $\neg S \rightarrow P$
Rule T, (4), $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
\{6\}
(6) $P \rightarrow R$
Rule P
$\{1,3,6\}$
(7) $\neg S \rightarrow R$
Rule T, (5), (6), and I_{13}
$\{1,3,6\}$ (8)
$S \cup R$
Rule T, (7) and $P \rightarrow Q \Leftrightarrow \neg P \vee Q$ Hence the result.

Example: Show that $R \bigwedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q$,

$$
Q \rightarrow R, P \rightarrow M \text {, and } \neg M .
$$

Solution:

[1)	(1)	$P \rightarrow M$	Rule P
\{2\}	(2)	$\neg M$	Rule P
\{1, 2)	(3)	$\neg P$	Rule T, (1), (2), and I_{12}
\{4\}	(4)	$P \vee Q$	Rule P
\{1, 2, 4\}	(5)	Q	Rule T, (3), (4), and I_{10}
\{6\}	(6)	$Q \rightarrow R$	Rule P

$\{1,2,4,6\}$	(7)	R	Rule T, (5), (6), and I_{11}
$\{1,2,4,6\}$	(8)	$R \wedge(P \vee Q)$	Rule T, (4), (7) and I9

Hence the result.
Example: Show $I_{12}: \neg Q, P \rightarrow Q \Rightarrow \neg P$.
Solution:
\{1\}
(1) $P \rightarrow Q$
Rule P
\{1\}
(2) $\neg Q \rightarrow \neg P$
Rule T, (1), and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
\{3\}
(3) $\neg Q$
Rule P
\{1, 3\}
(4) $\neg P$
Rule T, (2), (3), and I_{11}
Hence the result.

Example: Test the validity of the following argument:
IIf you work hard, you will pass the exam. You did not pass. Therefore, you did not work hardll.

Example: Test the validity of the following statements:
IIIf Sachin hits a century, then he gets a free car. Sachin does not get a free car.
Therefore, Sachin has not hit a centuryll.

Rules of Conditional Proof or Deduction Theorem

We shall now introduce a third inference rale, known as CP or rule of conditional proof.
Rule CP: If we can derive S from R and a set of premises, then we can derive $R \rightarrow S$ from the set of premises alone.
Rule CP is not new for our purpose her because it follows from the equivalence

$$
(P \wedge R) \rightarrow S \Leftrightarrow P \rightarrow(R \rightarrow S)
$$

Let P denote the conjunction of the set of premises and let R be any formula. The above equivalence states that if R is included as an additional premise and S is derived from $P \wedge R$, then $R \rightarrow S$ can be derived from the premises P alone.

Rule CP is also called the deduction theorem and is generally used if the conclu-sion of the form $R \rightarrow S$. In such cases, R is taken as an additional premise and S is derived from the given premises and R.

Example: Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow(Q \rightarrow S), \neg R V P$, and Q.
(Nov. 2011)

Solution: Instead of deriving $R \rightarrow S$, we shall include R as an additional premise and show S first.

$\{1\}$	(1) $\neg R \vee P$	Rule P
$\{2\}$	(2) R	Rule P (assumed premise)
$\{1,2\}$	(3) P	Rule T, (1), (2), and I_{10}
$\{4\}$	(4) $P \rightarrow(Q \rightarrow S)$	Rule P
$\{1,2,4\}$	(5) $Q \rightarrow S$	Rule T, (3), (4), and I_{11}
$\{6\}$	(6) Q	Rule P
$\{1,2,4,6\}$	(7) S	Rule T, (5), (6), and I_{11}
$\{1,2,4,6\}$	(8) $R \rightarrow S$	Rule CP

Example: Show that $P \rightarrow S$ can be derived from the premises $\neg P \vee Q, \neg Q \vee R$, and $R \rightarrow S$.
Solution: We include P as an additional premise and derive S.

$\{1\}$	$(1) \neg P \vee Q$	Rule P
$\{2\}$	(2) P	Rule P (assumed premise)
$\{1,2\}$	(3) Q	Rule T, (1), (2), and I_{10}
$\{4\}$	(4) $\neg Q \vee R$	Rule P
$\{1,2,4\}$	(5) R	Rule T, (3), (4), and I_{10}
$\{6\}$	(6) $R \rightarrow S$	Rule P
$\{1,2,4,6\}$	(7) S	Rule T, (5), (6), and I_{11}
$\{1,2,4,6\}$	(8) $P \rightarrow S$	Rule CP

Example: _If there was a ball game, then traveling was difficult. If they arrived on time, then traveling was not difficult. They arrived on time. Therefore, there was no ball game'. Show that these statements constitute a valid argument. Solution: Let us indicate the statements as follows: P : There was a ball game. R : They arrived on time.

Hence, the given premises are $P \rightarrow Q, R \rightarrow \neg Q$, and R. The conclusion is $\neg P$.

$\{1\}$	(1) $R \rightarrow \neg Q$	Rule P
$\{2\}$	(2) R	Rule P
$\{1,2\}$	(3) $\neg Q$	Rule T, (1), (2), and I_{11}
$\{4\}$	(4) $P \rightarrow Q$	Rule P
$\{4\}$	(5) $\neg Q \rightarrow \neg P$	Rule T, (4), and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
$\{1,2,4\}$	(6) $\neg P$	Rule T, (3), (5), and I_{11}

Example: By using the method of derivation, show that following statements con-stitute a valid argument: \|If A works hard, then either B or C will enjoy. If B enjoys, then A will not work hard. If D enjoys, then C will not. Therefore, if A works hard, D will not enjoy.

Solution: Let us indicate statements as follows:
Given premises are $P \rightarrow(Q \vee R), Q \rightarrow \neg P$, and $S \rightarrow \neg R$. The conclusion is $P \rightarrow \neg S$.
We include P as an additional premise and derive $\neg S$.
\{1\}
(1) P
Rule P (additional premise)
\{2\}
(2) $P \rightarrow(Q \vee R)$
\{1, 2\}
(3)
$Q v^{K}$
$\{1,2\}$
(4) $\neg Q \rightarrow R$
Rule P
Rule T, (1), (2), and I_{11}
$\{1,2\}$
(5) $\neg R \rightarrow Q$
Rule T, (3) and $P \rightarrow Q \Leftrightarrow P \vee Q$
$\{6\} \quad(6) \quad Q \rightarrow \neg P$
$\{1,2,6\}$
(7) $\neg R \rightarrow \neg P$
$\{1,2,6\}$
(8) $P \rightarrow R$
\{9\}
(9) $S \rightarrow \neg R$
Rule T, (4), and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
Rule P
Rule T, (5), (6), and I_{13}
Rule T, (7) and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
$(10) R \rightarrow \neg S$
\{9\}
(11) $P \rightarrow \neg S$
$\{1,2,6,9\} \quad$ (11) $P \rightarrow \neg S$
$\{1,2,6,9\} \quad(12) \neg S \quad$ Rule T, (1), (11) and I_{11}

Example: Determine the validity of the following arguments using propositional logic:
$\|$ Smoking is healthy. If smoking is healthy, then cigarettes are prescribed by physi-
cians. Therefore, cigarettes are prescribed by physiciansll.
(May-2012)
Solution: Let us indicate the statements as follows:
P : Smoking is healthy.
$Q:$ Cigarettes are prescribed by physicians.

Hence, the given premises are $P, P \rightarrow Q$. The conclusion is Q.
\{1\}
(1) $P \rightarrow Q$
Rule P
\{2\}
(2) P
Rule P
\{1, 2\}
(3) Q
Rule T, (1), (2), and I_{11}

Hence, the given statements constitute a valid argument.

Consistency of Premises

A set of formulas $H_{1}, H_{2}, \cdots, H_{m}$ is said to be consistent if their conjunction has the truth value T for some assignment of the truth values to the atomic variables appearing in H_{1}, H_{2}, \cdots, H_{m}.

If, for every assignment of the truth values to the atomic variables, at least one of the formulas $H_{1}, H_{2}, \cdots, H_{m}$ is false, so that their conjunction is identically false, then the formulas $H_{1}, H_{2}, \cdots, H_{m}$ are called inconsistent.
Alternatively, a set of formulas $H_{1}, H_{2}, \cdots, H_{m}$ is inconsistent if their conjunction implies a contradiction, that is,

$$
H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m} \Rightarrow R \wedge \neg R
$$

where R is any formula.
Example: Show that the following premises are inconsistent:
(1). If Jack misses many classes through illness, then he fails high school.
(2). If Jack fails high school, then he is uneducated.
(3). If Jack reads a lot of books, then he is not uneducated.
(4). Jack misses many classes through illness and reads a lot of books.

Solution: Let us indicate the statements as follows:
E : Jack misses many classes through illness.
S : Jack fails high school.
A : Jack reads a lot of books.
H : Jack is uneducated.
The premises are $E \rightarrow S, S \rightarrow H, A \rightarrow \neg H$, and $E \wedge A$.
\{1\}
(1) $E \rightarrow S$
Rule P
\{2\}
(2) $S \rightarrow H$
\{1, 2\}
(3) $E \longrightarrow H$
Rule P
4
(4) $A \rightarrow \neg H$
Rule T, (1), (2), and I_{13}
\{4\}
(5) $H \rightarrow \neg A$
\{1, 2, 4\}
(6) $E \rightarrow \neg A$
$\{1,2,4\}$
(7) $\neg E \vee \neg A$
$\{1,2,4\}$
(8) $\neg(E \wedge A)$
\{9\}
(9) $E \wedge A$
Rule P
\{4\}
Rule T, (4), and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
Rule T, (3), (5), and I_{13}
Rule T, (6) and $P \rightarrow Q \Leftrightarrow \neg P \vee Q$
Rule T, (7), and $\neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q$
Rule P
$\{1,2,4,9\} \quad(10) \neg(E \wedge A) \wedge(E \wedge A) \quad$ Rule T, (8), (9) and I_{9}
Thus, the given set of premises leads to a contradiction and hence it is inconsistent.

Example: Show that the following set of premises is inconsistent: \|If the contract is valid, then John is liable for penalty. If John is liable for penalty, he will go bankrupt. If the bank will loan him money, he will not go bankrupt. As a matter of fact, the contract is valid, and the bank will loan him money.ll

Solution: Let us indicate the statements as follows:
$V:$ The contract is valid.
$L:$ John is liable for penalty.
$M:$ Bank will loan him money.
$B:$ John will go bankrupt.
$\{1\} \quad$ (1) $V \rightarrow L \quad$ Rule P
\{2\}
(2) $L \rightarrow B \quad$ Rule P
\{1, 2\}
(3) $V \rightarrow B$
\{4\}
(4) $M \rightarrow \neg B$
\{4\}
(5) $M \rightarrow \neg M$

Rule T, (1), (2), and I_{13}
Rule P
Rule T, (4), and $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
\{1, 2, 4\}
(6) $V \rightarrow \neg M$
$\{1,2,4\}$
(7) $\neg V \vee \neg M$
$\{1,2,4\}$
(8) $\neg(V \wedge M)$
\{9\}
(9) $V \wedge M$

Rule T, (3), (5), and I_{13}
Rule T, (6) and $P \rightarrow Q \Leftrightarrow \neg P \vee Q$
Rule $T,(7)$, and $\neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q$
象
$\{1,2,4,9\} \quad(10) \neg(V \wedge M) \wedge(V \wedge M)$ Rule T, (8), (9) and I_{9}
Thus, the given set of premises leads to a contradiction and hence it is inconsistent.

Indirect Method of Proof

The method of using the rule of conditional proof and the notion of an inconsistent set of premises is called the indirect method of proof or proof by contradiction.

In order to show that a conclusion C follows logically from the premises H_{1}, H_{2}, \cdots,
H_{m}, we assume that C is false and consider $\neg C$ as an additional premise. If the new set of premises is inconsistent, so that they imply a contradiction. Therefore, the assump-tion that $\neg C$ is true does not hold.

Hence, C is true whenever $H_{1}, H_{2}, \cdots, H_{m}$ are true. Thus, C follows logically from the premises $H_{1}, H_{2}, \cdots, H_{m}$.

Example: Show that $\neg(P \wedge Q)$ follows from $\neg P \wedge \neg Q$.
Solution: We introduce $\neg \neg(P \wedge Q)$ as additional premise and show that this additional premise leads to a contradiction.

$\{1\}$	(1) $\neg \neg(P \wedge Q)$	Rule P (assumed)
$\{1\}$	(2) $P \wedge Q$	Rule T, (1), and $\neg \neg P \Leftrightarrow P$
$\{1\}$	(3) P	Rule T, (2), and I_{1}
$\{4\}$	(4) $\neg P \wedge \neg Q$	Rule P
$\{4\}$	(5) $\neg P$	Rule T, (4), and I_{1}
$\{1,4\}$	(6) $P \wedge \neg P$	Rule T, (3), (5), and I_{9}

Hence, our assumption is wrong.
Thus, $\neg(P \wedge Q)$ follows from $\neg P \wedge \neg Q$.

Example: Using the indirect method of proof, show that P

$$
\rightarrow Q, Q \rightarrow R, \neg(P \wedge R), P \vee R \Rightarrow R
$$

Solution: We include $\neg R$ as an additional premise. Then we show that this leads to a contradiction.
\{1\}
(1) $P \rightarrow Q$
Rule P
\{2\}
(2) $Q \rightarrow R$
$\{1,2\}$
(3) $P \rightarrow R$
\{4\}
(4) $\neg R$
$\{1,2,4\}$
(5) $\neg P$
\{6\}
(6) $P \vee R$
$\{1,2,4,6\}$
(7) R
Rule P
Rule T, (1), (2), and I_{13}
Rule P (assumed)
Rule T, (4), and I_{12}
Rule P
$\{1,2,4,6\} \quad$ (8) $R \wedge \neg R$
Rule T, (5), (6) and I_{10}

Hence, our assumption is wrong.
Example: Show that the following set of premises are inconsistent, using proof by contradiction

$$
P \rightarrow(Q \vee R), Q \rightarrow \neg P, S \rightarrow \neg R, P \Rightarrow P \rightarrow \neg S
$$

Solution: We include $\neg(P \rightarrow \neg S)$ as an additional premise. Then we show that this leads to a contradiction.

$$
\neg(P \rightarrow \neg S) \Leftrightarrow \neg(\neg P \vee \neg S) \Leftrightarrow P \wedge S .
$$

$\{1\}$	(1) $P \rightarrow(Q \vee R)$	Rule P
$\{2\}$	(2) P	Rule P
$\{1,2\}$	(3) $Q \vee R$	Rule T, (1), (2), and Modus Ponens
$\{4\}$	(4) $P \wedge S$	Rule P (assumed)
$\{1,2,4\}$	(5) S	Rule T, (4), and $P \wedge Q \Rightarrow P$

$\{6\}$	(6) $S \rightarrow \neg R$	Rule P
$\{1,2,4,6\}$	(7) $\neg R$	Rule T, (5), (6) and Modus Ponens
$\{1,2,4,6\}$	(8) Q	Rule T, (3), (7), and $P \wedge Q, \neg Q \Rightarrow P$
$\{9\}$	(9) $Q \rightarrow \neg P$	Rule P
$\{1,2,4,6\}$	(10) $\neg P$	Rule T, (8), (9), and $P \wedge Q, \neg Q \Rightarrow P$
$\{1,2,4,6\}$		Rule T, (2), (10), and $P, Q \Rightarrow P \wedge Q$
$\{1,2,4,6\}$	(12) F	Rule T, (11), and $P \wedge \neg P \Leftrightarrow F$

The Predicate Calculus

Predicate

A part of a declarative sentence describing the properties of an object is called a predicate. The logic based upon the analysis of predicate in any statement is called predicate logic.

Consider two statements:
John is a bachelor
Smith is a bachelor.
In each statement lis a bachelorll is a predicate. Both John and Smith have the same property of being a bachelor. In the statement logic, we require two diff erent symbols to express them and these symbols do not reveal the common property of these statements. In predicate calculus these statements can be replaced by a single statement $\| x$ is a bachelorl. A predicate is symbolized by a capital letters which is followed by the list of variables. The list of variables is enclosed in parenthesis. If P stands for the predicate lis a bachelorl, then $\mathrm{P}(\mathrm{x})$ stands for $\| \mathrm{x}$ is a bachelorl, where x is a predicate variable.
`The domain for $P(x): x$ is a bachelor, can be taken as the set of all human names. Note that $P(x)$ is not a statement, but just an expression. Once a value is assigned to $x, P(x)$ becomes a statement and has the truth value. If x is Ram, then $P(x)$ is a statement and its truth value is true.

Quantifiers

Quantifiers: Quantifiers are words that are refer to quantities such as 'some' or 'all'. Universal Quantifier: The phrase 'forall' (denoted by \forall) is called the universal quantifier.
For example, consider the sentence \|All human beings are mortall.
Let $P(x)$ denote x is a mortal'.
Then, the above sentence can be written as

$$
(\forall x \in S) P(x) \text { or } \forall x P(x)
$$

where S denote the set of all human beings.
$\forall x$ represents each of the following phrases, since they have essentially the same for all x

For every x
For each x.
Existential Quantifier: The phrase 'there exists' (denoted by \exists) is called the existential quantifier.

For example, consider the sentence
$\|$ There exists x such that $x=5$.
$\exists x$ represents each of the following phrases
There exists an x
There is an x
For some x
There is at least one x.
Example: Write the following statements in symbolic form:
(i). Something is good
(ii). Everything is good
(iii). Nothing is good
(iv). Something is not good.

Solution: Statement (i) means IThere is atleast one x such that, x is good\|.
Statement (ii) means \|Forall x, x is goodll.
Statement (iii) means, \|Forall x, x is not goodll.
Statement (iv) means, IThere is atleast one x such that, x is not good.
Thus, if $G(x): x$ is good, then
statement (i) can be denoted by $(\exists x) G(x)$
statement (ii) can be denoted by ($\forall x) G(x)$
statement (iii) can be denoted by $(\forall x) \neg G(x)$
statement (iv) can be denoted by $(\exists x) \neg G(x)$.
Example: Let $K(x): x$ is a man
$L(x): x$ is mortal
$M(x): x$ is an integer
$N(x): x$ either positive or negative
Express the following using quantifiers:
All men are mortal
Any integer is either positive or negative.
Solution: (a) The given statement can be written as
for all x, if x is a man, then x is mortal and this can be expressed as

$$
(x)(K(x) \rightarrow L(x)) .
$$

The given statement can be written as
for all x, if x is an integer, then x is either positive or negative and this can be expressed as $(x)(M(x) \rightarrow N(x))$.

Free and Bound Variables

Given a formula containing a part of the form $(x) P(x)$ or $(\exists x) P(x)$, such a part is called an x-bound part of the formula. Any occurrence of x in an x-bound part of the formula is called a bound occurrence of x, while any occurrence of x or of any variable that is not a bound occurrence is called a free occurrence. The smallest formula immediately
following ($\forall x$) or ($\exists x$) is called the scope of the quantifier.
Consider the following formulas:

$$
\begin{aligned}
& (x) P(x, y) \\
& (x)(P(x) \rightarrow Q(x)) \\
& (x)(P(x) \rightarrow(\exists y) R(x, y)) \\
& (x)(P(x) \rightarrow R(x)) \vee(x)(R(x) \rightarrow Q(x)) \\
& (\exists x)(P(x) \wedge Q(x)) \\
& (\exists x) P(x) \wedge Q(x) .
\end{aligned}
$$

In (1), $P(x, y)$ is the scope of the quantifier, and occurrence of x is bound occurrence, while the occurrence of y is free occurrence.

In (2), the scope of the universal quantifier is $P(x) \rightarrow Q(x)$, and all concrescences of x are bound.

In (3), the scope of (x) is $P(x) \rightarrow(\exists y) R(x, y)$, while the scope of $(\exists y)$ is $R(x, y)$. All occurrences of both x and y are bound occurrences.

In (4), the scope of the first quantifier is $P(x) \rightarrow R(x)$ and the scope of the second is $R(x) \rightarrow Q(x)$. All occurrences of x are bound occurrences.

In (5), the scope $(\exists x)$ is $P(x) \wedge Q(x)$.
In (6), the scope of $(\exists x)$ is $P(x)$ and the last of occurrence of x in $Q(x)$ is free.

Negations of Quantified Statements

(i). $\neg(x) P(x) \Leftrightarrow(\exists x) \neg P(x)$
(ii). $\neg(\exists x) P(x) \Leftrightarrow(x)(\neg P(x))$.

Example: Let $P(x)$ denote the statement $\| x$ is a professional athletell and let $Q(x)$ denote the statement $\| x$ plays soccerl. The domain is the set of all people.
(a). Write each of the following proposition in English.

$$
\begin{aligned}
& (x)(P(x) \rightarrow Q(x) \\
& (\exists x)(P(x) \wedge Q(x)) \\
& (x)(P(x) \vee Q(x))
\end{aligned}
$$

(b). Write the negation of each of the above propositions, both in symbols and in words. Solution:
(a). (i). For all x, if x is an professional athlete then x plays soccer.
\|All professional athletes plays soccer\| or \|Every professional athlete plays soccerll.
(ii). There exists an x such that x is a professional athlete and x plays soccer.
||Some professional athletes paly soccerl.
(iii). For all x, x is a professional athlete or x plays soccer.
\|Every person is either professional athlete or plays soccerl.
(b). (i). In symbol: We know that

$$
\begin{aligned}
\neg(x)(P(x) \rightarrow Q(x)) \Leftrightarrow(\exists x) \neg(P(x) \rightarrow Q(x)) \Leftrightarrow & (\exists x) \neg(\neg(P(x)) \vee Q(x)) \\
& \Leftrightarrow(\exists x)(P(x) \wedge \neg Q(x))
\end{aligned}
$$

There exists an x such that, x is a professional athlete and x does not paly soccer. In words: \|Some professional athlete do not play soccerl.

$$
\text { (ii). } \neg(\exists x)(P(x) \wedge Q(x)) \Leftrightarrow(x)(\neg P(x) \vee \neg Q(x))
$$

In words: \|Every people is neither a professional athlete nor plays soccerl or All people either not a professional athlete or do not play soccerll.
(iii). $\neg(x)(P(x) \vee Q(x)) \Leftrightarrow(\exists x)(\neg P(x) \wedge \neg Q(x))$.

In words: $\|$ Some people are not professional athlete or do not paly soccerl.

Inference Theory of the Predicate Calculus

To understand the inference theory of predicate calculus, it is important to be familiar with the following rules:

Rule US: Universal specification or instaniation

$$
(x) A(x) \Rightarrow A(y)
$$

From $(x) A(x)$, one can conclude $A(y)$.
Rule ES: Existential specification

$$
(\exists x) A(x) \Rightarrow A(y)
$$

From $(\exists x) A(x)$, one can conclude $A(y)$.
Rule EG: Existential generalization

$$
A(x) \neq(\exists y) A(y)
$$

From $A(x)$, one can conclude $Q \exists y) A(y)$.
Rule UG: Universal generalization

$$
A(x) \Rightarrow(y) A(y)
$$

From $A(x)$, one can conclude $(y) A(y)$.

Equivalence formulas:

$$
\begin{aligned}
& E_{31}:(\exists x)[A(x) \vee B(x)] \Leftrightarrow(\exists x) A(x) \vee(\exists x) B(x) \\
& E_{32}:(x)[A(x) \wedge B(x)] \Leftrightarrow(x) A(x) \wedge(x) B(x) \\
& E_{33}: \neg(\exists x) A(x) \Leftrightarrow(x) \neg A(x) \\
& E_{34}: \neg(x) A(x) \Leftrightarrow(\exists x) \neg A(x) \\
& E_{35}:(x)(A \vee B(x)) \Leftrightarrow A \vee(x) B(x) \\
& E_{36}:(\exists x)(A \wedge B(x)) \Leftrightarrow A \wedge(\exists x) B(x) \\
& E_{37}:(x) A(x) \rightarrow B \Leftrightarrow(x)(A(x) \rightarrow B) \\
& E_{38}:(\exists x) A(x) \rightarrow B \Leftrightarrow(x)(A(x) \rightarrow B) \\
& E_{39}: A \rightarrow(x) B(x) \Leftrightarrow(x)(A \rightarrow B(x))
\end{aligned}
$$

$$
\begin{aligned}
& E_{40}: A \rightarrow(\exists x) B(x) \Leftrightarrow(\exists x)(A \rightarrow B(x)) \\
& E_{41}:(\exists x)(A(x) \rightarrow B(x)) \Leftrightarrow(x) A(x) \rightarrow(\exists x) B(x) \\
& E_{42}:(\exists x) A(x) \rightarrow(x) B(X) \Leftrightarrow(x)(A(x) \rightarrow B(X)) .
\end{aligned}
$$

Example: Verify the validity of the following arguments:
$\|$ All men are mortal. Socrates is a man. Therefore, Socrates is mortall.
or
Show that $(x)[H(x) \rightarrow M(x)] \wedge H(s) \Rightarrow M(s)$.
Solution: Let us represent the statements as follows:
$H(x): x$ is a man
$M(x): x$ is a mortal
s : Socrates
Thus, we have to show that $(x)[H(x) \rightarrow M(x)] \wedge H(s) \Rightarrow M(s)$.
\{1\}
(1) $(x)[H(x) \rightarrow M(x)]$
Rule P
\{1\}
(2) $H(s) \rightarrow M(s)$
Rule US, (1)
\{3)
(3) $H(s)$
Rule P
$\{1,3\} \quad$ (4) $M(s)$
Rule T, (2), (3), and I_{11}

Example: Establish the validity of the following argument:|All integers are ratio-nal numbers.
Some integers are powers of 2 . Therefore, some rational numbers are powers of $2 \|$.
Solution: Let $P(x): x$ is an integer
$R(x)$: x is rational number
$S(x): x$ is a power of 2
Hence, the given statements becomes

$$
(x)(P(x) \rightarrow \hat{R}(x)),(\exists x)(P(x) \wedge S(x)) \Rightarrow(\exists x)(R(x) \wedge S(x))
$$

Solution:
\{1\}
(1) $(\exists x)(P(x) \wedge S(x))$
$\{1\} \quad$ (2) $P(y) \wedge S(y)$
\{1\}
(3) $P(y)$
\{1\}
(4) $S(y)$
\{5\}
(5) $(x)(P(x) \rightarrow R(x))$
\{5\}
(6) $P(y) \rightarrow R(y)$
\{1, 5\}
(7) $R(y)$
\{1, 5\}
(8) $R(y) \wedge S(y)$
\{1, 5\}
(9) $(\exists x)(R(x) \wedge S(x))$

Hence, the given statement is valid.

Rule P

Rule ES, (1)
Rule T, (2) and $P \wedge Q \Rightarrow P$
Rule T, (2) and $P \wedge Q \Rightarrow Q$
Rule P
Rule US, (5)
Rule T, (3), (6) and $P, P \rightarrow Q \Rightarrow Q$
Rule T, (4), (7) and $P, Q \Rightarrow P \wedge Q$
Rule EG, (8)

Example: Show that $(x)(P(x) \rightarrow Q(x)) \wedge(x)(Q(x) \rightarrow R(x)) \Rightarrow(x)(P(x) \rightarrow R(x))$.
Solution:
\{1\}
(1) $(x)(P(x) \rightarrow Q(x))$
Rule P
\{1\}
(2) $P(y) \rightarrow Q(y)$
Rule US, (1)
\{3\}
(3) $(x)(Q(x) \rightarrow R(x))$
Rule P
\{3\}
(4) $Q(y) \rightarrow R(y)$
Rule US, (3)
$\{1,3$ \}
(5) $P(y) \rightarrow R(y)$
Rule T, (2), (4), and I_{13}
$\{1,3\}$
(6) $(x)(P(x) \rightarrow R(x))$
Rule UG, (5)

Example: Show that $(\exists x) M(x)$ follows logically from the premises

$$
(x)(H(x) \rightarrow M(x)) \text { and }(\exists x) H(x)
$$

Solution:

$\{1\}$	$(1)(\exists x) H(x)$	Rule P
$\{1\}$	$(2) H(y)$	Rule ES, (1)
$\{3\}$	$(3)(x)(H(x) \rightarrow M(x))$	Rule P
$\{3\}$	(4) $H(y) \rightarrow M(y)$	Rule US, (3)
$\{1,3\}$	$(5) M(y)$	Rule T, (2), (4), and I_{11}
$\{1,3\}$	(6) $(\exists x) M(x)$	Rule EG, (5)
Hence, the result.		

Example: Show that $(\exists x)[P(x) \wedge Q(x)] \Rightarrow(\exists x) P(x) \wedge(\exists x) Q(x)$.
Solution:

$\{1\}$	$(1)(\exists x)(P(x) \wedge Q(x))$	Rule P
$\{1\}$	$(2) P(y) \wedge Q(y)$	Rule ES, (1)
$\{1\}$	$(3) P(y)$	Rule T, (2), and I_{1}
$\{1\}$	$(4)(\exists x) P(x)$	Rule EG, (3)
$\{1\}$	$(5) Q(y)$	Rule T, (2), and I_{2}
$\{1\}$	$(6)(\exists x) Q(x)$	Rule EG, (5)
$\{1\}$	$(7)(\exists x) P(x) \wedge(\exists x) Q(x)$	Rule T, (4), (5) and I9

Hence, the result.
Note: Is the converse true?

$\{1\}$	$(1)(\exists x) P(x) \wedge(\exists x) Q(x)$	Rule P
$\{1\}$	$(2)(\exists x) P(x)$	Rule T, (1) and I_{1}
$\{1\}$	(3) $(\exists x) Q(x)$	Rule T, (1), and I_{1}
$\{1\}$	$(4) P(y)$	Rule ES, (2)
$\{1\}$	$(5) Q(s)$	Rule ES, (3)

Here in step (4), y is fixed, and it is not possible to use that variable again in step (5). Hence, the converse is not true.

Example: Show that from $(\exists x)[F(x) \wedge S(x)] \rightarrow(y)[M(y) \rightarrow W(y)]$ and $(\exists y)[M(y) \wedge \neg W(y)]$ the conclusion $(x)[F(x) \rightarrow \neg S(x)]$ follows.

\{1\}	(1)	$(\exists y)[M(y) \wedge \neg W(y)]$	Rule P
\{1\}	(2)	$[M(z) \wedge \neg W(z)]$	Rule ES, (1)
\{1\}	(3)	$\neg[M(z) \rightarrow W(z)]$	Rule T, (2), and $\neg(P \rightarrow Q) \Leftrightarrow P \wedge \neg Q$
\{1\}	(4)	$(\exists y) \neg[M(y) \rightarrow W(y)]$	Rule EG, (3)
\{1\}	(5)	$\neg(y)[M(y) \rightarrow W(y)]$	Rule T, (4), and $\neg(x) A(x) \Leftrightarrow(\exists x) \neg A(x)$
\{1\}	(6)	$(\exists x)[F(x) \wedge S(x)] \rightarrow(y)$	$W(y)]$ Rule P
$\{1,6\}$	(7)	$\neg(\exists x)[F(x) \wedge S(x)]$	Rule T, (5), (6) and I_{12}
\{1, 6\}	(8)	$x) \neg[F(x) \wedge S(x)]$	Rule T, (7), and $\neg(x) A(x) \Leftrightarrow(\exists x) \neg A(x)$

$\{1,6\} \quad(9) \quad \neg[F(z) \wedge S(z)]$
Rule US, (8)
$\{1,6\} \quad(10) \quad \neg F(z) \vee \neg S(z)$
Rule T, (9), and De Morgan's laws
$\{1,6\} \quad(11) \quad F(z) \rightarrow \neg S(z)$
Rule T, (10), and $P \rightarrow Q \Leftrightarrow \neg P \vee Q$
$\{1,6\}$
(12) $\quad(x)(F(x) \rightarrow \neg S(x))$

Rule UG, (11)
Hence, the result.
Example: Show that $(x)(P(x) \vee Q(x)) \Rightarrow(x) P(x) \vee(\exists x) Q(x)$.
(May. 2012)
Solution: We shall use the indirect method of proof by assuming $\neg((x) P(x) V(\exists x) Q(x))$ as an additional premise.

$\{1\}$	$(1) \neg((x) P(x) \vee(\exists x) Q(x))$	Rule P (assumed)
$\{1\}$	$(2) \neg(x) P(x) \wedge \neg(\exists x) Q(x)$	Rule T, (1) $\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q$
$\{1\}$	$(3) \neg(x) P(x)$	Rule T, (2), and $I 1$
$\{1\}$	$(4) \neg \exists x) \neg P(x)$	Rule T, (3), and $\neg(x) A(x) \Leftrightarrow(\exists x) \neg A(x)$
$\{1\}$	$(5) \neg(\exists x) Q(x)$	Rule T, (2), and $I 2$
$\{1\}$	$(6)(x) \neg Q(x)$	Rule T, (5), and $\neg(\exists x) A(x) \Leftrightarrow(x) \neg A(x)$
$\{1\}$	$(7) \neg P(y)$	Rule ES, (5), (6) and $I 12$
$\{1\}$	$(8) \neg Q(y)$	Rule US, (6)
$\{1\}$	$(9) \neg P(y) \wedge \neg Q(y)$	Rule T, (7), (8)and I9
$\{1\}$	$(10) \neg(P(y) \vee Q(y))$	Rule T, (9), and $\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q$
$\{11\}$	$(11)(x)(P(x) \vee Q(x))$	Rule P
$\{11\}$	$(12)(P(y) \vee Q(y))$	Rule US
$\{1,11\}$	$(13) \neg(P(y) \vee Q(y)) \wedge(P(y) \vee Q(y))$ Rule T, (10), (11), and $I 9$	
$\{1,11\}$	$(14) F$	Rule T, and (13)

which is a contradiction.Hence, the statement is valid.

Example: Using predicate logic, prove the validity of the following argument: \|Every husband argues with his wife. x is a husband. Therefore, x argues with his wifell.

Solution: Let $P(x): x$ is a husband.

$$
Q(x): x \text { argues with his wife. }
$$

Thus, we have to show that $(x)[P(x) \rightarrow Q(x)] \wedge P(x) \Rightarrow Q(y)$.
\{1\} $\quad(1)(x)(P(x) \rightarrow Q(x)) \quad$ Rule P
$\{1\} \quad$ (2) $P(y) \rightarrow Q(y) \quad$ Rule US, (1)
$\{1\} \quad$ (3) $P(y) \quad$ Rule P
$\{1\} \quad$ (4) $Q(y) \quad$ Rule T, (2), (3), and I_{11}
Example: Prove using rules of inference
Duke is a Labrador retriever.
All Labrador retriever like to swim. Therefore Duke likes to swim.
Solution: We denote
$L(x): x$ is a Labrador retriever.
$S(x): x$ likes to swim.
d : Duke.
We need to show that $L(d) \wedge(x)(L(x) \rightarrow S(x)) \Rightarrow S(d)$.
(1) $(x)(L(x) \rightarrow S(x))$

Rule P
\{1\}
(2) $L(d) \rightarrow S(d)$
\{2\}
(3) $L(d)$
\{1, 2\}
(4) $S(d)$

Rule US, (1)
Rule P

Rule T, (2), (3), and I_{11}.

JNTUK Previous questions

Test the Validity of the Following argument: -All dogs are barking. Some animals are dogs. Therefore, some animals are barkingl.
Test the Validity of the Following argument:
-Some cats are animals. Some dogs are animals. Therefore, some cats are dogsll.
Symbolizes and prove the validity of the following arguments :
Himalaya is large. Therefore every thing is large.
Not every thing is edible. Therefore nothing is edible.
a) Find the PCNF of $(\sim \mathrm{p} \leftrightarrow \mathrm{r}) \wedge(\mathrm{q} \leftrightarrow \mathrm{p})$?

Explain in brief about duality Law?
Construct the Truth table for $\sim\left(\sim p^{\wedge} \sim q\right)$?
Find the disjunctive Normal form of $\sim\left(p \rightarrow\left(q^{\wedge} r\right)\right)$?
Define Well Formed Formula? Explain about Tautology with example?
Explain in detail about the Logical Connectives with Examples?

MULTIPLE CHOICE QUESTIONS

1: Which of the following propositions is tautology?
A. $(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{q}$
B.
$p \vee(q \rightarrow p)$
C.p v
D.Both (b) \& (c)
$(p \rightarrow q)$

Option: C
2: Which of the proposition is $\mathrm{p}^{\wedge}(\sim \mathrm{p} \mathrm{vq})$
is A.A tautology B.A
contradiction

Option: C

3: Which of the following is/are tautology?
A. $\mathrm{avb} \rightarrow \mathrm{b}^{\wedge} \mathrm{c}$
B. $a^{\wedge} b \rightarrow b v$
C. $\mathrm{a} v \mathrm{~b} \rightarrow(\mathrm{~b} \rightarrow$
D.None of these c
c)

Option: B
Logical expression $\left(A^{\wedge} B\right) \rightarrow\left(C^{\wedge} A\right) \rightarrow(A \equiv 1)$ is
A.Contradiction B.Valid
C.Well-formed formula
D.None of these

Option: D
5: Identify the valid conclusion from the premises $\mathrm{Pv} \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{P} \rightarrow$
M, M
A. $\mathrm{P}^{\wedge}(\mathrm{R} v \mathrm{R})$
$B . \mathrm{P}^{\wedge}\left(\mathrm{P}^{\wedge} \mathrm{R}\right) \mathrm{C} . \mathrm{R}^{\wedge}(\mathrm{P} v \mathrm{Q}) \mathrm{D} . \mathrm{Q}^{\wedge}(\mathrm{P} \vee \mathrm{R})$

Option: D
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be propositions. Assume that the equivalence $\mathrm{a} \leftrightarrow(\mathrm{bv} \mathrm{lb})$ and $\mathrm{b} \leftrightarrow \mathrm{c}$ hold. Then truth value of the formula $\left(a^{\wedge} b\right) \rightarrow\left(\left(a^{\wedge} c\right) v d\right)$ is always
A.True B.False C.Same as the truth value of a D.Same as the truth value of b Option: A
7: Which of the following is a declarative statement?
A. It's right
B. He says C.Two may hot be an even integer D.I love you

Option: B
$\dot{\mathrm{P}} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})$ is equivalent to
A. $\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \rightarrow R$
B. (P, Q) -
C. $(\mathrm{P} \vee \mathrm{Q}) \rightarrow$
D.None of these
R
1 R

Option: A
9: Which of the following are táutologies?
$\mathrm{A} .\left((\mathrm{P} \vee \mathrm{Q})^{\wedge} \mathrm{Q}\right) \leftrightarrow \mathrm{Q}$ B. $\left((\mathrm{P} \vee \mathrm{Q})^{\wedge} 1 \mathrm{P}\right) \rightarrow$
C. $\left((\mathrm{P} \vee \mathrm{Q})^{\wedge} \mathrm{P}\right) \rightarrow$
D.Both (a) \& (b)
Q P

Option: D
If $\mathrm{F} 1, \mathrm{~F} 2$ and F 3 are propositional formulae such that $\mathrm{F} 1^{\wedge} \mathrm{F} 2 \rightarrow \mathrm{~F} 3$ and $\mathrm{F} 1^{\wedge} \mathrm{F} 2 \rightarrow \mathrm{~F} 3$ are both
tautologies, then which of the following is TRUE?
A.Both F1 and F2 are tautologies B. The conjuction F1 ${ }^{\wedge} \mathrm{F} 2$ is not satisfiable
C.Neither is tautologies D.None of these

Option: B

Consider two well-formed formulas in propositional logic
$\mathrm{F} 1: \mathrm{P} \rightarrow 1 \mathrm{P} \mathrm{F} 2:(\mathrm{P} \rightarrow 7 \mathrm{P})$ v $(7 \mathrm{P} \rightarrow)$ Which of the following statement is correct?
A.F1 is satisfiable, F2 is unsatisfiable B.F1 is unsatisfiable, F2 is satisfiable C.F1 is unsatisfiable, F2 is valid D.F1 \& F2 are both satisfiable
Option: C
12: What can we correctly say about proposition $\mathrm{P} 1:(\mathrm{p} \vee \mathrm{qq}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \mathrm{v}(\mathrm{r} \vee \mathrm{p})$
A.P1 is tautology
B.P1 is satisfiable
C.If p is true and q is false and r is false, the $P 1$ is true D.If p as true and q is true and r is false, then P1
is true
Option: C
$(P \vee Q)^{\wedge}(P \rightarrow R)^{\wedge}(\mathrm{Q} \rightarrow \mathrm{S})$ is equivalent to
A. S^{\wedge}
B.S \rightarrow
C.S v
D.All of above
R
R
R

Option: C
14: The functionally complete set
is A. $\{1, \wedge, v\}$
B. $\{\downarrow, \wedge\}$ C. $\{\uparrow\}$
D.None of these

Option: C
$(\mathrm{Pv} \mathrm{Q})^{\wedge}(\mathrm{P} \rightarrow \mathrm{R})^{\wedge}(\mathrm{Q} \rightarrow \mathrm{R})$ is equivalent to
A.P B.Q C.R D.True $=T$

Option: C
$1(\mathrm{P} \rightarrow \mathrm{Q})$ is equivalent to
A. $\mathrm{P}^{\wedge} 1 \mathrm{Q}$
B. $\mathrm{P}^{\wedge} \mathrm{Q}$ C.1P v Q
D.None of these
Option: A

In propositional logic, which of the following is equivalent to $\mathrm{p} \rightarrow \mathrm{q}$?
A. $\sim \mathrm{p} \rightarrow \mathrm{q}$
B. $\sim p \mathrm{v} q$
C. $\sim \mathrm{py} \sim \mathrm{q}$
D. $p \rightarrow q$

Option: B
Which of the following is FALSE? Read ${ }^{\wedge}$ as And, v as OR, \sim as NOT, \rightarrow as one way implication and \leftrightarrow as two way implication?
A. $\left((\mathrm{x} \rightarrow \mathrm{y})^{\wedge} \mathrm{x}\right) \rightarrow \mathrm{y}$
B. $\left((\sim \mathrm{x} \rightarrow \mathrm{y})^{\wedge}(\sim \mathrm{x} \wedge \sim \mathrm{y})\right) \rightarrow \mathrm{y}$
C. $(\mathrm{x} \rightarrow(\mathrm{x} v \mathrm{y})) \mathrm{D} .((\mathrm{x} v \mathrm{y}) \leftrightarrow(\sim \mathrm{x} v$ ~y))
Option: D
19: Which of the following well-formed formula(s) are valid?
A. $\left((P \rightarrow Q)^{\wedge}(\mathrm{Q} \rightarrow \mathrm{R})\right) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})$
B. $(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{Q})$
C. $(P \vee(1 P \vee 1 Q)) \rightarrow P$
D. $((\mathrm{P} \rightarrow \mathrm{R}) \vee(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow(\mathrm{P} \vee \mathrm{Q}\} \rightarrow \mathrm{R})$

Option: A

Let p and q be propositions. Using only the truth table decide whether $\mathrm{p} \leftrightarrow \mathrm{q}$ does not imply p lq is
A.True
B.False
C.None
D.Both A and B

Option: A

UNIT-2

Set Theory
Set:A set is collection of well defined objects.
In the above definition the words set and collection for all practical purposes are Synonymous. We have really used the word set to define itself.
Each of the objects in the set is called a member of an element of the set. The objects themselves can be almost anything. Books, cities, numbers, animals, flowers, etc. Elements of a set are usually denoted by lower-case letters. While sets are denoted by capital letters of English larguage.
The symbol \in indicates the membership in a set.

- If -a is an element of the set All, then we write $a \in A$.

The symbol \in is read -is a member of $\|$ or -is an element of $\|$.
The symbol \square is used to indicate that an object is not in the given set.
The symbol \square is read -is not a member of $\|$ or -is not an element of $\|$.
If x is not an element of the set A then we write $x \square A$.

Subset:

A set A is a subset of the set B if and only if every element of A is also an element of B. We also say that A is contained in B, and use the notation $A \subseteq B$.

Proper Subset:

A set A is called proper subset of the set B. If (i) A is subset of B and (ii) B is not a subset A i.e., A is said to be a proper subset of B if every element of A belongs to the set B, but there is atleast one element of B, which is not in A. If A is a proper subset of B, then we denote it by $A \subset B$.

Super set: If A is subset of B, then B is called a superset of A
Null set: The set with no elements is called an empty set or null set. A Null set is designated by the symbol ϕ.
The null set is a subset of every set, i.e., If A is any set then $\phi \subset A$.

Universal set:

In many discussions all the sets are considered to be subsets of one particular set. This set is called the universal set for that discussion. The Universal set is often designated by the script letter μ. Universal set in not unique and it may change from one discussion to another.

Power set:

The set of all subsets of a set A is called the power set of A.
The power set of A is denoted by $P(A)$. If A has n elements in it, then $P(A)$ has 2_{n} elements:

Disjoint sets:

Two sets are said to be disjoint if they have no element in common.

Union of two sets:

The union of two sets A and B is the set whose elements are all of the elements in A or in B or in both.
The union of sets A and B denoted by $A \cup B$ is read as $-A$ union $B \|$.

Intersection of two sets:

The intersection of two sets A and B is the set whose elements are all of the elements common to both A and B. The intersection of the sets of $-A \|$ and $-B \|$ is denoted by $A B$ and is read as $-A$ intersection $B \|$

Difference of sets:

If A and B are subsets of the universal set U, then the relative complement of B in A is the set of all elements in A which are not in A. It is denoted by $A-B$ thus: $A-B=\{x \mid x \in A$ and $x \notin B\}$

Complement of a set:

If U is a universal set containing the set A, then $U-A$ is called the complement of A. It is denoted by A^{1}.
Thus $A^{1}=\{x: x \notin A\}$

Inclusion-Exclusion Principle:

The inclusion-exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the unionof two finite sets; symbolically expressed as
$|A \cup B|=|A|+|B|-|A \cap B|$.

Fig.Venn diagram showing the union of sets A and B
where A and B are two finite sets and $|S|$ indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.

The principle is more clearly seen in the case of three sets, which for the sets A, B and C is given by
$|\mathrm{A} \cup \mathrm{B} \cup \mathrm{BC}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-|\mathrm{A} \cap \mathrm{B}|-|\mathrm{C} \cap \mathrm{B}|-|\mathrm{A} \cap \mathrm{C}|+\mathrm{A} \cap \mathrm{B} \cap \mathrm{C} \mid$.

Fig.Inclusion-exclusion illustrated by a
Venn diagram for three sets
This formula can be verified by côunting how many times each region in the Venn diagram figure is included in the right-hand side of the formula. In this case, when removing the contributions of over-counted elements, the number of elements in the mutual intersection of the three sets has been subtracted too often, so must be added back in to get the correct total.
In general, Let $\mathrm{A} 1, \cdots$, Ap be finite subsets of a set U . Then,

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \ldots \cup A_{p}\right|=\sum_{1 \leq i \leq p}\left|A_{i}\right|-\sum_{1 \leq i_{1}<i_{2} \leq p}\left|A_{i_{1}} \cap A_{i_{2}}\right|+ \\
& \quad \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq p}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right|-\ldots+(-1)^{p-1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{p}\right|,
\end{aligned}
$$

Example: How many natural numbers $n \leq 1000$ are not divisible by any of 2,3 ?
Let $\mathrm{A}_{2}=\{\mathrm{n} \in \mathrm{N} \mid \mathrm{n} \leq 1000,2 \ln \}$ and $\mathrm{A}_{3}=\{\mathrm{n} \in \mathrm{N} \mid \mathrm{n} \leq 1000,3 \ln$,
Then, $\left|\mathrm{A}_{2} \cup \mathrm{~A}_{3}\right|=\left|\mathrm{A}_{2}\right|+\left|\mathrm{A}_{3}\right|-\left|\mathrm{A}_{2} \cap \mathrm{~A}_{3}\right|=500+333-166=667$.
So, the required answer is $1000-667=333$.
Example: How many integers between 1 and 10000 are divisible by none of $2,3,5,7$?
For $i \in\{2,3,5,7\}$, let $A_{i}=\{n \in N \mid n \leq 10000$, iln$\}$.
Therefore, the required answer is $10000-\left|\mathrm{A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{5} \cup \mathrm{~A}_{7}\right|=2285$.

Relations

Definition: Any set of ordered pairs defines a binary relation.
We shall call a binary relation simply a relation. Binary relations represent relationships between elements of two sets. If R is a relation, a particular ordered pair, say (x, $y) \in R$ can be written as $x R y$ and can be read as $-x$ is in relation R to $y l l$.

Example: Give an example of a relation.
Solution: The relation -greater thanll for real numbers is denoted by $>$. If x and y are any two real numbers such that $x>y$, then we say that $(x, y) \in>$. Thus the relation $>$ is $\}>=(x$, y) : x and y are real numbers and $x>y$
Example: Define a relation between two sets $A=\{5,6,7\}$ and $B=\{x, y\}$.
Solution: If $A=\{5,6,7\}$ and $B=\{x, y\}$, then the subset $R=\{(5, x),(5, y),(6, x),(6, y)\}$ is a relation from A to B.

Definition: Let S be any relation. The domain of the relation S is defined as the set of all first elements of the ordered pairs that belong to S and is denoted by $D(S)$.

$$
\mathrm{D}(\mathrm{~S})=\{x:(x, y) \in S \text {, for some } y\}
$$

The range of the relation S is defined as the set of all second elements of the ordered pairs that belong to S and is denoted by $R(S)$.

$$
R(S)=\{y:(x, y) \in S \text {, for some } x\}
$$

Example: $A=\{2,3,4\}$ and $B=\{3,4,5,6,7\}$. Define relation from A to B by $(a, b) \in R$ if a divides b.
Solution: We obtain $R=\{(2,4),(2,6),(3,3),(3,6),(4,4)\}$.
Domain of $R=\{2,3,4\}$ and range of $R=\{3,4,6\}$.

Properties of Binary Relátions in a Set

A relation R on a set X is said to be
Reflexive relation if $x R x$ or $(x, x) \in R, \forall x \in X$
Symmetric relation if $x R y$ then $y R x, \forall x, y \in X$
Transitive relation if $x R y$ and $y R z$ then $x R z, \forall x, y, z \in X$
Irreflexive relation if $x R x$ or $(x, x) \notin R, \forall x \in X$
Antisymmetric relation if for every x and y in X, whenever $x R y$ and $y R x$, then $x=y$.
Examples: (i). If $R_{1}=\{(1,1),(1,2),(2,2),(2,3),(3,3)\}$ be a relation on $A=\{1,2,3\}$, then R_{1} is a reflexive relation, since for every $x \in A,(x, x) \in R_{1}$.
(ii). If $R_{2}=\{(1,1),(1,2),(2,3),(3,3)\}$ be a relation on $A=\{1,2,3\}$, then R_{2} is not a reflexive relation, since for every $2 \in A,(2,2) \notin R_{2}$.
(iii). If $R_{3}=\{(1,1),(1,2),(1,3),(2,2),(2,1),(3,1)\}$ be a relation on $A=\{1,2,3\}$, then R_{3} is a symmetric relation.
(iv). If $R_{4}=\{(1,2),(2,2),(2,3)\}$ on $A=\{1,2,3\}$ is an antisymmetric.

Example: Given $S=\{1,2, \ldots, 10\}$ and a relation R on S, where $R=\{(x, y) \mid x+y=10\}$. What are the properties of the relation R ?

Solution: Given that

$$
\begin{aligned}
S & =\{1,2, \ldots, 10\} \\
& =\{(x, y) \mid x+y=10\} \\
& =\{(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5)\} .
\end{aligned}
$$

(i). For any $x \in S$ and $(x, x) \notin R$. Here, $1 \in S$ but $(1,1) \notin R$.
the relation R is not reflexive. It is also not irreflexive, since $(5,5) \in R$.
(ii). $(1,9) \in R \Rightarrow(9,1) \in R$
$(2,8) \in R \Rightarrow(8,2) \in R \ldots$.
the relation is symmetric, but it is not antisymmetric. (iii). $(1,9) \in R$ and $(9,1) \in R$
$(1,1) \notin R$
The relation R is not transitive. Hence, R is symmetric.

Relation Matrix and the Graph of a Relation

Relation Matrix: A relation R from a finite set X to a finite set Y can be repre-sented by a matrix is called the relation matrix of R.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be finite sets containing m and n elements, respectively, and R be the relation from A to B. Then R can be represented by an $m \times n$ matrix
$M_{R}=\left[r_{i j}\right]$, which is defined as follows:

$$
\begin{aligned}
& r= \begin{cases}1, & \text { if }\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \in R \\
i j \quad(0, & \text { if }\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \notin R\end{cases}
\end{aligned}
$$

Example. Let $A=\{1,2,3,4\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$. Consider the relation $R=\left\{\left(1, b_{2}\right),\left(1, b_{3}\right)\right.$, $\left.\left(3, b_{2}\right),\left(4, b_{1}\right),\left(4, b_{3}\right)\right\}$. Determine the matrix of the relation. Solution: $A=\{1,2,3,4\}, B=$ $\left\{b_{1}, b_{2}, b_{3}\right\}$.

Relation $R=\left\{\left(1, b_{2}\right),\left(1, b_{3}\right),\left(3, b_{2}\right),\left(4, b_{1}\right),\left(4, b_{3}\right)\right\}$.
Matrix of the relation R is written as
That is $M_{R}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$

Example: Let $A=\{1,2,3,4\}$. Find the relation R on A determined by the matrix

$$
M_{R}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

Solution: The relation $R=\{(1,1),(1,3),(2,3),(3,1),(4,1),(4,2),(4,4)\}$.

Properties of a relation in a set:

(i). If a relation is reflexive, then all the diagonal entries must be 1.
(ii). If a relation is symmetric, then the relation matrix is symmetric, i.e., $r_{i j}=r_{j i}$ for every i and j.
(iii). If a relation is antisymmetric, then its matrix is such that if $r_{i j}=1$ then $r_{j i}=0$ for $i=f$.

Graph of a Relation: A relation can also be represented pictorially by drawing its graph. Let R be a relation in a set $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. The elements of X are represented by points or circles called nodes. These nodes are called vertices. If $\left(x_{i}, x_{j}\right) \in R$, then we connect the nodes x_{i} and x_{j} by means of an arc and put an arrow on the arc in the direction from x_{i} to x_{j}. This is called an edge. If all the nodes corresponding to the ordered pairs in R are connected by arcs with proper arrows, then we get a graph of the relation R.

Note: (i). If $x_{i} R x_{j}$ and $x_{j} R x_{i}$, then we draw two arcs between x_{i} and x_{j} with arrows pointing in both directions.
(ii). If $x_{i} R x_{i}$, then we get an arc which starts from node χ_{i} and returns to node x_{i}. This arc is called loop.

Properties of relations:

(i). If a relation is reflexive, then there must be a loop at each node. On the other hand, if the relation is irreflexive, then there is no loop at any node.
(ii). If a relation is symmetric and if one node is connected to another, then there must be a return arc from the second node to the first.
(iii). For antisymmetric relations, no such direct return path should exist.
(iv). If a relation is transitive, the situation is not so simple.

Example: Let $X=\{1,2,3,4\}$ and $R=\{(x, y) \mid x>y\}$. Draw the graph of R and also give its matrix.
Solution: $R=\{(4,1),(4,3),(4,2),(3,1),(3,2),(2,1)\}$.
The graph of R and the matrix of R are

Partition and Covering of a Set

Let S be a given set and $A=\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ where each $A_{i}, i=1,2, \cdots, m$ is a subset of S and m
$A_{i}=S$.
Then the set A is called a covering of S, and the sets $A_{1}, A_{2}, \cdots, A_{m}$ are said to cover S. If, in addition, the elements of A, which are subsets of S, are mutually disjoint, then A is called a partition of S, and the sets $A_{1}, A_{2}, \cdots, A_{m}$ are called the blocks of the partition.

Example: Let $S=\{a, b, c\}$ and consider the following collections of subsets of $S . A=\{\{a, b\},\{b$, $c\}\}, B=\{\{a\},\{a, c\}\}, C=\{\{a\},\{b, c\}\}, D=\{\{a, b, c\}\}, E=\{\{a\},\{b\},\{c\}\}$, and $F=\{\{a\},\{a, b\}$, $\{a, c\}\}$. Which of the above sets are covering?

Solution: The sets A, C, D, E, F are covering of S. But, the set B is not covering of S, since their union is not S.

Example: Let $S=\{a, b, c\}$ and consider the following collections of subsets of $S . A=\{\{a, b\},\{b$, $c\}\}, B=\{\{a\},\{b, c\}\}, C=\{\{a, b, c\}\}, D=\{\{a\},\{b\},\{c\}\}$, and $E=\{\{a\},\{a, c\}\}$.

Which of the above sets are covering?
Solution: The sets B, C and D are partitions of S and also they are covering. Hence, every partition is a covering.

The set A is a covering, but it is not a partition of a set, since the sets $\{a, b\}$ and $\{b, c\}$ are not disjoint. Hence, every covering need not be a partition.

The set E is not partition, since the union of the subsets is not S. The partition C has one block and the partition D has three blocks.

Example: List of all ordered partitions $S=\{a, b, c, d\}$ of type $(1,2,2)$.
Solution:

$$
\begin{array}{ll}
(\{a\},\{b\},\{c, d\}), & (\{b\},\{a\},\{c, d\}) \\
(\{a\},\{c\},\{b, d\}), & (\{c\},\{a\},\{b, d\}) \\
(\{a\},\{d\},\{b, c\}), & (\{d\},\{a\},\{b, c\}) \\
(\{b\},\{c\},\{a, d\}), & (\{c\},\{b\},\{a, d\}) \\
(\{b\},\{d\},\{a, c\}), & (\{d\},\{b\},\{a, c\}) \\
(\{c\},\{d\},\{a, b\}), & (\{d\},\{c\},\{a, b\}),
\end{array}
$$

Equivalence Relations

A relation R in a set X is called an equivalence relation if it is reflexive, symmetric and transitive. The following are some examples of equivalence relations:
1.Equality of numbers on a set of real numbers.
2. Equality of subsets of a universal set.

Example: Let $X=\{1,2,3,4\}$ and $R==\{(1,1),(1,4),(4,1),(4,4),(2,2),(2,3),(3,2),(3,3)\}$. Prove that R is an equivalence relation.

$$
M_{R}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

The corresponding graph of R is shown in figure:
Clearly, the relation R is reflexive, symmetric and transitive. Hence, R is an equivalence relation. Example: Let $X=\{1,2,3, \ldots, 7\}$ and $R=(x, y) \mid x-y$ is divisible by 3 . Show that R is an equivalence relation.

$$
x R x
$$

R is reflexive.
(ii). For any $x, y \in X$, if $x R y$, then $x-y$ is divisible by 3 .

$$
-(x-y) \text { is divisible by } 3 \text {. }
$$

$y-x$ is divisible by 3 .
$y R x$
Thus, the relation R is symmetric,
(iii). For any $x, y, z \in X$, let $x R y$ and $y R z$.
$(x-y)+(y-z)$ is divisible by 3
$x-z$ is divisible by 3
$x R z$
Hence, the relation R is transitive.
Thus, the relation R is an equivalence relation.
Congruence Relation: Let I denote the set of all positive integers, and let m be apositive integer. For $x \in I$ and $y \in I$, define R as $R=\{(x, y) \mid x-y$ is divisible by $m\}$
The statement $\| x-y$ is divisible by $m \|$ is equivalent to the statement that both x and y have the same remainder when each is divided by m.
In this case, denote R by \equiv and to write $x R y$ as $x \equiv y(\bmod m)$, which is read as $\| x$ equals to y modulo m l. The relation \equiv is called a congruence relation. Example: $83 \equiv 13(\bmod 5)$, since $83-13=70$ is divisible by 5 .
Example: Prove that the relation -congruence modulo $m \|$ over the set of positive integers is an equivalence relation.

Solution: Let N be the set of all positive integers and m be a positive integer. We define the relation $\|$ congruence modulo $m \|$ on N as follows:
Let $x, y \in N . x \equiv y(\bmod m)$ if and only if $x-y$ is divisible by m.

Let $x, y, z \in N$. Then
(i). $x-x=0 . m$
$x \equiv x(\bmod m)$ for all $x \in N$
(ii). Let $x \equiv y(\bmod m)$. Then, $x-y$ is divisible by m.
$-(x-y)=y-x$ is divisible by m.
i.e., $y \equiv x(\bmod m)$

The relation \equiv is symmetric.
$x-y$ and $y-z$ are divisible by m. Now $(x-y)+(y-z)$ is divisible by m. i.e., $x-z$ is divisible by m.
$x \equiv z(\bmod m)$
The relation \equiv is transitive.
Since the relation \equiv is reflexive, symmetric and transitive, the relation congruence modulo m is an equivalence relation.

Example: Let R denote a relation on the set of ordered pairs of positive integers such that $(x, y) R(u, v)$ iff $x v=y u$. Show that R is an equivalence relation.

Solution: Let R denote a relation on the set of ordered pairs of positive integers.
Let x, y, u and v be positive integers. Given $(x, y) R(u, v)$ if and only if $x v=y u$.
(i). Since $x y=y x$ is true for all positive integers
$(x, y) R(x, y)$, for all ordered pairs (x, y) of positive integers.
The relation R is reflexive. (ii). Let $(x, y) R(u, v)$

$$
\begin{gathered}
x v=y u \Rightarrow y u \\
x v \Rightarrow u y=v x \\
(u, v) R(x, y)
\end{gathered}
$$

The relation R is symmetric.
(iii). Let x, y, u, v, m and n be positive integers

Let $(x, y) R(u, v)$ and $(u, v) R(m, n)$

$$
\begin{aligned}
& x v=y u \text { and } u n=v m \\
& x v u n=y u v m
\end{aligned}
$$

$x n=y m$, by canceling $u v$
$(x, y) R(m, n)$
The relation R is transitive.
Since R is reflexive, symmetric and transitive, hence the relation R is an equivalence relation.

Compatibility Relations

Definition: A relation R in X is said to be a compatibility relation if it is reflexive and symmetric. Clearly, all equivalence relations are compatibility relations. A compatibility relation is sometimes denoted by \approx.

Example: Let $X=\{$ ball, bed, dog, let, egg $\}$, and let the relation R be given by $R=\{(x$, $y) \mid x, y \in X \wedge x R y$ if x and y contain some common letter .
Then R is a compatibility relation, and x, y are called compatible if $x R y$.
Note: ball \approx bed, bed \approx egg. But ball \approx egg. Thus \approx is not transitive.
Denoting \|balll by x_{1}, \|bed\|l by $x_{2},\|\operatorname{dog}\|$ by x_{3}, \|let\| by x_{4}, and \|egg\| by x_{5}, the graph of \approx is given as follows:

Maximal Compatibility Block:

Let X be a set and \approx a compatibility relation on X. A subset $A \subseteq X$ is called a maximal compatibility block if any element of A is compatible to every other element of A and no element of $X-A$ is compatible to all the elements of A.
Example: The subsets $\left\{x_{1}, x_{2}, x_{4}\right\},\left\{x_{2}, x_{3}, x_{5}\right\},\left\{x_{2}, x_{4}, x_{5}\right\},\left\{x_{1}, x_{4}, x_{5}\right\}$ are maximal compatibility blocks.

Example: Let the compatibility relation on a set $\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ be given by the matrix:

$x 21$				
$x 31$	1			
$x 40$	0	1		
$x 50$	0	1	1	
$x 61$	0	1	0	1
$x 1$	$x 2$	$x 3$	$x 4$	$x 5$

Draw the graph and find the maximal compatibility blocks of the relation.
Solution:

The maximal compatibility blocks are $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{3}, x_{6}\right\},\left\{x_{3}, x_{5}, x_{6}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}$.

Composition of Binary Relations

Let R be a relation from X to Y and S be a relation from Y to Z. Then a relation written as $R \circ S$ is called a composite relation of R and S where $R \circ S=\{(x, z) \mid x \in X, z \in Z$, and there exists $y \in$ with $(x, y) \in R$ and $(y, z) \in S\}$.

Theorem: If R is relation from A to B, S is a relation from B to C and T is a relation from C to D then $T \circ(S \circ R)=(T \circ S) \circ R$

Example: Let $R=\{(1,2),(3,4),(2,2)\}$ and $S=\{(4,2),(2,5),(3,1),(1,3)\}$. Find R
$\circ S, S \circ R, R \circ(S \circ R),(R \circ S) \circ R, R \circ R, S \circ S$, and $(R \circ R) \circ R$.
Solution: Given $R=\{(1,2),(3,4),(2,2)\}$ and $S=\{(4,2),(2,5),(3,1),(1,3)\}$.

$$
\begin{aligned}
& R \circ S=\{(1,5),(3,2),(2,5)\} \\
& S \circ R=\{(4,2),(3,2),(1,4)\}=R \circ S \\
& (R \circ S) \circ R=\{(3,2)\} \\
& \circ(S \circ R)=\{(3,2)\}=(R \circ S) \circ \\
& R R \circ R=\{(1,2),(2,2)\} \\
& \quad R \circ R \circ S=\{(4,5),(3,3),(1,1)\}
\end{aligned}
$$

Example: Let $A=\{a, b, c\}$, and R and S be relations on A whose matrices are as given below:

$$
\left.M R=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \text { and } M_{S}=\left\lvert\, \begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right.\right)
$$

Find the composite relations $R \circ S, S \circ R, R \circ R, S \circ S$ and their matrices.
Solution:

$$
\begin{aligned}
& R=\{(a, a),(a, c),(b, a),(b, b),(b, c),(c, b)\} \\
& \mathrm{S}=\{(a, a),(b, b),(b, c),(c, a),(c, c)\} \text {. From these, we find that } \\
& \circ S=\{(a, a),(a, c), b, a),(b, b),(b, c),(c, b),(c, c)\} \\
& \circ R=\{(a, a),(a, c),(b, b),(b, a),(b, c),(c, a),(c, b),(c, c)\} \\
& R \circ R=R=\{(a, a),(a, c),(a, b),(b, a),(b, c),(b, b),(c, a),(c, \\
& b),(c, c)\} S \odot S=S^{2}=\{(a, a),(b, b),(b, c),(b, a),(c, a),(c, c)\} .
\end{aligned}
$$

The matrices of the above composite relations are as given below:

Transitive Closure

Let X be any finite set and R be a relation in X. The relation $R^{+}=R U R^{2} U R^{3} U$.
.$U R{ }^{\mathrm{n}}$ in X is called the transitive closure of R in X.
Example: Let the relation $R=\{(1,2),(2,3),(3,3)\}$ on the set $\{1,2,3\}$. What is the transitive closure of R ?
Solution: Given that $R=\{(1,2),(2,3),(3,3)\}$.

$$
\begin{aligned}
& \text { The transitive closure of } R \text { is } R^{+}=R \cup R^{2} \cup R^{3} \cup \cdots= \\
& \quad \mathrm{R}=\{(1,2),(2,3),(3,3)\} \\
& R^{2}=R \circ R=\{(1,2),(2,3),(3,3)\} \circ\{(1,2),(2,3),(3,3)\}=\{(1,3), \\
& (23),(3,3)\} \\
& R_{4}=R^{2} \circ R=\{(1,3),(2,3),(3,3)\} \\
& R^{4}=R^{3} \circ R=\{(1,3),(2,3),(3,3)\} \\
& R^{+}=R \cup R^{2} \cup R^{3} \cup R^{4} \cup \ldots \\
& \quad\{(1,2),(2,3),(3,3)\} \cup\{(1,3),(2,3),(3,3)\} \cup\{(1,3),(2,3),(3,3)\} \cup \ldots \\
& =\{(1,2),(1,3),(2,3),(3,3)\} . \\
& \quad \text { Therefore } R^{+}=\{(1,2),(1,3),(2,3),(3,3)\} .
\end{aligned}
$$

Example: Let $X=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(3,4)\}$ be a relation on X. Find R^{+}.
Solution: Given $R=\{(1,2),(2,3),(3,4)\}$

$$
\begin{aligned}
& R_{3}=\{(1,3),(2,4)\} \\
& R_{4}=\{(1,4)\} \\
& R^{4}=\{(1,4)\} \\
& R^{+}=\{(1,2),(2,3),(3,4),(1,3),(2,4),(1,4)\} .
\end{aligned}
$$

Partial Ordering

A binary relation R in a set P is called a partial order relation or a partial ordering in P iff R is reflexive, antisymmetric, and transitive. i.e.,

$$
\begin{aligned}
& a R a \text { for all } a \in P \\
& a R b \text { and } b R a \Rightarrow a=b \\
& a R b \text { and } b R c \Rightarrow a R c
\end{aligned}
$$

A set P together with a partial ordering R is called a partial ordered set or poset. The relation R is often denoted by the symbol \leq which is diff erent from the usual less than equal to symbol. Thus, if
is a partial order in P, then the ordered pair (P, \leq) is called a poset.
Example: Show that the relation \|greater than or equal toll is a partial ordering on the set of integers.
Solution: Let Z be the set of all integers and the relation $R=\geq$
(i). Since $a \geq a$ for every integer a, the relation \geq is reflexive.

Let $a R b$ and $b R a \Rightarrow a \geq b$ and $b \geq a$

$$
a=b
$$

The relation \geq is antisymmetric. (iii).
Let a, b and c be any three integers.

Let $a R b$ and $b R c \Rightarrow a \geq b$ and $b \geq c$

$$
a \geq c
$$

The relation \geq is transitive.
Since the relation \geq is reflexive, antisymmetric and transitive, \geq is partial ordering on the set of integers. Therefore, (Z, \geq) is a poset.

Example: Show that the inclusion \subseteq is a partial ordering on the set power set of a set S.
Solution: Since (i). $A \subseteq A$ for all $A \subseteq S, \subseteq$ is reflexive.

> (ii). $A \subseteq B$ and $B \subseteq A \Rightarrow A=B, \subseteq$ is antisymmetric.
> (iii). $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C, \subseteq$ is transitive.

Thus, the relation \subseteq is a partial ordering on the power set of S.
Example: Show that the divisibility relation / is a partial ordering on the set of positive integers.
Solution: Let Z be the set of positive integers.
Since (i). a / a for all $a \in Z, /$ is reflexive.
(ii). a / b and $b / a \Rightarrow a=b, /$ is antisymmetric.
(iii). a / b and $b / c \Rightarrow a / c, /$ is transitive.

It follows that/is a partial ordering on Z^{+}and $\left(Z^{+}, \Omega\right)$ is a poset.
Note: On the set of all integers, the above relation is not a partial order as a and $-a$ both divide each other, but $a=-a$. i.e., the relation is not antisymmetric. Definition: Let (P, \leq) be a partially ordered set. If for every $x, y \in P$ we have either $x \leq y \vee y \leq x$, then \leq is called a simple ordering or linear ordering on P, and (P, \leq) is called a totally ordered or simply ordered set or a chain. Note: It is not necessary to have $x \leq y$ or $y \leq x$ for every x and y in a poset P. In fact, x may not be related to y, in which case we say that x and y are incomparable. Examples:
(i). The poset (Z, \leq) is a totally ordered.

Since $a \leq b$ or $b \leq a$ whenever a and b are integers.
(ii). The divisibility relation / is a partial ordering on the set of positive integers.

Therefore $\left(Z^{+}, \nearrow\right)$ is a poset and it is not a totally ordered, since it contain elements that are incomparable, such as 5 and 7,3 and 5 .

Definition: In a poset (P, \leq), an element $y \in P$ is said to cover an element $x \in P$ if $x<y$ and if there does not exist any element $z \in P$ such that $x \leq z$ and $z \leq y$; that is, y covers $x \Leftrightarrow(x<y \wedge(x \leq z$

$$
y \Rightarrow x=z \vee z=y))
$$

Hasse Diagrams

A partial order \leq on a set P can be represented by means of a diagram known as Hasse diagram of (P, \leq). In such a diagram,
(i). Each element is represented by a small circle or dot.
(ii). The circle for $x \in P$ is drawn below the circle for $y \in P$ if $x<y$, and a line is drawn between x and y if y covers x.
(iii). If $x<y$ but y does not cover x, then x and y are not connected directly by a single line.

Note: For totally ordered set (P, \leq), the Hasse diagram consists of circles one below the other. The poset is called a chain.

Example: Let $P=\{1,2,3,4,5\}$ and \leq be the relation $\|$ less than or equal tol then the Hasse diagram is:

It is a totally ordered set.
Example: Let $X=\{2,3,6,12,24,36\}$, and the relation \leq be such that $x \leq y$ if x divides y. Draw the Hasse diagram of (X, \leq). Solution: The Hasse diagram is is shown below:

It is not a total order set.
Example: Draw the Hasse diagram for the relation R on $A=\{1,2,3,4,5\}$ whose relation matrix given below:

$$
M_{R}=\left(\left.\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,\right.
$$

Solution:

$$
\mathrm{R}=\{(1,1),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,4),(5.5)\}
$$

Hasse diagram for M_{R} is

Example: A partial order R on the set $A=\{1,2,3,4\}$ is represented by the following digraph. Draw the Hasse diagram for R.

Solution: By examining the given digraph , we find that

$$
\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}
$$

We check that R is reflexive, transitive and antisymmetric. Therefore, R is partial order relation on A.

The hasse diagram of R is shown below:

Example: Let A be a finite set and $\rho(A)$ be its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw the Hasse diagram of $\rho(A)$, for

$$
\begin{aligned}
& A=\{a\} \\
& A=\{a, b\}
\end{aligned}
$$

Solution: (i). Let $A=\{a\}$

$$
\rho(A)=\{\phi, a\}
$$

Hasse diagram of $(\rho(A), \subseteq)$ is shown in Fig:

(ii). Let $A=\{a, b\}, \rho(A)=\{\phi,\{a\},\{b\},\{a, b\}\}$.

The Hasse diagram for $(\rho(A), \subseteq)$ is shown in fig:
\{a\}

Example: Draw the Hasse diagram for the partial ordering \subseteq on the power set $P(S)$ where $S=\{a$, $b, c\}$.
Solution: $S=\{a, b, c\}$.
$P(S)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.
Hasse diagram for the partial ordered set is shown in fig:

Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D36).
Solution: We have $D_{36}=\{1,2,3,4,6,9,12,18,36\}$ if and only a divides b. The Hasse diagram for R is shown in Fig.

Minimal and Maximal elements(members): Let (P, \leq) denote a partially or-dered set. An element $y \in P$ is called a minimal member of P relative to \leq if for no $x \in P$, is $x<y$.

Similarly an element $y \in P$ is called a maximal member of P relative to the partial ordering \leq if for no $x \in P$, is $y<x$.
Note:
(i). The minimal and maximal members of a partially ordered set need not unique.
(ii). Maximal and minimal elements are easily calculated from the Hasse diagram.

They are the 'top' and 'bottom' elements in the diagram.
Example:

In the Hasse diagram, there are two maximal elements and two minimal elements. The elements 3,5 are maximal and the elements 1 and 6 are minimal.
Example: Let $A=\{a, b, c, d, e\}$ and let the partial order on A in the natural way.
The element a is maximal.
The elements d and e are minimal.

Upper and Lower Bounds: Let (P, \leq) be a partially ordered set and let $A \subseteq P$. Any element $x \in P$ is called an upper bound for A if for all $a \in A, a \leq x$. Similarly, any element $x \in P$ is called a
lower bound for A if for all $a \in A, x \leq a$. Example: $A=\{1,2,3, \ldots, 6\}$ be ordered as pictured in figure.

If $B=\{4,5\}$ then the upper bounds of B are $1,2,3$. The lower bound of B is 6 .
Least Upper Bound and Greatest Lower Bound:
Let (P, \leq) be a partial ordered set and let $A \subseteq P$. An element $x \in P$ is a least upper bound or supremum for A if x is an upper bound for A and $x \leq y$ where y is any upper bound for A. Similarly, the the greatest lower bound or in mum for A is an element $x \in P$ such that x is a lower bound and $y \leq x$ for all lower bounds y.
Example: Find the great lower bound and the least upper bound of $\{b, d, g\}$, if they exist in the poset shown in fig:

Solution: The upper bounds of $\{b, d, g\}$ are g and h. Since $g<h, g$ is the least upper bound. The lower bounds of $\{b, d, g\}$ are a and b. Since $a<b, b$ is the greatest lower bound.
Example: Let $A=\{a, b, c, d, e, f, g, h\}$ denote a partially ordered set whose Hasse diagram is shown in Fig:

If $B=\{c, d, e\}$ then f, g, h are upper bounds of B. The element f is least upper bound.

Example: Consider the poset $A=\{1,2,3,4,5,6,7,8\}$ whose Hasse diagram is shown in Fig and let $B=\{3,4,5\}$

The elements 1, 2, 3 are lower bounds of B. 3 is greatest lower bound.

Functions

A function is a special case of relation.
Definition: Let X and Y be any two sets. A relation f from X to Y is called a function if for every x
X, there is a unique element $y \in Y$ such that $(x, y) \in f$. Note: The definition of function requires that a relation must satisfies two additional conditions in order to qualify as a function. These conditions are as follows:

For every $x \in X$ must be related to some $y \in Y$, i.e., the domain of f must be X and nor merely a subset of X.
(ii). Uniqueness, i.e., $(x, y) \in f$ and $(x, z) \in f \Rightarrow y=z$.

The notation $f: X \rightarrow Y$, means f is a function from X to Y.
Example: Let $X=\{1,2,3\}, Y=\{p, q, r\}$ and $f=\{(1, p),(2, q),(3, r)\}$ then $f(1)=p, f(2)=q, f(3)$ $=r$. Clearly f is a function from X to Y.

$\stackrel{Y}{Y} . \quad Y$
Domain and Range of a Function: If $f: X \rightarrow Y$ is a function, then X is called the Domain of f and the set Y is called the codomain of f. The range of f is defined as the set of all images under f. It is denoted by $f(X)=\{y \mid$ for some x in $X, f(x)=y\}$ and is called the image of X in Y. The Range f is also denoted by R_{f}.

Example: If the function f is defined by $f(x)=x^{2}+1$ on the set $\{-2,-1,0,1,2\}$, find the range of f.
Solution: $f(-2)=(-2)^{2}+1=5$

$$
\begin{aligned}
& f(-1)=(-1)^{2}+1=2 \\
& f(0)=0+1=1 \\
& f(1)=1+1=2 \\
& f(2)=4+1=5
\end{aligned}
$$

Therefore, the range of $f=\{1,2,5\}$.

Types of Functions

One-to-one(Injection): A mapping $f: X \rightarrow Y$ is called one-to-one if distinct elements of X are mapped into distinct elements of Y, i.e., f is one-to-one if

$$
x_{1}=x_{2} \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)
$$

or equivalently $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ for $x_{1}, x_{2} \in X$.

Example: $f: R \rightarrow R$ defined by $f(x)=3 x, \forall x \in R$ is one-one, since

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 3 x_{1}=3 x_{2} \Rightarrow x_{1}=x_{2}, \forall x_{1}, x_{2} \in R .
$$

Example: Determine whether $f: Z \rightarrow Z$ given by $f(x)_{2} x^{2}, x \in Z$ is a one-to-One function.
Solution: The function $f: Z \rightarrow Z$ given by $f(x)=x^{2}, x \in Z$ is not a one-to-one function. This is because both 3 and -3 have 9 as their image, which is against the definition of a one-to-one function.

Onto(Surjection): A mapping $f: X \rightarrow Y$ is called onto if the range set $R_{f}=Y$.
If $f: X \rightarrow Y$ is onto, then each element of Y is f-image of atleast one element of X.
i.e., $\{f(x): x \in X\}=Y$.

If f is not onto, then it is said to be into.

Surjective

Not Surjective

Example: $f: R \rightarrow R$, given by $f(x)=2 x, \forall x \in R$ is onto.
Bijection or One-to-One, Onto: A mapping $f: X \rightarrow Y$ is called one-to-one, onto or bijective if it is both one-to-one and onto. Such a mapping is also called a one-to-one correspondence between X and Y.

Example: Show that a mapping $f: R \rightarrow R$ defined by $f(x)=2 x+1$ for $x \in R$ is a bijective map from R to R.
Solution: Let $f: R \rightarrow R$ defined by $f(x)=2 x+1$ for $x \in R$. We need to prove that f is a bijective map, i.e., it is enough to prove that f is one-one and onto.

Proof of f being one-to-one
Let x and y be any two elements in R such that $f(x)=f(y)$

$$
\begin{aligned}
& 2 x+1=2 y+1 \\
& x=y
\end{aligned}
$$

Thus, $f(x)=f(y) \Rightarrow x=y$
This implies that f is one-to-one.

Proof of f being onto

Let y be any element in the codomain R

$$
\begin{aligned}
& f(x)=y \\
& 2 x+1=y \\
& x=(y-1) / 2
\end{aligned}
$$

Clearly, $x=(y-1) / 2 \in R$
Thus, every element in the codomain has pre-image in the domain.
This implies that f is onto
Hence, f is a bijective map.
Identity function: Let X be any set and f be a function such that $f: X \rightarrow X$ is defined by $f(x)=x$ for all $x \in X$. Then, f is called the identity function or identity transformation on X. It can be denoted by I or I_{x}.
Note: The identity function is both one-to-one and onto.

```
Let \(I_{x}(x)=I_{x}(y)\)
    \(x=y\)
    \(I_{X}\) is one-to-one
\(I_{X}\) is onto since \(x=I_{x}(x)\) for all \(x\).
```


Composition of Functions

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then the composition of f and g denoted by $g \circ f$, is the function from X to Z defined as

$$
(g \circ f)(x)=g(f(x)) \text {, for all } x \in X .
$$

Note. In the above definition it is assumed that the range of the function f is a subset of Y (the Domain of g), i.e., $R_{f} \subseteq D_{g .} g \circ f$ is called the left composition g with f.
Example: Let $X=\{1,2,3\}, Y=\{p, q\}$ and $Z=\{a, b\}$. Also let $f: X \rightarrow Y$ be $\mathrm{f}=\{(1, p),(2, q),(3$, $q)\}$ and $g: Y \rightarrow Z$ be given by $g=\{(p, b),(q, b)\}$. Find $g \circ f$. Solution: $g \circ f=\{(1, b),(2, b),(3, b)$.

Example: Let $X=\{1,2,3\}$ and f, g, h and s be the functions from X to X given by

$$
\begin{aligned}
& f=\{(1,2),(2,3),(3,1)\} g=\{(1,2),(2,1),(3,3)\} h= \\
& \{(1,1),(2,2),(3,1)\} s=\{(1,1),(2,2),(3,3)\}
\end{aligned}
$$

Find $f \circ f ; g \circ f ; f \circ h \circ g ; s \circ g ; g \circ s ; s \circ s ;$ and $f \circ s$.
Solution:

$$
\begin{gathered}
f \circ g=\{(1,3),(2,2),(3,1)\} \\
g \circ f=\{(1,1),(2,3),(3,2)\}=f \circ g \\
f \circ h \circ g=f \circ(h \circ g)=f \circ\{(1,2),(2,1),(3,1)\} \\
\{(1,3),(2,2),(3,2)\} s \\
\circ g=\{(1,2),(2,1),(3,3)\}=g \\
g \circ s=\{(1,2),(2,1),(3,3)\} \\
s \circ g=g \circ s=g \\
s \circ s=\{(1,1),(2,2),(3,3)\}=s \\
f \circ s=\{(1,2),(2,3),(3,1)\} \\
\text { Thus, } \mathrm{s} \circ \mathrm{~s}=\mathrm{s}, \mathrm{f} \circ \mathrm{~g} \neq \mathrm{g} \circ \mathrm{f}, \mathrm{~s} \circ \mathrm{~g}=\mathrm{g} \circ \mathrm{~s}=\mathrm{g} \text { and } \circ \mathrm{h} \circ \mathrm{~s}=\mathrm{s} \circ \mathrm{~h}=\mathrm{h} .
\end{gathered}
$$

Example: Let $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$ for $x \in R$, where R is the set of real numbers. Find $g \circ f ; f \circ g ; f \circ f ; g \circ g ; f \circ h ; h \circ g ; h \circ f ;$ and $f \circ h \circ g$.
Solution: $f: R \rightarrow R$ is defined by $f(x)=x+2$
$R \rightarrow R$ is defined by $g(x)=x-2$
$h: R \rightarrow R$ is defined by $h(x)=3 x$
$g \circ f: R \rightarrow R$
Let $x \in R$. Thus, we can write

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))=g(x+2)=x+2-2=x \\
& (g \circ f)(x)=\{(x, x) \mid x \in R\} \\
& (f \circ g)(x)=f(g(x))=f(x-2)=(x-2)+2=x \\
& f \circ g=\{(x, x) \mid x \in R\} \\
& (f \circ f)(x)=f(f(x))=f(x+2)=x+2+2=x+4 \\
& f \circ f=\{(x, x+4) \mid x \in R\} \\
& (g \circ g)(x)=g(g(x))=g(x-2)=x-2-2=x-4 \\
& \Rightarrow g \circ g=\{(x, x-4) \mid x \in R\} \\
& (f \circ h)(x)=f(h(x))=f(3 x)=3 x+2 \\
& f \circ h=\{(x, 3 x+2) \mid x \in R\} \\
& (h \circ g)(x)=h(g(x))=h(x-2)=3(x-2)=3 x-6 \\
& h \circ g=\{(x, 3 x-6) \mid x \in R\} \\
& (h \circ f)(x)=h(f(x))=h(x+2)=3(x+2)=3 x \neq 6 h \circ f= \\
& \{(x, 3 x+6) \mid x \in R\} \\
& (f \circ h \circ g)(x)=[f \circ(h \circ g)](x) \\
& f(h \circ g(x))=f(3 x-6)=3 x-6+2 丹 3 x-4 \\
& f \circ h \circ g=\{(x, 3 x-4) \mid x \in R)
\end{aligned}
$$

Example: What is composition of functions? Let f and g be functions from R to R, where R is a set of real numbers defined by $f(x)=x^{2}+3 x+1$ and $g(x)=2 x-3$. Find the composition of functions: i) $f \circ f$ ii) $f \circ g$ iii) $g \circ f$.

Inverse Functions

A function $f: X \rightarrow Y$ is aid to be invertible of its inverse function f^{-1} is also function from the range of f into X.
Theorem: A function $f: X \rightarrow Y$ is invertible $\Leftrightarrow f$ is one-to-one and onto.
Example: Let $X=\{a, b, c, d\}$ and $Y=\{(1,2,3,4\}$ and let $f: X \rightarrow Y$ be given by $\mathrm{f}=\{(a, 1),(b, 2)$, $(c, 2),(d, 3)\}$. Is f a function?
Solution: $f=\{(1, a),(2, b),(2, c),(3, d)\}$. Here, 2 has two distinct images b and c.
Example: Let R be the set of real numbers and $f: R \rightarrow R$ be given by $f=\left\{\left(x, x^{2}\right) \mid x \in R\right\}$. Is f^{-1} a function?
Solution: The inverse of the given function is defined as $f^{-1}=\left\{\left(x^{2}, x\right) \mid x \in R\right\}$.
Therefore, it is not a function.
Theorem: If $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be such that $g \circ f=I_{X}$ and $f \circ g=I_{y}$, then f and g are both invertible. Furthermore, $f^{-1}=g$ and $g^{-1}=f$.
Example: Let $X=\{1,2,3,4\}$ and f and g be functions from X to X given by $f=\{(1,4),(2,1)$, $(3,2),(4,3)\}$ and $g=\{(1,2),(2,3),(3,4),(4,1)\}$. Prove that f and g are inverses of each other. Solution: We check that

$$
\begin{aligned}
(g \circ f)(1)=g(f(1))=g(4)=1 & =I_{x}(1), & (f \circ g)(1) & =f(g(1))=f(2)=1=I_{x}(1) . \\
(g \circ f)(2)=g(f(2))=g(1)=2 & =I_{x}(2), & (f \circ g)(2) & =f(g(2))=f(3)=2=I_{x}(2) . \\
(g \circ f)(3)=g(f(3))=g(2) & =3=I_{x}(3), & (f \circ g)(3) & =f(g(3))=f(4)=3=I_{x}(3) . \\
(g \circ f)(4)=g(f(4))=g(3) & =4=I_{x}(4), & (f \circ g)(4) & =f(g(4))=f(1)=4=I_{x}(4) .
\end{aligned}
$$

Thus, for all $x \in X,(g \circ f)(x)=I_{x}(x)$ and $(f \circ g)(x)=I_{x}(x)$. Therefore g is inverse of f and f is inverse of g.
Example: Show that the functions $f(x)=x^{3}$ and $g(x)=x^{1 / 3}$ for $x \in R$ are inverses of one another.
Solution: $f: R \rightarrow R$ is defined by $f(x)=x^{3} ;$ f: $R \rightarrow R$ is defined by $g(x)=$

$$
x^{1 / 3}(f \circ g)(x)=f(g(x))=f\left(x^{1 / 3}\right)=x^{3(1 / 3)}=x=I_{x}(x)
$$

i.e., $(f \circ g)(x)=I_{x}(x)$
and $(g \circ f)(x)=g(f(x))=g\left(x^{3}\right)=x^{3(1 / 3)}=x=I_{x}(x)$
i.e., $\left(g \circ f(x)=I_{x}(x)\right.$

Thus, $f=g \quad$ or $g=f$
i.e., f and g are inverses of one other.
***Example: $f: R \rightarrow R$ is defined by $f(x)=a x+b$, for $a, b \in R$ and $a=0$. Show that f is invertible and find the inverse of f.

First we shall show that f is one-to-one
Let $x_{1}, x_{2} \in R$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
a x_{1}+b=a x_{2}+b
$$

$$
a x_{1}=a x_{2}
$$

$$
x_{1}=x_{2}
$$

f is one-to-one.
To show that f is onto.

$$
\begin{aligned}
& y=a x+b \\
& a x=y-b \\
& x=(y-b) / a
\end{aligned}
$$

Given $y \in R$ (codomain), there exists an element $x=(y-b) / a \in R$ such that $f(x)=y$.
f is invertible and $f^{-1} \begin{aligned} & f \text { is onto } \\ & (x)=(x-b) / a\end{aligned}$
Example: Let $f: R \rightarrow R$ be given by $f(x)=x^{3}-2$. Find f^{-1}.
(i) First we shall show that f is one-to-one

$$
\begin{aligned}
& \quad \text { Let } x_{1}, x_{2} \in R \text { such that } f\left(x_{1}\right)=f\left(x_{2}\right) \\
& x^{3} 1-2=x^{3} 2^{2} \\
& -2 \Rightarrow x^{3}=x^{3} \\
& x_{1}=x_{2}
\end{aligned}
$$

$\therefore f$ is one-to-one.
To show that f is onto.

$$
\begin{aligned}
& \Rightarrow y=x^{3}-2 \\
& \Rightarrow x^{3}=y+2 \Rightarrow \\
& x=3 / y+2
\end{aligned}
$$

Given $y \in R$ (codomain), thereexists an element $x=3 \sqrt{y+2} \in R$ such that $f(x)=y$.
f is onto

$$
f \text { is invertible and } f^{-1}(x)=3 / \overline{x+2}
$$

Floor and Ceiling functions:

Let x be a real number, then the least integer that is not less than x is called the CEILING of x.
The CEILING of x is denoted by $\lceil\mathrm{x} 7$.
Examples: $\lceil 2.157=3,\lceil\sqrt{ } 57=3,\lceil-7.47=-7,\lceil-2\rceil=-2$
Let x be any real number, then the greatest integer that does not exceed x is called the Floor of x. The FLOOR of x is denoted by $\lfloor\mathrm{x}\rfloor$.
Examples: $\lfloor 5.14\rfloor=5,\lfloor\sqrt{ } 5\rfloor=2,\llcorner-7.6\rfloor=-8,\lfloor 6\rfloor=6,\llcorner-3\rfloor=-3$
Example: Let f and g abe functions from the positive real numbers to positive real numbers
defined by $f(x)=\llcorner 2 x\lrcorner, g(x)=x^{2}$. Calculate $f \circ g$ and $g \circ f$.
Solution: $f \circ g(x)=f(g(x))=f\left(x^{2}\right)=\left\lfloor 2 x^{2}\right\rfloor$

$$
\circ f(x)=g(f(x))=g(\llcorner 2 x\rfloor)=(\llcorner 2 x\rfloor)^{2}
$$

Recursive Function

Total function: Any function $f: N \rightarrow N$ is called total if it is defined for every n-tuple in N.

Partial function: If $f: D \rightarrow N$ where $D \subseteq N^{n}$, then f is called a partial function.
Example: $g(x, y)=x-y$, which is defined for only $x, y \in N$ which satisfy $x \geq y$.
Hence $g(x, y)$ is partial.

Initial functions:

The initial functions over the set of natural numbers is given by
Zero function $Z: Z(x)=0$, for all x.
Successor function $S: S(x)=x+1$, for all x.
Projection function $U_{i}^{n}: U_{i}^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$ for all n tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $1 \leq i \leq n$.

Projection function is also called generalized identity function. For
example, $U^{1}{ }_{1}(x)=x$ for every $x \in N$ is the identity function. ${ }_{1}$

$$
U_{1}^{2}(x, y)=x, U_{1}^{3}(2,6,9)=2, U_{2}^{3}(2,6,9)=6, U_{3}^{3}(2,6,9)=9
$$

Composition of functions of more than one variable:

The operation of composition will be used to generate the other function.
Let $f_{1}(x, y), f_{2}(x, y)$ and $g(x, y)$ be any three functions. Then the composition of g with f_{1} and f_{2} is defined as a function $h(x, y)$ given by

$$
h(x, y)=g\left(f_{1}(x, y), f_{2}(x, y)\right)
$$

In general, let $f_{1}, f_{2}, \ldots, f_{n}$ each be partial function of m variables and g be a partial function of n variables. Then the composition of g with $f_{1}, f_{2}, \ldots, f_{n}$ produces a partial function h given by

$$
h\left(x_{1}, x_{2}, \ldots, x_{m}\right)=g\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, x_{2}, \ldots x_{m}\right)\right)
$$

Note: The function h is total iff $f_{1}, f_{2}, \ldots, f_{n}$ and g are total.
Example: Let $f_{1}(x, y)=x+y, f_{2}(x, y)=x y+y \quad$ and $g(x, y)=x y$. Then

$$
\begin{aligned}
& h(x, y)= g\left(f_{1}(x, y), f 2(x, y)\right) \\
& g(x+y, x y+y \\
& 2 \\
&(x+y)(x y+y)
\end{aligned}
$$

Recursion: The following operation which defines a function $f\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ of $n+1$ variables by using other functions $g\left(x_{1}, x_{2}, . ., x_{n}\right)$ and $h\left(x_{1}, x_{2}, \ldots, x_{n}, y, z\right)$ of n and $n+2$ variables, respectively, is called recursion.

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n}, 0\right) & =g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f\left(x_{1}, x_{2}, \ldots, x_{n}, y+1\right) & =h\left(x_{1}, x_{2}, \ldots, x_{n}, y, f\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)\right)
\end{aligned}
$$

where y is the inductive variable.
Primitive Recursive: A function f is said to be Primitive recursive iff it can be obtained from the initial functions by a finite number of operations of composition and recursion.
***Example: Show that the function $f(x, y)=x+y$ is primitive recursive. Hence compute the value of $f(2,4)$.
Solution: Given that $f(x, y)=x+y$.

Here, $f(x, y)$ is a function of two variables. If we want f to be defined by recursion, we need a function g of single variable and a function h of three variables. Now,

$$
\begin{aligned}
f(x, y+1)=x & +(y+1) \\
& =(x+y)+1 \\
& =f(x, y)+1 .
\end{aligned}
$$

Also, $f(x, 0)=x$.
We define $f(x, 0)$ as

$$
\begin{aligned}
f(x, 0)=x & =U^{1}{ }_{1}(x) \\
& =S(f(x, y)) \\
& =S\left(U^{3}{ }_{3}(x, y, f(x, y))\right)
\end{aligned}
$$

If we take $g(x)=U_{1}{ }^{1}(x)$ and $h(x, y, z)=S\left(U_{3}{ }^{3}(x, y, z)\right)$, we get $f(x, 0)=g(x)$ and $f(x, y+1)$ $=h(x, y, z)$.
Thus, f is obtained from the initial functions $U_{1}{ }^{1}, U_{3}{ }^{3}$, and S by applying composition once and recursion once.
Hence f is primitive recursive.
Here,

$$
\begin{aligned}
f(2,0)= & 2 \\
f(2,4) & =S(f(2,3)) \\
& =S(S(f(2,2))) \\
& =S(S(S(f(2,1)))) \\
& =S(S(S(S(f(2,0))))) \\
& =S(S(S(S(2))))) \\
& =S(S(S(3))) \\
& =S(S(4)) \\
& =S(5) \\
& =6
\end{aligned}
$$

Example: Show that $f(x, y)=x * y$ is primitive recursion.
Solution: Given that $f(x, y)=x$
Here, $f(x, y)$ is a function of two variables. If we want f to be defined by recursion, we need a function g of single variable and a function h of three variables. Now, $f(x, 0)=0$ and

$$
\begin{gathered}
f(x, y+1)=x *(y+1)=x * y \\
f(x, y)+x
\end{gathered}
$$

We can write

$$
\begin{aligned}
& f(x, 0)=0=Z(x) \text { and } \\
& \qquad f(x, y+1)=f_{1}\left(U_{3}{ }^{3}(x, y, f(x, y)), U_{1}{ }^{3}(x, y, f(x, y))\right)
\end{aligned}
$$

where $f_{1}\left(x_{3} y\right)=x+y$, which is primitive recursive. By taking $g(x)=Z(x)=0$ and h defined by $h(x, y$, $z)=f_{1}\left(U_{3}(x, y, z), U_{1}(x, y, z)\right)=f(x, y+1)$, we see that f defined by recursion. Since g and h are primitive recursive, f is primitive recursive. Example: Show that $f(x, y)=x^{y}$ is primitive recursive function. Solution: Note that $x^{0}=1$ for $x=0$ and we put $x^{0}=0$ for $x=0$.
Also, $x^{y+1}=x^{y} * x$
Here $f(x, y)=x^{y}$ is defined as

$$
f(x, 0)=1=S(0)=S(Z(x))
$$

$$
\begin{aligned}
& f(x, y+1)=x * f(x, y) \\
& U_{1}^{3}(x, y, f(x, y)) * U_{3}^{3}(x, y, f(x, y))
\end{aligned}
$$

$h\left(x, y, f(x, y)=f_{1}\left(U_{1}{ }^{3}(x, y, f(x, y)), U_{3}{ }^{3}(x, y, f(x, y))\right)\right.$ where $f_{1}(x, y)=x * y$, which is primitive recursive.
$f(x, y)$ is a primitive recursive function.
Example: Consider the following recursive function definition: If $x<y$ then $f(x, y)=0$, if $y \leq$ x then $f(x, y)=f(x-y, y)+1$. Find the value of $f(4,7), f(19,6)$.
Solution: Given $f(x, y)=\left\{\begin{array}{l}f(x-y, y)+1 ; y \leq x\end{array}\right.$

$$
\begin{aligned}
f(4,7) & =0 \quad[\therefore 4<7] \\
f(19,6) & =f(19-6,6)+1 \\
& =f(13,6)+1 \\
f(13,6) & =f(13-6,6)+1 \\
& =f(7,6)+1 \\
f(7,6) & =f(7-6,6)+1 \\
& =f(1,6)+1 \\
& =0+1 \\
& =1 \\
f(13,6) & =f(7,6)+1 \\
& =1+1 \\
& =2 \\
f(19,6) & =2+1 \\
& =3
\end{aligned}
$$

Example: Consider the following recursive function definition: If $x<y$ then $f(x, y)=0$, if $y \leq$ x then $f(x, y)=f(x-y, y)+1$. Find the value of $f(86,17)$

Permutation Functions

Definition: A permutation is a one-one mapping of a non-empty set onto itself.
Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set and p is a permutation on S, we list the elements of S and the corresponding functional values of $p\left(a_{1}\right), p\left(a_{2}\right), \ldots, p\left(a_{n}\right)$ in the following form:

$$
\left(\begin{array}{ccccc}
a & a & \cdots & a \\
a_{n} \\
p(a) & 1 & p\left(a^{2}\right. &) & \cdots
\end{array}\right) p\left(a_{n}\right), ~(1)
$$

If $p: S \rightarrow S$ is a bijection, then the number of elements in the given set is called the degree of its permutation.
Note: For a set with three elements, we have 3 ! permutations.
Example: Let $S=\{1,2,3\}$. The permutations of S are as follows:

Example: Let $S=\{1,2,3,4\}$ and $p: S \rightarrow S$ be given by $f(1)=2, f(2)=1, f(3)=4, f(4)=3$. Write this in permutation notation.
Solution: The function can be written in permutation notation as given below:

$$
f=1
$$

4)

Identity Permutation: If each element of a permutation be replaced by itself, then such a permutation is called the identity permutation.

Equality of Permutations: Two permutations f and g of degree n are said to be equal if and only if $f(a)=g(a)$ for all $a \in S$.
Example:

$$
\text { Let } S=\{1,2,3,4\}
$$

$\left.\underset{\mathrm{f}=\left.\right|_{1} ^{1}}{ } \begin{array}{llll}(3 & 3 & 4\end{array}\right)_{|; \mathrm{g}=|}\left(\begin{array}{lllll}4 & 1 & 3 & 2\end{array}\right)$

We have $\quad f(1)=g(1)=3$

$$
f(2)=g(2)=1
$$

$$
f(3)=g(3)=2
$$

$$
f(4)=g(4)=4
$$

i.e., $\quad f(a)=g(a)$ for all $a \in S$.

Product of Permutations: (or Composition of Permutations)
Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \ldots \mathrm{h}\}$ and let $\left.\left\lvert\, \begin{array}{cccc}a & b & \ldots & h\end{array}\right.\right) \left._{|, \mathrm{g}=|} \begin{array}{lllll}a & b \ldots & h\end{array} \right\rvert\,$
We define the composite of f and g as follows:

Clearly, $f \circ g$ is a permutation.
Example: Let $S=\{1,2,3,4\}$ and let $f=1$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \text { and } g=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right), \quad \text { Find } f \circ g \text { and } g \circ
$$

f in the permutation from.
Solution: $f \circ g=\left|\quad\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right),\right|, g \circ f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ \left(\begin{array}{lll}1 & 2 & 4\end{array}\right.\end{array}\right)$
Note: The product of two permutations of degree n need not be commutative.

Inverse of a Permutation:

If f is a permutation on $S=\left\{a_{1}, a_{2}, a_{n}\right\}$ such that $\left.f=\begin{array}{cccc}a & a & \ldots & a \\ \left.\right|_{1} & b^{2} & \ldots & b^{n} \\ 1_{b} & b^{n} \\ 1 & 2 & & { }_{n}\end{array}\right)$ then there exists a permutation called the inverse f, denoted f^{-1} such that $f \circ f^{-1}=f^{-1} \circ f$ $=I($ the identity permutation on S)

```
    where \(\left.f^{-1}=1 \begin{array}{lllll}\mathrm{b} & \mathrm{b} & \mathrm{b} & \ldots & \mathrm{b}\end{array}\right)\)
    a a
Example: If \(\underset{f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1\end{array}\right)}{1}\), then find \(f^{-1}\), and show that \(f \circ f^{-1}=f^{-1} \circ f=I\)
Solution: \(f^{-1}=\left(\begin{array}{clll}2 & 4 & 3 & 1\end{array}\left|=\left|\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right|\right.\right.\)
```



```
    \(\left(\begin{array}{llll}2 & 4 & 3 & 1\end{array}\right)\left(\begin{array}{llllllll}4 & 1 & 3 & 2\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\)
```

Cyclic Permutation: Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of n symbols. A permutation f defined on S is said to be cyclic permutation if f is defined such that

$$
f\left(a_{1}\right)=a_{2}, f\left(a_{2}\right)=a_{3}, \ldots ., f\left(a_{n-1}\right)=a_{n} \text { and } f\left(a_{n}\right)=a_{1} .
$$

Example: Let $S=\{1,2,3,4\}$.
Then $\left.\left\lvert\, \begin{array}{llll}1 & 2 & 3 & 4\end{array}\right.\right)=(14)(23)$ is a cyclic permutation.

Disjoint Cyclic Permutations: Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. If f and g are two cycles on S such that they have no common elements, then f and g are said to be disjoint cycles.

Example: Let $S=\{1,2,3,4,5,6\}$.
If $f=\left(\begin{array}{ll}1 & 4\end{array}\right)$ and $g=\left(\begin{array}{ll}2 & 3\end{array}\right)$ then f and g are disjoint cyclic permutations on S.
Note: The product of two disjoint cycles is commutative.

Example: Consider the permutation $\mathrm{f}=\mid$
$\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 5 & 1 & 7 & 6\end{array}\right)$

The above permutation f can be written as $f=(12345)(67)$. Which is a product of two disjoint cycles.

Transposition: A cyclic of length 2 is called a transposition.
Note: Every cyclic permutation is the product of transpositions.
Example: $f=1 \begin{array}{lll}1 & 2 & 3 \\ \\ 2 & 4 & 5\end{array}$ ${ }^{1}=(124)(35)=\left(\begin{array}{ll}1 & 4\end{array}\right)(12)(35)$.

Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, we write its elements in the reverse order.

For example, $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)^{-1}=\left(\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right)$.
Even and Odd Permutations: A permutation f is said to be an even permutation if f can be expressed as the product of even number of transpositions.
A permutation f is said to be an odd permutation if f is expressed as the product of odd number of transpositions.
Note:
An identity permutation is considered as an even permutation.
A transposition is always odd.
(iii). The product of an even and an odd permutation is odd. Similarly the product of an odd permutation and even permutations is odd.

Example: Determine whether the following permutations are even or odd permutations.


```
(iii) h=| (1 llllll
    ( 4
        Product of three transpositions
            =>h is an odd permutation.
```


Lattices

In this section, we introduce lattices which have important applications in the theory and design of computers.
Definition: A lattice is a partially ordered set (L, \leq) in which every pair of elements $a, b \in L$ has a greatest lower bound and a least upper bound.
Example: Let Z^{+}denote the set of all positive integers and let R denote the relation 'division' in Z^{+}, such that for any two elements $a, b \in Z^{+}, a R b$, if a divides b. Then $\left(Z^{+}, R\right)$ is a lattice in which the join of a and b is the least common multiple of a and b, i.e.

$$
a \vee b=a \oplus b=\mathrm{LCM} \text { of } a \text { and } b,
$$

and the meet of a and b, i.e. $a * b$ is the greatest common divisor (GCD) of a and b i.e.,

$$
a \wedge b=a * b=\operatorname{GCD} \text { of } a \text { and } b .
$$

We can also write $a+b=a \vee b=a \oplus b=\mathrm{LCM}$ of a and b and $a \cdot b=a \wedge b=a * b=\mathrm{GCD}$ of a and b.
Example: Let n be a positive integer and S_{n} be the set of all divisors of n If $n=30, S_{30}=\{1,2$, 3, 5, 6, 10, 15, 30\}. Let R denote the relation division as defined in Example 1. Then $\left(S_{30}, R\right)$ is a Lattice see Fig:

Example: Let A be any set and $P(A)$ be its power set. The poset $P(A), \subseteq)$ is a lattice in which the meet and join are the same as the operations \cap and U on sets respectively.

$$
S=\{a\}, P(A)=\{\phi,\{a\}\}
$$

$$
S=\{a, b\}, P(A)=\{\phi,\{a\},\{a\}, S\} .
$$

\{a\}

Some Properties of Lattice

Let (L, \leq) be a lattice and * and \oplus denote the two binary operation meet and join on (L, \leq). Then for any $a, b, c \in L$, we have
(L1): $a * \mathrm{a}=\mathrm{a}, \quad(L 1)^{\prime}: a \oplus \mathrm{a}=\mathrm{a}$ (Idempotent laws)
(L2): $b * a=b * a, \quad$ (L2) : $a \oplus b=b+a$ (Commutative laws)
(L3) : $(a * b) * c=a *(b * c),(L 3):(a \oplus b) \oplus c=a \oplus(b+c)$ (Associative laws)
$(L 4): a *(a+b)=a,(L 4): a \oplus(a * b)=a$ (Absorption laws).
The above properties ($L 1$) to ($L 4$) can be proved easily by using definitions of meet and join. We can apply the principle of duality and obtain ($L 1$) to ($L 4$) .

Theorem: Let (L, \leq) be a lattice in which * and \oplus denote the operations of meet and join respectively. For any $a, \in L, a \leq b \Leftrightarrow a * b=a \Leftrightarrow a \oplus b=b$. Proof: We shall first prove that $a \leq b$ $\Leftrightarrow a * b=b$.

In order to do this, let us assume that $a \leq b$. Also, we know that $a \leq a$.
Therefore $a \leq a * b$. From the definition of $a * b$, we have $a * b \leq a$.
Hence $a \leq b \Rightarrow a * b=a$.
Next, assume that $a * b=a$; but it is only possible if $a \leq b$, that is, $a * b=a \Rightarrow a \leq b$.
Combining these two results, we get the required equivalence.
It is possible to show that $a \leq b \Leftrightarrow a \oplus b=b$ in a similar manner.
Alternatively, from $a * b=a$, we have

$$
b \oplus(a * b)=b \oplus a=a \oplus b
$$

but $b \oplus(a * b)=b$
Hence $a \oplus b=b$ follows from $a * b=a$.
By repeating similar steps, we can show that $a * b=a$ follows from $a \oplus b=b$.
Therefore $a \leq b \Leftrightarrow a * b=a \Leftrightarrow a \oplus b=b$.

$$
\lceil a * b \leq a * c
$$

Theorem: Let (L, \leq) be a lattice. Then ${ }^{b}$

$$
\mathrm{a} \oplus \mathrm{~b} \leq \mathrm{a} \oplus \mathrm{c}
$$

Proof: By above theorem $a \leq b \Leftrightarrow a * b=a \Leftrightarrow a \oplus b=b$.
To show that $a * b \leq a * c$, we shall show that $(a * b) *(a * c)=a * b$

$$
\begin{aligned}
(a * b) *(a * c) & =a *(b * a) * c \\
& =a *(a * b) * c \\
& =(a * a) *(b * c) \\
& =a *(b * c) \\
& =a * b
\end{aligned}
$$

If $\mathrm{b} \leq \mathrm{c}$ then $\mathrm{a} * \mathrm{~b} \leq \mathrm{a} * \mathrm{c}$.Next, let $b \leq c \Rightarrow b \oplus c=c$.
To show that $a \oplus b \leq a \oplus c$. It sufficient to show that $(a \oplus b) \oplus(a \oplus c)=a \oplus c$.
www.FirstRanker.com

$$
\begin{aligned}
\text { Consider, }(a \oplus b) \oplus(a \oplus c)= & a \oplus(b \oplus a) \oplus c \\
& a \oplus(a \oplus b) \oplus c \\
& (a \oplus a) \oplus(b \oplus c) \\
& a \oplus(b \oplus c) \\
& a \oplus b
\end{aligned}
$$

If $b \leq c$ then $a \oplus b \leq a \oplus c$.
Note: The above properties of a Lattice are called properties of Isotonicity.

Lattice as an algebraic system:

We now define lattice as an algebraic system, so that we can apply many concepts associated with algebraic systems to lattices.

Definition: A lattice is an algebraic system $(\mathrm{L}, *, \oplus)$ with two binary operation $=*^{‘}$ and $\neq \oplus^{`}$ on

L which are both commutative and associative and satisfy absorption laws.

Bounded Lattice:

A bounded lattice is an algebraic structure $(\mathrm{L}, \wedge, \vee, 0,1)$ sucha that $(\mathrm{L}, \wedge, \vee)$ is a lattice, and the constants $0,1 \in \mathrm{~L}$ satisfy the following:
for all $x \in L, x \wedge 1=x$ and $x \vee 1=1$
for all $x \in L, x \wedge 0=0$ and $x \vee 0=x$.
The element 1 is called the upper bound, or top of L and the element 0 is called the lower bound or bottom of L .

Distributive lattice:

A lattice (L, \vee, \wedge) is distributive if the following additional identity holds for all x, y, and z in L :

$$
\wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

Viewing lattices as partially ordered sets, this says that the meet peration preserves nonempty finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its dual $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for all x, y, and z in L.
Example: Show that the following simple but significant lattices are not distributive.
a)

b)

Solution a) To see that the diamond lattice is not distributive, use the middle elements of the lattice: $\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})=\mathrm{a} \wedge 1=\mathrm{a}$, but $(\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{a} \wedge \mathrm{c})=0 \vee 0=0$, and $\mathrm{a} \neq 0$.
Similarly, the other distributive law fails for these three elements.
b) The pentagon lattice is also not distributive

Example: Show that lattice is not a distributive lattice.

Sol. A lattice is distributive if all of its elements follow distributive property so let we verify the distributive property between the elements n, l and $m \cdot \operatorname{GLB}(n, \operatorname{LUB}(l, m))=\operatorname{GLB}(n, p)[\because \operatorname{LUB}(l, m)=$ p]

$$
=n \text { (LHS) }
$$

also $\operatorname{LUB}(\operatorname{GLB}(n, l), \operatorname{GLB}(n, m))=\operatorname{LUB}(o, n) ;[\because \operatorname{GLB}(n, l)=o$ and $\operatorname{GLB}(n, m)=n]$

$$
=n(\text { RHS })
$$

so LHS = RHS.
$\operatorname{But} \operatorname{GLB}(m, \operatorname{LUB}(l, n))=\operatorname{GLB}(m, p)[\because \operatorname{LUB}(l, n)=p]$

$$
=m(\mathrm{LHS})
$$

also $\operatorname{LUB}(\operatorname{GLB}(m, l), \operatorname{GLB}(m, n))=\operatorname{LUB}(o, n) ;[\because \operatorname{GLB}(m, l)=o$ and $\operatorname{GLB}(m, n)=n]$

$$
=n(\mathrm{RHS})
$$

Thus, LHS \neq RHS hence distributive property doesn't hold by the lattice so lattice is not distributive.
Example: Consider the poset (X, \leq) where $\mathrm{X}=\{1,2,3,5,30\}$ and the partial ordered relation \leq is defined as i.e. if x and $\mathrm{y} \in \mathrm{X}$ then $\mathrm{x} \leq \mathrm{y}$ means $=\mathrm{x}$ divides $\mathrm{y}^{〔}$. Then show that poset $(\mathrm{I}+, \leq)$ is a lattice.
Now we can construct the operation table I and table II for GLB and LUB respectively and the Hasse diagram is shown in Fig.

Table I						
LUB	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{3 0}$	
$\mathbf{1}$	$\mathbf{1}$	2	3	5	30	
$\mathbf{2}$	2	2	30	30	30	
$\mathbf{3}$	3	30	3	30	30	
$\mathbf{5}$	$\mathbf{5}$	30	30	5	30	
$\mathbf{3 0}$	30	30	30	30	30	

Table II					
GLB	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{3 0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{1}$	1
$\mathbf{2}$	$\mathbf{1}$	2	1	$\mathbf{1}$	2
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	3
$\mathbf{5}$	1	$\mathbf{1}$	1	5	5
$\mathbf{3 0}$	$\mathbf{1}$	2	3	5	30

Test for distributive lattice, i.e.,
$\operatorname{GLB}(x, \operatorname{LUB}(y, z))=\operatorname{LUB}(\operatorname{GLB}(x, y), \operatorname{GLB}(x, z))$
Assume $x=2, y=3$ and $z=5$, then
$R H S: G L B(2, \operatorname{LUB}(3,5))=\operatorname{GLB}(2,30)=2$
LHS: $\operatorname{LUB}(\operatorname{GLB}(2,3), \operatorname{GLB}(2,5))=\operatorname{LUB}(1,1)=1$
Since $R H S \neq L H S$, hence lattice is not a distributive lattice.

Complemented lattice:

A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a $\vee b=1$ and $a \wedge b=$ 0 . Complements need not be unique.
Example: Lattices shown in Fig (a), (b) and (c) are complemented lattices.

(a)

(b)

(c)

Sol.

For the lattice $(a) \operatorname{GLB}(a, b)=0$ and $\operatorname{LUB}(x, y)=1$. So, the complement a is b and vise versa. Hence, a complement lattice.

For the lattice $(b) \operatorname{GLB}(a, b)=0$ and $\operatorname{GLB}(c, b)=0$ and $\operatorname{LUB}(a, b)=1$ and $\operatorname{LUB}(c, b)=1$; so both a and c are complement of b. Hence, a complement lattice.

In the lattice $(c) \operatorname{GLB}(a, c)=0$ and $\operatorname{LUB}(a, c)=1 ; \operatorname{GLB}(a, b)=0$ and $\operatorname{LUB}(a, b)=1$. So, complement of a are b and c.
Similarly complement of c are a and b also a and c are complement of b.
Hence lattice is a complement lattice.

Multiple choice questions

1.A \qquad is an ordered collection of objects.
a) Relation
b) Function
c) Set
d) Proposition

Answer: c
2.The set O of odd positive integers less than 10 can be expressed by \qquad .
a) $\{1,2,3\}$
b) $\{1,3,5,7,9\}$
c) $\{1,2,5,9\}$
d) $\{1,5,7,9,11\}$

Answer: b
3.Power set of empty set has exactly \qquad subset.
a) One
b) Two
c) Zero
d) Three

Answer: a
4. What is the Cartesian product of $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$?
a) $\{(1, a),(1, b),(2, a),(b, b)\}$
b) $\{(1,1),(2,2),(a, a),(b, b)\}$
c) $\{(1, a),(2, a),(1, b),(2, b)\}$
d) $\{(1,1),(a, a),(2, a),(1, b)\}$

Answer: c

5.The Cartesian Product B x A is equal to the Cartesian product A x B. Is it True or False?
a) True
b) False

Answer: b
6. What is the cardinality of the set of odd positive integers less than 10 ?
a) 10
b) 5
c) 3 d$) 20$

Answer: b
7. Which of the following two sets are equal?
a) $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1\}$
b) $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1,2,3\}$
c) $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2,1,3\}$
d) $\mathrm{A}=\{1,2,4\}$ and $\mathrm{B}=\{1,2,3\}$

Answer: c

8. The set of positive integers is \qquad .
a) Infinite
b) Finite
c) Subset
d) Empty

Answer: a

9. What is the Cardinality of the Power set of the set $\{0,1,2\}$.
a) 8
b) 6
c) 7
d) 9

Answer: \mathbf{a}

The members of the set $S=\{x \mid x$ is the square of an integer and $x<100\}$ is-----

$$
\{0,2,4,5,9,58,49,56,99,12\} \text { b) }\{0,1,4,9,16,25,36,49,64,81\}
$$

c) $\{1,4,9,16,25,36,64,81,85,99\} \quad$ d) $\{0,1,4,9,16,25,36,49,64,121\}$

Answer: b
Let R be the relation on the set of people consisting of (a, b) where aa is the parent of b. Let S be the relation on the set of people consisting of (a, b) where a and b are siblings. What are $S \circ R$ and $\mathrm{R} \circ \mathrm{S}$?
A) (a, b) where a is a parent of b and b has a sibling; (a, b) where a is the aunt or uncle of b.
B) (a, b) where a is the parent of b and a has a sibling; (a, b) where a is the aunt or uncle of b.
C) (a, b) where a is the sibling of b 's parents; (a, b) where a is b 's niece or nephew.
D) (a, b) where a is the parent of $b ;(a, b)$ where a is the aunt or uncle of b.

On the set of all integers, let $(x, y) \in R(x, y) \in R$ iff $x y \geq 1 x y \geq 1$. Is relation R reflexive symmetric, antisymmetric, transitive?
A) Yes, No, No, Yes
B) No, Yes, No, Yes
C) No, No, No, Yes
D) No, Yes, Yes, Yes E) No, No, Yes, No

Let R be a non-empty relation on a collection of sets defined by ARB if and only if $A \cap B$ ØThen (pick the TRUE statement)
A.R is relexive and transitive B.R is symmetric and not transitive
C.R is an equivalence relation \quad D. R is not relexive and not symmetric Option: B
Consider the divides relation, $\mathrm{m} \mid \mathrm{n}$, on the set $\mathrm{A}=\{2,3,4,5,6,7,8,9,10\}$. The cardinality of the covering relation for this partial order relation (i,e., the number of edges in the Hasse diagram) is
(a) 4
(b) 6
(c) 5
(d) 8
(e) 7

Ans:e
Consider the divides relation, $\mathrm{m} \mid \mathrm{n}$, on the set $\mathrm{A}=\{2,3,4,5,6,7,8,9,10\}$. Which of the following permutations of A is not a topological sort of this partial order relation?
(a) $7,2,3,6,9,5,4,10,8$
(b) $2,3,7,6,9,5,4,10,8$
(c) $2,6,3,9,5,7,4,10,8$
(d) $3,7,2,9,5,4,10,8,6$
3,2,6,9,5,7,4,10,8

Ans:c
22. Hasse diagrams are drawn for
A.partially ordered sets
B.lattices
C.boolean Algebra
D.none of these
Option: D
23. A self-complemented, distributive lattice is called
A.Boolean algebra B.Modular lattice C.Complete lattice D.Self dual lattice Option: A
Let $\mathrm{D} 30=\{1,2,3,5,6,10,15,30\}$ and relation I be a partial ordering on D30. The lub of 10 and 15 respectively is
A. 30
B. 15
C. 10
D. 6
Option: A

25: Let $\mathrm{X}=\{2,3,6,12,24\}$, and \leq be the partial order defined by $\mathrm{X} \leq \mathrm{Y}$ if X divides Y . Number of edges in the Hasse diagram of (X, \leq) is
A. 3 B. 4
C. 5 D.None of these
Option: B
26. Principle of duality is defined as
A. \leq is replaced by \geq B.LUB becomes GLB
C.all properties are unaltered when \leq is replaced by \geq
D.all properties are unaltered when \leq is replaced by \geq other than 0 and 1 element.

Option: D
27. Different partially ordered sets may be represented by the same Hasse diagram if they are
A.same
B.lattices with same order
C.isomorphic D.order-isomorphic

Option: D
28. The absorption law is defined as
A.a * $(\mathrm{a} * \mathrm{~b})=\mathrm{b}$
B. $\mathrm{a} *(\mathrm{a} \oplus \mathrm{b})=\mathrm{b}$
C. $\mathrm{a} *(\mathrm{a} * \mathrm{~b})=\mathrm{a} \oplus \mathrm{b}$ D. $\mathrm{a} *(\mathrm{a} \oplus \mathrm{b})=\mathrm{a}$

Option: D
A partial order is deined on the set $S=\left\{x, a_{1}, a_{2}, a_{3}, \ldots . . a_{n}, y\right\}$ as $x \leq a$ i for all i and a_{i} y for all i, where $n \geq 1$. Number of total orders on the set S which contain partial order \leq is
A. 1 B.n C.n 2 D.n!

Option: D
30. Let L be a set with a relation R which is transitive, antisymmetric and reflexive and for any two elements $a, b \in L$. Let least upper bound lub (a, b) and the greatest lower bound $\mathrm{glb}(\mathrm{a}, \mathrm{b})$ exist. Which of the following is/are TRUE?
A.L is a Poset B.L is a boolean algebra
C.L is a lattice
D.none of these
Option: C

UNIT-3
 Algebraic Structures

Algebraic Systems with One Binary Operation Binary Operation

Let S be a non-empty set. If $f: S \times S \rightarrow S$ is a mapping, then f is called a binary operation or binary composition in S.

The symbols $+, \cdot, *, \oplus$ etc are used to denote binary operations on a set.
For $a, b \in S \Rightarrow a+b \in S \Rightarrow+$ is a binary operation in S.
For $a, b \in S \Rightarrow a \cdot b \in S \Rightarrow \cdot$ is a binary operation in S.
For $a, b \in S \Rightarrow a \circ b \in S \Rightarrow \circ$ is a binary operation in S.
For $a, b \in S \Rightarrow a * b \in S \Rightarrow *$ is a binary operation in S.
This is said to be the closure property of the binary operation and the set S is said to be closed with respect to the binary operation.

Properties of Binary Operations

Commutative: *is a binary operation in a set S. If for $a, b \in S, a * b=b * a$, then *is said to be commutative in S. This is called commutative law.

Associative: *is a binary operation in a set S. If for $a, b, c \in S,(a * b) * c=a *(b * c)$, then $*$ is said to be associative in S. This is called associative law.

Distributive: ${ }^{\circ}$, * are binary operations in S. If for $a, b, c \in S$, (i) $a \circ(b * c)=(a \circ b) *(a \circ c)$, (ii) $(b * c) \circ a=(b \circ a) *(c \circ a)$, then \circ is said to be distributive w.r.t the operation *. Example: N is the set of natural numbers.

+ , • are binary operations in N, since for $a, b \in N, a+b \in N$ and $a \cdot b \in N$. In other words N is said to be closed w.r.t the operations + and .
+ , • are commutative in N, since for $a, b \in N, a+b=b+a$ and $a \cdot b=b \cdot a$.
+ , are associative in N, since for $a, b, c \in N$,

$$
a+(b+c)=(a+b)+c \text { and } a \cdot(b \cdot c)=(a \cdot b) \cdot c .
$$

(iv) is distributive w.r.t the operation + in N, since for $a, b, c \in N, a \cdot(b+c)=a \cdot b+a$.

$$
c \text { and }(b+c) \cdot a=b \cdot a+c \cdot a \text {. }
$$

(v) The operations subtraction (-) and division (\div) are not binary operations in N, since for 3, $5 \in N$ does not imply $3-5 \in N$ and ${ }^{\frac{3}{5}} 5 \in N$.
Example: A is the set of even integers.

$$
\begin{aligned}
& +, \cdot \text { are binary operations in } A \text {, since for } a, b \in A, a+b \in A \text { and } a \cdot b \in A . \\
& +, \cdot \text { are commutative in } A \text {, since for } a, b \in A, a+b=b+a \text { and } a \cdot b=b \cdot a \text {. } \\
& +, \cdot \text { are associative in } A \text {, since for } a, b, c \in A, \\
& \quad a+(b+c)=(a+b)+c \text { and } a \cdot(b \cdot c)=(a \cdot b) \cdot c \text {. }
\end{aligned}
$$

\cdot is distributive w.r.t the operation + in A, since for $a, b, c \in A, a$
$\cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$.

Example: Let S be a non-empty set and ${ }^{\circ}$ be an operation on S defined by $a \circ b=a$ for $a, b \in S$.
Determine whether ${ }^{\circ}$ is commutative and associative in S.
Solution: Since $a \circ b=a$ for $a, b \in S$ and $b \circ a=b$ for $a, b \in S$.

$$
a \circ b=b \circ a \text {. }
$$

\circ is not commutative in S.

$$
\begin{aligned}
& \text { Since }(a \circ b) \circ c=a \circ c=a \\
& \qquad a^{\circ}(b \circ c)=a \circ b=a \text { for } a, b, c \in S .
\end{aligned}
$$

\circ is associative in S.
Example: ${ }^{\circ}$ is operation defined on Z such that $a \circ b=a+b-a b$ for $a, b \in Z$. Is the operation ${ }^{\circ}$ a binary operation in Z ? If so, is it associative and commutative in Z ?
Solution: If $a, b \in Z$, we have $a+b \in Z, a b \in Z$ and $a+b-a b \in Z$.

$$
a \circ b=a+b-a b \in Z .
$$

\circ is a binary operation in Z.
$a \circ b=b \circ a$.
\circ is commutative in Z.
Now

$$
\begin{aligned}
(a \circ b) \circ c= & (a \circ b)+c-(a \circ b) c \\
& a+b-a b+c-(a+b-a b) c \\
= & a+b-a b+c-a c-b c+a b c
\end{aligned}
$$

and

$$
\begin{aligned}
a \circ(b \circ c)= & a+(b \circ c)-a(b \circ c) \\
& =a+b+c-b c-a(b+c-b c) \\
& =a+b+c-b c-a b-a c+a b c \\
& =a+b-a b+c-a c-b c+a b c
\end{aligned}
$$

$$
(a \circ b) \odot c=a \circ(b \circ c) . \therefore
$$

is associative in Z.
Example: Fill in blanks in the following composition table so that ${ }^{\circ}$ is associative in $S=\{a, b, c, d\}$.

\circ	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

Solution: $d \circ a=(c \circ b) \circ a[\because c \circ b=d]$

$$
\begin{aligned}
& =c \circ(b \circ a) \quad[\because \circ \text { is associative }] \\
& =c \circ b \\
& =d
\end{aligned}
$$

$d \circ b=(c \circ b) \circ b=c \circ(b \circ b)=c \circ a=c$.
$d \circ c=(c \circ b) \circ c=c \circ(b \circ c)=c \circ c=c$.

$$
\begin{aligned}
d \circ d & =(c \circ b) \circ(c \circ b) \\
& =c \circ(b \circ c) \circ b \\
& =c \circ c \circ b \\
& =c \circ(c \circ b) \\
& =c \circ d \\
& =d
\end{aligned}
$$

Hence, the required composition table is

\circ	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d	d	c	c	d

Example: Let $P(S)$ be the power set of a non-empty set S. Let \cap be an operation in $P(S)$. Prove that associative law and commutative law are true for the operation in $P(S)$.

Solution: $\mathrm{P}(\mathrm{S})=$ Set of all possible subsets of S .
\cap is a binary operation in $P(S)$.
Also $A \cap B=B \cap A$
\cap is commutative in $P(S)$.
Again $A \cap B, B \cap C,(A \cap B) \cap C$ and $A \cap(B \cap C)$ are subsets of S.

$$
(A \cap B) \cap C, A \cap(B \cap C) \in P
$$

(S). Since $(A \cap B) \cap C=A \cap(B \cap C)$
\cap is associative in $P(S)$.

Algebraic Structures

Definition: A non-empty set G equipped with one or more binary operations is called an algebraic structure or an algebraic system.
If \circ is a binary operation on G, then the algebraic structure is written as (G, \circ).
Example: $(N,+),(Q,-),(R,+)$ are algebraic structures.

Semi Group

Definition: An algebraic structure (S, \circ) is called a semi group if the binary oper-ation ${ }^{\circ}$ is associative in S.
That is, $\left(S,{ }^{\circ}\right)$ is said to be a semi group if

$$
\begin{aligned}
& a, b \in S \Rightarrow a \circ b \in S \text { for all } a, b \in S \\
& (a \circ b) \circ c=a \circ(b \circ c) \text { for all } a, b, c \in
\end{aligned}
$$

S. Example:

1. $(N,+)$ is a semi group. For $a, b \in N \Rightarrow a+b \in N$ and $a, b, c \in N \Rightarrow(a+b)+c=\mathrm{a}+(b+c)$.
$(Q,-)$ is not a semi group. For $5,3 / 2,1 \in \mathrm{Q}$ does not imply $(5-3 / 2)-1=5-(3 / 2-1)$.
$(R,+)$ is a semi group. For $a, b \in R \Rightarrow a+b \in R$ and $a, b, c \in R \Rightarrow(a+b)+c=\mathrm{a}+(b+c)$.

Example: The operation ${ }^{\circ}$ is defined by $a \circ b=a$ for all $a, b \in S$. Show that (S, \circ) is a semi group.
Solution: Let $a, b \in S \Rightarrow a \circ b=a \in S$.
\circ is a binary operation in S. Let $a, b, c \in S, a \circ(b \circ c)=a \circ b=$ $a(a \circ b) \circ c=a \circ c=a$.
$\Rightarrow \circ$ is associative in S.
$\left(S,{ }^{\circ}\right)$ is a semi group.
Example: The operation \circ is defined by $a \circ b=a+b-a b$ for all $a, b \in Z$. Show that $\left(Z,{ }^{\circ}\right)$ is a semi group.
Solution: Let $a, b \in Z \Rightarrow a \circ b=a+b-a b \in Z$.

- is a binary operation in
Z. Let $a, b, c \in Z$.

$$
\begin{aligned}
(a \circ b) \circ c \quad= & (a+b-a b) \circ c \\
= & a+b-a b+c-(a+b-a b) c \\
= & a+b+c-a b-b c-a c+a b c \\
& \\
a \circ(b \circ c) \quad & a \circ(b+c-b c) \\
= & a+(b+c-b c)-a(b+c-b c) \\
= & a+b+c-b c-a b-a c+
\end{aligned}
$$

$a b c \Rightarrow(a \circ b) \circ c=a \circ(b \circ c)$.
\circ is associative in $Z . \therefore\left(Z,{ }^{\circ}\right)$ is semi group.

Example: $(P(S), \cap)$ is a semi group, where $P(S)$ is the power set of a non-empty set S.
Solution: $P(S)=$ Set of all possible subsets of S.
Let $A, B \in P(S)$.
Since $A \subseteq S, B \subseteq S \Rightarrow A \cap B \subseteq S \Rightarrow A \cap B \in P(S)$.
\cap is a binary operation in $P(S)$. Let $A, B, C \in P(S)$.
$(A \cap B) \cap C, A \cap(B \cap C) \in \hat{P}(S)$. Since $(A \cap B) \cap$
$C=A \cap(B \cap C)$
\cap is associative in $P(S)$.
Hence $(P(S), \cap)$ is a semi group.
Example: $(P(S), U)$ is a semi group, where $P(S)$ is the power set of a non-empty set S.
Solution: $P(S)=$ Set of all possible subsets of S.
Let $A, B \in P(S)$.
Since $A \subseteq S, B \subseteq S \Rightarrow A \cup B \subseteq S \Rightarrow A \cup B \in P(S)$.
U is a binary operation in $\mathrm{P}(\mathrm{S})$. Let $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{P}(\mathrm{S})$.
$(A \cup B) \cup C, A \cup(B \cup C) \in P(S)$. Since $(A \cup B) \cup C=A \cup(B \cup C)$
U is associative in $\mathrm{P}(\mathrm{S})$.
Hence $(P(S), U)$ is a semi group.

Example: Q is the set of rational numbers, \circ is a binary operation defined on Q such that $a \circ b=a$ $b+a b$ for $a, b \in Q$. Then $\left(Q,{ }^{\circ}\right)$ is not a semi group.
Solution: For $a, b, c \in Q$,

$$
\begin{aligned}
(a \circ b) \circ c= & (a \circ b)-c+(a \circ b) c \\
& =a-b+a b-c+(a-b+a b) c \\
& =a-b+a b-c+a c-b c+a b c \\
a \circ(b \circ c)= & a-(b \circ c)+a(b \circ c) \\
& =a-(b-c+b c)+a(b-c b c) \\
& =a-b+c-b c+a b-a c+a b c .
\end{aligned}
$$

Therefore, $(a \circ b) \circ c=a \circ(b \circ c)$.
Example: Let ($A, *$) be a semi group. Show that for a, b, c in A if $a * c=c * a$ and $b * c=c * b$, then $(a * b) * c=c *(a * b)$.

Solution: Given (A, *) be a semi group, $a * c=c * a$ and $b * c=c * b$.
Consider

$$
\begin{aligned}
(a * b) * c= & a *(b * c)[\because A \text { is seme group }] \\
& =a *(c * b)[\because b * c=c * b] \\
& =(a * c) * b[\because A \text { is seme group }] \\
& =(c * a) * b[\because a * c=c * a] \\
& =c *(a * b)[\because A \text { is seme group }] .
\end{aligned}
$$

Homomorphism of Semi-Groups

Definition: Let ($S, *$) and (T, \circ) be any two semi-groups. A mapping $f: S \rightarrow T$ such that for any two elements $a, b \in S, f(a * b)=f(a) \circ f(b)$ is called a semi-group homomorphism.
Definition: A homomorphism of a semi-group into itself is called a semi-group en-domorphism. Example: Let $\left(S_{1},{ }^{*}\right),\left(S_{2}, *_{2}\right)$ and $\left(S_{3}, *_{3}\right)$ be semigroups and $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{3}$ be homomorphisms. Prove that the mapping of $g \circ f: S_{1} \rightarrow S_{3}$ is a semigroup homomorphism.

Solution: Given that $\left(S_{1}, *_{1}\right),\left(S_{2}, *_{2}\right)$ and $\left(S_{3}, *_{3}\right)$ are three semigroups and $f: S_{1} \rightarrow$ $S 2$ and $g: S 2 \rightarrow S 3$ be homomorphisms.
Let a, b be two elements of $S 1$.

$$
\begin{array}{rlrl}
(g \circ f)(a * 1 b) & =g[f(a * 1 b)] & \\
& =g[f(a) * 2 f(b)] & (\because f \text { is a homomorphism }) \\
& =g(f(a)) * 3 g(f(b)) & & (\because g \text { is a homomorphism }) \\
& =(g \circ f)(a) * 3(g \circ f)(b) &
\end{array}
$$

$\therefore g \circ f$ is a homomorphism.
Identity Element: Let S be a non-empty set and \circ be a binary operation on S. If there exists an element $e \in S$ such that $a \circ e=e \circ a=a$, for $a \in S$, then e is called an identity element of S.

Example:

In the algebraic system $(Z,+)$, the number 0 is an identity element.
In the algebraic system ($R, \cdot \cdot$), the number 1 is an identity element.
Note: The identity element of an algebraic system is unique.

Monoid

Definition: A semi group (S, \circ) with an identity element with respect to the binary operation。 is known as a monoid. i.e., (S, \circ) is a monoid if S is a non-empty set and \circ is a binary operation in S such that ${ }^{\circ}$ is associative and there exists an identity element w.r.t ${ }^{\circ}$. Example:
$(Z,+)$ is a monoid and the identity is 0 .
(Z, \cdot) is a monid and the identity is 1 .

Monoid Homomorphism

Definition: Let $(M, *)$ and (T, \circ) be any two monoids, e_{m} and e_{t} denote the identity elements of ($M, *$) and ($T,{ }^{\circ}$) respectively. A mapping $f: M \rightarrow T$ such that for any two elements $a, b \in$ M,
$f(a * b)=f(a) \circ f(b)$ and
$f\left(e_{m}\right)=e_{t}$
is called a monoid homomorphism.
Monoid homomorphism presents the associativity and identity. It also preserves commutative. If $a \in M$ is invertible and $a^{-1} \in M$ is the inverse of a in M, then $f\left(a^{-1}\right)$ is the inverse of $f(a)$, i.e., $f\left(a^{-1}\right)=[f(a)]^{-1}$.

Sub Semi group

Let $(S, *)$ be a semi group and T be a subset of S. Then ($T, *$) is called a sub semi group of (S, *) whenever T is closed under *i.e., $a * b \in T$, for all $a, b \in T$.

Sub Monoid

Let $(S, *)$ be a monoid with e is the identity element and T be a non-empty subset of S. Then ($T, *$) is the sub monoid of ($S, *$) if $e \in T$ and $a * b \in T$, whenever $a, b \in T$. Example:

Under the usual addition, the semi group formed by positive integers is a sub semi group of all integers.

Under the usual addition, the set of all rational numbers forms a monoid. We denote it $(Q,+)$. The monoid $(Z,+)$ is a submonid of $(Q,+)$.

Under the usual multiplication, the set E of all even integers forms a semi group.
This semi group is sub semi group of (Z, \cdot). But it is not a submonoid of (Z, \cdot), because $1=E$.
Example: Show that the intersection of two submonoids of a monoid is a monoid.
Solution: Let S be a monoid with e as the identity, and S_{1} and S_{2} be two submonoids of S.
Since S_{1} and S_{2} are submonoids, these are monoids. Therefore $e \in S_{1}$ and $e \in S_{2}$.

Since $S_{1} \cap S_{2}$ is a subset of S, the associative law holds in $S_{1} \cap S_{2}$, because it holds in S. Accordingly $S_{1} \cap S_{2}$ forms a monoid with e as the identity.

Invertible Element: Let (S, \circ) be an algebraic structure with the identity element e in S w.r.t
\circ An element $a \in S$ is said to be invertible if there exists an element $x \in S$ such that $a \circ x=x \circ$
$a=e$.
Note: The inverse of an invertible element is unique.
From the composition table, one can conclude
Closure Property: If all entries in the table are elements of S, then S closed under ${ }^{\circ}$.
Commutative Law: If every row of the table coincides with the corresponding column, then ${ }^{\circ}$ is commutative on S.

Identity Element: If the row headed by an element a of S coincides with the top row, then a is called the identity element.

Invertible Element; If the identity element e is placed in the table at the intersection of the row headed by ${ }_{2}^{\prime}$ and the column headed by ${ }^{\prime}{ }^{\prime}$, then $b^{-1}=a$ and $a^{-1}=b$. Example: $A=\{1, \omega, \omega\}$.

.	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω_{2}	ω_{2}	1	ω

From the table we conclude that
Closure Property: Since all entries in the table are elements of A. So, closure property is satisfied.

Commutative Law: Since $1^{s t}, 2^{n d}$ and $3^{r d}$ rows coincides with $1^{s t}, 2^{n d}$ and $3^{r d}$ columns respectively. So multiplication is commutative on A.

Identity Element: Since row headed by 1 is same as the initial row, so 1 is the identity element.

Inverses: Clearly $1^{-1}=1, \omega^{-1}=\omega^{2},\left(\omega^{2}\right)^{-1}=\omega$.

Groups

Definition: If G is a non-empty set and \circ is a binary operation defined on G such that the following three laws are satisfied then $\left(G,{ }^{\circ}\right)$ is a group.
Associative Law: For $a, b, c \in G,(a \circ b) \circ c=a \circ(b \circ c)$
Identity Law: There exists $e \in G$ such that $a \circ e=a=e \circ a$ for every $a \in G, e$ is called an identity element in G.
Inverse Law: For each $a \in G$, there exists an element $b \in G$ such that $a^{\circ} b=b^{\circ} a=e, b$ is called an inverse of a.
Example: The set Z of integers is a group w.r.t. usual addition.
(i). For $a, b \in Z \Rightarrow a+b \in Z$
(ii). For $a, b, c \in Z,(a+b)+c=a+(b+c)$
(iii). $0 \in Z$ such that $0+a=a+0=a$ for each $a \in G$

0 is the identity element in Z.
(iv). For $a \in Z$, there exists $-a \in Z$ such that $a+(-a)=(-a)+a=0$.
$-a$ is the inverse of $a .(Z,+)$ is a
group.

Example: Give an example of a monoid which is not a group.
Solution: The set N of natural numbers w.r.t usual multiplication is not a group.
(i). For $a, b \in N \Rightarrow a \cdot b$.
(ii). For $a, b, c \in N,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
(iii). $1 \in N$ such that $1 \cdot a=a \cdot 1=a$, for all $a \in N$.
(N, \cdot) is a monoid.
(iv). There is no $n \in N$ such that $a \cdot n=n \cdot a=1$ for $a \in N$.

Inverse law is not true.
The algebraic structure ($N, \cdot \cdot$) is not a group.
Example: $(R,+)$ is a group, where R denote the set of real numbers.
Abelian Group (or Commutative Group): Let $(G, *)$ be a group. If *is com-mutative that is $a * b=b * a$ for all $a, b \in G$ then ($G, *$) is called an Abelian group.
Example: $(Z,+)$ is an Abelian group.
Example: Prove that $G=\left\{1, \omega, \omega^{2}\right\}$ is a group with respect to multiplication where $1, \omega, \omega^{2}$ are cube roots of unity.
Solution: We construct the composition table as follows:

	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	$\omega^{5}=1$
ω^{2}	ω^{2}	$\omega^{5}=1$	$\omega^{4}=\omega$

The algebraic system is ($G,+$) where $\omega=1$ and multiplication \cdot is the binary opera-tion on G. From the composition table; it is clear that (G, \cdot) is closed with respect to the oper-ation multiplication and the operation • is associative.
1 is the identity element in G such that $1 \cdot a=a=a \cdot 1, \forall a \in G$. Each
element of G is invertible
$1 \cdot 1=1 \Rightarrow 1$ is its own inverse.
$\omega \cdot \omega^{2}=\omega^{3}=1 \Rightarrow \omega^{2}$ is the inverse of ω and ω is the inverse of ω^{2} in G.
(G, \cdot) is a group and $a \cdot b=b \cdot a, \forall a, b \in G$, that is commutative law holds in
G with respect to multiplication.
(G, \cdot) is an abelian group.

Example: Show that the set $G=\{1,-1, i,-i\}$ where $i=\sqrt{-1}$ is an abelian group with respect to multiplication as a binary operation. Solution: Let us construct the composition table:

\cdot	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
i	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

From the above composition, it is clear that the algebraic structure (G, \cdot) is closed and satisfies the following axioms:
Associativity: For any three elements $a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
Since

$$
\begin{aligned}
& 1 \cdot(-1 \cdot i)=1 \cdot-i=-i \\
& (1 \cdot-1) \cdot i=-1 \cdot i=-i \\
& \quad 1 \cdot(-1 \cdot i)=(1 \cdot-1) \cdot i
\end{aligned}
$$

Similarly with any other three elements of G the properties holds.
Associative law holds in ($G, \cdot \cdot$).
Existence of identity: 1 is the identity element in (G, \cdot) such that $1 \cdot a=a=a \cdot 1, \forall a \in G$.
Existence of inverse: $1 \cdot 1=1=1 \cdot 1 \Rightarrow 1$ is inverse of 1 .

$$
\begin{aligned}
& (-1) \cdot(-1)=1=(-1) \cdot(-1) \Rightarrow-1 \text { is the inverse of }(-1) \\
& i \cdot(-i)=1=-i \cdot i \Rightarrow-i \text { is the inverse of } i \text { in } G . \\
& -i \cdot i=1=i \cdot(-i) \Rightarrow i \text { is the inverse of }-i \text { in } G .
\end{aligned}
$$

Hence inverse of every element in G exists.
Thus all the axioms of a group are satisfied.
Commutativity: $a \cdot b=b \cdot a, \forall a, b \in G$ hold in G.

$$
1 \cdot 1=1=1 \cdot 1 ; \quad-1 \cdot 1=-1=1 \cdot-1
$$

$$
1 \cdot 1=i=1 \cdot i ; i \cdot-i=-i \cdot i=1 \text { etc. }
$$

Commutative law is satisfied.
Hence (G, \cdot) is an abelian group.
Example: Prove that the set Z of all integers with binary operation * defined by $a * b=a+b$ $+1, \forall a, b \in Z$ is an abelian group. Solution:

Closure: Let $a, b \in Z$. Since $a+b \in Z$ and $a+b+1 \in Z$.
Z is closed under *.
Associativity: Let $a, b, c \in Z$.

$$
\begin{array}{rl}
\text { Consider }(a * b) * c=(a+b+1) * & c \\
& =a+b+1+c+1 \\
& =a+b+c+2
\end{array}
$$

also

$$
a *(b * c)=a *(b+c+1)
$$

$$
\begin{aligned}
& =a+b+c+1+1 \\
& =a+b+c+2
\end{aligned}
$$

Hence $(a * b) * c=a *(b * c)$ for $a, b, c \in Z$.
Existence of Identity: Let $a \in Z$. Let $e \in Z$ such that $e * a=a * e=a$, i.e., $a+e+1$
a

$$
\begin{aligned}
& e=-1 \\
& e=-1 \text { is the identity element in } Z .
\end{aligned}
$$

Existence of Inverse: Let $a \in Z$. Let $b \in Z$ such that $a * b=e$.

$$
\begin{aligned}
& \quad \begin{array}{l}
a+b+1=-1 \\
b=-2-a
\end{array}
\end{aligned}
$$

\therefore For every $a \in Z$, there exits $-2-a \in Z$ such that $a *(-2-a)=(-2-a) * a=-1$.

$$
(Z, *) \text { is an abelian group. }
$$

Example: Show that the set Q_{+}of all positive rational numbers forms an abelian group under the composition defined by \circ such that $a \circ b=\mathrm{ab} / 3$ for $a, b \in Q_{+}$. Solution: Q_{+}of the set of all positive rational numbers and for $a, b \in Q_{+}$, we have the operation ${ }^{\circ}$ such that $a \circ b=$ $\mathrm{ab} / 3$. Associativity: $a, b, c \in Q+\Rightarrow(a \circ b)^{\circ} c=a \circ(b \circ c)$.
Since $(a \circ b) \circ c=(a b / 3) \circ c=[a b / 3 . c] / 3=a / 3(b c / 3)=\alpha \beta(b \circ c)=a \circ(b \circ c)$.
Existence of Identity: Let $a \in Q_{+}$. Let $e \in Q_{+}$such that $e{ }^{\circ} a=a$.

$$
\text { i.e., ea/3 = } a
$$

$e a-3 a=0 \Rightarrow(e-3) a=0$
$\Rightarrow e-3=0 \quad \gamma \quad(\because a=0)$
$e=3$
$e=3$ is the identity element in Q_{+}.

$$
\Rightarrow \mathrm{ab} / 3=3
$$

$$
b=9 / a \quad(\because a=0)
$$

For every $a \in Q_{+}$, there exists $9 / a \in Q_{+}$such that $a \circ 9 / a=9 / a \circ a=3$.
Commutativity: Let $a, b \in Q_{+} \Rightarrow a \circ b=b \circ a$.
Since $a \circ b=\mathrm{ab} / 3=\mathrm{ba} / 3=b \circ a$.
$\left(Q_{+},{ }^{\circ}\right)$ is an abelian group.

Exercises: 1. Prove that the set G of rational numbers other than 1 with operation \oplus such that $a \oplus b=a+b-a b$ for $a, b \in G$ is abelian group.

Consider the algebraic system $(G, *)$, where G is the set of all non-zero real numbers and * is a binary operation defined by: $a * b=\frac{a b}{4}, \forall a, b \in G$. Show that $(G, *)$ is an

Addition modulo m

We shall now define a composite known as -addition modulo $m \|$ where m is fixed integer.
If a and b are any two integers, and r is the least non-negative reminder obtained by dividing the ordinary sum of a and b by m, then the addition modulo m of a and b is r symbolically

$$
a+_{m} b=r, \quad 0 \leq r<m .
$$

Example: $20+65=1$, since $20+5=25=4(6)+1$, i.e., 1 is the remainder when $20+5$ is divisible by 6.
Example: $-15+53=3$, since $-15+3=-12=3(-5)+3$.

Multiplication modulo p

If a and b are any two integers, and r is the least non-negative reminder obtained by dividing the ordinary product of a and b by p, then the Multiplication modulo p of a and b is r symbolically

$$
a \times p b=r, \quad 0 \leq r<p
$$

Example: Show that the set $G=\{0,1,2,3,4\}$ is an abelian group with respect to addition modulo 5.
Solution: We form the composition table as follows:

${ }^{+} 5$	0	1	2	3	4
0	0	1	2	3	4
1	d	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Since all the entries in the composition table are elements of G, the set G is closed with respect to addition modulo 5 .
Associativity: For any three elements $a, b, c \in G,(a+5 b)+5 c$ and $a+5(b+5 c)$ leave the same remainder when divided by 5 .
i.e., $(a+5 b)+5 c=a+5(b+5 c)$
$(1+53)+54=3=1+5(3+54)$ etc.
Existence of Identity: Clearly $0 \in G$ is the identity element, since we have
$0+59=4=9+50, \forall a \in G$.
Existence of Inverse: Each element in G is invertible with respect to addition modulo 5.
0 is its own inverse; 4 is the inverse of 1 and 1 is the inverse of 4 .
2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 5 in G.
Commutativity: From the composition table it is clear that $a+5 b=b+5 a, \forall a, b \in G$.
Hence $(G,+5)$ is an abelian group.

Example: Show that the set $G=\{1,2,3,4\}$ is an abelian with respect to multipli-cation modulo 5.
Solution: The composition table for multiplication modulo 5 is

$\times 5$	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

From the above table, it is clear that G is closed with respect to the operation $\times 5$ and the binary composition $\times 5$ is associative; 1 is the identity element.
Each element in G has a inverse.
1 is its own inverse
2 is the inverse of 3
3 is the inverse of 2
4 is the inverse of 4 , with respect to the binary operation $\times 5$.
Commutative law holds good in $(G, \times 5)$.
Therefore $(G, \times 5)$ is an abelian group.
Example: Consider the group, $G=\{1,5,7,11,13,17\}$ under multiplication modulo 18 .
Construct the multiplication table of G and find the values of: $5^{-1}, 7^{-1}$ and 17^{-1}.
Example: If G is the set of even integers, i.e., $G=\{\cdots,-4,-2,0,2,4, \cdots\}$ then prove that G is an abelian group with usual addition as the operation. Solution: Let $a, b, c \in G$.

We can take $a=2 x, b=2 y, c=2 z$, where $x, y, z \in Z$.
Closure: $a, b \in G \Rightarrow a+b \in G$.
Since $a+b=2 x+2 y=2(x+y) \in G$.
Associativity: $a, b, c \in G \Rightarrow a+(b+c)=(a+b)+$
c Since

$$
\begin{array}{rl}
+(b+c)=2 x & x(2 y+2 z) \\
& =2[x+(y+z)] \\
& =2[(x+y)+z] \\
& =(2 x+2 y)+2 z \\
& =(a+b)+c
\end{array}
$$

Existence of Identity: $a \in G$, there exists $0 \in G$ such that $a+0=0+a=a$. Since $a+0$
$=2 x+0=2 x=a$ and $0+a=0+2 x=2 x=a$
0 is the identity in G.
Existence of Inverse: $a \in G$, there exists $-a \in G$ such that $a+(-a)=(-a)+a=0$.
Since $a+(-a)=2 x+(-2 x)=0$ and $(-a)+a=(-2 x)+2 x=0$.
$(G,+)$ is a group.
Commutativity: $a, b \in G \Rightarrow a+b=b+a$.
Since $a+b=2 x+2 y=2(x+y)=2(y+x)=2 y+2 x=b+a$.
$(G,+)$ is an abelian group.

Example: Show that set $G=\left\{x \mid x=23^{a} b\right.$ for $\left.a, b \in Z\right\}$ is a group under multipli-cation.
Solution: Let $x, y, z \in G$. We can take $x=23^{p} q, y=2^{r} 3^{s}, z=23^{l} m$, where $p, q, r, s, l, m \in Z$.
We know that (i). $p+r, q+s \in Z$
(ii). $(p+r)+l=p+(r+l),(q+s)+m=q+(s+m)$.

Closure: $x, y \in{ }_{p}{ }_{q} \Rightarrow x_{r} \cdot y_{s} \in G_{p+r q+s}$
Since $x \cdot y=(23)(23)=2 \quad 3 \in G$. Associativity: $x, y, z \in G \Rightarrow(x \cdot y) \cdot z=x \cdot(y \cdot z)$

$$
\left.\begin{array}{l}
=2_{(p+r)+1} 3_{(q+s)+m} \\
=2_{p+(r+1)} 3_{q+(s+m)}^{(s+m} \\
=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{l}
2 \\
2
\end{array} 23\right.
\end{array}\right)
$$

Existence of Identity: Let $x \in G$. We know that $e=2^{0} 3^{0} \in G$, since $0 \in Z$.
$x \cdot e=2^{p} 3^{q} 2^{0} 3^{0}=2^{p+0} 3^{q+0}=2^{p} 3^{q}=x$ and $e \cdot x=2{ }_{2}{ }_{3}{ }_{2} p_{3}{ }_{3}^{q}=2^{p} 3^{q}=x . \therefore e \in G$
such that $x \cdot e=e \cdot x=x$
$e=23^{0}$ is the identity element in G.
$\cdot y=2 p_{3} q_{2}-p_{3}-q=2_{3}^{0}=e$ and $y \cdot x=2^{-p_{3}-q} p_{2} p_{3}^{q}=2^{0} 3^{0}=e$.
For every $x=2{ }_{2}{ }^{q} \in G$ there exists $y=2{ }_{3} \in G$ such that $x \cdot y=y \cdot x=e . \therefore(G, \cdot)$ is a group.

Example: Show that the sets of all ordered pairs (a, b) of real numbers for which $a=0$ w.r.t the operation * defined by $(a, b) *(c, d)=(a c, b c+d)$ is a group. Is the commutative?
Solution: Let $G=\{(a, b) \mid a, b \in R$ and $a=0\}$. Define a binary operation * on G by $(a, b) *(c$, $d)=(a c, b c+d)$, for all $(a, b),(c, d) \in G$. Now we show that $(G, *)$ is a group. Closure: (a, b), $(c, d) \in G \Rightarrow(a, b) *(c, d)=(a c, b c+d) \in G$.

Since $a=0, c=0 \Rightarrow a c=0$.
Associativity: $(a, b),(c, d),(e, f) \in G \Rightarrow\{(a, b) *(c, d)\} *(e, f)=(a, b) *\{(c, d) *(e, f)\}$.
Since $\{(a, b) *(c, d)\} *(e, f)=(a c, b c+d) *(e, f)$

$$
\begin{aligned}
& (a c e,(b c+d) e+f) \\
& (a c e, b c e+d e+f) \\
& \\
& (a(c e), b(c e)+d e+f) \\
& (a c e, b c e+d e+f)
\end{aligned}
$$

Existence of Identity: Let $(a, b) \in G$. Let $(x, y) \in G$ such that $(x, y) *(a, b)=(a, b) *(x, y)=(a, b)$

$$
(x a, y a+b)=(a, b)
$$

$$
x a=a, y a+b=b
$$

$$
x=1,(\because a=0) \text { and } y a=0 \Rightarrow x=1 \text { and } y=0(\because a=0)
$$

$(1,0) \in G$ such that $(a, b) *(1,0)=(a, b)$.
$(1,0)$ is the identity in G.
Existence of Inverse: Let $(a, b) \in G$. Let $(x, y) \in G$ such that $(x, y) *(a, b)=(1,0)$

$$
x a=1, y a+b=0 \Rightarrow x=a^{\underline{1}}, y==\frac{\text { ニ }}{a}
$$

The inverse of (a, b) exits and it is $(1 / \mathrm{a},-\mathrm{b} / \mathrm{a})$.
G is a group but not commutative group w.r.t *.
Example: If $(G, *)$ is a group then $(a * b)^{-1}=b^{-1} * a^{-1}$ for all $a, b \in G$.
Solution: Let $a, b \in G$ and e be the identity element in G.
Let $a \in G \Rightarrow a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$ and $b \in G \Rightarrow b^{-1} \in G$ such that $b * b^{-1}=b^{-1} * b=$ e.
Now $a, b \in G \Rightarrow a * b \in G$ and $(a * b)^{-1} \in G$.
Consider

$$
\begin{aligned}
&(a * b) *\left(b^{-1} * a^{-1}\right)=a *\left[b *\left(b^{-1} * a^{-1}\right)\right] \\
&=a *\left[\left(b * b^{-1}\right) * a^{-1}\right] \\
&=a *\left(e * a^{-1}\right)\left(b * b^{-1}=e\right) \\
&=a * a^{-1} \quad(e \text { is the identity }) \\
&=e
\end{aligned}
$$

and

$$
\begin{aligned}
\left(b^{-1} * a^{-1}\right) *(a * b) & =b^{-1} *\left[a^{-1} *(a * b)\right] \\
& =b^{-1} *\left[\left(a^{-1} * a\right) * b\right] \\
& =b^{-1} *[e * b] \\
& =b^{-1} * b \\
\Rightarrow(a * b) *\left(b^{-1} * a^{-1}\right) & =\left(b^{-1} * a^{-1}\right) *(a * b)=e \\
& (a * b)^{-1}=b^{-1} * a^{-1} \quad \text { for all } a, b \in G .
\end{aligned}
$$

Note:
$\left(b^{-1} a^{-1}\right)^{-1}=a b$
$(a b c)^{-1}=c^{-1} b^{-1} a^{-1}$
If $(G,+)$ is a group, then $-(a+b)=(-b)+(-a)$
$-(a+b+c)=(-c)+(-b)+(-a)$.

Theorem: Cancelation laws hold good in G, i.e., for all $a, b, c \in G a * b=a * c \Rightarrow b=c$ (left cancelation law) $b * a=c * a \Rightarrow b=c$ (right cancelation law).
Proof: G is a group. Let e be the identity element in G.

$$
a \in G \Rightarrow a^{-1} \in G \text { such that } a * a^{-1}=a^{-1} * a=e .
$$

Consider
$a * b=a * c$
$a^{-1} *(a * b)=a^{-1}(a * c)$
$\left(a^{-1} * a\right) * b=\left(a^{-1} * a\right) * c$ (by associative law)
$e * b=e * c\left(a^{-1}\right.$ is the inverse of a in $\left.G\right)$
$b=c(e$ is the identity element in $G)$
and
$b * a=c * a$
$(b * a) a^{-1}=(c * a) * a^{-1}$
$b *\left(a * a^{-1}\right)=c *\left(a * a^{-1}\right)$ (by associative law)
$b * e=c * e\left(\because a * a^{-1}=e\right)$
$b=c(e$ is the identity element in $G)$

Note:

If G is an additive group, $a+b=a+c \Rightarrow b=c$ and $b+a=c+a \Rightarrow b=c$.
In a semi group cancelation laws may not hold. Let S be the set of all 2×2 matrices over integers and let matrix multiplication be the binary operation defined on S. Then S is a semi group of the above operation.
If $\mathrm{A}=\mathrm{I}\left(\begin{array}{cc}1 & 0 \\ |; \mathrm{B}=| \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0\end{array}\right)\left(\begin{array}{ll}1 ; \mathrm{C}=\mid \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 0\end{array}\right)$ then $A, B, C \in S$ and $A B=A C$, we observe that left
cancellation law is not true in the semi group.
3. $(N,+)$ is a semi group. For $a, b, c \in N$

$$
a+b=a+c \Rightarrow b+c \text { and } b+a=c+a \Rightarrow b=c .
$$

But $(N,+)$ is not a group.
In a semigroup even if cancellation laws holds, then semigroup is not a group.
Example: If every element of a group G is its own inverse, show that G is an abelian

$$
\text { group. }-1-1
$$

Then $a b \in G$ and hence $(a b)^{-1}=a b$.
Now

$$
\begin{gathered}
(a b)^{-1}=a b \\
b^{-1} a^{-1}=a b \\
b a=a b
\end{gathered}
$$

G is an abelian group.

Note: The converse of the above not true.
For example, $(R,+)$, where R is the set of real numbers, is abelian group, but no element except 0 is its own inverse.
Example: Prove that if $a=a$, then $a=e, a$ being an element of a group G.
Solution: Let a be an element of a group G such that $a^{2}=a$. To prove that $a=$ e. $a^{2}=a \Rightarrow a a=a$

$$
(a a) a^{-1}=a a^{-1} \Rightarrow a\left(a a^{-1}\right)=e
$$

$$
a e=e\left[\because a a^{-1}=e\right] \Rightarrow a=e[\because a e=a]
$$

Example: In a group G having more than one element, if $x^{2}=x$, for every $x \in G$.
Prove that G is abelian.
Solution: Let $a, b \in G$. Under the given hypothesis, we have $a^{2}=a, b^{2}=b,(a b)^{2}=a b$.

$$
\begin{gathered}
a(a b) b=(a a)(b b)=a^{2} b^{2}=a b=(a b)^{2}=(a b)(a b)=a(b a) b \\
a b=b a \text { (Using cancelation laws) }
\end{gathered}
$$

G is abelian.
Example: Show that in a group G, for $a, b \in G,(a b)^{2}=a^{2} b^{2} \Leftrightarrow G$ is abelian. (May. 2012)
Solution: Let $a, b \in G$, and $(a b)=a b$. To prove that G is abelian.

$$
\begin{aligned}
& (a b)^{2}=a^{2} b^{2} \\
& (a b)(a b)=(a a)(b b) \\
& a(b a) b=a(a b) b \text { (by Associative law) } \Rightarrow b a=a b \text {, (by cancellation } \\
& \text { laws) } \\
& G \text { is abelian. }
\end{aligned}
$$

Conversely, let G be abelian. To prove that $(a b)=a b$.
***Example: If a, b are any two elements of a group (G, \cdot), which commute. Show that a^{-1} and b commute
b_{-1}^{-1} and a commute
a^{-1} and b^{-1} commute.

$$
\begin{aligned}
& a b=b a \Rightarrow a^{-1}(a b)=a^{-1}(b a) \\
& \left(a^{-1} a\right) b=a^{-1}(b a) \\
& e b=\left(a^{-1} b\right) a \\
& b=\left(a^{-1} b\right) a \\
& b a^{-1}=\left[\left(a^{-1} b\right) a\right] a^{-1} \\
& =(a-b)(a a) \\
& =(a \quad b) e \\
& =a \quad b
\end{aligned}
$$

a^{-1} and b commute.
1

$$
\begin{aligned}
& a b=b a \Rightarrow(a b) b^{-1}=(b a) b^{-1} \\
& \Rightarrow a\left(b b^{-1}\right)=
\end{aligned}
$$

$(b a) b^{-1}$ \Rightarrow
$a e=b\left(a b^{-1}\right)$

$$
\begin{aligned}
& \Rightarrow a=b\left(a b^{-1}\right) \\
& \Rightarrow b^{-1} \quad \begin{array}{l}
a=b^{-1} \quad\left[b\left(a b^{-1}\right)\right] \\
\\
\left.=\left(b^{-1} b\right)\left(a a^{-1}\right)\right] \\
\\
=e\left(a a^{-1}\right) \\
\\
=a b^{-1}
\end{array}
\end{aligned}
$$

b^{-1} and a commute.

$$
\begin{aligned}
a b=b a \Rightarrow & (a b)^{-1}=(b a)^{-1} b^{-1} a^{-1}=a^{-1} b^{-1} \\
& a^{-1} \text { and } b^{-1} \text { are commute. }
\end{aligned}
$$

Order of an Element

Definition: Let ($G, *$) be a group and $a \in G$, then the least positive integer n if it exists such that $a^{n}=e$ is called the order of $a \in G$.
The order of an element $a \in G$ is be denoted by $O(a)$.
Example: $G=\{1,-1, i,-i\}$ is a group with respect to multiplication. 1 is the identity in G.
$1=1=1 \underset{4}{=} \cdots=1_{6} \Rightarrow O(1)=1$.
$(-1)=(-1)=(-1)=\cdots=1 \Rightarrow O(-1)=2$.
$(-i)^{4}=(-i)^{8}=\cdots=1 \Rightarrow O(-i)=4$.
Example: In a group G, a is an element of order 30. Find order of a^{5}.
Solution: Given $O(a)=30$
$a^{30}=e, e$ is the identity element of G. Let $O\left(a^{5}\right)=n$
$\left(a^{5}\right)^{n}=e$
$a^{5 n}=e$, where n is the least positive integer. Hence 30 is divisor of $5 n$.
$n=6$.
Hence $O\left(a^{5}\right)=6$

Sub Groups

Definition: Let $(G, *)$ be a group and H be a non-empty subset of G. If ($H, *$) is itself is a group, then $(H, *)$ is called sub-group of ($G, *$).
Examples:
$(Z,+)$ is a subgroup of $(Q,+)$.

The additive group of even integers is a subgroup of the additive group of all integers.
$(N,+)$ is not a subgroup of the group $(Z,+)$, since identity does not exist in N under $+$.
Example: \quad Let $G=\{1,-1, i,-i\}$ and $H=\{1,-1\}$.
Here G and H are groups with respect to the binary operation multiplication and H is a subset of G. Therefore (H, \cdot) is a subgroup of (G, \cdot).

Example:
Let $H=\{0,2,4\} \subseteq Z_{6}$. Check that $\left(H,+_{6}\right)$ is a subgroup of $\left(Z_{6},+6\right)$.
Solution: $Z_{6}=\{0,1,2,3,4,5\}$.

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

$\left(Z_{6},+6\right)$ is a
group. $\mathrm{H}=\{0,2,4\}$.

+6	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

The following conditions are to be satisfied in order to prove that it is a subgroup.
(i). Closure: Let $a, b \in H \Rightarrow a+6 b \in H$.

$$
0,2 \in H \Rightarrow 0+62=2 \in H
$$

(ii). Identity Element: The row headed by 0 is exactly same as the initial row.

0 is the identity element.
(iii). Inverse: $0^{-1}=0,2^{-1}=4,4^{-1}=2$.

Inverse exist for each element of $(H,+6)$.
$\left(H,+_{6}\right)$ is a subgroup of $\left(Z_{6},+6\right)$.
Theorem: If $(G, *)$ is a group and $H \subseteq G$, then $(H, *)$ is a subgroup of $(G, *)$ if and only if

$$
\begin{gathered}
a, b \in H \Rightarrow a * b \in H \\
a \in H \Rightarrow a^{-1} \in H .
\end{gathered}
$$

Proof: The condition is necessary
Let $(H, *)$ be a subgroup of $(G, *)$.
To prove that conditions (i) and (ii) are satisfied.

Since $(H, *)$ is a group, by closure property we have $a, b \in H \Rightarrow a b \in H$.

The condition is sufficient:
Let (i) and (ii) be true. To prove that ($H, *$) is a subgroup of ($G, *$).
We are required to prove is: * is associative in H and identity $e \in H$.
That * is associative in H follows from the fact that * is associative in G. Since H is nonempty,
let $a \in H \Rightarrow a^{-1} \in H$ (by (ii))

$$
\underset{u^{1} \in \operatorname{com}}{a \in]^{1}} \in H, a^{-1} \in H \Rightarrow a a^{-1} \in H(\text { by (i) })
$$

Hence H itself is a group. $\quad=e$, where e is the identity in G.)

Example: The set S of all ordered pairs (a, b) of real numbers for which $a=0$ w.r.t the operation \times defined by $(a, b) \times(c, d)=(a c, b c+d)$ is non-abelian. Let $\mathrm{H}=\{(1, b) \mid b \in R\}$ is a subset of S. Show that H is a subgroup of (S, \times).

Solution: Identity element in S is $(1,0)$. Clearly $(1,0) \in H$.
Inverse of (a, b) in S is $(1 / a,-b / a)(\because a=0)$
Inverse of $(1, c)$ in S is $(1,-c / 1)$, i.e., $(1,-c)$
Clearly $(1, c) \in H \Rightarrow(1, c)^{-1}=(1,-c) \in H$.
Let $(1, b) \in H$.
$(1, b) \times(1, c)^{-1}=(1, b) \times(1,-c)$
$(1.1, b .1-c)=(1, b-c) \in H(\because b-c \in R)$
$(1, b),(1, c) \in H \Rightarrow(1, b) \times(1, c)^{-1} \in H \therefore H$ is a
subgroup of (S, \times).
Note: $\quad(1, b) \times(1, c)=(1.1, b .1+c)$

$$
\begin{aligned}
& =(1, b+c) \\
& =(1, c+b) \\
& =(1, c) \times(1, b)
\end{aligned}
$$

H is an abelian subgroup of the non-abelian group (S, \times).
Theorem: If H_{1} and H_{2} are two subgroups of a group G, then $H_{1} \cap H_{2}$ is also a subgroup of G.
Proof: Let H_{1} and H_{2} be two subgroups of a group G.
Let e be the identity element in G.
$e \in H_{1}$ and $e \in H_{2} . \therefore e \in H_{1}$
$\cap H_{2}$.
$\Rightarrow H_{1} \cap H_{2}=\phi$.
Let $a \in H_{1} \cap H_{2}$ and $b \in H_{1} \cap H_{2}$.
$a \in H_{1}, a \in H_{2}$ and $b \in H_{1}, b \in H_{2}$.
Since H_{1} is a subgroup, $a \in H_{1}$ and $b \in H_{1} \Rightarrow a b^{-1} \in H_{1}$.
Similarly $a b^{-1} \in H_{2}$.
$a b^{-1} \in H_{1} \cap H_{2}$.
Thus we have, $a \in H_{1} \cap H_{2}, b \in H_{1} \cap H_{2} \Rightarrow a b^{-1} \in H_{1} \cap H_{2}$.
$H_{1} \cap H_{2}$ is a subgroup of G.
Example: Let G be the group and $Z=\{x \in G \mid x y=y x$ for all $y \in G\}$. Prove that Z is a subgroup of G.
Solution: Since $e \in G$ and $e y=y e$, for all $y \in G$. It follows that $e \in Z$.
Therefore Z is non-empty.
Take any $a, b \in Z$ and any $y \in G$. Then

$$
\begin{aligned}
(a b) y=a & (b y) \\
& =a(y b), \text { since } b \in Z, b y=y b \\
& =(a y) b \\
& =(y a) b \\
& =y(a b)
\end{aligned}
$$

This show that $a b \in Z$.
Let $a \in Z \Rightarrow a y=y a$ for all $y \in G$.

$$
\begin{aligned}
& a^{-1}(a y) a^{-1}=a^{-1}(y a) a^{-1} \\
& \left(a^{-1} a\right)\left(y a^{-1}\right)=\left(a^{-1} y\right)\left(a a^{-1}\right) \\
& e\left(y a^{-1}\right)=\left(a^{-1} y\right) e e^{-1} y=a a^{-1}
\end{aligned}
$$

$$
a^{-1} \in Z .
$$

This shows that $a^{-1} \in Z$.
Thus, when $a, b \in Z$, we have $a b, \in Z$ and $a^{-1} \in Z$.
Therefore Z is a subgroup of G
This subgroup is called the center of G.

Homomorphism

Homomorphism into:Let ($G, *$) and (G, \cdot) be two groups and f be a mapping from G into G. If for $a, b \in G, f(a * b)=f(a) \cdot f(b)$, then f is called homomorphism G into G.
Homomorphism onto: Let ($G, *$) and (G, \cdot) be two groups and f be a mapping from G onto G. If for $a, b \in G, f(a * b)=f(a) \cdot f(b)$, then f is called homomorphism G onto G. Also then G^{\prime} is said to be a homomorphic image of G. We write this as $f(G) \cong G^{\prime}$.

If for $a, b \in G, f(a * b)=f(a) \cdot f(b)$, then f is said to be an isomorphism from G onto G.
Endomorphism: A homomorphism of a group G into itself is called an endomor-phism.
Monomorphism: A homomorphism into is one-one, then it is called an monomor-phism.
Epimorphism: If the homomorphism is onto, then it is called epimorphism.
Automorphism: An isomorphism of a group G into itself is called an automorphism.

Example: Let G be the additive group of integers and G be the multiplicative group. Then mapping $f: G \rightarrow G$ given by $f(x)=2$ is a group homomorphism of G into G.
Solution: Since $x, y \in G \Rightarrow x+y \in G$ and $2^{x}, 2^{y} \in G \Rightarrow 2^{x} \cdot 2^{y} \in G^{\prime}$.

$$
f(x+y)=2^{x+y}=2^{x} \cdot 2^{y}=f(x) \cdot f(y) .
$$

f is a homomorphism of G into G.
Example: Let G be a group of positive real numbers under multiplication and G be a group of all real numbers under addition. The mapping $f: G \rightarrow G$ given by $f(x)=\log _{10} x$. Show that f is an isomorphism.
Solution: Given $f(x)=\log _{10} x$.
Let $a, b \in G \Rightarrow a b \in G$. Also, $f(a), f(b) \in G$.

$$
f(a b)=\log _{10} a b=\log _{10} a+\log _{10} b=f(a)+
$$

$f(b) . \Rightarrow f$ is a homomorphism from G into G.
Let $x_{1}, x_{2} \in G$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \log _{10} x=\log _{10} x$
$\Rightarrow 10{ }_{10}^{\log x}=10{ }_{102}^{\log x}$
$x_{1}=x_{2}$
f is one-one.
$f\left(10^{y}\right)=\log _{10}\left(10^{y}\right)=y$.
For ever $y \in G^{\prime}$, there exists $10^{y} \in G$ such that $f\left(10^{y}\right)=y$
f is onto.
f an isomorphism from G to G.
Example: If R is the group of real numbers under the addition and R^{+}is the group of positive real numbers under the multiplication. Let $f: R \rightarrow R^{+}$be defined by $f(x)=e^{x}$, then show that f is an isomorphism.
Solution: Let $f: R \rightarrow R^{+}$be defined by $f(x)=e^{x}$.
is one-one: Let $a, b \in G$ and $f(a)=f(b)$

$$
\begin{aligned}
& e^{a}=e^{b} \\
& \log e^{a}=\log e^{b} \\
& a \log e=b \log e \\
& a=b
\end{aligned}
$$

Thus f is one-one.
f is onto: If $c \in R^{+}$then $\log c \in R$ and $f(\log c)=e^{\log c}=c$
Thus each element of R^{+}has a pre-image in R under f and hence f is onto.
is Homomorphism: $f(a+b)=e^{a+b}=e^{a} \cdot e^{b}=f(a) \cdot f(b)$ Hence f is an isomorphism.

Example: Let G be a multiplicative group and $f: G \rightarrow G$ such that for $a \in G, f(a)=a^{-1}$. Prove that f is one-one and onto. Also, prove that f is homomorphism if and only if G is commutative.
Solution: $f: G \rightarrow G$ is a mapping such that $f(a)=a^{-1}$, for $a \in G$.
(i). To prove that f is one-one.

Let $a, b \in G . \therefore a^{-1}, b^{-1} \in G$ and $f(a), f(b) \in G$.
Now $f(a)=f(b)$

$$
\begin{aligned}
& a^{-1}=b^{-1} \\
& \left(a_{-1}\right)_{-1}=\left(b_{-1}\right)_{-1} \\
& a=b
\end{aligned}
$$

f is one-one.
(ii). To prove that f is onto.

Let $a \in G . \therefore a^{-1} \in G$ such that $f\left(a^{-1}\right)=\left(a^{-1}\right)^{-1}=a$.
f is onto.
(iii). Suppose f is a homomorphism.

For $a, \in G, a b \in G$. Now $f(a b)=f(a) f(b)$

$$
(a b)^{-1}=a^{-1} b^{-1} \Rightarrow b^{-1} a^{-1}=a^{-1} b^{-1}
$$

$$
\left(b_{-1} a_{-1}\right)_{-1}=\left(a_{-1} b_{-1}\right)_{-1}
$$

$$
\left(a_{-1}\right)_{-1}\left(b_{-1}\right)_{-1}=\left(b_{-1}\right)_{-1}\left(a_{-1}\right)_{-1}
$$

$a b=b a$
G is abelian.
(iv). Suppose G is abelian $\Rightarrow a b=b a, \forall a, b \in G$.

$$
\text { For } \left.a, b \in G, f(a b)=(a b)^{-1}\right)
$$

f is a homomorphism.

Number Theory

Properties of Integers

Let us denote the set of natural numbers (also called positive integers)by N and the set of integers by Z.
i.e., $N=\{1,2,3 \ldots\}$ and $Z=\{\ldots .,-2,-1,0,1,2 \ldots\}$.

The following simple rules associated with addition and multiplication of these inte-gers are given below:
(a). Associative law for multiplication and addition

$$
(a+b)+c=a+(b+c) \text { and }(a b) c=a(b c), \text { for all } a, b, c \in Z .
$$

(b). Commutative law for multiplication and addition $a+b=b+a$ and $a b=b a$, for all $a, b \in$ Z.
(c). Distritbutive law $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$, for all $a, b, c \in$
Z. (d). Additive identity 0 and multiplicative identity 1

$$
a+0=0+a=a \text { and } a \cdot 1=1 \cdot a=a, \text { for all } a \in Z .
$$

(e). Additive inverse of $-a$ for any integer a

$$
+(-a)=(-a)+a=0 .
$$

Definition: Let a and b be any two integers. Then a is said to be greater than b if $a-b$ is positive integer and it is denoted by $a>b . a>b$ can also be denoted by $b<a$.

Basic Properties of Integers

Divisor: A non-zero integer a is said to be divisor or factor of an integer b if there exists an integer q such that $b=a q$.
If a is divisor of b, then we will write a / b (read as a is a divisor of b). If a is divisor of b, then we say that b is divisible by a or a is a factor of b or b is multiple of a. Examples: (a). 2/8, since $8=2 \times 4$.
(b). $-4 / 16$, since $16=(-4) \times(-4)$.
(c). $a / 0$ for all $a \in Z$ and $a=0$, because $0=a .0$.

Theorem: Let $a, b, c \in Z$, the set of integers. Then,
(i). If a / b and $b=0$, then $|a| \leq|b|$.
(ii). If a / b and b / c, then a / c.
(iii). If a / b and a / c, then $a / b+c$ and $a / b-c$.
(iv). If a / b, then for any integer $m, a / b m$.
(v). If a / b and a / c, then for any integers m and $n, a / b m+c n$.
(vi). If a / b and b / a then $a= \pm b$.
(vii). If a / b and $a / b+c$, then a / c.
(viii). If a / b and $m=0$, then $m a / m b$.

Proof:
(i). We have $a / b \Rightarrow b=a q$, where $q \in Z$.

Since $b=0$, therefore $q=0$ and consequently $|q| \geq 1$.
Also, $|q| \geq 1 \Rightarrow|a||q| \geq|a|$

$$
|b| \geq|a| .
$$

(ii). We have $a / b \Rightarrow b=a q_{1}$, where $q_{1} \in Z$.

$$
b / c \Rightarrow c=b q_{2}, \text { where } q_{2} \in Z .
$$

$$
c=b q_{2}=\left(a q_{1}\right) q_{2}=a\left(q_{1} q_{2}\right)=a q, \text { where } q=q_{1} q_{2} \in Z . \Rightarrow
$$

a / c. (iii). We have $a / b \Rightarrow b=a q_{1}$, where $q_{1} \in Z$.

$$
a / c \Rightarrow c=a q 2, \text { where } q_{2} \in Z
$$

$$
a / b+c
$$

$$
a / b-c
$$

(iv). We have $a / b \Rightarrow b=a q$, where $q \in Z$.

For any integer $m, b m=(a q) m=a(q m)=a q$, where $a=q m \in Z$.
$a / b m$.
(v). We have $a / b \Rightarrow b=a q_{1}$, where $q_{1} \in Z$.

$$
a / c \Rightarrow c=a q_{2}, \text { where } q_{2} \in Z
$$

Now $b m+c n=\left(a q_{1}\right) m+\left(a q_{2}\right) n=a\left(q_{1} m+q_{2} n\right)=a q$, where $q=q_{1} m+q_{2} n \in Z$
$a / m b+c n$.
(vi). We have $a / b \Rightarrow b=a q_{1}$, where $q_{1} \in Z$.

$$
b / a \Rightarrow a=b q_{2}, \text { where } q_{2} \in Z
$$

$b=a q_{1}=\left(b q_{2}\right) q_{1}=b\left(q_{2} q_{1}\right)$
$\Rightarrow b\left(1-q_{2} q_{1}\right)=0$
$q_{2} q_{1}=1 \Rightarrow q_{2}=q_{1}=1$ or $q_{2}=q_{1}=-1$
$a=b$ or $a=-b$ i.e., $a \pm b$. (vii). We have $a / b \Rightarrow b$
$=a q_{1}$, where $q_{1} \in Z$.
$a / b+c \Rightarrow b+c=a q 2$, where $q_{2} \in Z$
Now, $c=b-a q_{2}=a q_{1}-a q_{2}=a\left(q_{1}-q_{2}\right)=a q$, where $q=q_{1}-q_{2} \in Z$.
a / c.
(viii). We have $a / b \Rightarrow b=a q_{1}$, where $q_{1} \in Z$.

Since $m=0, m b=m\left(a q_{1}\right)=m a\left(q_{1}\right)$
ma/mb.

Greatest Common Divisor (GCD)

Common Divisor: A non-zero integer d is said to be a common divisor of integers a and b if d / a and d / b.

Example:
(1). $3 /-15$ and $3 / 21 \Rightarrow 3$ is a common divisor of 15,21 .
(2). ± 1 is a common divisor of a, b, where $a, b \in Z$.

Greatest Common Divisor: A non-zero integer d is said to be a greatest common divisor (gcd) of a and b if
(i). d is a common divisor of a and b; and
(ii). every divisor of a and b is a divisor of d.

We write $d=(a, b)=\operatorname{gcd}$ of a, b.
Example: 2, 3 and 6 are common divisors of 18, 24.
Also $2 / 6$ and $3 / 6$. Therefore $6=(18,24)$.
Relatively Prime: Two integers a and b are said to be relatively prime if their greatest common divisor is 1, i.e., $\operatorname{gcd}(a, b)=1$.
Example: Since $(15,8)=1,15$ and 8 are relatively prime.
Note:
(i). If a, b are relatively prime then a, b have no common divisors.
(ii). $a, b \in Z$ are relatively prime iff there exists $x, y \in Z$ such that $a x+b y=1$.

Basic Properties of Greatest Common Divisors:

(1). If $c / a b$ and $\operatorname{gcd}(a, c)=1$ then c / b.

Solution: We have $c / a b \Rightarrow a b=c q_{1}, q_{1} \in Z$.
$(a, c)=1 \Rightarrow$ there exist $x, y \in Z$ such that
$a x+c y=1$.
$a x+c y=1 \Rightarrow b(a x+c y)=b$
$(b a) x+b(c y)=b \Rightarrow\left(c q_{1}\right) x+b(c y)=b \Rightarrow c\left[q_{1} x+b y\right]=b$
$c q=b$, where $q=q_{1} x+b y \in Z \Rightarrow c / b$.
(2). If $(a, b)=1$ and $(a, c)=1$, then $(a, b c)=1$.

Solution: $(a, b)=1$, there exist $x_{1}, y_{1} \in Z$ such that

$$
\begin{align*}
a x_{1}+b y_{1} & =1 \\
b y_{1}=1 & -a x_{1} \tag{1}
\end{align*}
$$

$(a, c)=1$, there exist $x_{2}, y_{2} \in Z$ such that

$$
\begin{aligned}
& a x_{2}+b y_{2}=1 \\
& c y_{2}=1-a x_{2}
\end{aligned}
$$

(2) From (1) and (2), we have
$\left(b y_{1}\right)\left(c y_{2}\right)=\left(1-a x_{1}\right)\left(1-a x_{2}\right)$
$b c y_{1} y_{2}=1-a\left(x_{1}+x_{2}\right)+a x_{1} x_{2} \Rightarrow a\left(x_{1}+x_{2}-\right.$
$\left.a x_{1} x_{2}\right)+b c\left(y_{1} y_{2}\right)=1$
$a x_{3}+b c y_{3}=1$, where $x_{3}=x_{1}+x_{2}-a x_{1} x_{2}$ and $y_{3}=y_{1} y_{2}$ are integers.
There exists $x_{3}, y_{3} \in Z$ such that $a x_{3}+b c y_{3}=1$.
(3). If $(a, b)=d$, then $(k a, k b)=|k| d ., k$ is any integer.

Solution: Since $d=(a, b) \Rightarrow$ there exist $x, y \in Z$ such that
$a x+b y=d$.
$k(a x)+k(b y)=k d \Rightarrow(k a) x+(k b) y=k d$
$(k a, k b)=k d=k(a, b)$
(4). If $(a, b)=d$, then $(\underline{a} d, \underline{b})=1$.

Solution: Since $(a, b)=d \Rightarrow$ there exist $x, y \in Z$ such that $a x+b y=d$.

$$
\begin{aligned}
\Rightarrow & (a x+b y) / d=1 \\
& (\mathrm{a} / \mathrm{d}) x+(b / d) y=1
\end{aligned}
$$

Since d is a divisor of both a and $b, \mathrm{a} / \mathrm{d}$ and b / d are both integers.
Hence $(\mathrm{a} / \mathrm{d}, \mathrm{b} / \mathrm{d})=1$.

Division Theorem (or Algorithm)

Given integers a and d are any two integers with $b>0$, there exist a unique pair of integers q and r such that $a=d q+r, 0 \leq r<b$. The integer's q and r are called the quotient and the remainder respectively. Moreover, $r=0$ if, and only if, $b \mid a$.

Proof:

Consider the set, S, of all numbers of the form $a+n d$, where n is an integer.
$S=\{\mathrm{a}-\mathrm{nd}: \mathrm{n}$ is an integer $\}$
S contains at least one nonnegative integer, because there is an integer, n , that ensures a-nd ≥ 0, namely
$n=-|a| d$ makes $a-n d=a+|a| d^{2} \geq a+|a| \geq 0$.
Now, by the well-ordering principle, there is a least nonnegative element of S, which we will call r , where $\mathrm{r}=\mathrm{a}-\mathrm{nd}$ for some n . Let $\mathrm{q}=(\mathrm{a}-\mathrm{r}) / \mathrm{d}=(\mathrm{a}-(\mathrm{a}-\mathrm{nd})) / \mathrm{d}=\mathrm{n}$. To show that $\mathrm{r}<|\mathrm{d}|$, suppose to the contrary that $\mathrm{r} \geq|\mathrm{d}|$. In that case, either $\mathrm{r}-|\mathrm{d}|=\mathrm{a}-\mathrm{md}$, where $\mathrm{m}=\mathrm{n}+1$ (if d is positive) or $\mathrm{m}=\mathrm{n}-1$ (if d is negative), and so $\mathrm{r}-\mathrm{ld}$ is an element of S that is nonnegative and smaller than r , a contradiction. Thus $\mathrm{r}<\mathrm{ld} \mid$.

To show uniqueness, suppose there exist $\mathrm{q}, \mathrm{r}, \mathrm{q}^{\prime}, \mathrm{r}^{\prime}$ with $0 \leq \mathrm{r}, \mathrm{r}^{\prime}<|\mathrm{d}|$
such that $a=q d+r$ and $a=q^{\prime} d+r^{\prime}$.

Subtracting these equations gives $d\left(q^{\prime}-q\right)=r^{\prime}-r$, so dlr'-r. Since $0 \leq r, r^{\prime}<l d$, the difference $r^{\prime}-r$ must also be smaller than d. Since d is a divisor of this difference, it follows that the difference $r^{\prime}-r$ must be zero, i.e. $r^{\prime}=r$, and so $q^{\prime}=q$.

Example: \quad If $a=16, b=5$, then $16=3 \times 5+1 ; 0 \leq 1<5$.

Euclidean Algorithm for finding the GCD

An efficient method for finding the greatest common divisor of two integers based on the quotient and remainder technique is called the Euclidean algorithm. The following lemma provides the key to this algorithm.
Lemma: If $a=b q+r$, where a, b, q and r are integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Statement: When a and b are any two integers $(a>b)$, if r_{1} is the remainder when a is divided by b, r_{2} is the remainder when b is divided by r_{1}, r_{3} is the remainder when r_{1} is divided by r_{2} and so on and if $r_{k+1}=0$, then the last non-zero remainder r_{k} is the $\operatorname{gcd}(a, b)$.

Proof:

By the unique division principle, a divided by b gives quotient q and remainder r,
such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$, with $0 \leq \mathrm{r}<\mathrm{lb\mid}$.
Consider now, a sequence of divisions, beginning with a divided by b giving quotient q_{1} and remainder b_{1}, then b divided by b_{1} giving quotient q_{2} and remainder b_{2}, etc.

```
\(\mathrm{a}=\mathrm{bq}_{1}+\mathrm{b}_{1}\),
\(b=b_{1} q_{2}+b_{2}\),
\(b_{1}=b_{2} q_{3}+b_{3}\),
\(b_{n-2}=b_{n-1} q_{n}+b_{n}\),
\(b_{n-1}=b_{n q} q_{n+1}\)
```

In this sequence of divisions, $0 \leq \mathrm{b}_{1}<|\mathrm{b}|, 0 \leq \mathrm{b}_{2}<\mid \mathrm{b}_{1} \mathrm{l}$, etc., so we have the sequence $|\mathrm{b}|>\left|\mathrm{b}_{1}\right|>\left|\mathrm{b}_{2}\right|>\ldots \geq 0$. Since each b is strictly smaller than the one before it, eventually one of them will be 0 . We will let b_{n} be the last non-zero element of this sequence.

From the last equation, we see $b_{n} \mid b_{n-1}$, and then from this fact and the equation before it, we see that $b_{n} \mid b_{n-2}$, and from the one before that, we see that $b_{n} \mid b_{n-3}$, etc. Following the chain backwards, it follows that $b_{n} \mid b$, and $b_{n} \mid a$. So we see that b_{n} is a common divisor of a and b.

To see that b_{n} is the greatest common divisor of a and b, consider, d, an arbitrary common divisor of a and b. From the first equation, $a-\mathrm{bq}_{1}=b_{1}$, we see dlb_{1}, and from the second, equation, $b-b_{1} q_{2}=b_{2}$, we see dlb_{2}, etc. Following the chain to the bottom, we see that $d l b_{n}$. Since an arbitrary common divisor of a and b divides b_{n}, we see that b_{n} is the greatest common divisor of a and b.

Example: \quad Find the gcd of 42823 and 6409.
Solution: By Euclid Algorithm for 42823 and 6409, we have $42823=6.6409+4369, \mathrm{rl}=4369$, $6409=1.4369+2040, \mathrm{r} 2=2040$, $4369=2.2040+289, r 3=289$, $2040=7.289+17, r 4=17$, $289=17.17+0$, r5 $=0$
$r_{4}=17$ is the last non-zero remainder. $\therefore d=(42823,6409)=17$.

Example: \quad Find the gcd of 826, 1890.
Solution: By Euclid Algorithm for 826 and 1890, we have $1890=2.826+238, \mathrm{rl}=238$ $826=3.238+112, \mathrm{r} 2=112$ $238=2.112+14, \mathrm{r} 3=14$ $112=8.14+0, \mathrm{r} 4=0$
$r_{3}=14$ is the last non-zero remainder. $\therefore d=(826,1890)=14$.
****Example: Find the gcd of 615 and 1080, and find the integers x and y such that $\operatorname{gcd}(615$, 1080) $=615 x+1080 y$.

Solution: By Euclid Algorithm for 615 and 1080, we have

$$
\begin{aligned}
1080 & =1.615+465, r_{1}=465-----(1) \\
615 & =1.465+150, r_{2}=150-----(2)
\end{aligned}
$$

$465=3.150+15, r_{3}=15-----(3)$
$150=10.15+0, r_{4}=0------(4)$
$r_{3}=15$ is the last non-zero remainder.
$d=(615,1080)=15$. Now, we find x and y such that
$615 x+1080 y=15$.
To find x and y, we begin with last non-zero remainder as follows.
$d=15=465+(-3) \cdot 150$; using (3)

$$
\begin{aligned}
& =465+(-3)\{615+(-1) 465) ; \text { using }(2) \\
& =(-3) \cdot 615+(4) \cdot 465 \\
& =(-3) \cdot 615+4(1080+(-1) \cdot 615) ; \text { using }(1) \\
& =(-7) \cdot 615+(4) \cdot 1080 \\
& =615 x+1080 y
\end{aligned}
$$

Thus $\operatorname{gcd}(615,1080)=15$ provided $15=615 x+1080 y$, where $x=-7$ and $y=4$.
Example: Find the gcd of 427 and 616 and express it in the form $427 x+616 y$.
Solution: By Euclid Algorithm for 427 and 616, we have

```
616=1.427+189,r1 = 189 -.......(1)
427=2.189+49,r2 = 49.........
189=3.49+42,r3 = 42._N.....
\(189=3.49+42\), r3 \(=42 \ldots . .\).
\(49=1.42+7, r 4=7 . .\).
\(42=6.7+0, \mathrm{r} 5=0\).
\(r_{5}=7\) is the last non-zero remainder.
\(d=(427,616)=7\). Now, we find \(x\) and \(y\) such that
\(427 x+616 y=7\).
To find \(x\) and \(y\), we begin with last non-zero remainder as follows.
\(d=7=49+(-1) .42\); using (4)
\[
\begin{aligned}
& =49+(-1)\{189+(-3) \cdot 49\} ; \text { using }(3) \\
& =4.49-189 \\
& =4 .\{427+(-2) .189\}-189 ; \text { using }(2) \\
& =4.427+(-8) .189-189 \\
& =4.427+(-9) .189 \\
& =4.427+(-9)\{616+(-1) 427\} ; \text { using }(1) \\
& =4.427+(-9) .616+9.427 \\
& =13.427+(-9) .616
\end{aligned}
\]

Thus \(\operatorname{gcd}(427,616)=7\) provided \(7=427 x+616 y\), where \(x=13\) and \(y=-9\).
Example: For any positive integer \(n\), prove that the integers \(8 n+3\) and \(5 n+2\) are relatively prime.
Solution: If \(n=1\), then \(\operatorname{gcd}(8 n+3,5 n+2)=\operatorname{gcd}(11,7)=1\).
If \(n \geq 2\), then we have \(8 n+3>5 n+2\), so we may write
\(8 n+3=1 .(5 n+2)+3 n+1, \quad 0<3 n+1<5 n+2\)
\(5 n+2=1 .(3 n+1)+2 n+1, \quad 0<2 n+1<3 n+1\)
\(3 n+1=1 .(2 n+1)+n, 0<n<2 n+1\)
\(2 n+1=2 . n+1, \quad 0<1<n\)
\(n=n .1+0\).
Since the last non-zero remainder is \(1, \operatorname{gcd}(8 n+3,5 n+2)=1\) for all \(n \geq 1\).
Therefore the given integers \(8 n+3\) and \(5 n+2\) are relatively prime.
Example: If \((a, b)=1\), then \((a+b, a-b)\) is either 1 or 2 .
Solution: Let \((a+b, a-b)=d \Rightarrow d \mathrm{l} a+b, d \mathrm{l} a-b\).

> Then \(a+b=k_{1} d\).
> and \(a-b=k_{2} d \ldots\).

Solving (1) and (2), we have
\(2 a=\left(k_{1}+k_{2}\right) d\) and \(2 b=\left(k_{1}-k_{2}\right) d\)
\(d\) divides \(2 a\) and \(2 b\)
\(d \leq \operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)=2\), since \(\operatorname{gcd}(a, b)=1 \therefore d=1\) or 2 .
\[
\begin{align*}
& \text { Then } 2 a+b=k_{1} d_{\ldots} \ldots \ldots \text { (1) } \\
& \text { and } a+2 b=k_{2} d \ldots \ldots \ldots . \tag{2}
\end{align*}
\]
\(3 a=\left(2 k_{1}-k_{2}\right) d\) and \(3 b=\left(2 k_{2}-k_{1}\right) d\)
\(d\) divides \(3 a\) and \(3 b\)
\(d \leq \operatorname{gcd}(3 a, 3 b)=3 \operatorname{gcd}(a, b)=3\), since \(\operatorname{gcd}(a, b)=1 \therefore d=1\) or 2 or 3 .
But \(d\) cannot be 2 , since \(2 a+b\) and \(a+2 b\) are not both even [when \(a\) is even and \(b\) is odd, \(2 a\)
\(b\) is odd and \(a+2 b\) is even; when \(a\) is odd and \(b\) is even, \(2 a+b\) is even and \(a+2 b\) is odd;
when both \(a\) and \(b\) are odd \(2 a+b\) and \(a+2 b\) are odd.] Hence \(d=(2 a+b, a+2 b)\) is 1 or 3 .

\section*{Least Common Multiple (LCM)}

Let \(a\) and \(b\) be two non-zero integers. A positive integer \(m\) is said to be a least common multiple (lcm) of \(a\) and \(b\) if \(m\) is a common multiple of \(a\) and \(b\) i.e., \(a / m\) and \(b / m\), and
\(c\) is a common multiple of \(a\) and \(b, c\) is also a multiple of \(m\) i.e., if \(a / c\) and \(b / c\), then \(m / c\).

In other words, if \(a\) and \(b\) are positive integers, then the smallest positive integer that is and divisible by both \(a b\) is called the least common multiple of \(a\) and \(b\) and is denoted by \(\operatorname{lcm}(a, b)\).
Note: If either or both of \(a\) and \(b\) are negative then \(\operatorname{lcm}(a, b)\) is always positive.
Example:
\(\operatorname{lcm}(5,-10)=10, \operatorname{lcm}(16,20)=80\).

\section*{Prime Numbers}

Definition: An integer \(n\) is called prime if \(n>1\) and if the only positive divisors of \(n\) are 1 and \(n\). If \(n>1\) and if \(n\) is not prime, then \(n\) is called composite.

Examples: The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, \(43,47,53,59,61,67,71,73,79,83,89\), and 97.

Theorem: Every integer \(n>1\) is either a prime number or a product of prime numbers.
Proof: We use induction on \(n\). The theorem is clearly true for \(n=2\). Assume it is true for every integer \(<n\). Then if \(n\) is not prime it has a positive divisor \(d=1, d=n\). Hence \(n=c d\), where \(c=n\). But both \(c\) and \(d\) are \(<n\) and \(>1\) so each of \(c, d\) is a product of prime numbers, hence so is \(n\).

\section*{Fundamental Theorem of Arithmetic}

Theorem: Every integer \(n>1\) can be expressed as a product of prime factors in only one way, a part from the order of the factor.

\section*{Proof:}

There are two things to be proved. Both parts of the proof will use he Wellordering Principle for the set of natural numbers.

We first prove that every \(\mathrm{a}>1\) can be written as a product of prime factors. (This includes the possibility of there being only one factor in case a is prime.)
Suppose bwoc that there exists a integer a \(>1\) such that a cannot be written as a product of primes.
By the Well-ordering Principle, there is a smallest such a. Then
by assumption a is not prime so \(\mathrm{a}=\mathrm{bc}\) where \(1<\mathrm{b}, \mathrm{c}<\mathrm{a}\).
So b and c can be written as products of prime factors (since a is the smallest positive integer than cannot be.)
But since \(\mathrm{a}=\mathrm{bc}\), this makes a a product of prime factors, a contradiction.
Now suppose bwoc that there exists an integer \(a>1\) that has two different prime factorizations, say \(\mathrm{a}=\mathrm{p} 1 \cdots \mathrm{ps}=\mathrm{q} 1 \cdots \mathrm{qt}\), where the pi and qj are all primes. (We allow repetitions among the pi and qj. That way, we don't have to use exponents.)
Then \(\mathrm{p} 1 \mid \mathrm{a}=\mathrm{q} 1 \cdots \mathrm{qt}\). Since p 1 is prime, by the Lemma above, p 1 l qj for some j
. Since qj is prime and \(\mathrm{p} 1>1\), this means that \(\mathrm{p} 1=\mathrm{qj}\).
For convenience, we may renumber the qj so that \(\mathrm{p} 1=\mathrm{q} 1\).
We can now cancel p1 from both sides of the equation above to get \(\mathrm{p} 2 \cdots \mathrm{ps}=\mathrm{q} 2 \cdots \mathrm{qt}\). But
\(\mathrm{p} 2 \cdots \mathrm{ps}<\mathrm{a}\) and by assumption a is the smallest positive integer with a non-unique prime factorization.
It follows that \(\mathrm{s}=\mathrm{t}\) and that \(\mathrm{p} 2, \ldots, \mathrm{ps}\) are the same as \(\mathrm{q} 2, \ldots, \mathrm{qt}\), except possibly in a different order.
But since \(\mathrm{p} 1=\mathrm{q} 1\) as well, this is a contradition to the assumption that these were two different factorizations.
Thus there cannot exist such an integer a with two different factorizations
Example: Find the prime factorisation of 81,100 and 289 . Solution: \(81=3 \times 3 \times 3 \times 3=3^{4}\)
\[
100=2 \times 2 \times 5 \times 5=2^{2} \times 5^{2}
\]
\(289=17 \times 17=17^{2}\).
Theorem: Let \(m=p\) al \(p^{a_{2} \ldots . .} p^{a_{k}}\) and \(n=p_{1} b_{1} \quad p^{b_{2} \ldots p} p^{p_{k}}\). Then

\({ }^{-1} p_{i}{ }_{\left.\text {uas }(a, v, v)^{\prime}\right)}\), where \(\min (a, b)\) represents the minimum of the two numbers \(a\) and \(b\).
\(\stackrel{\left.\operatorname{lcm}(m, n)={ }_{=}^{p 1}{ }_{p}{ }^{\max (a i, b i}\right)^{1} 1^{\prime} 1^{\prime} \times p \max (a 2, b 2) \times \ldots \times p k \max \left(a k k^{b} k\right)}{ }\)
\(\Pi_{p_{i}}{ }^{\max (a i, b i)}\), where max \((a, b)\) represents the maximum of the two numbers \(a\) and \(b\).
Theorem: If \(a\) and \(b\) are two positive integers, then \(\operatorname{gcd}(a, b) . \operatorname{lcm}(a, b)=a b\).
Proof: Let prime factorisation of \(a\) and \(b\) be
\(\mathrm{m}=p^{a}{ }_{1}{ }_{1} p^{a}{ }_{2}{ }_{2} \ldots p^{a}{ }_{k}{ }_{k}\) and \(n=p^{b}{ }_{1}{ }_{1} p^{b}{ }_{2}{ }^{2} \ldots p^{b}{ }_{k}{ }^{k}\)
Then \(\operatorname{gcd}(a, b)=p 1^{\min \left(a a_{1}, b_{1}\right)}{ }_{\times p 2}{ }^{\min \left(a_{2}, b_{2}\right)} \times \ldots \times p k^{\min \left(a_{k} b\right.}{ }_{k}{ }^{\prime}\) and
\(\operatorname{lcm}(m, n)=p 1^{\max \left(a_{1}, b_{1}\right)} \times 2^{\max \left(a_{2} 2_{2}\right)^{2}} \times \ldots \times p k^{\max \left(a_{k} b_{k}\right)}\)
We observe that if \(\min \left(a_{i}, b_{i}\right)\) is \(a_{i}\left(\right.\) or \(\left.b_{i}\right)\) then \(\max \left(a_{i}, b_{i}\right)\) is \(b_{i}\left(\right.\) or \(\left.a_{i}\right), i=1,2\)..,
\(n\). Hence \(\operatorname{gcd}(a, b) . \operatorname{lcm}(a, b)\)

```

$=p 1^{[\min (a, b)+\max (a, b)]} . p 2^{[\min (a, b)+\max (a, b)]} \ldots p k^{[\min (a, b)+\max (a, b)]}$

```

```

 \(=\left(p_{1} a_{1} p_{a_{2}} a_{2} \ldots p_{k} a_{k}\right)\left(p\left(b_{1} p_{2} b_{2} \ldots p_{k}{ }^{b k}\right)\right.\)
 \(=a b\).
    ```

Example: Use prime factorisation to find the greatest common divisor of 18 and 30 .
Solution: Prime factorisation of 18 and 30 are
\(18=2 \times 3 \times 5\) and \(30=2 \times 3 \times 5\).
\(\operatorname{gcd}(18,30)=2 \min (1,1) \times 3 \min (2,1) \times 5 \min (0,1)\)
\[
\begin{aligned}
& =2 \times 3 \times 5 \\
& =2 \times 3 \times 1
\end{aligned}
\]

Example: Use prime factorisation to find the least common multiple of 119 and 544.
Solution: Prime factorisation of 119 and 544 are
\[
\begin{aligned}
119=2^{0} \times 7^{1} \times 17^{1} \text { and } 544=2^{5} \times 7^{0} \times 17^{1} \\
\begin{aligned}
\operatorname{lcm}(119,544)=2_{\max (0,5)} \times 7_{\max (1,0)} \times & 17_{\max (1,1)} \\
& =2 \times 7^{1} \times 17 \\
& 32 \times 7 \times 17
\end{aligned}
\end{aligned}
\]

Example: Using prime factorisation, find the gcd and lcm of
(i). \((231,1575)\) (ii). \((337500,21600)\). Verify also \(\operatorname{gcd}(m, n) . \operatorname{lcm}(m, n)=m n\).

Example: Prove that \(\log _{3} 5\) is irrational number.
Solution: If possible, let \(\log _{3} 5\) is rational number.
\(\log _{3} 5=u / v\), where \(u\) and \(v\) are positive integers and prime to each other.
\(3^{u / v}=5\)
i.e., \(3^{u}=5^{v}=n\), say.

This means that the integer \(n>1\) is expressed as a product (or power) of prime numbers (or a prime number) in two ways.
This contradicts the fundamental theorem arithmetic.
\(\log _{3} 5\) is irrational number.
Example: Prove that \(\sqrt{ } 5\) is irrational number.
Solution: If possible, let \(\sqrt{ } 5\) is rational number.
\(\Rightarrow \sqrt{ } 5=u / v\), where \(u\) and \(v\) are positive integers and prime to each other.
\(u 2=5 v 2\).
\(u 2\) is divisible by 5
\(u\) is divisible by 5 i.e., \(u=5 m\)
\(\therefore\) From (1), we have \(5 v 2=25 m 2\) or \(v 2=\)
\(5 m 2\) i.e., \(v 2\) and hence \(v\) is divisible by 5
i.e., \(v=5 n\). \(\qquad\)
From (2) and (3), we see that \(u\) and \(v\) have a common factor 5 , which contradicts the assumption.

\section*{Testing of Prime Numbers}

Theorem: If \(n>1\) is a composite integer, then there exists a prime number \(p\) such that \(p / n\) and \(p \leq \sqrt{ } n\).
Proof: Since \(n>1\) is a composite integer, \(n\) can be expressed as \(n=a b\), where
\(1<a \leq b<n\). Then \(a \leq \sqrt{ } n\).
If \(a>\sqrt{ } n\), then \(b \geq a>\sqrt{ } n\).
\(n=a b>\sqrt{ } n . \sqrt{ } n=n\), i.e. \(n>n\), which is a contradiction.
Thus \(n\) has a positive divisor \((=a)\) not exceeding \(v_{n}\).
\(a>1\), is either prime or by the Fundamental theorem of arithmetic, has a primefactor. In ither ase, \(n\) has a prime factor \(\leqslant \sqrt{ }\).

\section*{Algorithm to test whether an integer \(\boldsymbol{n}>1\) is prime:}

Step 1: Verify whether \(n\) is 2 . If \(n\) is 2 , then \(n\) is prime. If not goto step 2 .
Step 2: Verify whether 2 divides \(n\). If 2 divides \(n\), then \(n\) is not a prime. If 2 does not divides \(n\), then goto step (3).
Step 3: Find all odd primes \(p \leq \sqrt{ } n\).If there is no such odd prime, then \(n\) is prime otherwise, goto step (4).
Step 4: Verify whether \(p\) divides \(n\), where \(p\) is a prime obtained in step (3). If \(p\) divides \(n\), then \(n\) is not a prime. If \(p\) does not divide \(n\) for any odd prime \(p\) obtained in step (3), then \(n\) is prime.

Example: Determine whether the integer 113 is prime or not.
Solution: Note that 2 does not divide 113. We now find all odd primes \(p\) such that \(p^{2} \leq 113\). These primes are 3,5 and 7 , since \(7<113<11\).

Hence, 113 is a prime.
Example: Determine whether the integer 287 is prime or not.
Solution: Note that 2 does not divide 287 . We now find all odd primes \(p\) such that \(p^{2} \leq 287\).
These primes are \(3,5,7,11\) and 13 , since \(13^{2}<287<17^{2}\).
7 divides 287.
Hence, 287 is a composite integer.

\section*{Modular Arithmetic}

\section*{Congruence Relation}

If \(a\) and \(b\) are integers and \(m\) is positive integer, then \(a\) is said to be congruent to \(b\) modulo \(m\), if \(m\) divides \(a-b\) or \(a-b\) is multiple of \(m\). This is denoted as
\[
a \equiv b(\bmod m)
\]
\(m\) is called the modulus of the congruence, \(b\) is called the residue of \(a(\bmod m)\). If \(a\) is not congruent to \(b\) modulo \(m\), then it is denoted by \(a \equiv b(\bmod m)\). Example:
(i). \(89 \equiv 25(\bmod 4)\), since \(89-25=64\) is divisible by 4 . Consequently 25 is the residue of \(89(\bmod 4)\) and 4 is the modulus of the congruent.
(ii). \(153 \equiv-7(\bmod 8)\), since \(153-(-7)=160\) is divisible by 8 . Thus -7 is the residue of \(153(\bmod 8)\) and 8 is the modulus of the congruent.
(iii). \(24 \cong 3(\bmod 5)\), since \(24-3=21\) is not divisible by 5 . Thus 24 and 3 are incon-gruent modulo 5

Note: If \(a \equiv b(\bmod m) \Leftrightarrow a-b=m k\), for some integer \(k\)
\[
a=b+m k, \text { for some integer } k .
\]

\section*{Properties of Congruence}

Property 1: The relation \(\|\) Congruence modulo \(m \|\) is an equivalence relation. i.e., for all integers \(a, b\) and \(c\), the relation is
\[
\begin{aligned}
& \text { Reflexive: For any integer } a \text {, we have } a \equiv a(\bmod m) \\
& \text { Symmetric: If } a \equiv b(\bmod m) \text {, then } b \equiv a(\bmod m) \\
& \text { Transitive: If } a \equiv b(\bmod m) \text { and } b \equiv c(\bmod m) \text {, then } a \equiv c(\bmod \\
& m) \text {. }
\end{aligned}
\]

Proof: (i). Let \(a\) be any integer. Then \(a-a=0\) is divisible by any fixed positive integer \(m\). Thus \(a \equiv a(\bmod m)\).

The congruence relation is reflexive.
(ii). Given \(a \equiv b(\bmod m)\)
\(\Rightarrow a-b\) is divisible by \(m \Rightarrow-(a-b)\) is
divisible by \(m \Rightarrow b-a\) is divisible by
m
i.e., \(b \equiv a(\bmod m)\).

Hence the congruence relation is symmetric.
(iii). Given \(a \equiv b(\bmod m)\) and \(b \equiv c(\bmod m)\)
\(a-b\) is divisible of \(m\) and \(b-c\) is divisible by \(m\). Hence ( \(a-\)
b) \(+(b-c)=a-c\) is divisible by \(m\)
i.e., \(a \equiv c(\bmod m)\)

The congruence relation is transitive.
Hence, the congruence relation is an equivalence relation.
Property 2 :
If \(a \equiv b(\bmod m)\) and \(c\) is any integer, then
(i). \(a \pm c \equiv b \pm c(\bmod m)\)
(ii). \(a c \equiv b c(\bmod m)\).

Proof:
(i). Since \(a \equiv b(\bmod m) \Rightarrow a-b\) is divisible by \(m\).

Now \((a \pm c)-(b \pm c)=a-b\) is divisible by \(m\).
\(a \pm c \equiv b \pm c(\bmod m)\).
(ii). Since \(a \equiv b(\bmod m) \Rightarrow a-b\) is divisible by \(m\).

Now, \((a-b) c=a c-b c\) is also divisible by \(m\).
\[
a c \equiv b c(\bmod m) .
\]

Note: The converse of property (2) (ii) is not true always.
Property 3: If \(a c \equiv b c(\bmod m)\), then \(a \equiv b(\bmod m)\) only if \(\operatorname{gcd}(c, m)=1\). In fact, if \(c\) is an integer which divides \(m\), and if \(a c \equiv b c(\bmod m)\), then \(a \equiv b \bmod \left[\frac{m}{\operatorname{gcd}(\mathrm{c}, \mathrm{m})}\right]\)
i.e., \(a c-b c=p m\), where \(p\) is an integer.
\[
a-b=p\left(\underline{m}_{\mathrm{c}}\right)
\]
\(\mathrm{a} \equiv \mathrm{b}\left[\bmod \left({ }^{m} \mathrm{c}\right)\right]\), provided that \({ }^{m} \mathrm{c}\) is an integer.
Since \(c\) divides \(m, \operatorname{gcd}(c, m)=c\).
Hence, \(a \equiv b \bmod [\overline{\operatorname{gcd}(\mathrm{c}, \mathrm{m})}]\)
But, if \(\operatorname{gcd}(c, m)=1\), then \(a \equiv b(\bmod m)\).
Property 4: If \(a, b, c, d\) are integers and \(m\) is a positive integer such that \(a \equiv b(\bmod m)\) and \(c\) \(d(\bmod m)\), then
(i). \(a \pm c \equiv b \pm d(\bmod m)\)
(ii). \(a c \equiv b d(\bmod m)\)
(iii). \(a^{n} \equiv b^{n}(\bmod m)\), where \(n\) is a positive integer.

Proof: (i). Since \(a \equiv b(\bmod m) \Rightarrow a-b\) is divisible by \(m\).
Also \(c \equiv d(\bmod m) \Rightarrow c-d\) is divisible by \(m\).
\((a-b) \pm(c-d)\) is divisible by \(m\). i.e., \((a \pm c)-\)
( \(b \pm d\) ) is divisible by \(m\). i.e., \(a \pm c \equiv b \pm\)
\(d(\bmod m)\).
(ii). Since \(a \equiv b(\bmod m) \Rightarrow a-b\) is divisible by \(m\).
\((a-b) c\) is also divisible by \(m\).
\((c-d) b\) is also divisible by \(m\).
\((a-b) c+(c-d) b=a c-b d\) is divisible by \(m\). i.e., \(a c-b d\) is divisible by \(m\).
i.e., \(a c \equiv b d(\bmod m)\). \(\qquad\)
(iii). In (1), put \(c=a\) and \(d=b\). Then, we get
\(a_{2} \equiv b_{2}(\bmod m)\). \(\qquad\)
Also \(a \equiv b(\bmod m)\). \(\qquad\)
Using the property (ii) in equations (2) and (3), we have \(a^{3} \equiv b^{3}(\bmod\)
m)

Proceeding the above process we get
\(a^{n} \equiv b^{n}(\bmod m)\), where \(n\) is a positive integer.

\section*{Fermat's Theorem}

If \(p\) is a prime and \((a, p)=1\) then \(a^{p-1}-1\) is divisible by \(p\) i.e., \(a^{p-1} \equiv 1(\bmod p)\).
Proof
We offer several proofs using different techniques to prove the statement \(a^{p} \equiv a(\bmod p)\). If \(\operatorname{gcd}(a, p)=1\), then we can cancel a factor of \(a\) from both sides and retrieve the first version of the theorem.

\section*{Proof by Induction}

The most straightforward way to prove this theorem is by by applying the induction principle. We fix \(p\) as a prime number. The base case, \(1^{p} \equiv 1(\bmod p)\), is obviously true. Suppose the statement \(a^{p} \equiv a(\bmod p)\) is true. Then, by the binomial theorem,
\[
(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\cdots+\binom{p}{p-1} a+1
\]

Note that \(p\) divides into any binomial coefficient of the form \(\binom{p}{k}\) for \(1 \leq k \leq p-1\). This
follows by the definition of the binomial coefficient as
\[
\binom{p}{k}=\frac{p!}{k!(p-k)!} ; \text { since } p \text { is prime }
\] then \(p\) divides the numerator, but not the denominator.

Taken \(\bmod p\), all of the middle terms disappear, and we end up with \((a+1)^{p} \equiv a^{p}+1(\bmod p)\). Since we also know that \(a^{p} \equiv a(\bmod p)\), then \((a+1)^{p} \equiv a+1(\bmod p)\), as desired.

Example: Using Fermat's theorem, compute the values of
\[
\begin{gathered}
3^{302}(\bmod 5), \\
302(\bmod 7) \text { and } \\
3^{302}(\bmod 11) .
\end{gathered}
\]

Solution: By Fermat‘s theorem, 5 is a prime number and 5 does not divide 3, we have
\[
\begin{gathered}
3_{5-1} \equiv 1(\bmod 5) \\
3 \equiv 1(\bmod 5)
\end{gathered}
\]
\[
\begin{aligned}
& 3_{300} \equiv 1(\bmod 5) \\
& 3_{302} \equiv 3^{2}=9(\bmod 5) \\
& 3_{302} \equiv 4(\bmod 5) . \ldots . . . . .(1) \\
& \text { does not divide 3, we have }
\end{aligned}
\]

Similarly, 7 is a prime number and 7 does not divide 3 , we have
\[
3 \equiv 1(\bmod 7)
\]
\[
\begin{align*}
3^{300} & =1(\bmod 7) \\
3^{302} & =3^{2}=9(\bmod 7) \\
3^{302} & \equiv 2(\bmod 7) \ldots \ldots . . . . . . . . \tag{2}
\end{align*}
\]
and 11 is a prime number and 11 does not divide 3 , we have
\[
\begin{align*}
& 3^{3} \stackrel{3_{1030}^{10} \equiv 1(\bmod 11)}{\equiv} \equiv 1 \quad(\bmod 11) \\
& 3^{302} \equiv 3^{2}=9(\bmod 11) .
\end{align*}
\]

201
Example: Using Fermat's theorem, find \(3{ }^{201}(\bmod 11)\).
Example: Using Fermat‘s theorem, prove that \(4^{13332} \equiv 16(\bmod 13331)\). Also, give an example to show that the Fermat theorem is true for a composite integer. Solution: (i). Since 13331 is a prime number and 13331 does not divide 4.
\[
\begin{aligned}
& \text { By Fermat's theorem, we have } \\
& { }^{4} 13330 \equiv 1(\bmod 13,331) \\
& 4^{4} 13331 \equiv 1(\bmod 13,331) \\
& 4^{13332} \equiv 4(\bmod 13,331) \\
& 4^{13332} \equiv 16(\bmod 13,331)
\end{aligned}
\]
(ii). Since 11 is prime and 11 does not divide 2 .
\[
\begin{align*}
& \text { By Fermat‘s theorem, we have } \\
& 2^{11-1} \equiv 1(\bmod 11) \\
& \text { i.e., } 2^{10} \equiv 1(\bmod 11) \\
& 2^{340} \equiv 1(\bmod 11) \ldots \ldots \ldots \ldots . . .(1)  \tag{1}\\
& 2^{5} \equiv 1(\bmod 31) \\
& 2^{340} \equiv 1(\bmod 31) \ldots . . . . . . . . . .(2) \tag{2}
\end{align*}
\]

Also,

From (1) and (2) we get
\(2^{340}-1\) is divisible by \(11 \times 31=341\), since \(\operatorname{gcd}(11,31)=1\).
i.e., \(2^{340} \equiv 1(\bmod 341)\).

Thus, even though 341 is not prime, Fermat theorem is satisfied.

\section*{Euler's totient Function:}

Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n . It is written using the Greek letter phi as \(\phi(\mathrm{n})\), and may also be called Euler's phi function. It can be defined more formally as the number of integers \(k\) in the range \(1 \leq \mathrm{k} \leq \mathrm{n}\) for which the greatest common divisor \(\operatorname{gcd}(\mathrm{n}, \mathrm{k})\) is equal to 1 . The integers k of this form are sometimes referred to as totatives of \(n\).

\section*{Computing Euler's totient function:}
\[
\begin{aligned}
\phi(n) & =n \prod_{p p n}\left(1-\frac{1}{p}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right),
\end{aligned}
\]
where the product is over the distinct prime numbers dividing
Example: Find \(\phi(21), \phi(35), \phi(240)\)
Solution:
\[
\left.\begin{array}{l}
\phi(21)=\phi(3 \times 7) \\
\\
21(1-1 \quad 3)(1-1 \\
12
\end{array}\right)
\]

Euler's Theorem: If \(a\) and \(n>0\) are integers such that \((a, n)=1\) then \(a^{\phi(n)} \equiv 1(\bmod n)\). Proof:

Consider the elements \(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\phi(n)}\) of \((\mathrm{Z} / \mathrm{n})\) the congruence classes of integers that are relatively prime to n .

For \(\mathrm{a} \in(\mathrm{Z} / \mathrm{n})\) the claim is that multiplication by a is a permutation of this set; that is, the set \(\left\{\operatorname{ar}_{1}, \operatorname{ar}_{2}, \ldots, \operatorname{ar}{ }_{\phi(n)}\right\}\) equals \((Z / n)\). The claim is true because multiplication by a is a function from the finite set \((Z / n)\) to itself that has an inverse, namely multiplication by \(1 / \mathrm{a}(\bmod \mathrm{n})\)

Now, given the claim, consider the product of all the elements of \((Z / n)\), on one hand, it is \(r_{1} r_{2}, \ldots r_{\phi(n)}\). On the other hand, it is \(\operatorname{ar}_{1} \operatorname{ar}_{2} \ldots\) ar \(\phi(n)\). So these products are congruent \(\bmod \mathrm{n}\)
\[
\begin{aligned}
\mathrm{r}_{1} \mathrm{r}_{2} \ldots \mathrm{r}_{\phi(n)} & \equiv \operatorname{ar}_{1} \operatorname{ar}_{2} \ldots \mathrm{ar}_{\phi(n)} \\
\mathrm{r}_{1} \mathrm{r}_{2} \ldots \mathrm{r}_{\phi(n)} & \equiv a^{\phi(n)} \mathrm{r}_{1} \mathrm{r}_{2} \ldots \mathrm{r}_{\phi(n)} \\
& \equiv a^{\phi(n)}
\end{aligned}
\]
where, cancellation of the \(r_{i}\) is allowed because they all have multiplicative inverses (mod
n) Example: Find the remainder \(29^{202}\) when divided by 13.

Solution: We first note that \((29,13)=1\).
Hence we can apply Euler's Theorem to get that \(29^{\phi(13)} \equiv 1(\bmod 13)\).
Since 13 is prime, it follows that \(\phi(13)=12\), hence \(29^{12} \equiv 1(\bmod 13)\).
We can now apply the division algorithm between 202 and 12 as follows:
\[
202=12(16)+10
\]

Also we note that 29 can be reduced to \(3(\bmod 13)\), and hence:
\(29^{0} \equiv 3^{10}=59049=3(\bmod 13)^{2}\)
Hence when \(29^{202}\) is divided by 13 , the remainder leftover is 3.
Example: Find the remainder of 99999999 when divided by 23.
Solution: Once again we note that \((99,23)=1\), hence it follows that \(99{ }^{\phi(23)}\)
\(\equiv 1(\bmod 23)\). Once again, since 23 is prime, it goes that \(\phi(23)=22\), and more
appropriately \(9922 \equiv 1(\bmod 23)\).
We will now use the division algorithm between 999999 and 22 to get that:
\[
999999=22(45454)+11
\]

\section*{Hence it follows that}

Hence the remainder of \(999^{999999}\) when divided by 23 is 22 .
Note that we can solve the final congruence a little differently as:
There are many ways to evaluate these sort of congruences, some easier than others.
Example: What is the remainder when \(13^{18}\) is divided by 19?
Solution: If \(y^{\phi(z)}\) is divided by z , the remainder will always be 1 ; if \(\mathrm{y}, \mathrm{z}\) are coprime In this case the Euler number of 19 is 18
(The Euler number of a prime number is always 1 less than the number).
As 13 and 19 are co-prime to each other, the remainder will be 1.

Example: Now, let us solve the question given at the beginning of the article using the concept of Euler Number: What is the remainder of \(19^{2200002} / 23\) ?
Solution: The Euler Number of the divisor i.e. 23 is 22, where 19 and 23 are co-prime. Hence, the remainder will be 1 for any power which is of the form of 220000 .
The given power is 2200002 .
Dividing that power by 22 , the remaining power will be 2 .
Your job remains to find the remainder of \(19^{2} / 23\).
As you know the square of 19 , just divide 361 by 23 and get the remainder as 16 .
Example: Find the last digit of \(55^{5}\).
Sol: We first note that finding the last digit of \(55^{5}\) can be obtained by reducing \(55^{5}\) (mod \(10)\), that is evaluating \(55^{\circ}(\bmod 10)\).

We note that \((10,55)=5\), and hence this pair is not relatively prime,
however, we know that 55 has a prime power decomposition of
\[
55=5 \times 11 .(11,190)=1,
\]
hence it follows that \(11^{\phi(10)} \equiv 1(\bmod 10)\).
We note that \(\phi(10)=4\). Hence \(11^{4} \equiv 1(\bmod 10)\), and more appropriately:
Hence the last digit of \(55^{5}\) is 5 .
Example: Find the last two digits of \(3333^{4444}\).
Sol:
We first note that finding the last two digits of \(3333^{4444}\) can be obtained by
reducing \(3333{ }^{4444}(\bmod 100)\).
Since \((3333,100)=1\), we can apply this theorem.
We first calculate that \(\phi(100)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)=(2)(5)\left(4^{4}\right)=40\).
Hence it follows from Euler's theorem that \(3333{ }^{40} \equiv 1(\bmod 100)\).
Now let's apply the division algorithm on 4444 and 40 as follows:
\[
4444=40(111)+4
\]

Hence it follows that;
\(3333^{4444} \equiv\left(3333^{40}\right)^{111} \cdot 3333^{4} \equiv(1)^{\text {¹2 }} \cdot 3333^{4}(\bmod 100) \equiv 33^{4}=1185921 \equiv 21(\bmod\)
100) Hence the last two digits of \(3333^{4444}\) are 2 and 1 .

\section*{Previous questions}

Prove that a group consisting of three elements is an abelian group? Prove that \(\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}\) is an abelian group under multiplication?
Let \(G=\{-1,0,1\}\). Verify that \(G\) forms an abelian group under addition?
Prove that the Cancellation laws holds good in a group G.?
Prove that the order of a-1 is same as the order of a.?
Explain in brief about fermats theorem?
Explain in brief about Division theorem?
Explain in brief about GCD with example?
Explain in brief about Euler's theorem with examples?
Explain in brief about Principle of Mathematical Induction with examples?
Define Prime number? Explain in brief about the procedure for testing of prime numbers?
Prove that the sum of two odd integers is an even integer?
Find \(11^{7} \bmod 13\) using modular arithmetic.

\section*{Multiple choice questions}
1. If alb and blc, then alc.
a) True
b) False

Answer: a
2. \(\operatorname{GCD}(\mathrm{a}, \mathrm{b})\) is the same as \(\operatorname{GCD}(|\mathrm{al}| \mathrm{lb}\),\() .\)
a) True
b) False

Answer: a
3. Calculate the GCD of 1160718174 and 316258250 using Euclidean algorithm.
a) 882
b) 770
c) 1078
d) 1225

Answer: c
4. Calculate the GCD of 102947526 and 239821932 using Euclidean algorithm.
a) 11
b) 12
c) 8
d) 6

Answer: d
Calculate the GCD of 8376238 and 1921023 using Euclidean algorithm.
13
b) 12
c) 17
d) 7

Answer: a
6. What is \(11 \bmod 7\) and \(-11 \bmod 7\) ?
a) 4 and 5 b) 4 and 4 c) 5 and 3 d) 4 and -4 Answer: d

Which of the following is a valid property for concurrency?
\[
\begin{aligned}
& a=b(\bmod n) \text { if } n \mid(a-b) b) a=b(\bmod n) \text { implies } b=a(\bmod n) \\
& a=b(\bmod n) \text { and } b=c(\bmod n) \text { implies } a=c(\bmod n) \\
& \text { All of the mentioned }
\end{aligned}
\]

Answer: d
\([(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n\)
a) True
b) False
9. \([(a \bmod n)-(b \bmod n)] \bmod n=(b-a) \bmod n\)
a) True
b) False

Answer:b
10. \(11^{\prime} \bmod 13=\)
a) \(3 b) 7\)
c) 5 d\() 15\)

Answer: d
11. The multiplicative Inverse of \(1234 \bmod 4321\) is
a) 3239
b) 3213
c) 3242
d) Does not exist

Answer: a
12. The multiplicative Inverse of \(550 \bmod 1769\) is
a) 434
b) 224
c) 550
d) Does not exist

Answer: a
13. The multiplicative Inverse of \(24140 \bmod 40902\) is
a) 2355
b) 5343
c) 3534
d) Does not exist

Answer: d
14. \(\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{GCD}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})\)
a) True
b) False

Answer: a
Define an equivalence relation R on the positive integers \(\mathrm{A}=\{2,3,4, \ldots, 20\}\) by mRn if the largest prime divisor of \(m\) is the same as the largest prime divisor of \(n\). The number of equivalence classes of \(R\) is
8 (b) 10 (c)
9 (d) 11
(e) 7

Ans:a
The set of all nth roots of unity under multiplication of complex numbers form a/an
A.semi group with identity B.commutative semigroups with identity
C.group D.abelian group

Option: D
17. Which of the following statements is FALSE?
A.The set of rational numbers is an abelian group under addition
B.The set of rational integers is an abelian group under addition
C.The set of rational numbers form an abelian group under multiplication
D.None of these

Option: D
18.In the group \(G=\{2,4,6,8)\) under multiplication modulo 10 , the identity element is
A. 6 B. 8 C. 4 D. 2

Option: A
19. Match the following
A. Groups
I. Associativity
B. Semi groups
II. Identity
C. Monoids
III. Commutative
D. Abelian Groups
IV Left inverse
IV I II III III I IV II II III I IV
Option: A

Let \((\mathrm{Z}, *)\) be an algebraic structure, where Z is the set of integers and the operation \(*\) is defined by \(n^{*} m=\operatorname{maximum}(n, m)\). Which of the following statements is TRUE for \((Z, *)\) ?
A. \((\mathrm{Z}, *)\) is a monoid \(\mathrm{B} .\left(\mathrm{Z},{ }^{*}\right)\) is an abelian group C. \((\mathrm{Z}, *)\) is a group D.None Option: D
21. Some group \((G, 0)\) is known to be abelian. Then which of the following is TRUE for \(G\) ?
\(A_{2} g=g^{-1}\) for every \(g \in G B . g=g^{2}\) for every \(g \in G C .(g o h)^{2}=g^{2} o\)
\(h^{2}\) for every \(g, h \in G D . G\) is of finite order
Option: C
If the binary operation \(*\) is deined on a set of ordered pairs of real numbers as \((a, b) *(c, d)\)

\section*{\((\mathrm{ad}+\mathrm{bc}, \mathrm{bd})\) and is associative, then \((1,2) *(3,5) *(3,4)\) equals \\ \[
\text { A. }(74,40) \text { B. }(32,40) \text { C. }(23,11) \text { D. }(7,11) \text { Option: A }
\]}

The linear combination of \(\operatorname{gcd}(252,198)=18\) is
a) \(252 * 4-198 * 5\)
b) \(252 * 5-198 * 4\)
c) \(252 * 5-198 * 2\)
d) \(252 * 4-198 * 4\)

Answer: a
The inverse of 3 modulo 7 is
\[
-1 \text { b) }-2 \text { c) }-3 \text { d) }-4
\]

Answer:b
The integer 561 is a Carmichael number.
a) True
b) False
Answer:a
26. The linear combination of \(\operatorname{gcd}(117,213)=3\) can be written as
a) \(11 * 213+(-20) * 117\)
b) \(10 * 213+(-20) * 117\)
c) \(11 * 117+(-20) * 213\)
d) \(20 * 213+(-25) * 117\)

Answer: a
27. The inverse of 7 modulo 26 is
a) 12
b) 14
c) 15
d) 20

Answer:c
28. The inverse of 19 modulo 141 is
a) 50
b) 51
c) 54
d) 52

Answer:d
29. The value of \(5^{\text {LUO }} \bmod 7\) is
a) 3
b) 4
c) 8
d) 9

Answer:a
30. The solution of the linear congruence \(4 x=5(\bmod 9)\) is
a) \(6(\bmod 9)\)
b) \(8(\bmod 9)\)
c) \(9(\bmod 9)\)
d) \(10(\bmod 9)\)

Answer:b
31. The linear combination of \(\operatorname{gcd}(10,11)=1\) can be written as
a) \((-1) * 10+1 * 11\)
b) \((-2) * 10+2 * 11\)
c) \(1 * 10+(-1) * 11\)
d) \((-1) * 10+2 * 11\)

Answer:a

\section*{FREQUENTLY ASKED QUESTIONS}

UNIT-1
1.Define well formed formulas? and Explain with one example?
2. Demonstrate the Tautologies and equivalence of formulas?

Unit-2
1.Analyze the principle of inclusion and exclusion with one example?
2.Demonstrate the Hasse diagrams and it properties?

Unit-3

1Define the semi groups and monoids and homomorphism with suitable examples?
2.Analyze the fundamental theorem of Arithmetic?

FirstRanker.com ANATHEOPY

 by the Great Hathematetan Euler. Generally Graphs are used to solve problems in many triads.
def:
Graphs are discrete structures consisting of vertices and. Edges cohere a graph can be represented as \(G=(V, E)\). Here we com define the vertu ara as om element which com be parroted in a plane and Edges are defined as limes which are connection g between the vertices.

Applications of Graph Theory:-
1. Using graphs we com find out the minimum distance. from one place to mother.
2. we can Analyse the cha very easily.
3. we con find the number of colours heeded to colour different regions of the data.
4. Netcoorkes are majorly develop using the concepts of dieffexens graph Theory.
5. Graph Theory provides different algorithms with less complexity to solve wether verity arstranker.com problems.

FirstRankers,comides a good

Graphs are divided into mainly three types.
1) Simple graph:

A graph G. \((V, E)\) is a graph consisting set of vertices and set of ages which are connecting the vertices is called a simple graph.
\[
\begin{aligned}
& V=\{A, B, C, D, E\} \\
& E=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& C_{1}=(A, B), C_{2}=(B, C), C_{3}=(C, D), \quad Q_{4}=(D, B) C_{5}=(D, E) \\
& C_{6}=(E, A) .
\end{aligned}
\]

2) Multiple graph:-

Let \(G=(V, E)\) is a graph Consisting of set of vertices and set of edges and a function \(F\) where \(F: E \rightarrow\{(u, v) \mid u, v \in v\), is said to be a multiple graph if two edges \(e_{1}\) and \(c_{2}\) are existing as \(f\left(e_{1}\right)=f\left(e_{2}\right)\)
\[
\begin{aligned}
& V=\{A, B, C, D\} . \\
& E=\left\{e_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\}, \\
& c_{1}=(A, B), C_{2}=(B, C) \\
& c_{2}=(C, D), c_{4}=(D, A) \quad e_{5}=(A, B) .
\end{aligned}
\]

3) Pseudo graph:-

Let \(G=(V, E)\) is a graph consisting some vertices and edges and a function \(F\) cohere \(F: E \rightarrow\{(u, u) \mid u \in \mathbb{V}\}\) is said to be a pseudo graph if as \(f\left(e_{1}\right)=u \in V\)
\(E=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\).
\(e_{1}=(A, B), C_{2}=(B, C) e_{3}=(C, D), C_{4}=(D, A)\) \(e_{5}=(c, c)\).

Directed Graph:- (or) ( \(D_{i}-\) graph):
Let \(G=(V, E)\) is a graph mentioned coith directions
it is called as a directed graph \(v=\left\{A_{1} B_{1} C_{1} D\right\}\)
\(E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}\).

\(e_{1}=(A, B), \quad e_{2}=(B, C) \quad e_{3}=(C, D) \quad e_{4}=(D, A)\).
\(C_{5}=(B, A), C_{6}=(C, C)\)
1) Write the vertex list and Edge list for following graphs and determined the type of the graph

\[
\begin{aligned}
& V=\{A, B, E ; F\} ; V=\left\{B_{1}, C, C\right\} \\
& E=\left\{C_{1}, C_{2}, C_{3}, e_{4}, e_{7}\right\} \\
& E=\left\{C_{5}, C_{6}\right\} . \\
& C_{1}=(A, B) e_{2}=(B ; E) \\
& C_{3}=(E, F), C_{4}=(F, A) \\
& C_{7}=(F, A), e_{5}=(B, D) \\
& e_{6}=(D, C)
\end{aligned}
\]

It is a multiple graph.


It is directed graph. Hell pseudo graph.
\[
\begin{aligned}
& v=\{A, B, C, D\} \\
& E=\left\{C_{1}, e_{2}, C_{3}, C_{4}, C, C_{6}, C_{3}, C, C_{3}=(D, C) \quad C_{4}=(D, A)\right. \\
& \left.C_{1}=(B, A), C_{2}=(B, C), C_{3}\right) \\
& C_{5}=(D, B), C_{6}=(D, B) \quad e_{7}=(B, D) \quad e_{8}=(C, C) .
\end{aligned}
\]

Termmology of Enyphs:-
For undirected graph wa can define the Elbowing terns
1. Adjacent vertices:-

Let \(G=(v, E)\) be an undirected graph the odpart trice can always define with respective of a vertex. For \(\begin{gathered}\text { y } y \text {, una }\end{gathered}\) \(v_{1}\) the adjacent vertices of \(v_{1}\) are defined as the reigtores
\(v_{1}\).


Adjacent list
\begin{tabular}{|c|c|}
\hline vertex & \begin{tabular}{c} 
Adjacent \\
vertices
\end{tabular} \\
\hline\(A\) & \(B_{1} E\) \\
\(B\) & \(A_{1} D\) \\
\(C\) & \(D\) \\
\(D\) & \(E_{1} B_{1} C\) \\
\(E\) & \(A_{1} D\) \\
\hline
\end{tabular}
2) Incident vertices:-
let \(G=\left(v_{1} E\right)\) is a graph the modest vertices alias d on edge for any edge \(e_{1}\) the incident vertices are the ad of \(e_{1}\)

www. First Riankericolint
www.FirstRanker.com
\begin{tabular}{|c|c|}
\hline Edge & \begin{tabular}{c} 
Incident \\
vertices
\end{tabular} \\
\hline\(C_{1}\) & \(A_{1} B\) \\
\(C_{2}\) & \(B_{1} D\) \\
\(C_{3}\) & \(D_{1} C\) \\
\(e_{4}\) & \(D_{1} E\) \\
\(e_{5}\) & \(E_{1} A\). \\
\hline
\end{tabular}

Degree of sa vertex:-
Let \(G=(V, E)\) is an undirected: graph we can define the degree for each and every vertex of a graph. The degree of a vertex can be defined as number of edges incident to the particular vertex. except any loop.


Degree of a graph
\[
\begin{array}{ll}
\operatorname{deg}(A)=2 & \operatorname{deg}(D)=3 \\
\operatorname{deg}(B)=3 & \operatorname{deg}(E)=3 \\
\operatorname{deg}(C)=2 &
\end{array}
\]
1) Find the \(g\).degree of the given graph.

degree of a graph.
\[
\begin{array}{ll}
\operatorname{deg}(A)=3 & \operatorname{deg}(F)=2 \\
\operatorname{deg}(B)=7 & \\
\operatorname{deg}(C)=2 \\
\operatorname{deg}(D)=4 \\
\operatorname{deg}(E)=4
\end{array}
\]

Note: A vertex with degree Zero, is called an Isolated vertex and a vertex with degree one is called a pendent vertex.
P. FirstRanfkerteontroviss a some

Firstranker's choice
1) Find the degrees of wwownwstriaften. gram of isolated and pendent vertices.

2). \(\operatorname{deg}(A)=2\)
\[
\operatorname{deg}(F)=3
\]
\(\operatorname{deg}(B)=3 \quad\) There ore isolated verite.
\(\operatorname{deg}(C)=1\)
Re 0
\(\operatorname{deg}(D)=0\)
there is one pendent \(v_{r_{i s}}\)
\[
\begin{aligned}
& \operatorname{deg}(E)=2 \\
& \operatorname{deg}
\end{aligned}
\]

No ?
\[
\begin{aligned}
& \operatorname{deg}(A)=4 \\
& \operatorname{deg}(B)=6 \\
& \operatorname{deg}(C)=4 \\
& \operatorname{deg}(D)=5
\end{aligned}
\]

\[
\operatorname{deg}(A)=4 \quad \operatorname{deg}(E)=3
\]

\(\operatorname{deg}(B)=6 \quad\) There are no isolated \(\quad\) rat pendent vertices.

\[
\begin{array}{ll}
\operatorname{dog}(A)=3 & \operatorname{dog}(F)=5 \\
\operatorname{deg}(B)=2 & \operatorname{deg}(F)=4 \\
\operatorname{deg}(C)=2 & \operatorname{deg}(G)=2 \\
\operatorname{deg}(D)=0 & \operatorname{deg}(H)=2
\end{array}
\]
\[
\operatorname{dog}(I)=1
\]

There are two isolated vertices ie, \(D, I\) no pendent vertices.

Hand shaking Theorem:-
Let \(G=(U, E)\) be an undirected graph with \(V\) vertices and: number of edges is ' \(e\) ' then we have to prove that
\[
2 e=\sum_{V \in V} \operatorname{deg}(\nu)
\]

Proof: Let \(G=(V, E)\) be \(m\) undirected graph.

Firstranker's choice
Now we have to
www.FirstRahhkerr.com
www.FirstRanker.com
show that \(2 e=\sum_{V \in V} \operatorname{deg}(v)\)
Here each vertex of a graph \(G\) having a degree and each edge will contritite two possible vertices to the sum of degree of each vertex. i.e \(V=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}\) then
\[
\sum_{v \in V} \operatorname{deg}(v)=\operatorname{deg}\left(v_{1}^{\prime}\right)+\operatorname{deg}\left(v_{2}\right)+\ldots+\operatorname{deg}\left(v_{n}\right) .
\]
we can prove this theorem by considering an example
\[
\begin{aligned}
& V=\{A, B, C, D, E\} \\
& \sum_{V \in V} \operatorname{deg}(V)= \operatorname{deg}(A)+\operatorname{deg}(B)+\operatorname{deg}(C) \\
&+\operatorname{deg}(D)+\operatorname{deg} C E) \\
&= Q+4+1+2+3 \\
&= 12
\end{aligned}
\]
and.
\[
\begin{aligned}
2 e & =2(6) \\
& =12 .
\end{aligned}
\]
since Here the number of edges \(e=6\).
\[
\therefore \quad 2 e=\sum_{V \in V} \operatorname{deg}(v)
\]
1. Find the number of edges are there in a graph with lovertices each is having degree 6:
4) From hand shaking theorem \&ंe \(=\sum_{v \in V} \log (v)\)

From the given information the graph is having 10 vertices and with degree 6.
\[
\begin{aligned}
\operatorname{De}=\sum_{V \in V} \operatorname{deg}(V) & =\operatorname{deg}\left(7^{s t} \text { vertex }\right)+\cdots \cdot+\cdot \operatorname{deg}\left(10^{\text {th }} \text { vertex }\right) \\
& =6+6+6 t \cdots+6 \text { (10 times }) \\
& =6 \times 10
\end{aligned}
\]

FirstRanker.com
Firstranker's choice torty powit. www.EystRânker.com
-) Find the vurber of duge 5 and are wwowtristfanker.gom 3 of them contwibutioy and ancther witce os beving daghe ancther out in pendert werte \(2 e=\frac{E}{} d \operatorname{deg}(x)\).
SH. By hand shang afo gropl cortains 6 vatices From the gran mbxntrim ore is degree 0 , arcticer \(s\) of tomithutiny degros 5 equee \(d\). \(\operatorname{seg}\left(1^{s \frac{s}{1}}\right.\) vertant \(+\cdots+\operatorname{deg}\left(5^{t h}\right.\) vertex \()\)
\[
\begin{aligned}
Q e=\sum_{x \in V} d_{x}(x) & =\operatorname{dg}[1 \times 2 \\
& =5+5 \pi 5+0+1 \% 9 . \\
R e & =18
\end{aligned}
\]
\[
e=9
\]

Theoram:
An miliected groph has an even number of ver: of add degree
Port: Let \(G=(V, E)\) be on undirected graph where \(V i x\) werter set \(=\left\{v_{1 n} v_{2}, v_{3}, \ldots-v_{n}\right\}\).

By fiplying Hondsraking theokem.
\[
\begin{aligned}
& 2 t=\sum_{v \in V} \operatorname{deg}(v)=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right) t \cdots+\operatorname{deg}\left(v_{v}\right) \\
& 2 e=\sum_{v \in V_{1}} \operatorname{deg}(v)+\sum_{v \in v_{2}} \operatorname{deg}(v)
\end{aligned}
\]
where \(v_{1}\) is set of evendegies wertices

Firstranker.'s choice
\[
\sum_{V \in V_{1}} \operatorname{deg}(V)+\sum_{v \in V_{2}} \text { wig First Ranker com is also. even }
\]
www.FirstRanker.com

To get the equality between L.H.S and R.H.S we know that \(\sum_{V \in V_{1}} \operatorname{deg}(V)\) is even. since sum of even numbers is even and also \(\sum_{v \in V_{2}} d e q(v)\) is also even, Here \(v_{2}\) has been defined as set of odd degree vertices it consists the elements has oct number therefore \(v_{2}\) must have even number of vertices since even number of vertices sum the will result on even number.
\(\therefore\) An undirected graph has an even number of vertices of odd degree.

Terminology for directed graph:-
Initial and ternitrad vertices; Indegree and autsegree of vertex. Let \(G=(V, E)\) is a directed graph the indegree of a vertex can be represented as number of edges entering at vertex and the outdegree has been defined as the number of edges going out from a particular vertex. The Indegree is represented \(c\) deg (V) and the out degree is represented as \(\operatorname{deg}^{f}(v)\) Iridegree out-dgree:
\[
\begin{array}{ll}
\operatorname{Iridegree} & \operatorname{deg}^{+}(A)=2 \\
\operatorname{deg}^{-}(A)=0 & \operatorname{deg}^{+}(B)=2 \\
\operatorname{deg}^{-}(C)=1 & \operatorname{deg}^{+}(C)=2 \\
\operatorname{deg}^{-}(D)=2 & \operatorname{deg}^{+}(D)=0 \\
\operatorname{deg}^{-}(E)=2 & \operatorname{deg}^{+}(E)=0
\end{array}
\]


Initial and Termmowteirterankergongraph www. FirstRanker.com of \(m\). edge is "starting fadge"
vertex is "ending point of an ed

edge \(^{n}\)
\begin{tabular}{|c|c|c|}
\hline Edge & Initial vertex & Ttrenitw \\
\hline\(e_{1}\) & \(A\) & \(B\) \\
\(e_{2}\) & \(B\) & \(D\) \\
\(e_{3}\) & \(D\) & \(C\) \\
\(e_{4}\) & \(D\) & \(C\) \\
\(e_{5}\) & \(A\) & \(C\) \\
\(e_{6}\) & \(A\) & \(C\) \\
\(e_{7}\) & \(B\) & \(C\) \\
\hline
\end{tabular}


To represent tiv wwwitinstRănker.com
making too methods
one is Adjacency Mabix
The is Fracidency int ma.
Adjacency Matrix:-
Let \(G=(v, e)\) is a graph the adjacency matrix has bin define by taking all the vertices of a graph. Mas romeo Columns and define the elements of a Matrix as follolos
\[
v_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{3}\right) \\ 0 & \text { otherwise }\end{cases}
\]


Incidency Matrix:-
Let \(G=(V, E)\) is a graph the ad mcidency matin has been defined as by taking. all the vertices of \(a:\)
\(\qquad\)

First Rānkeranomise
Firstranker's choice

www.FirstRanker.com
www.FirstRanker.coenc

\[
\begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E
\end{aligned}\left[\begin{array}{cccccc}
c_{1} & c_{2} & c_{3} & e_{4} & c_{5} & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\]
1) Represent the bolow as an adjacency matrix and incidency matrix


Incidency

Incidencs

irstrapher'Gifaphice. The stu wbuvifirstRankercerng
2) Draw the graph below the adjacent
7) Draw the graph below A
1) \(\begin{aligned} & a \\ & B \\ & C\end{aligned}\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\)

\[
3)\left[\begin{array}{lll}
A & B & c \\
B & 3 & 2 \\
3 & 0 & 4 \\
2 & 4 & 0
\end{array}\right]
\]
143)


Icidency
\[
\begin{aligned}
& \text { Adjacency } \\
& \begin{array}{llll}
A \\
B \\
C \\
P & B & C & D \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & C
\end{array} \begin{array}{llll}
A & e_{1} & c_{2} & c_{3}
\end{array} c_{4}
\end{aligned}
\]

Let \(G=(U, E)\) we \(C o n\) call this graph as a Biparted graph if its vertex set has been divided into two partitions \(v_{1}\) and \(v_{2}\) and satisfies the below conditions.
1) \(v_{1} \cap v_{2}=\phi\)
2) \(v_{1} \cup v_{2}=V\)
3) Every edge of the graph must form from one element in \(v\), and another element in \(v_{2}\)
\[
\begin{aligned}
& v=\{A, B, C, D, E\} \\
& v_{1}=\{A, B, C, D\} \\
& v_{2}=\{E\}
\end{aligned}
\]


Note: To check whether the given graph is Bi-farted or rot we cam use the theorem that is,
if any graph \(G=(V, E)\) com coloured with exactly two colours such that no two edger vertices have the some colour: the \(G\) is a Biparted graph.
1) Check the give graph is Biparted or not
a)


To check this graph biparted or not we con check by using
the theorem where it gives the result by coloring the graph www.FirstRanker.com

Fistramket's choice. COM adjacent vertices
such that rot tow. FirstRanker.qomby take now. RirstPanker.com
let us try to colour the graph
graph and assign with one colour continues the process all the vertices are get coloured such that mo two wisc. vertices have the some colour


Blue
\[
\begin{aligned}
& v_{1}=\left\{A_{1} B_{1} D\right\} \\
& v_{2}=\left\{C_{1}, E_{1}, G\right\}
\end{aligned}
\]

we com assign the graph exactly with two collusion therefore, we can divide this vertex set in to two partitees. as above.
\(\therefore\) The given graph is Bipartiod
2) Check whether the given graphs are Biparted or rot
1)
2)

3)


Fifstranker's choice obta'm from a cycle. FirstRanker.com www.FirstRanke.f.fem center of the graph and make edges to all the adjusting vertices


Connectivity of graphs:-
we can solve any problems by difining the connectivity of the graphs., Connectivity concems for how the edges and vertices are connected in a graph.
Path:- A path is a sequence of edges from one vertex to another vertex.
connected graph:-
A connected graph is a simple graph in which two distinct pair of vertices have path


Euler path \& circuit:-
Euler circuit \& path is proposed by Euler. aA path in general walking with a sequence of vertices by exactly visiting the edge of the graph exactly once. This is called as Euler circuit or path

Complete Bi farted gimyiv:FístRanker.com
Let \(G=(V, E)\) is a complete BL ported graph when ever
vertex in \(v_{1}\) has a partiticion of \(v_{2}\) is connected with in edge it is called a complete Biported graph.

It is denoted by \(k_{m, n}\) where \(m\) is number of vertices \(m V_{\text {, }}\)
 and \(n\) is number of vertices inv

Complete graph:- \(\left(k_{n}\right)\)
A Graph \(G=(V, E)\) is called as a complete graph if each two distinct pair of vertices are connected with in ', and it is denoted by \(k_{n}\).


Cycle:- \(A\) cycle \(C_{n}\) for \(n \geq 3\) consist of \(n\) vertices and sequence of edges are \(\{(1,2),(2,3) \cdots(n-1, n)(n, 1)\}\) The cycle for \(C_{3}\) and \(C_{4}\) is as follows.

the result by colouring www.Firstleapkef.com the graph. such that no two adjacent vertices have some colour. Let us try to colour the graph by taking a vertex from the graph and assign with one colour Continues the process until all the vertices are get coloured such that no two adjacent vertices have the some colour.

Blue
we: cam assign the graph exactly with two colocirs Therefore, we com divide this vertex set into two partitients as follows.
\[
\begin{aligned}
& \left.v_{1}=\{A, C\}, F\right\} \\
& v_{2}=\{B, D, E\}
\end{aligned}
\]

\(\therefore\) The given graph is Biparted.
www.FirstRanker.com
colour. Let us trywwofirstipanker.com
vertex from the graph and assign with WWNH.SirstRankerkom the process cmeill ae the vertices eave get coloured such that no two adjacent vertices have the some colon.

we com assign the graph exactly with two colours Therefore, we can divide this vertex set ito two partitients as follows.
\[
\begin{aligned}
& v_{1}=\{A, C\} \\
& v_{2}=\{B, D, E\}
\end{aligned}
\]

\(\therefore\) The given graph is Biparted.
3)


Firstranker'suthpiaso got www,FirstRanker.com www.FirstRanker.com
Step is: Ane the edges the rundeved ere oo we coom ware the ramose debar el circuit.

\(\therefore\) Euler path: \(A D C F A B C E F G\)
Eluder circus: \(A D C F A B C E F G A\);
2) Find the Euler circuit and path from the gina graph.


Procedure:
Step 1: choose A from the given graph
Sep 9: From one circuit from \(A\) which is \(A B E C D A\) and numbered it
82g3: Form another Circuit from vertex \(B\) which is \(B C D B\) and also get at number
Step 4: All the edges are numbered once so we concorite the reverse order of ciruds.


\(\therefore\) Euler path: \(A \times Y Z \times \omega C D E \times V \omega B\)
Euler circuit: \(A X Y Z X \omega C D E X V \omega B A\).
4) Find the Euler circuit and path m the given graph.


Procedure:
Step 1: choose \(A\) from the given graph
step 2: Form circuit from \(A\) which is \(A B C D E C F A\) and numbered it.
step 3: There is only one circuit can be existed. steps: All these edges are numbered once 50 :


Calnur. Lot us +wwwlFirstRänker.com
www.FirstRanker. \(99 m\) Hamilton path \& circuit:-

A simple circuit in a graph \(G\) that ass ind every vertex exactly once is called : Hamilton... circuit.

A simple path in a graph \(\&\) that passes through every vertex exactly once is called Hamilton path
procedure for find Hamilton path \& circuit:-
steps: a roose any vertex from given graph
Step2: move to any adjacent 6 vertex from the chosen vertex and repeat the process and until all vertices of a graph are covered.

If any vertex is getting repeated movelack to the chosen vertex and write the adjacent vertex Step: write the Hamilton path \& circuit based on the path you are traversed.
1) Write the flamilton path \& Circuit from given graph.


Procedure:-
step 1: Choose any subitory vertex from graph let it be A Step 2: move to the adjacent vertex of \(A\) and contincles the

 www.FirstRanker.com
www.FirstRanker.com

Hormilton Circuit:- \(A C B D A\)
Path: \(A C B D\).
a) write the timilton path \& circuit from given graph.
a)

procedure:
Step 1: choose any orbitory vertex from graph let it bel step 2: move to the adjacent vertex of \(A\) and continues the process until all vertices are covered.

Step 3: Identify the Hamilton path or circuit

circuit: \(A B C E F D A\)
path: \(A B C E F D\).
©

www.FirstRanker.com

Prevodik:
Stop: chive ofy akiloy vertex from graph Lot ithe,
steper mex to the edjount verex of \(A\) and Contimusye Acens corvere lentees are covered.

Stps. Itntify the Hamilton path \& circuit.


Pith: \(A B C F D E F\)
There-a no Horvitton circecit is exasted.

FipstaRanpter fognaph is called planar it it com be draw
Firstranker's choice www.FirstRanker.com www.FirstRanker.com maplare with out any edges crossing each other


Non-plamar
Graph Colouring:-
Colouring of a simple graph is nothing but assignim colocors to each vertex of the graph such that no two adjacent vertices have the serme colour.

Chromatic number:-
The least number of. colours require to colour a graph is called chromatic number of a graph. It is represented as chi \((G)\) or \(X(G)\).
find the chromatic members of given graph.
a)


\[
x(G)=2
\]
C)
ped.

Sue.
\[
\chi(G)=3 .
\]

Find act
Nowwifirstranker.com

In the given graph two edges oke coding gers ac an replica the graph as focus


In the above repromitation there cess was no ann edge closing ouch ot hen. There fore the given graph is a 5 graph.
2) Is \(k_{3,3}\) is a plamergraph or rot
A)

Here \(k_{3,3}\) is a complete Biparted graph the gray be as follows
\[
\begin{aligned}
& v_{1}=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& v_{2}=\left\{v_{4}, v_{5}, v_{6}\right\}
\end{aligned}
\]


Tirstranker'singiate to C.MWw.FirstRanker.com www.FirstRanker.com
Now have to place all the vertices of the graph cotthout intersection of edges. Try to place the vertices of the graph \(v_{1}, v_{4}, v_{5}, v_{2}\) the graph is as follows.


It divides the plane into two regions \(R_{1}\) and ' \(R_{2}\) try to place \(V_{3}\) and \(V_{6}\) with all possibilities
case 1:
Try to place \(V_{3}\) in \(R_{2}\) the plane is again divided in to one more region and we connect place \(v_{6}\) in any of the region without mitersection of edges.

case 2:
Try to place \(v_{3} m R_{1}\) the plane is divided into three regis \(R_{1}, R_{2}\) and \(R_{3}\) and there is no possibility of plating \(v_{6}\) tot hor intersection of edges.


Hence it is a non plamorgraph.
* Euler theorem for whimetirsthank ar.com

Let \(a\) be a comected phat simpluwilanstratikertcom \(n_{\text {wa }}\) \(c\) edges, \(v\)-vertices.and \(r\)-regions. In a planar representation, \(r=e v+2\).
proof:
Let \(a\) is a connected. planar graph, we can herp graph ' \(G\) ' as \(G=G_{1} \cup G_{2} \cup G_{3} \ldots G_{n}\) where \(G_{1}, G_{2}\). the subgraphs of ' \(G\) '. we com . Form this subgraphing successively adding an edge at each stage
we can prove this theorem by mathematical induction.

Let us take for Graph in \(_{1}\) as
\[
\frac{R_{1}}{V_{1}} G_{V_{1}}
\]

Now we have to prove that \(r_{1}=a_{1}-v_{1}+2_{1}\).
\[
e_{1}=1, v_{1}=2, r=1
\]
then
\[
\begin{aligned}
r_{1} & =e_{1}-v_{1}+2 \\
1 & =1-2 x+2 x \\
1 & =1
\end{aligned}
\]
\(\therefore G_{1}\) is proved.
Let us assume that ' \(G_{n}\) ' is true
\[
\therefore r_{n}=e_{n}-r_{n}+2
\]

Now we have to piT \(G_{n+1}\) is true.

StRanker. Comm syrup to now to nod \(u\) sulcentive
Firstlanker's choice www.FirstRanker.com to www.FirstRanker.com belem \(\left\{a_{n+1}, b_{n+1}\right\}\) for the graph \(G_{m}\)
and Let us take \(a_{n+1}, b_{n+1}\) are existing vertices of grapticon

\[
\begin{aligned}
& r_{n+1}=r_{n+1} \\
& e_{n+1}=e_{n+1}+1 \\
& v_{n+1}=v_{n} \\
& r_{n+1}=e_{n+1}+-v_{n+1}+Q_{1} \\
& r_{n}+V_{1}=e_{n}+x+v_{n+2}+2 \\
& \therefore m_{n}=e_{n}-v_{n+2}+Q_{1}
\end{aligned}
\]

Hence it is true.
Case Q: if \(a_{n+1}\) is an existing vertex of \(\sigma_{n}\) and we have to take one more new vertex \(b_{n+1}\) to form cm edge we cannot place \(b_{n+1}\) outside of the graph.
\(\therefore\) It us palomar graph
So the representation is ans below

\[
\text { Now } \begin{aligned}
r_{n+1} & =r_{n} \\
c_{n+1} & =c_{n}+1
\end{aligned}
\]
\[
V_{n+1}=V_{n}+l_{\text {www.FirstRanker.com }}
\]

If \(A\) is a veter \(m\) a the thwwiwfirstRanker.com
subrrec.
from A by taking all the decendonts from \(A\).
In the above tree ax an draw a subtree from ven. as


Binary Tree:-
A tree each and every internal vertex having s. two children. is called a bmary tree

Ex:

M- Arg Tree:-
A rooted tree where each and every internal vertex Should have atmost children then it is called MAry th Ex:


HinestRantiker.com
 cmique path from the root this vertex.
Height of a Tree:-
Height of the rooted tree can be defined as the maximum led of the tree

Ex:


Tree traversals:-
ordered rooted true will store the data \(m\) the trees to restive this data we need to travel through all the nodes of a tree. For this we have mainly three algorithm
\(\therefore\) pere order Traversal
2, post order Traversal
31 In order traversal
1) Pere order Traversal:-

Let \(T\) is on ordered Noted. tree. The pre order Traversal has been define by processing the root, the left subtree and finally the right subtree. It is simply known as root-left-Right mechanism. For example.



Step \(2:\) \(a b d e d\)

Step 3: \(\dot{a} \dot{b} d \dot{e} \dot{j} i \quad i \quad k\)
2) Post order Traversal:-

Let \(T\) be an ordered rooted tree the prest ored ter me hasbeen define by provesing the keft subtree thed then the right subtree and fimally the root. This meclanism un thes known as left-right-root mechamism.

Step 1:


Step2:


Step 3:-
b d ghebkfca
3) In rapider' "irfoters wal: ww.FirstRanker.com

Let \(T\) be an ordered tree the in order traversal has been
-tar defined as by processing the left subtree, the root and finally the right subtree. This mectomism is also known as left-root-right.
step:


Step 2: \(d b\)


Step 3: \(d b g e h a k+c\)
1) write preorder, post order and in order traversals, for the below tree.


Pre order Traversal- ~Root-left-right

Step li \(a b\)

Step 3: \(a b c d f^{e^{h} i} l\).
Step 4: \(a b c d f e^{h} i l\).
2) post order: left-right - root.
step 1: \(b \quad c \quad a\)
\[
\begin{array}{ccc}
c & \\
l & \\
d & c \\
l & l & \\
f & & h \\
& i \\
& & l
\end{array}
\]

Step 2: \(b\)


Step3: \(b\) f \(9 d h i_{i}^{i l} c a\) :

Stepl: \(b f g d h l\) ieca.
3) Inorderrraversal:- left-root-right.
stepl; \(b\) a


step 3: \(b\) a fd 9 che

Step 4: \(b\) a f dgcheli
Evaluation of expressions:-
To evaluate the expressions we have to construct an ordered rooted tree and from that we can oblam prefix and post fix e expressions.
Ex: \((x * y) /(z-4)\)

a) Write prefix and postfix form of the below the expression
\[
((x+y) \uparrow 2)+((x-4) \mid 3)
\]


Prefix: root-left-right
Step 1:


Step 3:
\[
+\uparrow+x y 21-x{ }^{4} 3
\]

Postfix: left-right-root
Step 1:
\[
\begin{array}{cccc}
\uparrow & 1 & + \\
1 & 1 & \\
t & 2 & & \\
l_{1} & & x & 4
\end{array}
\]

Step 2:

Step3:
\[
x y+2 \uparrow x 4-31+
\]
2) Evaluate the prefix expression \(+-* 23514234\)

Ii given + * \(2351 \prod_{2} 34 . \quad\) coperatior followed by two varmaty
\[
\begin{aligned}
& +=651 \uparrow 234 \\
& +1 / \uparrow 234 \\
& +1 / 84 \\
& +12
\end{aligned}
\]
3.

Etwovariables tollawed by *;
\[
\begin{gathered}
76-4 \uparrow 931+ \\
14 \hat{1}^{7931+} \\
13+ \\
4 .
\end{gathered}
\]
3) Write the prefir \& postix form of the belao apressions.
a) \((x+y) /(x+3)\)
b) \((x+(y \mid x))+3\)
c) \(x+(y /(x+3))\)
5) Evaluate the belso poitix expressions
\[
1521--314 t+*
\]
2) \(9315+72-*\)
5) Evoluate the below prefix expressions
\[
4-+21843
\]
b1-*33*425.
c) \(4+3+3 \uparrow 3+333\)
3) 9\()-421843\)
\(-* 223\)
\(-43\)
b) \(\uparrow-* 33\) *WWM.FirstRánker.com
www.FirstRanker.com
\[
\hat{\imath}-985
\]

个15
1
\[
\text { c) } *+3+3 \uparrow 3+333 \text {. }
\]
\[
*+3+3 \uparrow 363
\]
\[
*+3+37293
\]
\[
-x+3+7323
\]
\[
k+435.3
\]
- 2205 .

5soli a)
\[
\begin{aligned}
& 521-314++* \\
& 51-35+* \\
& 48 *
\end{aligned}
\]
32.
b) \(9315+72-*\)
\[
\frac{35+5}{85 *}
\]

FirstRänkersicom
Firstranker's choice
www.FirstRanker.com
www.FirstRanker.com
prefici root-left-right
Stepl:

step 2. \(1+x y+x 3\).
b) \((x x+4 y(x) d x d z\) postfix; left-right-root
step 1:
\[
\begin{array}{lll}
+ & + & 1 \\
x & y & x \\
x & 3
\end{array}
\]

Step2: \(x y+x 3+1\)
b) \((\underline{x}+(y \mid x))+3\).

Prefin: root-left-right
step
Stepl:
\(y^{1}+\frac{1}{x}\)
\(y^{\prime} y\)


Step 3: \(+2 \hat{y}^{\prime}{ }_{x}^{3}\)
\(\operatorname{step} 51+x 1\) y \(x 3\)

Firstasanker's choice
posqaner's choice expression :- wwat Eirstgiankêf.com
www.FirstRanker.com

Step I:
\[
\begin{array}{lll}
+ & & 3+ \\
x^{\prime} / \\
& \\
y^{\prime} & x &
\end{array}
\]

Step 2:


Step 3:
\[
x \text { y } \dot{x} \mid+3+
\]
c)
\[
\begin{aligned}
& x+(y /(x+3))
\end{aligned}
\]

Prifix expression:- root-left-right
stepl: \(+x\) 1
\[
\begin{aligned}
& 1 \\
& y+ \\
& 1 \\
& x \quad 3
\end{aligned}
\]
\(\underline{\operatorname{step} 2}+x / y i_{3}^{+}\)
Step \(3+21 y+x 3\).
step:
www.FirstRanker.com
step \(2:\)

steps: \(x\) у \(\quad 3 \quad+1+\)

Sparing Tree:-
Let \(G\) be a simple graph the spanning tree of the gran a has been a tree which connects all the vertices of the graph. To firdout the sparinimg thee we have mainly two algoriltms D Depth First Search (DFS)
2) Breadth First search (BFS)
1) Depth first search (DFS):-

Depth first search is an algorithm for finding a min sparring tree of the graph and the procedure for DFS is as follows "we construct backtracking only in DIS no l mists"
procedure:-
Step 1: Choose my vertex from the graph orbtaxily
Step Q: Find the longest path from the choosen vertex if all vertices of the graph are covered then it is a spanning thee the remaining vexuvifititstanker.com of the graph are covered.
Step 43 Identity the spanning tree.
1) Construct a spanning tree for the beloco graph using \(D_{1}\);

sod: Procedure:-
Step 1: Choose the vertex \(A\) from the graph
Step 2: Find the longest path from A to J but all the vern, - of the graph are not covered we have to back track to element \(H\) and repeat the process until all the vertices an the graph covered.
step 3: Identify the spanning tree sporing tree:-

Step 1: A
Step 2

step 4.'

2) Construct a spanning tree for the below graph using DFS.
 are covered smce it is sparring graph FirstRanker.com
Steps: Identify the spanning tree.
spanning thee:-
Step:
c
Step Q:

2) Breadth First search (BFF):-

BFS is used to construct the spanning tree of a graph
procedure:-
Step 1: choose any vertex from the graph. "
Step 2: make the chosen vertex as a root and add all the edges incident to the choosen vertex if all vertices of graph are covered it is a spanning tree otherwise

1）Construct a spamming tree for the below graph using \(\mathrm{B}^{-5}\) ．

so procedure：
step 1：Choose the vertex A from the given graph
Step 2：Add all edges incident to the chosen vertex and repea the process all the vertices of the graph are covered．
step 3：Identify the sporing tree．
spanning tree：－
step 1：
Step 2：


Step 3：


Step 4：



Sod: Procedure:
Step 1: choose the vertex \(A\) from the given graph
Step 2: Find the longest path from \(A\) to I but all the verb, of the graph are not covered we have to backtrack to the os, \(G\) and repeat the process contill all the vertices of the graph are covered.

Step 3: Identify the spanning tree.
spanning tree:-
Step 1: \(A\)
Step 2:


Step 33:


sid Procedre:-
step 1: Choose the vertex \(A\) from the given graph.
step 21 Add all edges incident to the Choosen:vertex and repeat the process cmitill all vertices of the graph are covered. step 3: Identify the spanning tree.
sparring Tree:-
Step 1:

Step 8:


Step 4;

irate dak'schoice
A weighted graph is a simple graph where wantRanker.edten with some weight is weighted graph.

Ex


Minimum sparing -tree:-
The minimum spooning tree cam be constructed for a weighted graph where it is defined as a spanning tree with minimiser weight. To construct. the minimum spanning tree we have mainly two algorithms
1) prom's algorithm
2) Kruskal's algorithm.

Kruskal's Algorithm:-
"kriskal's algorithm is used to construct the mimimemn spanning tree for a weighted graph
procedure for kraskal's Algorithm:-
Step. Listout all the edges of the graph with their eveights in increasing order.

Step 2: Add the edges in the order of the list without forming any circuits and repeate the process untill all the vertices of the graph are covered. minimum weight.
1) Construct a mimimurn spanning tree for the below graph us is kruskal's algorithm.


Sit Procedure:-
Step 1: Listout all the edges of the graph with their "weiftls in increasing order
Step 2: Add the edges in the order of the list without forming and circuits and repeat the process annul all the vertices of the graph ave covered. step 3: Identity the minimum spanning tree and minimum weed minimum spanning tree:Step:
\[
\begin{array}{lll}
\left\{B_{1} F\right\}=1 & \left\{F_{1} G\right\}=3 & \left\{D_{1} H\right\}=5 . \\
\left\{C_{1} D\right\}=1 & \{G, H\}=3 \\
\{K, L\}=1 & \{I, J\}=3 \\
\left\{A_{1} B\right\}=2 & \{J, K\}=3 \\
\left\{C_{1} G\right\}=2 & \{H, L\}=3 \\
\left\{F_{1}\{ \}=2\right. & \left\{E_{1} F\right\}=4 \\
\left\{A_{1} \in\right\}=3 & \left\{E_{1} I\right\}=4
\end{array}
\]

weight of minimum spanning tree \(=24\).
construct a minimum spanning tree for the below graph using Kruskal's algorithm.
a)

b)

a) procedure:-

Step 1: Listout all the edges of the graph with their weights in increasing order.
step 2: Add the edges in the order of, the list without formingany circuits and repeat the process untill all the vertices of the graph are covered.
Step 3: Identify the minimum spanning tree and mimimumiweight Minimum spanning tree:-

Step: \(\{B, C\}=1\)
\[
\left\{A_{1} C\right\}=2 .
\]
\[
\begin{aligned}
& 10 A, B \xi=3 \\
& 3 a, F\}=3
\end{aligned}
\]

Firstranker's choice
www.FirstRanker.com
www.FirstRanker.com
\[
\begin{aligned}
& \{D, G\}=5 \\
& \{B, G\}=6 \\
& \left\{C_{1} G\right\}=6 \\
& \{D, E\}=7 \\
& \{B, E\}=8 \\
& \{D, F\}=8 \\
& \{A, F\}=8 .
\end{aligned}
\]

Step:

weight of minimum spanning tree \(=80\).

SN (b)


Procedure:-
Step 1.: Listact all the edges of the graph with their wig in increasing adder.
step d: Add the edges 'm the order of the list without forming

WiEstratity the froinincm spanning tree and minimumweight Mirimennker'schoice
step: \(\{A, B=1\)
www.FirstRanker.com
www.FirstRanker.com
\[
\begin{array}{ll}
\left\{C_{1} D\right\}=1 & \left\{E_{1} B\right\}=3 . \\
\{A \backslash E\}=2 & \left\{B_{1} D\right\}=3 \\
\left\{E_{1} D\right\}=2 & \left\{A_{1} \subset\right\}=4 .
\end{array}
\]
step:

weight minimum sparring tree \(=6\).
prim's Algorithm:-
Prim's Algorithm is used to construct a minimum spanning aucighted.
tree for graph.
procedure:-
Step1: Choose an orbitory vertex from graph
step Q: Add miminnum weighted edge to the chosen vertex and Continuous the process: until all vertices of the graph are covered.
step 3: Identity the minimum sporining and mimum weight.

Adits Ralaker.com \(x-4\) - tree foe below graph is ing y
jirstranker's choice
www.FirstRânker.com


So: Procedure:
Step: choose vertex \(E\) from the given graph step 2.: Add mimimurn weighted edge to the chosen vertex and continuous the process untill all vertices of the graph are covered.
Step 3: Identity the minimum spanning tree and mimimumbight eight


procedure:-
34. Ftp: choose vertex \(F\) from the given graph

Step 2: Add minimum weighted edge to the choosen vertex and continue the process until all vertices of the graph are covered.
steps: "Identify the minimum spanning thee and minimuimwight


io
bol: procedure:-
Step 1: choose vertex \(A\) from the given, graph.
Step 2: add minimum weighted edge to the chosen vertex and continuous the process until all vertices of the graph are cover,
Step 3: Identify the minimum spanning tree and minimum unix





Procedure:-
Stop 1: Chase, a vertex \(B\) from the given graph.
step 21 Add minimum weight ad edge to the choosen vertex an continuous the process until all edges vertices of the graph as, d Step 3: Identify the minfrnum sparing tree and miminam un



A tree with ' \(k\) ' vertices has ' \(K-1\) ' wawidyirstRanker.com
Theorem:

A tree with. \(n\) ' vertices has ' \(n\)-1' edges
Proof:

To prove this theorem we con use the matherraticas induction procedural.
Step: we have to prow the theorem is true for \(n=1\) ie) A graph with one vertex \(v_{1}\), has o edges \(\therefore\) The. Theorem is true for \(n=1\).

Step 2: Assume that \(0 n=k\) is true
i.e, A tree with ' \(K\) ' vertices has ' \(K\)-1' edges
step 3:
we have to prove that \(n=k+1\) is true ie, a tree with ' \(k+1\) ' vertices has \(k\) edges
To prove this let us. construct a tree' \(T^{\prime}\) with \(k+1\) vertices and in the tree Let \(k_{-1}\) is a leaf node and \(\omega\) be a parent for k-1 rode.

To delete one leaf mode \(k-1\) from the tree we com form another subtree called ' \(T\) ''


C TI

\(k k+1\)
D. Finstharakegromprtex from \(T, T\) has \(k\) vertices Firstranker's choice www.FirstRanker.com with \(x^{\text {www.FirstR }}\) Rackepr.com and we know from Step 2 a tree with \(k\) ww. Feticas \({ }^{2}\) apekepr.com ' \(k-1\) ' edges. i.e \(T\) ' has \(k-1\) edges

The only difference between \(T\) and \(T^{\prime}\) is one edge between \(\omega\) and \(k-1, T\) has one more edge to \(T^{\prime}\)
\(\therefore T\) has \(k-1+1\) edges, ie ' \(T\) 'has \({ }^{k}\) ' edges
\(\therefore n=k+1\) is trice
\(\therefore\) By Matherratical Eduction a tree with ' \(K\) ' vertices has \({ }^{k-1}{ }^{\prime}\) edges.

Frequently Asked Questions:
1) Probleus on Ciraph Representations
2) Problem on Bipartite Graphs.
3) Euler Theorem for Planar graphs
4) Problem On BFSK DFS
5) Problems on Prius and kruskals Agoithuss
6) A Tree having ' \(n\) ' Vertices has' \(n-1\) ' Edges.

\section*{7}

\section*{PERMUTATIONS AND COMBINATIONS}

The other day, I wanted to travel from Bangalore to Allahabad by train. There is no direct train from Bangalore to Allahabad, but there are trains from Bangalore to Itarsi and from Itarsi to Allahabad. From the railway timetable I found that there are two trains from Bangalore to Itarsi and three trains from Itarsi to Allahabad. Now, in how many ways can I travel from Bangalore to Allahabad?

There are counting problems which come under the branch of Mathematics called combinatorics.

Suppose you have five jars of spices that you want to arrange on a shelf in your kitchen. You would like to arrange the jars, say three of them, that you will be using often in a more accessible position and the remaining two jars in a less accessible position. In how many ways can you do it?

In another situation suppose you are painting your house. If a particular shade or colour is not available, you may be able to create it by mixing different colours and shades. While creating new colours this way, the order of mixing is not important. It is the combination or choice of colours that determine the new colours; but not the order of mixing.

To give another similar example, when you go for a journey, you may not take all your dresses with you. You may have 4 sets of shirts and trousers, but you may take only 2 sets. In such a case you are choosing 2 out of 4 sets and the order of choosing the sets doesn't matter. In these examples, we need to find out the number of choices in which it can be done.

In this lesson we shall consider simple counting methods and use them in solving such simple counting problems.

\title{
Permutations And Combinations
}

\section*{MODULE-I Algebra}


\section*{After studying this lesson, you will be able to :}
- find out the number of ways in which a given number of objects can be arranged;
- state the Fundamental Principle of Counting;
- define n ! and evaluate it for defferent values of n ;
state that permutation is an arrangement and write the meaning of \({ }^{n} P_{r}\);
state that \({ }^{n} P_{r}=\frac{n!}{(n-r)!}\) and apply this to solve problems;
- show that \((i)(n+1){ }^{n} P_{n}={ }^{n+1} P_{n} \quad\) (ii) \({ }^{n} P_{r+1}=(n-r){ }^{n} P_{r}\);
state that a combination is a selection and write the meaning of \({ }^{n} C_{r}\);
distinguish between permutations and combinations;
- derive \({ }^{n} C_{r}=\frac{n!}{r!(n-r)!}\) and apply the reșult to solve problems;
derive the relation \({ }^{n} P_{r}=r!^{n} C_{r}\);
verify that \({ }^{n} C_{r}={ }^{n} C_{n-r}\) and give its interpretation; and
derive \({ }^{n} C_{r}+{ }^{n} C_{n} C_{n}={ }^{n+1} C_{r}\) and apply the result to solve problems.

\section*{EXPECTED BACKGROUND KNOWLEDGE}
- NumberSystems
- Four Fundamental Operations

\subsection*{7.1COUNTING PRINCIPLE}

Let us now solve the problem mentioned in the introduction. We will write \(t_{1}, t_{2}\) to denote trains from Bangalore to Itarsi and \(T_{1}, T_{2}, T_{3}\), for the trains from Itarsi to Allahabad. Suppose I take \(t_{1}\) to travel from Bangalore to Itarsi. Then from Itarsi I can take \(T_{1}\) or \(T_{2}\) or \(T_{3}\). So the possibilities are \(t_{1} T_{1}, t_{2} T_{2}\) and \(t_{3} T_{3}\) where \(t_{1} T_{1}\) denotes travel from Bangalore to Itarsi by \(t_{1}\) and travel from Itarsi to Allahabad by \(T_{1}\). Similarly, if I take \(t_{2}\) to travel from Bangalore to Itarsi, then the possibilities are \(t_{2} T_{1}, t_{2} T_{2}\) and \(t_{2} T_{3}\). Thus, in all there are \(6(2 \times 3)\) possible ways of travelling from Bangalore to Allahabad.

Here we had a small number of trains and thus could list all possibilities. Had there been 10 trains from Bangalore to Itarsi and 15 trains from Itarsi to Allahabad, the task would have been

\section*{Permutations And Combinations}
very tedious. Here the Fundamental Principle of Counting or simply the Counting Principle comes in use :

If any event can occur in \(m\) ways and after it happens in any one of these ways, a second event can occur in \(\boldsymbol{n}\) ways, then both the events together can occur in \(m \times n\) ways.

Example 7.1 How many multiples of 5 are there from 10 to 95 ?
Solution : As you know, multiples of 5 are integers having 0 or 5 in the digit to the extreme right (i.e. the unit's place).

The first digit from the right can be chosen in 2 ways.
The second digit can be any one of \(1,2,3,4,5,6,7,8,9\).
i.e. There are 9 choices for the second digit.

Thus, there are \(2 \times 9=18\) multiples of 5 from 10 to 95 .
Example 7.2 In a city, the bus route numbers consist of a natural number less than 100, followed by one of the letters \(A, B, C, D, E\) and \(F\). How many different bus routes are possible?

Solution : The number can be any one of the natural numbers from 1 to 99 . There are 99 choices for the number.

The letter can be chosen in 6 ways.
\(\therefore\) Number of possible bus routes are \(99 \times 6=594\).

\section*{Q \\ CHECK YOUR PROGRESS 7.1}
1. (a) How many 3 digit numbers are multiples of 5?
(b) A coin is tossed thrice. How many possible outcomes are there?
(c) If you have 3 shirts and 4 pairs of trousers and any shirt can be worn with any pair of trousers, in how many ways can you wear your shirts and pairs of trousers?
(d) A tourist wants to go to another country by ship and return by air. She has a choice of 5 different ships to go by and 4 airlines to return by. In how many ways can she perform the journey?
2. (a) In how many ways can two vacancies be filled from among 4 men and 12 women if one vacancy is filled by a man and the other by a woman?
(b) Flooring and painting of the walls of a room needs to be done. The flooring can be done in 3 colours and painting of walls can be done in 12 colours. If any colour combination is allowed, find the number of ways of flooring and painting the walls of the room.

So far, we have applied the counting principle for two events. But it can be extended to three or more, as you can see from the following examples :

MODULE - I Algebra

Notes


Example 7.3 There are 3 questions in a question paper. If the questions have 4,3 and 2 solutionsvely, find the total number of solutions.

Solution : Here question 1 has 4 solutions,
question 2 has 3 solutions
and question 3 has 2 solutions.
\(\therefore \quad\) By the multiplication (counting) rule,
total number of solutions \(=4 \times 3 \times 2\)
\(=24\)
Example 7.4 Consider the word ROTOR. Whichever way you read it, from left to right or from right to left, you get the same word. Such a word is known as palindrome. Find the maximum possible number of 5-letter palindromes.

Solution : The first letter from the right can be chosen in 26 ways because there are 26 alphabets.

Having chosen this, the second letter can be chosen in 26 ways
\(\therefore\) The first two letters can chosen in \(26 \times 26=676\) ways
Having chosen the first two letters, the third letter can be chosen in 26 ways.
\(\therefore\) All the three letters can be chosen in \(676 \times 26=17576\) ways.
It implies that the maximum possiblê nûmber of five letter palindromes is 17576 because the fourth letter is the same as the second letter and the fifth letter is the same as the first letter.

Note : In Example 7.4 we found the maximum possible number of five letter palindromes. There cannot be more than 17576. But this does not mean that there are 17576 palindromes. Because some of the choices like CCCCC may not be meaningful words in the English language.

Example 7.5 How many 3-digit numbers can be formed with the digits \(1,4,7,8\) and 9 if the digits are not repeated.

Solution : Three digit number will have unit's, ten's and hundred's place.
Out of 5 given digits any one can take the unit's place.
This can be done in 5 ways.
After filling the unit's place, any of the four remaining digits can take the ten's place.
This can be done in 4 ways.
After filling in ten's place, hundred's place can be filled from any of the three remaining digits.

\section*{Permutations And Combinations}

This can be done in 3 ways. ... (iii)
\(\therefore\) By counting principle, the number of 3 digit numbers \(=5 \times 4 \times 3=60\)

\section*{Let us now state the General Counting Principle}

If there are \(\boldsymbol{n}\) events and if the first event can occur in \(m_{1}\) ways, the second event can occur in \(m_{2}\) ways after the first event has occured, the third event can occur in \(m_{3}\) ways after the second event has ocurred, and so on, then all the \(n\) events can occur in \(m_{1} \times m_{2} \times \ldots \times m_{n-1} \times m_{n}\) ways.

Example 7.6 Suppose you can travel from a place \(A\) to a place \(B\) by 3 buses, from place \(B\) to place \(C\) by 4 buses, from place \(C\) to place \(D\) by 2 buses and from place \(D\) to place \(E\) by 3 buses. In how many ways can you travel from \(A\) to \(E\) ?

Solution : The bus from \(A\) to \(B\) can be selected in 3 ways.
The bus from \(B\) to \(C\) can be selected in 4 ways.
The bus from \(C\) to \(D\) can be selected in 2 ways.
The bus from \(D\) to \(E\) can be selected in 3 ways.
So, by the General Counting Principle, one can travel from \(A\) to \(E\) in \(3 \times 4 \times 2 \times 3\) ways \(=72\) ways.

\section*{CHIECK YOUR PROGRESS 7.2}
1. (a) What is the maximum number of 6 -letter palindromes?
(b) What is the number of 6 -digit palindromic numbers which do not have 0 in the first digit?
2. (a) In a school there are 5 English teachers, 7 Hindi teachers and 3 French teachers. A three member committee is to be formed with one teacher representing each language. In how many ways can this be done?
(b) In a college students union election, 4 students are contesting for the post of President. 5 students are contesting for the post of Vice-president and 3 students are contesting for the post of Secretary. Find the number of possible results.
3. (a) How many three digit numbers greater than 600 can be formed using the digits \(1,2,5,6,8\) without repeating the digits?
(b) A person wants to make a time table for 4 periods. He has to fix one period each for English, Mathematics, Economics and Commerce. How many different time tables can he make?

\subsection*{7.2 PERMUTATIONS}

Suppose you want to arrange your books on a shelf. If you have only one book, there is only

\section*{Permutations And Combinations}

\section*{MODULE-I} Algebra
one way of arranging it. Suppose you have two books, one of History and one of Geography. You can arrange the Geography and History books in two ways. Geography book first and the History book next, \(G H\) or History book first and Geography book next; \(H G\). In other words, there are two arrangements of the two books.

Now, suppose you want to add a Mathematics book also to the shelf. After arranging History and Geography books in one of the two ways, say \(G H\), you can put Mathematics book in one of the following ways: \(M G H, G M H\) or \(G H M\). Similarly, corresponding to \(H G\), you have three other ways of arranging the books. So, by the Counting Principle, you can arrange Mathematics, Geography and History books in \(3 \times 2\) ways \(=6\) ways.

By permutation we mean an arrangement of objects in a particular order. In the above example, we were discussing the number of permutations of one book or two books.

In general, if you want to find the number of permutations of \(n\) objects \(n \geq 1\), how can you do it? Let us see if we can find an answer to this.

Similar to what we saw in the case of books, there is one permutation of 1 object, \(2 \times 1\) permutations of two objects and \(3 \times 2 \times 1\) permutations of 3 objects. It may be that, there are \(n \times(n-1) \times(n-2) \times \ldots \times 2 \times 1\) permutations of \(n\) objects. In fact, it is so, as you will see when we prove the following result.

Theorem 7.1 The total number of permutations of \(n\) objects is \(n(n-1) \ldots .2 .1\).
Proof : We have to find the number of possible arrangements of \(n\) different objects.
The first place in an arrangement can be filled in \(n\) different ways. Once it has been done, the second place can be filled by any of the remaining \((n-1)\) objects and so this can be done in ( \(n-1\) ) ways. Similarly, once the first two places have been filled, the third can be filled in \((n-2)\) ways and so on. The last place in the arrangement can be filled only in one way, because in this case we are left with only one object.

Using the counting principle, the total number of arrangements of \(n\) different objects is \(n(n-1)(n-2) \ldots \ldots . .2 .1\).

The product \(n(n-1) \ldots 2.1\) occurs so often in Mathematics that it deserves a name and notation. It is usually denoted by \(\boldsymbol{n}!\) (or by \(\lfloor\underline{n}\) read as \(\boldsymbol{n}\) factorial).
\[
n!=n(n-1) \ldots 3.2 .1
\]

Here is an example to help you familiarise yourself with this notation.
Example 7.7 Evaluate (a) 3!
(b) \(2!+4\) !
(c) \(2!\times 3\) !

Solution : (a) \(3!=3 \times 2 \times 1=6\)
(b) \(2!=2 \times 1=2\)
\(4!=4 \times 3 \times 2 \times 1=24\)

\section*{Permutations And Combinations}

Therefore, \(\quad 2!+4!=2+24=26\)
MODULE-I
Algebra
(c) \(2!\times 3!=2 \times 6=12\)

Notice that \(n\) ! satisfies the relation
\[
\begin{equation*}
n!=n \times(n-1)! \tag{7.2}
\end{equation*}
\]

This is because, \(n(n-1)!=n[(n-1) \cdot(n-2) . . .2 .1]\)
\[
\begin{aligned}
& =n \cdot(n-1) \cdot(n-2) \ldots 2 \cdot 1 \\
& =n!
\end{aligned}
\]

Of course, the above relation is valid only for \(n \geq 2\) because 0 ! has not been defined so far. Let us see if we can define 0 ! to be consistent with the relation. In fact, if we define
\[
\begin{equation*}
0!=1 \tag{7.3}
\end{equation*}
\]
then the relation 7.2 holds for \(n=1\) also.
Example 7.8 Suppose you want to arrange your English, Hindi, Mathematics, History, Geography and Science books on a shelf. In how many ways can you do it?

Solution : We have to arrange 6 books.
The number of permutations of \(n\) objects is \(n!=n .(n-1) .(n-2) \ldots 2.1\)
Here \(n=6\) and therefore, number of permutations is \(6.5 .4 .3 .2,1=720\)

\section*{CHECK YOUR PROGRESS 7.3}
1. (a) Evaluate : (i) 6 !
(ii) 7 ! (iii) \(7!+3\) !
(iv) \(6!\times 4\) !
(v) \(\frac{5!}{3!.2!}\)
(b) Which of the following statements are true?
(i) \(2!\times 3!=6!\quad\) (ii) \(2!+4!=6!\)
(iii) 3! divides 4 !
(iv) \(4!-2!=2\) !
2. (a) 5 students are staying in a dormitory. In how many ways can you allot 5 beds to them?
(b) In how many ways can the letters of the word 'TRIANGLE' be arranged?
(c) How many four digit numbers can be formed with digits 1,2,3 and 4 and with distinct digits?

\subsection*{7.3 PERMUTATION OF \(r\) OBJECTS OUT OF \(n\) OBJECTS}

Suppose you have five story books and you want to distribute one each to Asha, Akhtar and Jasvinder. In how many ways can you do it? You can give any one of the five books to Asha

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}
 and after that you can give any one of the remaining four books to Akhtar. After that, you can give one of the remaining three books to Jasvinder. So, by the Counting Principle, you can distribute the books in \(5 \times 4 \times 3\) ie. 60 ways.

More generally, suppose you have to arrange \(r\) objects out of \(n\) objects. In how many ways can you do it? Let us view this in the following way. Suppose you have \(n\) objects and you have to arrange \(r\) of these in \(r\) boxes, one object in each box.


Fig. 7.1
Suppose there is one box. \(r=1\). You can put any of the \(n\) objects in it and this can be done in \(n\) ways. Suppose there are two boxes. \(r=2\). You can put any of the objects in the first box and after that the second box can be filled with any of the remaining \(n-1\) objects. So, by the counting principle, the two boxes can be filled in \(n(n-1)\) ways. Similarly, 3 boxes can be filled in \(n(n-1)(n-2)\) ways.

In general, we have the following theorem.
Theorem 7.2 The number of permutations of \(r\) objects out of \(n\) objects is
\[
n(n-1) \cdots(n-r+1) .
\]

The number of permutations of \(r\) objects out of \(n\) objects is usually denoted by \({ }^{n} P_{r}\).
Thus,
\[
\begin{equation*}
{ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1) \tag{7.4}
\end{equation*}
\]

Proof: Suppose we have to arrange \(r\) objects out of \(n\) different objects. In fact it is equivalent to filling \(r\) places, each with one of the objects out of the given \(n\) objects.

The first place can be filled in \(n\) different ways. Once this has been done, the second place can be filled by any one of the remaining \((n-1)\) objects, in ( \(n-1\) ) ways. Similarly, the third place can be filled in \((n-2)\) ways and so on. The last place, the \(r\) th place can be filled in \([n-(r-1)]\) i.e. \((n-r+1)\) different ways. You may easily see, as to why this is so.

Using the Counting Principle, we get the required number of arrangements of \(r\) out of \(n\) objects is \(n(n-1)(n-2)\) \(\qquad\) .\((n-r+1)\)
Example 7.9
Evaluate : (a) \({ }^{4} P_{2}\)
(b) \({ }^{6} P_{3}\)
(c) \(\frac{{ }^{4} P_{3}}{{ }^{3} P_{2}}\)
(d) \({ }^{6} P_{3} \times{ }^{5} P_{2}\)

Solution : (a) \(\quad{ }^{4} P_{2}=4(4-1)=4 \times 3=12\).
(b) \({ }^{6} P_{3}=6(6-1)(6-2)=6 \times 5 \times 4=120\).
(c) \(\quad \frac{{ }^{4} P_{3}}{{ }^{3} P_{2}}=\frac{4(4-1)(4-2)}{3(3-1)}=\frac{4 \times 3 \times 2}{3 \times 2}=4\)
(d) \({ }^{6} P_{3} \times{ }^{5} P_{2}=6(6-1)(6-2) \times 5(5-1)\)
\[
=6 \times 5 \times 4 \times 5 \times 4=2400
\]

Example 7.10 If you have 6 New Year greeting cards and you want to send them to 4 of your friends, in how many ways can this be done?

Solution : We have to find number of permutations of 4 objects out of 6 objects.
This number is \({ }^{6} P_{4}=6(6-1)(6-2)(6-3)=6.5 .4 .3=360\)
Therefore, cards can be sent in 360 ways.
Consider the formula for \({ }^{n} P_{r}\), namely, \({ }^{n} P_{r}=n(n-1) \ldots(n-r+1)\). This can be obtained by removing the terms \(n-r, n-r-1, \ldots, 2,1\) from the product for \(n!\). The product of these terms is \((n-r)(n-r-1) \ldots 2.1\), i.e., \((n-r)!\).
\[
\text { Now, } \begin{aligned}
\frac{n!}{(n-r)!} & =\frac{n(n-1)(n-2) \ldots(n-r+1)(n-r) \ldots 2.1}{(n-r)(n-r-1) \ldots 2.1} \\
& =n(n-1)(n-2) \ldots(n-r+1) \\
& ={ }^{n} P_{r}
\end{aligned}
\]

So, using the factorial notation, this formula can be written as follows :
\[
\begin{equation*}
{ }^{n} P_{r}=\frac{n!}{(n-r)!} \tag{7.5}
\end{equation*}
\]

Example 7.11 Find the value of \({ }^{n} P_{0}\).
Solution : Here \(r=0\). Using relation 7.5, we get
\[
{ }^{n} P_{0}=\frac{n!}{n!}=1
\]

Example 7.12 Show that \((n+1){ }^{n} P_{r}={ }^{n+1} P_{r+1}\)
Solution : \((n+1)^{n} P_{r}=(n+1) \frac{n!}{(n-r)!}=\frac{(n+1) n!}{(n-r)!}\)
\[
\begin{aligned}
& =\frac{(n+1)!}{[(n+1)-(r+1)]!}[\text { writing } n-r \text { as }[(n+1)-(r+1)] \\
& ={ }^{n+1} P_{r+1} \quad \text { (By definition) }
\end{aligned}
\]

MODULE-I
Algebra


Notes

Ser

\section*{Permutations And Combinations}


\section*{CHECK YOUR PROGRESS 7.4}
1. (a)
(b) Verify each of the following statements :
(i) \(6 \times{ }^{5} P_{2}={ }^{6} P_{2}\)
(ii) \(4 \times{ }^{7} P_{3}={ }^{7} P_{4}\)
(iii) \({ }^{3} P_{2} \times{ }^{4} P_{2}={ }^{12} P_{4}\)
(iii) \({ }^{3} P_{2}+{ }^{4} P_{2}={ }^{7} P_{4}\)
2. (a) (i) What is the maximum possible number of 3- letter words in English that do not contain any vowel?
(ii) What is the maximum possible number of 3- letter words in English which do not have any vowel other than ' \(a\) '?
(b) Suppose you have 2 cots and 5 bedspreads in your house. In how many ways can you put the bedspreads on your cots?
(c) You want to send Diwali Greetings to 4 friends and you have 7 greeting cards with you. In how many ways can you do it?
3. Show that \({ }^{n} P_{n-1}={ }^{n} P_{n}\).
4. Show that \((n-r)^{n} P_{r}={ }^{n} P_{r+}\)

\subsection*{7.4 PERMUTATIONS UNDER SOME CONDITIONS}

We will now see examples involving permutations with some extra conditions.
Example 7.13 Suppose 7 students are staying in a hall in a hostel and they are allotted 7 beds. Among them, Parvin does not want a bed next to Anju because Anju snores. Then, in how many ways can you allot the beds?

Solution : Let the beds be numbered 1 to 7 .
Case 1 : Suppose Anju is allotted bed number 1.
Then, Parvin cannot be allotted bed number 2 .
So Parvin can be allotted a bed in 5 ways.
After alloting a bed to Parvin, the remaining 5 students can be allotted beds in 5 ! ways. So, in this case the beds can be allotted in \(5 \times 5\) !ways \(=600\) ways.
Case 2 : Anju is allotted bed number 7.
Then, Parvin cannot be allotted bed number 6
As in Case 1, the beds can be allotted in 600 ways.

\section*{Permutations And Combinations}

Case 3 : Anju is allotted one of the beds numbered 2,3,4,5 or 6.
Parvin cannot be allotted the beds on the right hand side and left hand side of Anju's bed. For example, if Anju is allotted bed number 2, beds numbered 1 or 3 cannot be allotted to Parvin. Therefore, Parvin can be allotted a bed in 4 ways in all these cases.

After allotting a bed to Parvin, the other 5 can be allotted a bed in 5 ! ways.
Therefore, in each of these cases, the beds can be allotted in \(4 \times 5!=480\) ways.
\(\therefore \quad\) The beds can be allotted in
\((2 \times 600+5 \times 480)\) ways \(=(1200+2400)\) ways \(=3600\) ways.
Example 7.14 In how many ways can an animal trainer arrange 5 lions and 4 tigers in a row so that no two lions are together?

Solution : They have to be arranged in the following way :
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline L & T & L & T & L & T & L & T & L \\
\hline
\end{tabular}

The 5 lions should be arranged in the 5 places marked 'L'.
This can be done in 5 ! ways.
The 4 tigers should be in the 4 places marked ' \(T\) '.
This can be done in 4 ! ways.
Therefore, the lions and the tigers can be arranged in \(5!\times 4!\) ways \(=2880\) ways.

Example 7.15 There are 4 books on fairy tales, 5 novels and 3 plays. In how many ways can you arrange these so that books on fairy tales are together, novels are together and plays are together and in the order, books on fairytales, novels and plays.

Solution : There are 4 books on fairy tales and they have to be put together.
They can be arranged in 4 ! ways.
Similarly, there are 5 novels.
They can be arranged in 5! ways.
And there are 3 plays.
They can be arranged in 3! ways.
So, by the counting principle all of them together can be arranged in \(4!\times 5!\times 3!\) ways \(=17280\) ways.

Example 7.16 Suppose there are 4 books on fairy tales, 5 novels and 3 plays as in Example 7.15. They have to be arranged so that the books on fairy tales are together, novels are together and plays are together, but we no longer require that they should be in a specific order. In how many ways can this be done?

MODULE - I Algebra

Notes

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}


Solution : First, we consider the books on fairy tales, novels and plays as single objects. These three objects can be arranged in 3 !ways \(=6\) ways.

Let us fix one of these 6 arrangements.
This may give us a specific order, say, novels \(\rightarrow\) fairy tales \(\rightarrow\) plays.
Given this order, the books on the same subject can be arranged as follows. The 4 books on fairy tales can be arranged among themselves in \(4!=24\) ways. The 5 novels can be arranged in \(5!=120\) ways.

The 3 plays can be arranged in \(3!=6\) ways.
For a given order, the books can be arranged in \(24 \times 120 \times 6=17280\) ways.
Therefore, for all the 6 possible orders the books can be arranged in \(6 \times 17280=103680\) ways.

Example 7.17 In how many ways can 4 girls and 5 boys be arranged in a row so that all the four girls are together?

Solution : Let 4 girls be one unit and now there are 6 units in all.
They can be arranged in 6 ! ways.
In each of these arrangements 4 girls can be arranged in 4 ! ways.
\(\therefore \quad\) Total number of arrangementsin which girls are always together
\[
\begin{aligned}
& =6!\times 4! \\
& =720 \times 24 \\
& =17280
\end{aligned}
\]

Example 7.18 How many arrangements of the letters of the word 'BENGALI' can be made
(i) if the vowels are never together.
(ii) if the vowels are to occupy only odd places.

Solution : There are 7 letters in the word 'Bengali; of these 3 are vowels and 4 consonants.
(i) Considering vowels \(a, e, i\) as one letter, we can arrange \(4+1\) letters in 5 ! ways in each of which vowels are together. These 3 vowels can be arranged among themselves in 3 ! ways.
\(\therefore\) Total number of words \(=5!\times 3\) !
\[
=120 \times 6=720
\]
(ii) There are 4 odd places and 3 even places. 3 vowels can occupy 4 odd places in \({ }^{4} P_{3}\) ways and 4 constants can be arranged in \({ }^{4} P_{4}\) ways.

\section*{Permutations And Combinations}
\(\therefore\) Number of words \(\quad={ }^{4} P_{3} \times{ }^{4} P_{4}=24 \times 24\)
\[
=576
\]

\section*{CHECK YOUR PROGRESS 7.5}

MODULE-I Algebra
1. Mr. Gupta with Ms. Gupta and their four children is travelling by train. Two lower berths, two middle berths and 2 upper berths have been allotted to them. Mr. Gupta has undergone a knee surgery and needs a lower berth while Ms. Gupta wants to rest during the journey and needs an upper berth. In how many ways can the berths be shared by the family?
2. Consider the word UNBIASED. How many words can be formed with the letters of the word in which no two vowels are together?
3. There are 4 books on Mathematics, 5 books on English and 6 books on Science. In how many ways can you arrange them so that books on the same subject are together and they are arranged in the order Mathematics \(\rightarrow\) English \(\rightarrow\) Science.
4. There are 3 Physics books, 4 Chemistry books, 5 Botany books and 3 Zoology books. In how many ways can you arrange them so that the books on the same subject are together?
5. 4 boys and 3 girls are to be seated in 7 chairs such that no two boys are together. In how many ways can this be done?
6. Find the number of permutations of the letters of the wôrd 'TENDULKAR', in each of the following cases :
(i) beginning with T and ending with R .
(ii) vowels are always together.
(iii) vowels are never together.

\subsection*{7.5 COMBINATIONS}

Let us consider the example of shirts and trousers as stated in the introduction. There you have 4 sets of shirts and trousers and you want to take 2 sets with you while going on a trip. In how many ways can you do it?

Let us denote the sets by \(S_{1}, S_{2}, S_{3}, S_{4}\). Then you can choose two pairs in the following ways :
1. \(\left\{S_{1}, S_{2}\right\}\)
2. \(\left\{S_{1}, S_{3}\right\}\)
3. \(\left\{S_{1}, S_{4}\right\}\)
4. \(\left\{S_{2}, S_{3}\right\}\)
5. \(\left\{S_{2}, S_{4}\right\}\)
6. \(\left\{S_{3}, S_{4}\right\}\)
[Observe that \(\left\{S_{1}, S_{2}\right\}\) is the same as \(\left.\left\{S_{2}, S_{1}\right\}\right]\). So, there are 6 ways of choosing the two sets that you want to take with you. Of course, if you had 10 pairs and you wanted to take 7 pairs, it will be much more difficult to work out the number of pairs in this way.

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}

Now as you may want to know the number of ways of wearing 2 out of 4 sets for two days, say Monday and Tuesday, and the order of wearing is also important to you. We know from section 7.3, that it can be done in \({ }^{4} P_{2}=12\) ways. But note that each choice of 2 sets gives us two ways of wearing 2 sets out of 4 sets as shown below :
1. \(\quad\left\{S_{1}, S_{2}\right\} \rightarrow S_{1}\) on Monday and \(S_{2}\) on Tuesday or \(S_{2}\) on Monday and \(S_{1}\) on Tuesday
2. \(\quad\left\{S_{1}, S_{3}\right\} \rightarrow S_{1}\) on Monday and \(S_{3}\) on Tuesday or \(S_{3}\) on Monday and \(S_{1}\) on Tuesday
3. \(\quad\left\{S_{1}, S_{4}\right\} \rightarrow S_{1}\) on Monday and \(S_{4}\) on Tuesday or \(S_{4}\) on Monday and \(S_{1}\) on Tuesday
4. \(\quad\left\{S_{2}, S_{3}\right\} \rightarrow S_{2}\) on Monday and \(S_{3}\) on Tuesday or \(S_{3}\) on Monday and \(S_{2}\) on Tuesday
5. \(\quad\left\{S_{2}, S_{4}\right\} \rightarrow S_{2}\) on Monday and \(S_{4}\) on Tuesday or \(S_{4}\) on Monday and \(S_{2}\) on Tuesday
6. \(\quad\left\{S_{3}, S_{4}\right\} \rightarrow S_{3}\) on Monday and \(S_{4}\) on Tuesday or \(S_{4}\) on Monday and \(S_{3}\) on Tuesday Thus, there are 12 ways of wearing 2 out of 4 pairs.

This argument holds good in general as we can see from the following theorem.
Theorem 7.3 Let \(n \geq 1\) be an integer and \(r \leq n\). Let us denote the number of ways of choosing \(r\) objects out of \(n\) objects by \({ }^{n} C_{r}\). Then
\[
\begin{equation*}
{ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!} \tag{7.6}
\end{equation*}
\]

Proof: We can choose \(r\) objects out of \(n\) objects in \({ }^{n} C_{r}\) ways. Each of the \(r\) objects chosen can be arranged in \(r\) ! ways. The number of ways of arranging \(r\) objects is \(r\) !. Thus, by the counting principle, the numberof ways of choosing \(r\) objects and arranging the \(r\) objects chosen can be done in \({ }^{n} C_{r} r\) ! ways. But, this is precisely \({ }^{n} P_{r}\). In other words, we have
\[
\begin{equation*}
{ }^{n} P_{r}=r!\cdot{ }^{n} \mathbb{C}_{n} \tag{7.7}
\end{equation*}
\]

Dividing both sides by \(r\) !, we get the result in the theorem.
Here is an example to help you to familiarise yourself with \({ }^{n} C_{r}\).

Example 7.19 Evaluate each of the following:
(a) \({ }^{5} C_{2}\)
(b) \({ }^{5} C_{3}\)
(c) \({ }^{4} C_{3}+{ }^{4} C_{2}\)
(d) \(\frac{{ }^{6} C_{3}}{{ }^{4} C_{2}}\)

Solution : (a) \({ }^{5} C_{2}=\frac{{ }^{5} P_{2}}{2!}=\frac{5.4}{1.2}=10 . \quad\) (b) \({ }^{5} C_{3}=\frac{{ }^{5} P_{3}}{3!}=\frac{5 \cdot 4.3}{1.2 .3}=10\).
(c) \({ }^{4} C_{3}+{ }^{4} C_{2}=\frac{{ }^{4} P_{3}}{3!}+\frac{{ }^{4} P_{2}}{2!}=\frac{4.3 .2}{1.2 .3}+\frac{4.3}{1.2}=4+6=10\)
(d) \({ }^{6} C_{3}=\frac{{ }^{6} P_{3}}{3!}=\frac{6.5 .4}{1.2 .3}=20\) and \({ }^{4} C_{2}=\frac{4.3}{1.2}=6\)
\(\therefore \frac{{ }^{6} C_{3}}{{ }^{4} C_{2}}=\frac{20}{6}=\frac{10}{3}\).
Example 7.20 Find the number of subsets of the set \(\{1,2,3,4,5,6,7,8,9,10,11\}\) having 4 elements.

Solution : Here the order of choosing the elements doesn't matter and this is a problem in combinations.

We have to find the number of ways of choosing 4 elements of this set which has 11 elements. By relation (7.6), this can be done in
\[
{ }^{11} C_{4}=\frac{11 \cdot 10.9 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 4}=330 \text { ways. }
\]

Example 7.2112 points lie on a circle. How many cyclic quadrilaterals can be drawn by using these points?

Solution : For any set of 4 points we get a cyclic quadrilateral. Number of ways of choosing 4 points out of 12 points is \({ }^{12} C_{4}=495\). Therefore, we can draw 495 quadrilaterals.

Example 7.22 In a box, there are 5 black pens, 3 white pens and 4 red pens. In how many ways can 2 black pens, 2 white pens and 2 red pens can be chosen?

Solution : Number of ways of choosing 2 black pens from 5 black pens
\[
={ }^{5} C_{2}=\frac{{ }^{5} P_{2}}{2!}=\frac{5.4}{1.2}=10 .
\]

Number of ways of choosing 2 white pens from 3 white pens
\[
={ }^{3} C_{2}=\frac{{ }^{3} P_{2}}{2!}=\frac{3.2}{1.2}=3
\]

Number of ways of choosing 2 red pens from 4 red pens
\[
={ }^{4} C_{2}=\frac{{ }^{4} P_{2}}{2!}=\frac{4.3}{1.2}=6
\]

MODULE-I Algebra

\section*{Notes}

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}


Example 7.23 A question paper consists of 10 questions divided into two parts \(A\) and \(B\). Each part contains five questions. A candidate is required to attempt six questions in all of which at least 2 should be from part \(A\) and at least 2 from part \(B\). In how many ways can the candidate select the questions if he can answer all questions equally well?

Solution : The candidate has to select six questions in all of which at least two should be from Part \(A\) and two should be from Part \(B\). He can select questions in any of the following ways :

\section*{Part \(A\)}
(i) \(2 \longrightarrow 4\)
(ii) 3
(iii) 4

\section*{Part B}

4
3
2

If the candidate follows choice (i), the number of ways in which he can do so is
\[
{ }^{5} C_{2} \times{ }^{5} C_{4}=10 \times 5=50
\]

If the candidate follows choice (ii), the number of ways in which he can do so is
\[
{ }^{5} C_{3} \times{ }^{5} C_{3}=10 \times 10=100
\]

Similarly, if the candidate follows choice (iii), then the number of ways in which he can do so is
\[
{ }^{5} C_{4} \times{ }^{5} C_{2}=50
\]

Therefore, the candidate can select the question in \(50+100+50=200\) ways.

Example 7.24 A committee of 5 persons is to be formed from 6 men and 4 women. In how many ways can this be done when
(i) at least 2 women are included?
(ii ) atmost 2 women are included?
Solution : (i) When at least 2 women are included.
The committee may consist of
3 women, 2 men : It can be done in \({ }^{4} C_{3} \times{ }^{6} C_{2}\) ways.
or, 4 women, 1 man : It can be done in \({ }^{4} C_{4} \times{ }^{6} C_{1}\) ways.
or, 2 women, 3 men : It can be done in \({ }^{4} C_{2} \times{ }^{6} C_{3}\) ways.
\(\therefore \quad\) Total number of ways of forming the committee
\[
\begin{aligned}
& ={ }^{4} C_{2} \cdot{ }^{6} C_{3}+{ }^{4} C_{3} \cdot{ }^{6} C_{2}+{ }^{4} C_{4} \cdot{ }^{6} C_{1} \\
& =6 \times 20+4 \times 15+1 \times 6 \\
& =120+60+6=186
\end{aligned}
\]

\section*{Permutations And Combinations}
(ii ) When atmost 2 women are included
The committee may consist of
2 women, 3 men : It can be done in \({ }^{4} C_{2} \cdot{ }^{6} C_{3}\) ways
or, 1 woman, 4 men : It can be done in \({ }^{4} C_{1} .{ }^{6} C_{4}\) ways
or, 5 men : It can be done in \({ }^{6} C_{5}\) ways
\(\therefore \quad\) Total number of ways of forming the committee
\[
\begin{aligned}
& ={ }^{4} C_{2} \cdot{ }^{6} C_{3}+{ }^{4} C_{1} \cdot{ }^{6} C_{4}+{ }^{6} C_{5} \\
& =6 \times 20+4 \times 15+6 \\
& =120+60+6=186
\end{aligned}
\]

Example 7.25 The Indian Cricket team consists of 16 players. It includes 2 wicket keepers and 5 bowlers. In how many ways can a cricket eleven be selected if we have to select 1 wicket keeper and atleast 4 bowlers?

Solution : We are to choose 11 players including 1 wicket keeper and 4 bowlers or, 1 wicket keeper and 5 bowlers.

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other players
\[
\begin{aligned}
& ={ }^{2} C_{1}{ }^{5} C_{4}{ }^{9} C_{6} \\
& =2 \times \frac{5 \times 4 \times 3 \times 2.1}{4.3 .2 .1 .} \times \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \\
& =2 \times 5 \times \frac{9 \times 8 \times 7}{3 \times 2 \times 1}=840
\end{aligned}
\]

Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players
\[
\begin{aligned}
& ={ }^{2} C_{1} \cdot{ }^{5} C_{5}{ }^{9} C_{5} \\
& =2 \times 1 \times \frac{9 \times 8 \times 7 \times 6 \times 5}{5 \times 4 \times 3 \times 2 \times 1}=2 \times 1 \times \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}=252
\end{aligned}
\]
\(\therefore \quad\) Total number of ways of selecting the team
\[
=840+252=1092
\]

MODULE - I Algebra
www.FirstRanker.com

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}

1. (a) Evaluate :
(i) \({ }^{13} C_{3}\)
(ii) \({ }^{9} C_{5}\)
(iii) \({ }^{8} C_{2}+{ }^{8} C_{3}\)
(iv) \(\frac{{ }^{9} C_{3}}{{ }^{6} C_{3}}\)
(b) Verify each of the following statement:
(i)
\({ }^{5} C_{2}={ }^{5} C_{3}\)
(ii) \({ }^{4} C_{3} \times{ }^{3} C_{2}={ }^{12} C_{6}\)
(iii) \({ }^{4} C_{2}+{ }^{4} C_{3}={ }^{8} C_{5}\)
(iv) \({ }^{10} C_{2}+{ }^{10} C_{3}={ }^{11} C_{3}\)
2. Find the number of subsets of the set \(\{1,3,5,7,9,11,13, \ldots, 23\}\) each having 3 elements.
3. There are 14 points lying on a circle. How many pentagons can be drawn using these points?
4. In a fruit basket there are 5 apples, 7 plums and 11 oranges. You have to pick 3 fruits of each type. In how many ways can you make your choice?
5. A question paper consists of 12 questions divided into two parts \(A\) and \(B\), containing 5 and 7 questions repectively. A student is required to attempt 6 questions in all, selecting at least 2 from each part. In how many ways can a student select a question?
6. Out of 5 men and 3 women, a committee of 3 persons is to be formed. In how many ways can it be formed selecting (i) exactly 1 woman. (ii) atleast 1 woman.
7. A cricket team consists of 17 players. It includes 2 wicket keepers and 4 bowlers. In how many ways ean a playing eleven be selected if we have to select 1 wicket keeper and atleast 3 bowlers?
8. To fill up 5 vacancies, 25 applications were recieved. There were 7 S.C. and 8 O.B.C. candidates among the applicants. If 2 posts were reserved for S.C. and 1 for O.B.C. candidates, find the number of ways in which selection could be made?

\subsection*{7.6 SOME SIMPLE PROPERTIES OF \({ }^{n} C_{r}\)}

In this section we will prove some simple properties of \({ }^{n} C_{r}\) which will make the computations of these coefficients simpler. Let us go back again to Theorem 7.3. Using relation 7.7 we can rewrite the formula for \({ }^{n} C_{r}\) as follows:
\[
\begin{equation*}
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!} \tag{7.8}
\end{equation*}
\]

\section*{Permutations And Combinations}

Example 7.26 Find the value of \({ }^{n} C_{0}\).
Solution : Here \(r=0\). Therefore, \({ }^{n} C_{0}=\frac{n!}{0!n!}=\frac{1}{0!}=1\),
since we have defined \(0!=1\).
The formula given in Theorem 7.3 was used in the previous section. As we will see shortly, the formula given in Equation 7.8 will be useful for proving certain properties of \({ }^{n} C_{r}\).
\[
\begin{equation*}
{ }^{n} C_{r}={ }^{n} C_{n-r} \tag{7.9}
\end{equation*}
\]

This means just that the number of ways of choosing \(r\) objects out of \(n\) objects is the same as the number of ways of not choosing \((n-r)\) objects out of \(n\) objects. In the example described in the introduction, it just means that the number of ways of selecting 2 sets of dresses is the same as the number of ways of rejecting \(4-2=2\) dresses. In Example 7.20, this means that the number of ways of choosing subsets with 4 elements is the same as the number of ways of rejecting 8 elements since choosing a particular subset of 4 elements is equivalent to rejecting its complement, which has 8 elements.

Let us now prove this relation using Equation 7.8. The denominator of the right hand side of this equation is \(r!(n-r)!\). This does not change when we replace \(r\) by \(n-r\).
\[
(n-r)!\cdot[n-(n-r)]!=(n-r)!\cdot r!
\]

The numerator is independent of \(r\). Therefore, replacing \(r\) by \(n \in r\) in Equation 7.8 we get result. How is the relation 7.9 useful? Using this formula, we get, for example, \({ }^{100} C_{98}\) is the same as \({ }^{100} \mathrm{C}_{2}\). The second value is much more easier to calculate than the first one.

Example 7.27 Evaluate:
(a) \({ }^{7} C_{5}\)
(c) \({ }^{10} C_{9}\)
(b) \(\quad{ }^{11} C_{9}\)
(d) \({ }^{12} C_{9}\)

Solution : (a) From relation 7.9, we have
\[
{ }^{7} C_{5}={ }^{7} C_{7-5}={ }^{7} C_{2}=\frac{7.6}{1.2}=21
\]
(b) Similarly
\[
{ }^{10} C_{9}={ }^{10} C_{10-9}={ }^{10} C_{1}=10
\]
(c)
\[
{ }^{11} C_{9}={ }^{11} C_{11-9}={ }^{11} C_{2}=\frac{11.10}{1.2}=55
\]
(d)
\[
{ }^{12} C_{10}={ }^{12} C_{12-10}={ }^{12} C_{2}=\frac{12.11}{1.2}=66
\]
\(\quad{ }^{11} C_{9}={ }^{11} C_{11-9}={ }^{11} C_{2}=\frac{11.10}{1.2}=55\)
(d) \(\quad{ }^{12} C_{10}={ }^{12} C_{12-10}={ }^{12} C_{2}=\frac{12.11}{1.2}=66\)

\section*{Permutations And Combinations}

\section*{MODULE-I Algebra}


There is another relation satisfied by \({ }^{n} C_{r}\) which is also useful. We have the following relation:
\[
\begin{aligned}
&{ }^{n-1} C_{r-1}+{ }^{n-1} C_{r}={ }^{n} C_{r} \\
&{ }^{n-1} C_{r-1}+{ }^{n-1} C_{r}=\frac{(n-1)!}{(n-r)!(r-1)!}+\frac{(n-1)!}{(n-r-1)!r!} \\
&=\frac{(n-1)!}{(n-r)(n-r-1)!(r-1)!}+\frac{(n-1)!}{r(n-r-1)!(r-1)!} \\
&=\frac{(n-1)!}{(n-r-1)!(r-1)!}\left[\frac{1}{n-r}+\frac{1}{r}\right] \\
&=\frac{(n-1)!}{(n-r-1)!(r-1)!}\left[\frac{n}{(n-r) r}\right] \\
&=\frac{n(n-1)!}{(n-r)(n-r-1)!r(r-1)!} \\
&=\frac{n!}{(n-r)!r!}={ }^{n} C_{r}
\end{aligned}
\]

Example 7.28 Evaluate:
(a) \({ }^{6} C_{2}+{ }^{6} C_{1}\)
(b) \({ }^{8} C_{2}+{ }^{8} C_{1}\)
(c) \({ }^{5} C_{3}+{ }^{5} C_{2}\)
(d) \({ }^{10} C_{2}+{ }^{10} C_{3}\)

Solution: (a) Let us use relation (7.10) with \(n=7, r=2\). So, \({ }^{6} C_{2}+{ }^{6} C_{1}={ }^{7} C_{2}=21\)
(b) Here \(n=9, r=2\). Therefore, \({ }^{8} C_{2}+{ }^{8} C_{1}={ }^{9} C_{2}=36\)
(c) Here \(n=6, r=3\). Therefore, \({ }^{5} C_{3}+{ }^{5} C_{2}={ }^{6} C_{3}=20\)
(d) Here \(n=11, r=3\). Therefore, \({ }^{10} C_{2}+{ }^{10} C_{3}={ }^{11} C_{3}=165\)

To understand the relation 7.10 better, let us go back to Example 7.20 In this example let us calculate the number of subsets of the set, \(\{1,2,3,4,5,6,7,8,9,10,11\}\). We can subdivide them into two kinds, those that contain a particular element, say 1 , and those that do not contain 1 . The number of subsets of the set having 4 elements and containing 1 is the same as the number of subsets of \(\{2,3,4,5,6,7,8,9,10,11\}\) having 3 elements. There are \({ }^{10} C_{3}\) such subsets.

\section*{Permutations And Combinations}

The number of subsets of the set having 4 elements and not containing 1 is the same as the number of subsets of the set \(\{2,3,4,5,6,7,8,9,10,11\),\(\} having 4\) elements. This is \({ }^{10} C_{4}\). So, the number of subsets of \(\{1,2,3,4,5,6,7,8,9,10,11\}\) having four elements is \({ }^{10} C_{3}+{ }^{10} C_{4}\). But, this is \({ }^{11} C_{4}\) as we have seen in the example. So, \({ }^{10} C_{3}+{ }^{10} C_{4}={ }^{11} C_{4}\). The same argument works for the number of \(r\)-element subsets of a set with \(n\) elements.

This reletion was noticed by the French Mathematician Blaise Pascal and was used in the so called Pascal Triangle, given below.


The first row consists of single element \({ }^{0} C_{0}=1\). The second row consists of \({ }^{1} C_{0}\) and \({ }^{1} C_{1}\). From the third row onwards, the rule for writing the entries is as follows. Add consecutive elements in the previous row and write the answer between the two entries. After exhausting all possible pairs, put the number 1 at the begining and the end of the row. For example, the third row is got as follows. Second row contains only two elements and they add up to 2 . Now, put 1 before and after 2 . For the fourth row, we have \(1+2=3,2+1=3\). Then, we put \(1+2=3,2+1=3\). Then we put 1 at the beginning and the end. Here, we are able to calculate, for example, \({ }^{3} C_{1},{ }^{3} C_{2}\)., from \({ }^{2} C_{0},{ }^{2} C_{1},{ }^{2} C_{2}\) by using the relation 7.10. The important thing is we are able to do it using addition alone.

The numbers \({ }^{n} C_{r}\) occur as coefficents in the binomial expansions, and therefore, they are also called binomial coefficents as we will see in lesson 8 . In particular, the property 7.10 will be used in the proof of the binomial theorem.

Example 7.29 If \({ }^{n} C_{10}={ }^{n} C_{12}\) find \(n\),
Solution : Using \({ }^{n} C_{r}={ }^{n} C_{n-r}\) we get
\[
n-10=12
\]
or, \(\quad n=12+10=22\)

MODULE-I Algebra

Notes

\section*{MODULE-I} Algebra

1. (a) Find the value of \({ }^{n} C_{n-1}\). Is \({ }^{n} C_{n-1}={ }^{n} C_{n}\) ? (b) Show that \({ }^{n} C_{n}={ }^{n} C_{0}\)
2. Evaluate:
(a) \({ }^{9} C_{5}\)
(b) \({ }^{14} C_{10}\)
(c) \({ }^{13} C_{9}\)
(d) \({ }^{15} C_{12}\)
3. Evaluate:
(a) \({ }^{7} C_{3}+{ }^{7} C_{2}\)
(b) \({ }^{8} C_{4}+{ }^{8} C_{5}\)
(c) \({ }^{9} C_{3}+{ }^{9} C_{2}\)
(d) \({ }^{12} C_{3}+{ }^{12} C_{2}\)
4. If \({ }^{10} C_{r}={ }^{10} C_{2 r+1}\), find the value of \(r\). 5. If \({ }^{18} C_{r}={ }^{18} C_{r+2}\) find \({ }^{r} C_{5}\)

\section*{PROBLEMS INVOLVING BOTH PERMUTATIONS AND COMBINATIONS}

So far, we have studied problems that involve either permutation alone or combination alone. In this section, we will consider some examples that need both of these concepts.

Example 7.30 There are 5 novels and 4 biographies. In how many ways can 4 novels and 2 biographies can be arranged on a shelf?

Soluton : 4 novels can be selected out of 5 in \({ }^{5} C_{4}\) ways. 2 biographies can be selected out of 4 in \({ }^{4} C_{2}\) ways.

Number of ways of arranging novels and biographies
\[
={ }^{5} C_{4} \times{ }^{4} C_{2}=5 \times 6=30
\]

After selecting any 6 books ( 4 novels and 2 biographies) in one of the 30 ways, they can be arranged on the shelf in \(6!=720\) ways.

By the Counting Principle, the total number of arrangements \(=30 \times 720=21600\)
Example 7.31 From 5 consonants and 4 vowels, how many words can be formed using 3 consonants and 2 vowels?

Solution : From 5 consonants, 3 consonants can be selected in \({ }^{5} C_{3}\) ways.
From 4 vowels, 2 vowels can be selected in \({ }^{4} C_{2}\) ways.
Now with every selection, number of ways of arranging 5 letters is \({ }^{5} P_{5}\)

\section*{Permutations And Combinations}
\(\therefore\) Total number of words \(={ }^{5} C_{3} \times{ }^{4} C_{2} \times{ }^{5} P_{5}\)
\[
\begin{aligned}
& =\frac{5 \times 4}{2 \times 1} \times \frac{4 \times 3}{2 \times 1} \times 5! \\
& =10 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=7200
\end{aligned}
\]

MODULE - I Algebra

Notes

\section*{CHECK YOUR PROGRESS 7.8}
1. There are 5 Mathematics, 4 Physics and 5 Chemistry books. In how many ways can you arrange 4 Mathematics, 3 Physics and 4 Chemistry books.
(a) if the books on the same subjects are arranged together, but the order in which the books are arranged within a subject doesn't matter?
(b) if books on the same subjects are arranged together and the order in which books are arranged within subject matters ?
2. There are 9 consonants and 5 vowels. How many words of 7 letters can be formed using 4 consonents and 3 vowels ?
3. In how many ways can you invite at least one of your six friends to a dinner?
4. In an examination, an examinee is required to pass in four different subjects. In how many ways can he fail?

\section*{LET US SUM UP}
- Fundamental principle of counting states.

If there are \(n\) events and if the first event can occur in \(m_{l}\) ways, the second event can occur in \(m_{2}\) ways after the first event has occurred, the third event can occur in \(m_{3}\) ways after the second event has occurred and so on, then all the \(n\) events can occur in
\(m_{1} \times m_{2} \times m_{3} \times \ldots \ldots \ldots \times m_{n-1} \times m_{n}\) ways.
- The number of permutations of \(n\) objects taken all at a time is \(n\) !
- \({ }^{n} P_{r}=\frac{n!}{(n-r)!}\)
- \({ }^{n} P_{n}=n\) !
- The number of ways of selecting \(r\) objects out of \(n\) objects \({ }^{n} C_{r}=\frac{n!}{r!(n-r)!}\)
- \(\quad{ }^{n} C_{r}={ }^{n} C_{n-r}\)
- \({ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\)


\section*{SUPPORTIVE WEB SITES}
http://www.wikipedia.org
http://mathworld.wolfram.com

\section*{TERMINAL EXERCISE}
1. There are 8 true - false questions in an examination. How many responses are possible?
2. The six faces of a die are numbered \(1,2,3,4,5\) and 6 . Two such dice are thrown simultaneously. In how many ways can they turn up ?
3. A restaurant has 3 vegetables, 2 salads and 2 types of bread. If a customer wants 1 vegetable, 1 salad and 1 bread, how many choices does he have ?
4. Suppose you want to paper your walls. Wall papers are available in 4 diffrent backgrounds colours with 7 different designs of 5 different colours on them. In how many ways can you select your wall paper ?
5. In how many ways can 7 students be seated in a row on 7 seats ?
6. Determine the number of 8 letter words that can be formed from the letters of the word ALTRUISM.
7. If you have 5 windows and 8 curtains in your house, in how many ways can you put the curtains on the windows?
8. Determine the maximum number of 3 - letter words that can be formed from the letters of the word POLICY.
9. There are 10 athletes participating in a race and there are three prizes, \(1 \mathrm{st}, 2 \mathrm{nd}\) and 3 rd to be awarded. In how many ways can these be awarded?
10. In how many ways can you arrange the letters of the word ATTAIN so that the \(T\) s are together?
11. A group of 12 friends meet at a party. Each person shake hands once with all others. How many hand shakes will be there. ?
12. Suppose that you own a shop which sells televisions. You are selling 5 different kinds of television sets, but your show case has enough space for display of 3 televison sets only. In how many ways can you select the television sets for the display?
13. A contractor needs 4 carpenters. Five equally qualified carpenters apply for the job. In how many ways can the contractor make the selection ?
14. In how many ways can a committe of 9 can be selected from a group of 13 ?
15. In how many ways can a committee of 3 men and 2 women be selected from a group of 15 men and 12 women ?

\section*{Permutations And Combinations}
16. In how ways can 6 persons be selected from 4 grade 1 and 7 grade II officers, so as to include at least two officers from each category?
17. Out of 6 boys and 4 girls, a committee of 5 has to be formed. In how many ways can this be done if we take :
(a) 2 girls.
(b) at least 2 girls.
18. The English alphabet has 5 vowels and 21 consonants. What is the maximum number of words, that can be formed from the alphabet with 2 different vowels and 2 different consonants?
19. From 5 consonants and 5 vowels, how many words can be formed using 3 consonants and 2 vowels?
20. In a school annual day function a variety programme was organised. It was planned that there would be 3 short plays, 6 recitals and 4 dance programmes. However, the chief guest invited for the function took much longer time than expected to finish his speech. To finish in time, it was decided that only 2 short plays, 4 recitals and 3 dance programmes would be perfomed, How many choices were available to them?
(a) if the programmes can be perfomed in any order?
(b) if the programmes of the same kind were perfomed at a stretch?
(c) if the programmes of the same kind were perfomed at a strech and considering the order of performance of the programmes of the same kind?

MODULE - I
Algebra


Notes


\section*{CHECK YOUR PROGRESS 7.1}
1.
(a) 180
(b) 8
(c) 12
(d) 20
2. (a) 48
(b) 36

\section*{CHECK YOUR PROGRESS 7.2}
\begin{tabular}{lllll} 
1. & (a) & 17576 & (b) & 900 \\
2. & (a) & 105 & (b) & 60 \\
3. & (a) & 24 & (b) & 24
\end{tabular}

\section*{CHECK YOUR PROGRESS 7.3}
1.
(a) (i) 720
(ii) 5040
(iii) 5046
(iv) 17280
(v) 10
(b) (i) False
(ii) False
(iii) True
(iv) False
2.
(a) 120
(b) 40320
(c) 24

\section*{CHECK YOUR PROGRESS 7.4}
1.
(a) (i) 12
(ii) 120
(iii) 4
(iv) 7200
(v) \(n\) !
(b) (i) False
(ii) True
(iii) False
(iv) False
(a) (i) 7980
(ii) 9240
(b) 20
(c) 840
2.

\section*{CHECK YOUR PROGRESS 7.5}
1. 96
2. 1152
3. 2073600
4. 2488320
5. 144
6. (i) 5040
(ii) 30240
(iii) 332640

\section*{CHECK YOUR PROGRESS 7.6}
1. (a)
(i) 286
(ii) 126
(iii) 84
(iv) \(\frac{21}{5}\)
(b) (i) True
(ii) False
(iii) False

MODULE - I Algebra
2. 1771
3. 2002
4. 57750
5. 805
6. (i) 30
(ii) 46
7. 3564
8. 7560

\section*{CHECK YOUR PROGRESS 7.7}
1. (a) \(n\), No
2. (a) 126
(b) 1001
(c) 715
(d) 455
3. (a) 56
(b) 126
(c) 120
(d) 286
4. 3
5. 56

\section*{CHECK YOUR PROGRESS 7.8}

1 (a) 600
(b) 2073600
2. 6350400
3. 63
4. 15


TERMINAL EXERCISE
1. 256
2. 36
3. 12
4. 140
5. 5040
6. 40320
7. 6720
8.120
9.720
10. 120
11. 66
12. 10
13. 5
14. 715
15. 30030
16. 371
17. (a) 120
(b) 186
18. 50400
19. 12000
20.
(a) 65318400
(b) 1080
(c) 311040```

