
www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

FREQUENTLY ASKED QUESTIONS

UNIT-I

1. What are IDLE usability features?

2. Explain about keywords used in Python.

3. Explain output function

4. Give an example of istitle() method

5. Describe type() method with example

6. Discuss bout variables and assignments.

7. Explain about IDLE startup details.

8. What is indentation?

9. What is byte code?

10. Briefly discuss about running Python scripts.

11. Write the history of Python

12. Explain input function

UNIT-II

1. What are 4 built-in numeric data types in Python? Explain

2. Describe Python jump statements with examples

3. What are Python assignment operators? Explain.

4. Explain about iteration statements with examples.

5. Give an example of isalnum() method

6. Discuss about IDLE basic usage.

7. Who uses python today? What are Python’s technical strengths

8. Give an example of endswith() method.

9. Explain Python bitwise operators with example.

10. Discuss about Python operators precedence with example

UNIT-III

1. Explain in detail about dictionaries in Python.

2. Discuss about tuples in Pyhton

3. How to access values in a dictionary

4. Discuss about immutable constraints and frozen sets.

5. What are built-in dictionary functions? Explain.

6. Describe has_key() method with example

7. What are relational operators used in Python? Explain.

8. Explain about string formatting operator with example.

9. What is a set? Why sets

10. What are built-in dictionary functions? Explain.

11. Explain about the importance of lists in Python.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

FREQUENTLY ASKED QUESTIONS

UNIT-I

1. What are IDLE usability features?

2. Explain about keywords used in Python.

3. Explain output function

4. Give an example of istitle() method

5. Describe type() method with example

6. Discuss bout variables and assignments.

7. Explain about IDLE startup details.

8. What is indentation?

9. What is byte code?

10. Briefly discuss about running Python scripts.

11. Write the history of Python

12. Explain input function

UNIT-II

1. What are 4 built-in numeric data types in Python? Explain

2. Describe Python jump statements with examples

3. What are Python assignment operators? Explain.

4. Explain about iteration statements with examples.

5. Give an example of isalnum() method

6. Discuss about IDLE basic usage.

7. Who uses python today? What are Python’s technical strengths

8. Give an example of endswith() method.

9. Explain Python bitwise operators with example.

10. Discuss about Python operators precedence with example

UNIT-III

1. Explain in detail about dictionaries in Python.

2. Discuss about tuples in Pyhton

3. How to access values in a dictionary

4. Discuss about immutable constraints and frozen sets.

5. What are built-in dictionary functions? Explain.

6. Describe has_key() method with example

7. What are relational operators used in Python? Explain.

8. Explain about string formatting operator with example.

9. What is a set? Why sets

10. What are built-in dictionary functions? Explain.

11. Explain about the importance of lists in Python.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

FUNCTIONS:

A function is a block of organized, reusable code that is used to perform a single,
related action.

 Once a function is written, it can be reused as and when required. So, functions are also called

reusable code.

 Functions provide modularity for programming. A module represents a part of the
program. Usually, a programmer divides the main task into smaller sub tasks called
modules.

 Code maintenance will become easy because of functions. When a new feature has to be
added to the existing software, a new function can be written and integrated into the
software.

 When there is an error in the software, the corresponding function can be modified without
disturbing the other functions in the software.

 The use of functions in a program will reduce the length of the program.

As you already know, Python gives you many built-in functions like sqrt(), etc. but you can
also create your own functions. These functions are called user-defined functions.

Difference between a function and a method:

A function can be written individually in a python program. A function is called using

its name. When a function is written inside a class, it becomes a „method‟. A method is

called using object name or class name. A method is called using one of the following ways:
Objectname.methodname()
Classname.methodname()

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to
define a function in Python.

 Function blocks begin with the keyword def followed by the function name and
parentheses ().

 Any input parameters or arguments should be placed within these parentheses. You
can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation
string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

none.

Syntax:
def functionname (parameters):

"""function_docstring"""

function_suite

return [expression]

 Page 1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

By default, parameters have a positional behavior and you need to inform them in the same
order that they were defined.

Example:
def add(a,b):

"""This function sum the numbers"""
c=a+b

print c

return

Here, „def’ represents starting of function. „add’ is function name. After this name,

parentheses () are compulsory as they denote that it is a function and not a variable or

something else. In the parentheses we wrote two variables „a‟ and „b‟ these variables are

called „parameters‟. A parameter is a variable that receives data from outside a function. So,

this function receives two values from outside and those are stored in the variables „a‟ and

„b‟. After parantheses, we put colon (:) that represents the beginning of the function body.
The function body contains a group of statements called „suite‟.
Calling Function:

A function cannot run by its own. It runs only when we call it. So, the next step is to

call function using its name. while calling the function, we should pass the necessary values

to the function in the parantheses as:
add(5,12)

Here, we are calling „add‟ function and passing two values 5 and 12 to that function.

When this statement is executed, the python interpreter jumps to the function definition and

copies the values 5 and 12 into the parameters „a‟ and „b‟ respectively.
Example:

def add(a,b):

"""This function sum the numbers"""
c=a+b

print c

add(5,12) # 17

Returning Results from a function:

We can return the result or output form the function using a „return‟ statement in the

function body. When a function does not return any result, we need not write the return

statement in the body fo the function.

Q) Write a program to find the sum of two numbers and return the result from the
function.

def add(a,b):

"""This function sum the numbers"""
c=a+b

return c print

add(5,12) # 17 print

add(1.5,6) #6.5

 Page 2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Returning Multiple values from a function:

A function can returns a single value in the programming languages like C, C++ and

JAVA. But, in python, a function can return multiple values. When a function calculates

multiple results and wants to return the results, we can use return statement as:
return a, b, c

Here, three values which are in „a‟, „b‟ and „c‟are returned. These values are returned by the

function as a tuple. To grab these values, we can three variables at the time of calling the

function as:
x, y, z = functionName()

Here, „x‟, „y‟ and „z‟ are receiving the three values returned by the function.
Example:

def calc(a,b):

c=a+b d=a-

b e=a*b

return c,d,e

x,y,z=calc(5,8)
print "Addition=",x

print "Subtraction=",y

print "Multiplication=",z

Functions are First Class Objects:

In Python, functions are considered as first class objects. It means we can use functions as

perfect objects. In fact when we create a function, the Python interpreter internally creates an

object. Since functions are objects, we can pass a function to another function just like we

pass an object (or value) to a function. The following possibilities are:
 It is possible to assign a function to a variable.

 It is possible to define one function inside another function.

 It is possible to pass a function as parameter to another function.

 It is possible that a function can return another function.

To understand these points, we will take a few simple programs.
Q) A python program to see how to assign a function to a variable.
 def display(st):

 return "hai"+st

 x=display("cse")

 print x Output: haicse

Q) A python program to know how to define a function inside another function.

 def display(st):

 def message():

 return "how r u?"

 res=message()+st

 return res

 x=display("cse")

 print x Output: how r u?cse

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Q) A python program to know how to pass a function as parameter to another function.

 def display(f):

 return "hai"+f

 def message():

 return "how r u?"

 fun=display(message())

 print fun Output: haihow r u?

Q) A python program to know how a function can return another function.

 def display():

 def message():

 return "how r u?"

 return message

 fun=display()

 print fun() Output: how r u?

Pass by Value:

Pass by value represents that a copy of the variable value is passed to the function and

any modifications to that value will not reflect outside the function. In python, the values are

sent to functions by means of object references. We know everything is considered as an

object in python. All numbers, strings, tuples , lists and dictionaries are objects.

If we store a value into a variable
as: x=10

in python, everything is an object. An object can be imagined as a memory block

where we can store some value. In this case, an object with the value „10‟ is created in

memory for which a name „x‟ is attached. So, 10 is the object and „x‟ is the name or tag

given to that object. Also, objects are created on heap memory ehich is a very huge memory

that depends on the RAM of our computer system.

Example: A Python program to pass an integer to a function and modify it.

def modify(x):
x=15

print

"inside",x,id(x) x=10
modify(x)
print "outside",x,id(x)

Output:

inside 15 6356456
outside 10 6356516

From the output, we can understand that the value of „x‟ in the function is 15 and that is not
available outside the function. When we call the modify() function and pass „x‟ as:

modify(x)

we should remember that we are passing the object references to the modify() function. The
object is 10 and its references name is „x‟. This is being passed to the modify() function.

Inside the function, we are using:

x=15

 Page 4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

This means another object 15 is created in memory and that object is referenced by the

name „x‟. the reson why another object is created in the memory is that the integer objects are

immutable (not modifiable). So in the function, when we display „x‟ value, it will display 15.

Once we come outside the function and display „x‟ value, it will display numbers of „x‟ inside

and outside the function, we see different numbers since they are different objects.

In python, integers, floats, strings and tuples are immutable. That means their data

cannot be modified. When we try to change their value, a new object is created with the

modified value.

Fig. Passing Integer to a Function
Pass by Reference:

Pass by reference represents sending the reference or memory address of the variable

to the function. The variable value is modified by the function through memory address and

hence the modified value will reflect outside the function also.

In python, lists and dictionaries are mutable. That means, when we change their data,

the same object gets modified and new object is not creatd. In the below program, we are

passing a list of numbers to modify() function. When we append a new element to the list,

the same list is modified and hence the modified list is available outside the function also.

Example: A Python program to pass alist to a function and modify it.

def modify(a):
a.append(5)

print "inside",a,id(a)

a=[1,2,3,4]
modify(a)
print "outside",a,id(a)

Output:

inside [1, 2, 3, 4, 5] 45355616
outside [1, 2, 3, 4, 5] 45355616

In the above program the list „a‟ is the name or tag that represents the list object.
Before calling the modify() function, the list contains 4 elements as: a=[1,2,3,4]

Inside the function, we are apending a new element „5‟ to the list. Since, lists are

mutable, adding a new element to the same object is possible. Hence, append() method

modifies the same object.

 Page 5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Fig. Passing a list to the function
Formal and Actual Arguments:

When a function is defined, it may have some parameters. These parameters are
useful to receive values from outside of the function. They are called „formal arguments‟.

When we call the function, we should pass data or values to the function. These values are

called „actual arguments‟. In the following code, „a‟ and „b‟ are formal arguments and „x‟

and „y‟ are actual arguments.
Example:

def add(a,b): # a, b are formal arguments
c=a+b

print c

x,y=10,15
add(x,y) # x, y are actual arguments

The actual arguments used in a function call are of 4 types:

a) Positional arguments
b) Keyword arguments
c) Default arguments
d) Variable length arguments

a) Positional Arguments:

These are the arguments passed to a function in correct positional order. Here, the

number of arguments and their position in the function definition should match exactly with

the number and position of argument in the function call.

def attach(s1,s2):

s3=s1+s2

print s3
attach("New","Delhi") #Positional arguments

This function expects two strings that too in that order only. Let‟s assume that this function

attaches the two strings as s1+s2. So, while calling this function, we are supposed to pass

only two strings as: attach("New","Delhi")

 Page 6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

The preceding statements displays the following output NewDelhi

Suppose, We passed "Delhi" first and then "New", then the result will be: "DelhiNew". Also,
if we try to pass more than or less than 2 strings, there will be an error.

b) Keyword Arguments:

Keyword arguments are arguments that identify the parameters by their names. For
example, the definition of a function that displays groceryitem and its price can be written as:

def grocery(item, price):

At the time of calling this function, we have to pass two values and we can mention which
value is for what. For example,

grocery(item=‟sugar‟, price=50.75)

here, we are mentioning a keyword „item‟ and its value and then another keyword „price‟

and its value. Please observe these keywords are nothing but the parameter names which

receive these values. we can change the order of the arguments as:
grocery(price=88.00, item=‟oil‟)

In this way, even though we change the order of the arguments, there will not be any problem
as the parameter names will guide where to store that value.

def grocery(item,price):

print "item=",item

print "price=",price

grocery(item="sugar",price=50.75) # keyword arguments
grocery(price=88.00,item="oil") # keyword arguments

Output:

item= sugar

price= 50.75

item= oil

price= 88.0
c) Default Arguments:

We can mention some default value for the function parameters in the definition.

Let‟s take the definition of grocerry() function

as: def grocery(item, price=40.00)

here, the first argument is „item‟ whose default value is not mentioned. But the second

argument is „price‟ and its default value is mentioned to be 40.00. at the time of calling this

function, if we do not pass „price‟ value, then the default value of 40.00 is taken. If we

mention the „price‟ value, then that mentioned value is utilized. So, a default argument is an

argument that assumes a default value if a value is not provided in the function call for that

argument.

Example:

def grocery(item,price=40.00):

print "item=",item

print "price=",price

grocery(item="sugar",price=50.75)

grocery(item="oil")

 Page 7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Output:

item= sugar

price= 50.75

item= oil

price= 40.0
d) Variable Length Arguments:

Sometimes, the programmer does not know how many values a function may receive. In that

case, the programmer cannot decide how many arguments to be given in the function

definition. for example, if the programmer is writing a function to add two numbers, he/she

can write:
add(a,b)

But, the user who is using this function may want to use this function to find sum of three

numbers. In that case, there is a chance that the user may provide 3 arguments to this function

as:
add(10,15,20)

then the add() function will fail and eror will be dislayed. If the programmer want to develop

a function that can accept „n‟ arguments, that is also possible in python. For this purpose, a

variable length argument is used in the function definition. a variable length argument is an

argument that can accept any number of values. the variable length argument is written with a

„*‟ symbol before it in the function definition

as: def add(farg, *args):

here, „farg‟ is the formal; argument and „*args‟ represents variable length argument. We can
pass 1 or more values to this „*args‟ and it will store them all in a tuple.
Example:

def add(farg,*args):

sum=0

for i in args:
sum=sum+i

print "sum is",sum+farg

add(5,10)
add(5,10,20)
add(5,10,20,30)

Output:

sum is 15

sum is 35

sum is 65

Local and Global Variables:

When we declare a variable inside a function, it becomes a local variable. A local

variable is a variabe whose scope is limited only to that function where it is created. That

means the local variable value is available only in that function and not outside of that

function.

 Page 8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

When the variable „a‟ is declared inside myfunction() and hence it is available inside that

function. Once we come out of the function, the variable „a‟ is removed from memory and it

is not available.
Example-1:

def myfunction():
a=10

print "Inside function",a #display 10

myfunction()
print "outside function",a # Error, not available

Output:

Inside function 10

outside function
NameError: name 'a' is not defined

When a variable is declared above a function. It becomes global variable. Such variables are
available to all the functions which are written after it.

Example-2:

a=11

def myfunction():
b=10

print "Inside function",a #display global var
print "Inside function",b #display local var

myfunction()

print "outside function",a # available
print "outside function",b # error

Output:

Inside function 11

Inside function 10

outside function 11

outside function

NameError: name 'b' is not defined
The Global Keyword:

Sometimes, the global variable and the local variable may have the same name. in that case,

the function, by default, refers to the local variable and ignores the global variable. So, the

global variable is not accessible inside the function but outside of it, it is accessible.

Example-1:

a=11

def myfunction():
a=10

print "Inside function",a # display local variable

myfunction()
print "outside function",a # display global variable

Output:

Inside function 10
outside function 11

 Page 9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

When the programmer wants to use the global variable inside a function, he can use the
keyword „global‟ before the variable in the beginning of the function body as:

global
a Example-2:

a=11

def myfunction():
global a
a=10

print "Inside function",a # display global

variable myfunction()
print "outside function",a # display global variable

Output:

Inside function 10
outside function 10

Recursive Functions:

A function that calls itself is known as „recursive function‟. For example, we can write the
factorial of 3 as:

factorial(3) = 3 * factorial(2) Here,

factorial(2) = 2 * factorial(1) And,

factorial(1) = 1 * factorial(0)

Now, if we know that the factorial(0) value is 1, all the preceding statements will evaluate
and give the result as:
factorial(3) = 3 * factorial(2)

= 3 * 2 * factorial(1)
= 3 * 2 * 1 * factorial(0)
= 3 * 2 * 1 * 1
= 6

From the above statements, we can write the formula to calculate factorial of any number „n‟
as: factorial(n) = n * factorial(n-1)
Example-1:

def factorial(n):

if n==0:
result=1

else: result=n*factorial(n-

1)

return result for
i in range(1,5):

print "factorial of ",i,"is",factorial(i)
Output:

factorial of 1 is 1

factorial of 2 is 2

factorial of 3 is 6

factorial of 4 is 24

 Page 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Anonymous Function or Lambdas:

These functions are called anonymous because they are not declared in the standard
manner by using the def keyword. You can use the lambda keyword to create small
anonymous functions.
 Lambda forms can take any number of arguments but return just one value in the form of an expression.

They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an expression.

 Lambda functions have their own local namespace and cannot access variables other than those in their
parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not equivalent to inline
statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

Let‟s take a normal function that returns square of given

value: def square(x):
return x*x

the same function can be written as anonymous function as:
lambda x: x*x

The colon (:) represents the beginning of the function that contains an expression x*x. The
syntax is:

lambda argument_list: expression
Example:

f=lambda
x:x*x value =
f(5) print value

The map() Function

The advantage of the lambda operator can be seen when it is used in combination with
the map() function. map() is a function with two arguments:

r = map(func, seq)

The first argument func is the name of a function and the second a sequence (e.g. a list) seq.
map() applies the function func to all the elements of the sequence seq. It returns a new list
with the elements changed by func

def fahrenheit(T):

return ((float(9)/5)*T +
32) def celsius(T):

return (float(5)/9)*(T-32)

temp = (36.5, 37, 37.5,39) F

= map(fahrenheit, temp) C =

map(celsius, F)

In the example above we haven't used lambda. By using lambda, we wouldn't have had to

define and name the functions fahrenheit() and celsius(). You can see this in the following

interactive session:
>>> Celsius = [39.2, 36.5, 37.3, 37.8]
>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
>>> print Fahrenheit
[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]
>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)

 Page 11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

>>> print C
[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]

map() can be applied to more than one list. The lists have to have the same length. map() will

apply its lambda function to the elements of the argument lists, i.e. it first applies to the

elements with the 0th index, then to the elements with the 1st index until the n-th index is

reached:
>>> a = [1,2,3,4]
>>> b = [17,12,11,10]
>>> c = [-1,-4,5,9]

>>> map(lambda x,y:x+y, a,b)
[18, 14, 14, 14]

>>> map(lambda x,y,z:x+y+z,
a,b,c) [17, 10, 19, 23]

>>> map(lambda x,y,z:x+y-z, a,b,c)
[19, 18, 9, 5]

We can see in the example above that the parameter x gets its values from the list a, while y
gets its values from b and z from list c.
Filtering

The function filter(function, list) offers an elegant way to filter out all the elements of a list,

for which the function function returns True. The function filter(f,l) needs a function f as its

first argument. f returns a Boolean value, i.e. either True or False. This function will be

applied to every element of the list l. Only if f returns True will the element of the list be

included in the result list.
>>> fib = [0,1,1,2,3,5,8,13,21,34,55]
>>> result = filter(lambda x: x % 2, fib)
>>> print result
[1, 1, 3, 5, 13, 21, 55]
>>> result = filter(lambda x: x % 2 == 0, fib)
>>> print result
[0, 2, 8, 34]

Reducing a List

The function reduce(func, seq) continually applies the function func() to the sequence seq. It
returns a single value.

If seq = [s1, s2, s3, ... , sn], calling reduce(func, seq) works like this:

 At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on

which reduce() works looks now like this: [func(s1, s2), s3, ... , sn]

 In the next step func will be applied on the previous result and the third element of the list,

i.e. func(func(s1, s2),s3). The list looks like this now: [func(func(s1, s2),s3), ... , sn]

 Continue like this until just one element is left and return this element as the result of
reduce()

We illustrate this process in the following example:

>>> reduce(lambda x,y: x+y, [47,11,42,13])
113

 Page 12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

The following diagram shows the intermediate steps of the calculation:

Examples of reduce()
Determining the maximum of a list of numerical values by using reduce:

>>> f = lambda a,b: a if (a > b) else b
>>> reduce(f, [47,11,42,102,13])
102

>>>
Calculating the sum of the numbers from 1 to 100:

>>> reduce(lambda x, y: x+y,
range(1,101)) 5050

Function Decorators:

A decorator is a function that accepts a function as parameter and returns a function.

A decorator takes the result of a function, modifies the result and returns it. Thus decorators

are useful to perform some additional processing required by a function.
The following steps are generally involved in creation of decorators:
 We should define a decorator function with another function name as parameter.

 We should define a function inside the decorator function. This function actually modifies or
decorates the value of the function passed to the decorator function.

 Return the inner function that has processed or decorated the value.

Example-1:

def decor(fun):

def inner():

value=fun()

return value+2

return inner

def num():

return 10

result=decor(num)

print result()
Output:

12

To apply the decorator to any function, we can use ‘@’ symbol and decorator name just
above the function definition.

 Page 13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Example-2: A python program to create two decorators.

def decor1(fun):

def inner():

value=fun()

return value+2

return inner def

decor2(fun):

def inner():

value=fun()
return value*2

return inner

def num():
return 10

result=decor1(decor2(num))

print result()
Output:

22

Example-3: A python program to create two decorators to the same function using „@‟

symbol.

def decor1(fun):

def inner():

value=fun()

return value+2

return inner def

decor2(fun):

def inner():

value=fun()
return value*2

return inner

@decor1

@decor2

def num():
return 10

print num()
Output:

22

 Page 14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Function Generators:
A generator is a function that produces a sequence of results instead of a single value.

„yield‟ statement is used to return the

value. def mygen(n):
i = 0

while i < n:

yield i

i += 1

g=mygen(6)

for i in g:
print i,

Output:
0 1 2 3 4 5

Note: „yield‟ statement can be used to hold the sequence of results and return it.

Modules:

A module is a file containing Python definitions and statements. The file name is the
module name with the suffix.py appended. Within a module, the module‟s name (as a string)
is available as the value of the global variable __name__. For instance, use your favorite text
editor to create a file called fibo.py in the current directory with the following contents:

Fibonacci numbers module
def fib(n): # write Fibonacci series up to

n a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n

result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol
table; it only enters the module name fibo there. Using the module name you can access the
functions:

>>> fibo.fib(1000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__
'fibo'

 Page 15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

from statement:
 A module can contain executable statements as well as function definitions. These

statements are intended to initialize the module. They are executed only the first time the
module name is encountered in an import statement. (They are also run if the file is
executed as a script.)

 Each module has its own private symbol table, which is used as the global symbol table by
all functions defined in the module. Thus, the author of a module can use global variables
in the module without worrying about accidental clashes with a user‟s global variables.
On the other hand, if you know what you are doing you can touch a module‟s global
variables with the same notation used to refer to its functions, modname.itemname.

 Modules can import other modules. It is customary but not required to place all import
statements at the beginning of a module (or script, for that matter). The imported module
names are placed in the importing module‟s global symbol table.

 There is a variant of the import statement that imports names from a module directly into the importing
module‟s symbol table. For example:

>>> from fibo import fib, fib2

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377
This does not introduce the module name from which the imports are taken in the local
symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377
Namespaces and Scoping

 Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable
names (keys) and their corresponding objects (values).

 A Python statement can access variables in a local namespace and in the global
namespace. If a local and a global variable have the same name, the local variable
shadows the global variable.

 Each function has its own local namespace. Class methods follow the same scoping rule as
ordinary functions.

 Python makes educated guesses on whether variables are local or global. It assumes that any
variable assigned a value in a function is local.

 Therefore, in order to assign a value to a global variable within a function, you must first use
the global statement.

 The statement global VarName tells Python that VarName is a global variable. Python stops
searching the local namespace for the variable.

 For example, we define a variable Money in the global namespace. Within the
functionMoney, we assign Money a value, therefore Python assumes Money as a local
variable. However, we accessed the value of the local variable Money before setting
it, so an UnboundLocalError is the result. Uncommenting the global statement fixes
the problem.

 Page 16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

Packages in Python

A package is a hierarchical file directory structure that defines a single Python

application environment that consists of modules and subpackages and subsubpackages, and

so on.
Third Party Packages:

The Python has got the greatest community for creating great python packages. There
are more tha 1,00,000 Packages available at https://pypi.python.org/pypi .

Python Package is a collection of all modules connected properly into one form and

distributed PyPI, the Python Package Index maintains the list of Python packages available.

Now when you are done with pip setup Go to command prompt / terminal and say
pip install <package_name>

Note: In windows, pip file is in “Python27\Scripts” folder. To install package you have goto

the path C:\Python27\Scripts in command prompt and install.

The requests and flask Packages are downloaded from internet. To download install the
packages follow the commands

 Installation of requests Package:

 Command: cd C:\Python27\Scripts

 Command: pip install requests
 Installation of flask Package:

 Command: cd C:\Python27\Scripts

 Command: pip install flask
Example: Write a script that imports requests and fetch content from the page.

import requests
r = requests.get('https://www.google.com/')
print r.status_code
print r.headers['content-
type'] print r.text

 Page 17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT- 4

There are some libraries in python:

 Requests: The most famous HTTP Library. It is a must and an essential criterion for every

Python Developer.

 Scrapy: If you are involved in webscripting then this is a must have library for you. After using
this library you won‟t use any other.

 Pillow: A friendly fork of PIL (Python Imaging Library). It is more user-friendly than PIL and is
a must have for anyone who works with images.

 SQLAchemy: It is a database library.

 BeautifulSoup: This xml and html parsing library.

 Twisted: The most important tool for any network application developer.

 NumPy: It provides some advanced math functionalities to python.

 SciPy: It is a library of algorithms and mathematical tools for python and has caused many
scientists to switch from ruby to python.

 Matplotlib: It is a numerical plotting library. It is very useful for any data scientist or any data
analyzer.

 Page 18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Python has been an object-oriented language since it existed. Because of this, creating
and using classes and objects are downright easy. This chapter helps you become an expert in

using Python's object-oriented programming support.
If you do not have any previous experience with object-oriented (OO) programming,

you may want to consult an introductory course on it or at least a tutorial of some sort so that

you have a grasp of the basic concepts.
However, here is small introduction of Object-Oriented Programming (OOP) to bring

you at speed:
Overview of OOP Terminology
 Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables
and instance variables) and methods, accessed via dot notation.

 Class variable: A variable that is shared by all instances of a class. Class variables are
defined within a class but outside any of the class's methods. Class variables are not
used as frequently as instance variables are.

 Data member: A class variable or instance variable that holds data associated with a class and
its objects.

 Function overloading: The assignment of more than one behaviour to a particular function.
The operation performed varies by the types of objects or arguments involved.

 Instance variable: A variable that is defined inside a method and belongs only to the current
instance of a class.

 Inheritance: The transfer of the characteristics of a class to other classes that are derived from
it.

 Instance: An individual object of a certain class. An object obj that belongs to a class Circle,
for example, is an instance of the class Circle.

 Instantiation: The creation of an instance of a class.

 Method: A special kind of function that is defined in a class definition.

 Object: A unique instance of a data structure that's defined by its class. An object comprises both
data members (class variables and instance variables) and methods.

 Operator overloading: The assignment of more than one function to a particular operator.

Creation of Class:
A class is created with the keyword class and then writing the classname. The simplest form
of class definition looks like this:

class ClassName:
<statement-1>

.

.

<statement-N>
Class definitions, like function definitions (def statements) must be executed before

they have any effect. (You could conceivably place a class definition in a branch of an if

statement, or inside a function.)

Example: class Student:

 def __init__(self):

 self.name="hari"

 self.branch="CSE"

 def display(self):

 print self.name

 print self.branch

 Page 1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

 For example, If we „Student‟ class, we can write code in the class that specifies the attributes

and actions performed by any student.

 Observer that the keyword class is used to declare a class. After this, we should write
the class name. So, „Student‟ is our class name. Generally, a class name should start
with a capital letter, hence „S‟ is a capital in „Student‟.

 In the class, we have written the variables and methods. Since in python, we cannot
declare variables, we have written the variables inside a special method, i.e. __init__().
This method is used to initialize the variables. Hence the name „init‟.

 The method name has two underscores before and after. This indicates that this method is
internally defined and we cannot call this method explicitly.

 Observe the parameter „self‟ written after the method name in the parentheses. „self‟ is a
variable that refers to current class instance.

 When we create an instance for the Student class, a separate memory block is allocated on the
heap and that memory location is default stored in „self‟.

 The instance contains the variables „name‟ and „branch‟ which are called instance
variables. To refer to instance variables, we can use the dot operator notation along
with self as „self.name‟ and „self.branch‟.

 The method display () also takes the „self‟ variable as parameter. This method displays the
values of variables by referring them using „self‟.

 The methods that act on instances (or objects) of a class are called instance methods.

Instance methods use „self‟ as the first parameter that refers to the location of the
instance in the memory.

 Writing a class like this is not sufficient. It should be used. To use a class, we should
create an instance to the class. Instance creation represents allotting memory necessary
to store the actual data of the variables, i.e., „hari‟, „CSE‟.

 To create an instance, the following syntax is used:

instancename = Classname()

 So, to create an instance to the Student class, we can write as: s1 =
Student ()

 Here „s1‟ represents the instance name. When we create an instance like this, the following
steps will take place internally:

1. First of all, a block of memory is allocated on heap. How much memory is to be
allocated is decided from the attributes and methods available in the Student class.

2. After allocating the memory block, the special method by the name „__init__(self)‟ is

called internally. This method stores the initial data into the variables. Since this

method is useful to construct the instance, it is called „constructor‟.
3. Finally, the allocated memory location address of the instance is returned into „s1‟

variable. To see this memory location in decimal number format, we can use id()
function as id(s1).

 Page 2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Self variable:

„self‟ is a default variable that contains the memory address of the instance of the

current class. When an instance to the class is created, the instance name cotains the memory
locatin of the instance. This memory location is internally passed to „self‟.

For example, we create an instance to student class as:

s1 = Student()
Here, „s1‟ contains the memory address of the instance. This memory address is

internally and by default passed to „self‟ variable. Since „self‟ knows the memory address of

the instance, it can refer to all the members of the instance.
We use „self‟ in two eays:
 The self variable is used as first parameter in the constructor as: def

__init__(self):

In this case, „self‟ can be used to refer to the instance variables inside the
constructor.

 „self‟ can be used as first parameter in the instance methods as: def
display(self):

Here, display() is instance method as it acts on the instance variables. If this

method wants to act on the instance variables, it should know the memory location

of the instance variables. That memory location is by default available to the

display() method through „self‟.

Constructor:

A constructor is a special method that is used to initialize the instance variables of a

class. In the constructor, we create the instance variables and initialize them with some
starting values. The first parameter of the constructor will be „self‟ variable that contains the

memory address of the instance.
def __init__(self):

self.name = "hari"

self.branch = "CSE"
Here, the constructor has only one parameter, i.e. „self‟ using „self.name‟ and

„self.branch‟, we can access the instance variables of the class. A constructor is called at the

time of creating an instance. So, the above constructor will be called when we create an
instance as:

s1 = Student()
Let‟s take another example, we can write a constructor with some parameters in

addition to „self‟ as:
def __init__(self , n = „ ‟ , b = „ ‟):

self.name = n

self.branch = b

 Page 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Here, the formal arguments are „n‟ and „b‟ whose default values are given as „‟

(None) and „‟ (None). Hence, if we do not pass any values to constructor at the time of

creating an instance, the default values of those formal arguments are stored into name and

branch variables. For example,
s1 = Student()
Since we are not passing any values to the instance, None and None are stored into

name and branch. Suppose, we can create an instance as:
s1 = Student(“mothi”, “CSE”)

In this case, we are passing two actual arguments: “mothi” and “CSE” to the Student

instance.
Example:

class Student:
def __init__(self,n='',b=''):

self.name=n

self.branch=b

def display(self):

print "Hi",self.name

print "Branch", self.branch

s1=Student()

s1.display()

print “------------------------------”

s2=Student("mothi","CSE")

s2.display()

print “------------------------------”
Output:

Hi
Branch

Hi mothi

Branch CSE

Types of Variables:

The variables which are written inside a class are of 2 types:
a) Instance Variables
b) Class Variables or Static Variables

a) Instance Variables
Instance variables are the variables whose separate copy is created in every instance.

For example, if „x‟ is an instance variable and if we create 3 instances, there will be 3

copies of „x‟ in these 3 instances. When we modify the copy of „x‟ in any instance, it will
not modify the other two copies.
Example: A Python Program to understand instance variables.

class Sample:
def __init__(self):

self.x = 10
def modify(self):

self.x = self.x + 1
s1=Sample()
s2=Sample()

 Page 4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

print "x in s1=",s1.x
print "x in s2=",s2.x
print "----------------"
s1.modify()
print "x in s1=",s1.x
print "x in s2=",s2.x
print "----------------"

Output:
x in s1= 10
x in s2= 10

x in s1= 11

x in s2= 10

Instance variables are defined and initialized using a constructor with „self‟ parameter.

Also, to access instance variables, we need instance methods with „self‟ as first parameter. It

is possible that the instance methods may have other parameters in addition to the „self‟

parameter. To access the instance variables, we can use self.variable as shown in program. It

is also possible to access the instance variables from outside the class, as:

instancename.variable, e.g. s1.x
b) Class Variables or Static Variables

Class variables are the variables whose single copy is available to all the instances of
the class. If we modify the copy of class variable in an instance, it will modify all the

copies in the other instances. For example, if „x‟ is a class variable and if we create 3

instances, the same copy of „x‟ is passed to these 3 instances. When we modify the copy
of „x‟ in any instance using a class method, the modified copy is sent to the other two

instances.
Example: A Python program to understand class variables or static variables.

class Sample:

x=10

@classmethod

def modify(cls):

cls.x = cls.x + 1

s1=Sample()
s2=Sample()

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"

s1.modify()

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"
Output:

x in s1= 10
x in s2= 10

x in s1= 11

x in s2= 11

 Page 5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Namespaces:

A namespace represents a memory block where names are mapped to objects.

Suppose we write: n = 10
Here, „n‟ is the name given to the integer object 10. Please recollect that numbers,

strings, lists etc. Are all considered as objects in python. The name „n‟ is linked to 10 in the
namespace.
a) Class Namespace:

A class maintains its own namespace, called „class namespace‟. In the class

namespace, the names are mapped to class variables. In the following code, „n‟ is a class
variable in the student class. So, in the class namespace, the name „n‟ is mapped or linked to
10 as shown in figure. We can access it in the class namespace, using classname.variable, as:

Student.n which gives 10.
Example:

class Student:

n = 10

print Student.n # displays 10

Student.n += 1

print Student.n # displays 11

s1 = Student()

print s1.n # displays 11

s2 = Student()

print s2.n # displays 11

Before modifying the class variable „n‟ After modifying the class variable „n‟

We know that a single copy of class variable is shared by all the instances. So, if the class

variable is modified in the class namespace, since same copy of the variable is modified, the
modified copy is available to all the instances.
b) Instance namespace:

Every instance will have its own name space, called „instance namespace‟. In the

instance namespace, the names are mapped to instance variables. Every instance will have its

own namespace, if the class variable is modified in one instance namespace, it will not affect

the variables in the other instance namespaces. To access the class variable at the instance

level, we have to create instance first and then refer to the variable as instancename.variable.
Example:

class Student:

n = 10

s1 = Student()

print s1.n # displays 10

s1.n += 1

print s1.n # displays 11

 Page 6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

 s2 = Student()

 print s2.n # displays 11

 Before modifying the class variable „n‟ After modifying the class variable „n‟

Types of methods:

We can classify the methods in the following 3 types:
a) Instance methods

 Accessor methods

 Mutator methods

b) Class methods
c) Static methods

a) Instance Methods:
Instance methods are the methods which act upon the instance variables of the

class.instance methods are bound to instances and hence called as:

instancename.method(). Since instance variables are available in the instance, instance

methods need to know the memory address of instance. This is provided through „self‟

variable by default as first parameter for the instance method. While calling the instance

methods, we need not pass any value to the „self‟ variable.
Example:

class Student:
def __init__(self,n='',b=''):

self.name=n

self.branch=b

def display(self):
print "Hi",self.name

print "Branch", self.branch

s1=Student()

s1.display()

print “------------------------------”

s2=Student("mothi","CSE")

s2.display()

print “------------------------------”
 Instance methods are of two types: accessor methods and mutator methods.

 Accessor methods simply access of read data of the variables. They do not modify
the data in the variables. Accessor methods are generally written in the form of
getXXXX() and hence they are also called getter methods.

 Mutator methods are the methods which not only read the data but also modify
them. They are written in the form of setXXXX() and hence they are also called
setter methods.

 Page 7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

 Example:
class Student:

def setName(self,n):

self.name = n

def setBranch(self,b):

self.branch = b

def getName(self):

return self.name

def getBranch(self):

return self.branch

s=Student()

name=input("Enter Name: ")
branch=input("Enter Branch: ")

s.setName(name)

s.setBranch(branch)

print s.getName()
print s.getBranch()

b) Class methods:

These methods act on class level. Class methods are the methods which act on

the class variables or static variables. These methods are written using @classmethod

decorator above them. By default, the first parameter for class methods is „cls‟ which
refers to the class itself.

For example, „cls.var‟ is the format to the class variable. These methods are
generally called using classname.method(). The processing which is commonly

needed by all the instances of class is handled by the class methods.
Example:

class Bird:
wings = 2

@classmethod

def fly(cls,name):

print name,"flies with",cls.wings,"wings"

Bird.fly("parrot") #display "parrot flies with 2 wings"

Bird.fly("sparrow") #display "sparow flies with 2 wings"

c) Static methods:
We need static methods when the processing is at the class level but we need

not involve the class or instances. Static methods are used when some processing is
related to the class but does not need the class or its instances to perform any work.

For example, setting environmental variables, counting the number of
instances of the class or changing an attribute in another class, etc. are the tasks

related to a class.
Such tasks are handled by static methods. Static methods are written with

decorator @staticmethod above them. Static methods are called in the form of
classname.method ().

 Page 8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Example:
class MyClass:

n = 0

def __init__(self):

MyClass.n = Myclass.n + 1

def noObjects():
print "No. of instances created: ", MyClass.n

m1=MyClass()
m2=MyClass()

m3=MyClass()

MyClass.noObjects()
Inheritance:
 Software development is a team effort. Several programmers will work as a team to

develop software.
 When a programmer develops a class, he will use its features by creating an instance to

it. When another programmer wants to create another class which is similar to the class
already created, then he need not create the class from the scratch. He can simply use the
features of the existing class in creating his own class.

 Deriving new class from the super class is called inheritance.
 The child class inherits the attributes of its parent class, and you can use those attributes

as if they were defined in the child class.
 A child class can also override data members and methods from the parent.
Syntax:

class Subclass(BaseClass):

<class body>
 When an object is to SubClass is created, it contains a copy of BaseClass within it. This

means there is a relation between the BaseClass and SubClass objects.
 We do not create BaseClass object,but still a copy of it is available to SubClass object.
 By using inheritance, a programmer can develop classes very easilt. Hence

programmer‟s productivity is increased. Productivity is a term that refers to the code
developed by the programmer in a given span of time.

 If the programmer used inheritance, he will be able to develop more code in less time.
 In inheritance, we always create only the sub class object. Generally, we do not create

super class object. The reason is clear. Since all the members of the super class are
available to sub class, when we crate an object, we can access the members of both the
super and sub classes.

 super() is a built-in method which is useful to call the super class constructor or methods
from the sub class.

 Any constructor written in the super class is not available to the sub class if the sub class
has a constructor.

 Then how can we initialize the super class instance variables and use them in the sub
class? This is done by calling super class constructor using super() method from inside
the sub class constructor.

 super() is a built-in method which contains the history of super class methods.

 Hence, we can use super() to refer to super class constructor and methods from a aub

class. So, super() can be used as:
super().init() # call super class constructor
super().init(arguments) # call super class constructor and pass arguments
super().method() # call super class method

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Example: Write a python program to call the super class constructor in the sub class using

super().
class Father:

def __init__(self, p = 0):
self.property = p

def display(self):
print "Father Property",self.property

class Son(Father):
def __init__(self,p1 = 0, p = 0):

super().__init__(p1)
self.property1 = p

def display(self):
print "Son Property",self.property+self.property1

s=Son(200000,500000)
s.display()

Output:
Son Property 700000

Example: Write a python program to access base class constructor and method in the sub

class using super().
class Square:

def __init__(self, x = 0):
self.x = x

def area(self):
print "Area of square", self.x * self.x

class Rectangle(Square):
def __init__(self, x = 0, y = 0):

super().__init__(x)
self.y = y

def area(self):
super().area()
print "Area of Rectangle", self.x * self.y

r = Rectangle(5,16)
r.area()

Output:
Area of square 25
Area of Rectangle 80

Types of Inheritance:
There are mainly 2 types of inheritance.

a) Single inheritance

b) Multiple inheritance
a) Single inheritance

Deriving one or more sub classes from a single base class is called „single

inheritance‟. In single inheritance, we always have only one base class, but there can

be n number of sub classes derived from it. For example, „Bank‟ is a single base clas

from where we derive „AndhraBank‟ and „StateBank‟ as sub classes. This is called
single inheritance.

 Page 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Example:
class Bank:

cash = 100
@classmethod
def balance(cls):

print cls.cash
class AndhraBank(Bank):

cash = 500
@classmethod
def balance(cls):

print "AndhraBank",cls.cash +

Bank.cash class StateBank(Bank):
cash = 300
@classmethod
def balance(cls):

print "StateBank",cls.cash + Bank.cash
a=AndhraBank()
a.balance()

displays AndhraBank 600

s=StateBank()
s.balance()

#displays StateBank 400

b) Multiple inheritance
Deriving sub classes from multiple (or more than one) base classes is called

„multiple inheritance‟. All the members of super classes are by default available to

sub classes and the sub classes in turn can have their own members.
The best example for multiple inheritance is that parents are producing the

children and the children inheriting the qualities of the parents.

Example:
class Father:

def height(self):
print "Height is 5.8 incehs"

class Mother:
def color(self):

print "Color is brown"
class Child(Father, Mother):

pass
c=Child()
c.height() # displays Height is 5.8 incehs
c.color() # displays Color is brown

Problem in Multiple inheritance:
 If the sub class has a constructor, it overrides the super class constructor and hence the

super class constructor is not available to the sub class.

 But writing constructor is very common to initialize the instance variables.

 In multiple inheritance, let‟s assume that a sub class „C‟ is derived from two
super classes „A‟ and „B‟ having their own constructors. Even the sub class „C‟
also has its constructor.

 Page 11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

 Example-1:
 class A(object):

 def __init__(self):

 print "Class A" Output:
 class B(object): Class A
 def __init__(self): Class C
 print "Class B"

 class C(A,B,object):

 def __init__(self):

 super().__init__()

 print "Class C"

 c1= C()

 Example-2:
 class A(object):

 def __init__(self):

 super().__init__()

 print "Class A" Output:
 class B(object): Class B
 def __init__(self): Class A
 super().__init__() Class C
 print "Class B"

 class C(A,B,object):

 def __init__(self):

 super().__init__()

 print "Class C"

 c1= C()
Method Overriding:

When there is a method in the super class, writing the same method in the sub class so
that it replaces the super class method is called „method overriding‟. The programmer

overrides the super class methods when he does not want to use them in sub class.
Example:

import math
class square:

def area(slef, r):
print "Square area=",r * r

class Circle(Square):
def area(self, r):

print "Circle area=", math.pi * r * r
c=Circle()
c.area(15) # displays Circle area= 706.85834

Data hiding:
An object's attributes may or may not be visible outside the class definition. You need

to name attributes with a double underscore prefix, and those attributes then are not be
directly visible to outsiders.
Example:

class JustCounter:
__secretCount = 0
def count(self):

self.__secretCount += 1
print self.__secretCount

counter = JustCounter()
counter.count()
counter.count()
print counter.__secretCount

 Page 12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

When the above code is executed, it produces the following result:

1
2

Traceback (most recent call last):
File "C:/Python27/JustCounter.py", line 9, in <module>
print counter.__secretCount

AttributeError: JustCounter instance has no attribute '__secretCount'
Python protects those members by internally changing the name to include the class

name. You can access such attributes as object._className__attrName. If you would replace
your last line as following, then it works for you:

.........................
print counter._JustCounter__secretCount

When the above code is executed, it produces the following result:
1

2
2

Errors and Exceptions:
As human beings, we commit several errors. A software developer is also a human being

and hence prone to commit errors wither in the design of the software or in writing the code. The

errors in the software are called „bugs‟ and the process of removing them are called „debugging‟.

In general, we can classify errors in a program into one of these three types:

a) Compile-time errors

b) Runtime errors

c) Logical errors
a) Compile-time errors

These are syntactical errors found in the code, due to which a program fails to
compile. For example, forgetting a colon in the statements like if, while, for, def, etc.

will result in compile-time error. Such errors are detected by python compiler and the

line number along with error description is displayed by the python compiler.

Example: A Python program to understand the compile-time error.

a = 1

if a == 1
print “hello”

Output:
File ex.py, line 3

If a == 1

^

SyntaxError: invalid syntax

b) Runtime errors
When PVM cannot execute the byte code, it flags runtime error. For example,

insufficient memory to store something or inability of PVM to execute some
statement come under runtime errors. Runtime errors are not detected by the python

compiler. They are detected by the PVM, Only at runtime.

Example: A Python program to understand the compile-time error.
print "hai"+25

 Page 13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Output:
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>

print "hai"+25
TypeError: cannot concatenate 'str' and 'int' objects

c) Logical errors
These errors depict flaws in the logic of the program. The programmer might

be using a wrong formula of the design of the program itself is wrong. Logical errors

are not detected either by Python compiler of PVM. The programme is solely

responsible for them. In the following program, the programmer wants to calculate

incremented salary of an employee, but he gets wrong output, since he uses wrong

formula.
Example: A Python program to increment the salary of an employee by 15%.

def increment(sal):
sal = sal * 15/100
return sal

sal = increment(5000)
print “Salary after Increment is”, sal

Output:
Salary after Increment is 750

From the above program the formula for salary is wrong, because only the
increment but it is not adding it to the original salary. So, the correct formula would

be:
sal = sal + sal * 15/100

 Compile time errors and runtime errors can be eliminated by the programmer by modifying
the program source code.

 In case of runtime errors, when the programmer knows which type of error occurs, he has to
handle them using exception handling mechanism.

Exceptions:

 An exception is a runtime error which can be handled by the programmer.

 That means if the programmer can guess an error in the program and he can do something to
eliminate the harm caused by that error, then it is called an „exception‟.

 If the programmer cannot do anything in case of an error, then it is called an „error‟ and not
an exception.

 All exceptions are represented as classes in python. The exceptions which are already
available in python are called „built-in‟ exceptions. The base class for all built-in
exceptions is „BaseException‟ class.

 From BaseException class, the sub class „Exception‟ is derived. From Exception class, the
sub classes „StandardError‟ and „Warning‟ are derived.

 All errors (or exceptions) are defined as sub classes of StandardError. An error should be
compulsory handled otherwise the program will not execute.

 Similarly, all warnings are derived as sub classes from „Warning‟ class. A warning
represents a caution and even though it is not handled, the program will execute. So,
warnings can be neglected but errors cannot neglect.

 Just like the exceptions which are already available in python language, a programmer can
also create his own exceptions, called „user-defined‟ exceptions.

 When the programmer wants to create his own exception class, he should derive his class
from Exception class and not from „BaseException‟ class.

 Page 14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Exception Handling:
 The purpose of handling errors is to make the program robust. The word „robust‟ means

„strong‟. A robust program does not terminate in the middle.

 Also, when there is an error in the program, it will display an appropriate message to the user and
continue execution.

 Designing such programs is needed in any software development.

 For that purpose, the programmer should handle the errors. When the errors can be handled, they are
called exceptions.

To handle exceptions, the programmer should perform the following four steps:
Step 1: The programmer should observe the statements in his program where there may be a

possibility of exceptions. Such statements should be written inside a „try‟ block. A try block
looks like as follows:

try:

statements
The greatness of try block is that even if some exception arises inside it, the program

will not be terminated. When PVM understands that there is an exception, it jumps into an

„except‟ block.
Step 2: The programmer should write the „except‟ block where he should display the

exception details to the user. This helps the user to understand that there is some error in the

program. The programmer should also display a message regarding what can be done to

avoid this error. Except block looks like as follows:
except exceptionname:

statements
The statements written inside an except block are called „handlers‟ since they handle the
situation when the exception occurs.

 Page 15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Step 3: If no exception is raised, the statements inside the „else‟ block is executed. Else
block looks like as follows:

else:

statements
Step 4: Lastly, the programmer should perform clean up actions like closing the files and

terminating any other processes which are running. The programmer should write this code in

the finally block. Finally block looks like as follows:
finally:

statements
The speciality of finally block is that the statements inside the finally block are

executed irrespective of whether there is an exception or not. This ensures that all the opened

files are properly closed and all the running processes are properly terminated. So, the data in

the files will not be corrupted and the user is at the safe-side.
Here, the complete exception handling syntax will be in the following format:

try:
statements

except Exception1:
statements

except Exception2:
statements

else:
statements

finally:
statements

The following points are followed in exception handling:
 A single try block can be followed by several except blocks.

 Multiple except blocks can be used to handle multiple exceptions.

 We cannot write except blocks without a try block.

 We can write a try block without any except blocks.

 Else block and finally blocks are not compulsory.

 When there is no exception, else block is executed after try block.

 Finally block is always executed.

Example: A python program to handle IOError produced by open() function.

import sys
try:

f = open('myfile.txt','r')
s = f.readline()
print s
f.close()

except IOError as e:
print "I/O error", e.strerror

except:
print "Unexpected error:"

Output:
I/O error No such file or directory

In the if the file is not found, then IOError is raised. Then „except‟ block will display

a message: „I/O error‟. if the file is found, then all the lines of the file are read using
readline() method.

 Page 16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 PYTHON PROGRAMMING UNIT-5

 List of Standard Exceptions

 Exception Name Description

 Exception Base class for all exceptions

StopIteration

Raised when the next() method of an iterator does not point to

any object.

 SystemExit Raised by the sys.exit() function.

StandardError

Base class for all built-in exceptions except StopIteration and

SystemExit.

 ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError

Raised when a calculation exceeds maximum limit for a

numeric type.

 FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionError

Raised when division or modulo by zero takes place for all

numeric types.

 AssertionError Raised in case of failure of the Assert statement.

 AttributeError Raised in case of failure of attribute reference or assignment.

EOFError

Raised when there is no input from either the raw_input() or

input() function and the end of file is reached.

 ImportError Raised when an import statement fails.

KeyboardInterrupt

Raised when the user interrupts program execution, usually by

pressing Ctrl+c.

 LookupError Base class for all lookup errors.

 IndexError Raised when an index is not found in a sequence.

 KeyError Raised when the specified key is not found in the dictionary.

NameError

Raised when an identifier is not found in the local or global

namespace.

UnboundLocalError

Raised when trying to access a local variable in a function or

method but no value has been assigned to it.

EnvironmentError

Base class for all exceptions that occur outside the Python

environment.

 Raised when an input/ output operation fails, such as the print

 IOError statement or the open() function when trying to open a file that

 does not exist.

 OSError Raised for operating system-related errors.

 SyntaxError Raised when there is an error in Python syntax.

 IndentationError Raised when indentation is not specified properly.

SystemError

Raised when the interpreter finds an internal problem, but when

this error is encountered the Python interpreter does not exit.

 Raised when Python interpreter is quit by using the sys.exit()

 SystemExit function. If not handled in the code, causes the interpreter to

 exit.

TypeError

Raised when an operation or function is attempted that is

invalid for the specified data type.

 Raised when the built-in function for a data type has the valid

 ValueError type of arguments, but the arguments have invalid values

 specified.

 RuntimeError Raised when a generated error does not fall into any category.

NotImplementedError

Raised when an abstract method that needs to be implemented

in an inherited class is not actually implemented.

 Page 17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

The Except Block:

The „except‟ block is useful to catch an exception that is raised in the try block.

When there is an exception in the try block, then only the except block is executed. it is
written in various formats.

1. To catch the exception which is raised in the try block, we can write except block with
the Exceptionclass name as:

except Exceptionclass:
2. We can catch the exception as an object that contains some description about the

exception.
except Exceptionclass as obj:

3. To catch multiple exceptions, we can write multiple catch blocks. The other way is to
use a single except block and write all the exceptions as a tuple inside parantheses as:

except (Exceptionclass1, Exceptionclass2,):
4. To catch any type of exception where we are not bothered about which type of

exception it is, we can write except block without mentioning any Exceptionclass name

as:
except:

Example:
try:

f = open('myfile.txt','w')
a=input("Enter a value ")
b=input("Enter a value ")
c=a/float(b)
s = f.write(str(c))
print “Result is stored”

except ZeroDivisionError:
print "Division is not possible"

except:
print "Unexpected error:"

finally:
f.close()

Output:
Enter a value 1
Enter a value 5

Result is stored

Raising an Exception
You can raise exceptions in several ways by using the raise statement. The general

syntax for the raise statement is as follows.
raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (For example, NameError) and argument is a
value for the exception argument. The argument is optional; if not supplied, the exception

argument is None.
For Example, If you need to determine whether an exception was raised but don‟t

intend to handle it, a simpler form of the raise statement allows you to re-raise the exception:
try:

raise NameError('HiThere')

except NameError:

print 'An exception flew by!'

raise

 Page 18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

User-Defined Exceptions:
 Like the built-in exceptions of python, the programmer can also create his own

exceptions which are called „User-defined exceptions‟ or „Custom exceptions‟. We
know Python offers many exceptions which will raise in different contexts.

 But, there may be some situations where none of the exceptions in Python are useful for
the programmer. In that case, the programme has to create his/her own exception and
raise it.

 For example, let‟s take a bank where customers have accounts. Each account is characterized
should by customer name and balance amount.

 The rule of the bank is that every customer should keep minimum Rs. 2000.00 as balance amount
in his account.

 The programmer now is given a task to check the accounts to know every customer is
maintaining minimum balance of Rs. 2000.00 or not.

 If the balance amount is below Rs. 2000.00, then the programmer wants to raise an
exception saying „Balance amount is less in the account of so and so person.‟ This will
be helpful to the bank authorities to find out the customer.

 So, the programmer wants an exception that is raised when the balance amount in an
account is less than Rs. 2000.00. Since there is no such exception available in python, the
programme has to create his/her own exception.

 For this purpose, he/she has to follow these steps:

1. Since all exceptions are classes, the programme is supposed to create his own
exception as a class. Also, he should make his class as a sub class to the in-built
„Exception‟ class.

class MyException(Exception):

def __init__(self, arg):

self.msg = arg
Here, MyException class is the sub class for „Exception‟ class. This class has a

constructor where a variable „msg‟ is defined. This „msg‟ receives a message passed
from outside through „arg‟.

2. The programmer can write his code; maybe it represents a group of statements or a

function. When the programmer suspects the possibility of exception, he should raise
his own exception using „raise‟ statement as:

raise MyException(‘message’)

Here, raise statement is raising MyException class object that contains the given

„message‟.

3. The programmer can insert the code inside a „try‟ block and catch the exception
using „except‟ block as:

try:

code
except MyException as me:

print me

Here, the object „me‟ contains the message given in the raise statement. All these

steps are shown in below program.

 Page 19

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-5

Example:

class MyException(Exception):
def __init__(self, arg):

self.msg = arg

def check(dict):

for k,v in dict.items():

print "Name=",k,"Balance=",v

if v<2000.00:

raise MyException("Balance amount is less in the account of "+k)

bank={"ravi":5000.00,"ramu":8500.00,"raju":1990.00}
try:

check(bank)

except MyException as me:

print me.msg
Output:

Name= ramu Balance= 8500.0
Name= ravi Balance= 5000.0

Name= raju Balance= 1990.0

Balance amount is less in the account of raju

 Page 20

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Brief Tour of the Standard Library:

Python‟s standard library is very extensive, offering a wide range of facilities. The

library contains built-in modules that provide access to system functionality such as I/O that

would otherwise be inaccessible to the python programmers.

Operating system interface:

 The OS module in Python provides a way of using operating system dependent functionality.

 The functions that the OS module provides allows you to interface with the underlying operating
system that Python is running on – be that Windows, Mac or Linux.

 You can find important information about your location or about the process.

OS functions

1. Executing a shell command
os.system()

2. Returns the current working directory.
os.getcwd()

3. Return the real group id of the current process.
os.getgid()

4. Return the current process‟s user id.
os.getuid()

5. Returns the real process ID of the current process.
os.getpid()

6. Set the current numeric umask and return the previous umask.
os.umask(mask)

7. Return information identifying the current operating system.
os.uname()

8. Change the root directory of the current process to path.
os.chroot(path)

9. Return a list of the entries in the directory given by
path. os.listdir(path)

10. Create a directory named path with numeric mode mode.
os.mkdir(path)

11. Remove (delete) the file path.
os.remove(path)

12. Remove directories recursively.
os.removedirs(path)

13. Rename the file or directory src to dst.
os.rename(src, dst)

String Pattern Matching:

The re module provides regular expression tools for advanced string processing. For

complex matching and manipulation, the regular expressions offer succinct, optimized

solutions.

re Functions:
1. match Function

re.match(pattern, string, flags=0)

 Page 1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Here is the description of the parameters:
Parameter Description

Pattern This is the regular expression to be matched.

String
 This is the string, which would be searched to match the pattern at

the beginning of string.

Flags
 You can specify different flags using bitwise OR (|). These are

modifiers, which are listed in the table below.

The re.match function returns a match object on success, None on failure. We
usegroup(num) or groups() function of match object to get matched expression.

Match Object

Description

Methods

group(num=0) This method returns entire match (or specific subgroup num)

groups()
 This method returns all matching subgroups in a tuple (empty if there

weren't any)

 import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

print "matchObj.group() : ", matchObj.group()
print "matchObj.group(1) : ", matchObj.group(1)
print "matchObj.group(2) : ", matchObj.group(2)

else:

print "No match!!"
Output:

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats
matchObj.group(2) : smarter

2. search Function

This function searches for first occurrence of RE pattern within string with optional flags.
Here is the syntax for this function:

re.search(pattern, string, flags=0)
Here is the description of the parameters:

Parameter Description

pattern This is the regular expression to be matched.

string
 This is the string, which would be searched to match the pattern anywhere

in the string.

flags
 You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

 Page 2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

The re.search function returns a
group(num) or groups() function of

match object on success, none on failure. We use

match object to get matched expression.

Match Object

Methods

group(num=0)

groups()

Description

This method returns entire match (or specific subgroup num)

This method returns all matching subgroups in a tuple (empty if there
weren't any)

3. sub function:

One of the most important re methods that use regular expressions is sub.

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl, substituting all
occurrences unless max provided. This method returns modified string.

Example:

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than
digits num = re.sub(r'\D', "", phone)
print "Phone Num : ", num

Output: Phone Num : 2004-959-559

Phone Num : 2004959559
Regular Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match
themselves. You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python −

Pattern
^

$

.

Description

Matches beginning of line.

Matches end of line.

Matches any single character except newline. Using m option allows it to
match newline as well.

 [...] Matches any single character in brackets.

 [^...] Matches any single character not in brackets

 re* Matches 0 or more occurrences of preceding expression.

 re+ Matches 1 or more occurrence of preceding expression.

 re? Matches 0 or 1 occurrence of preceding expression.

 re{ n} Matches exactly n number of occurrences of preceding expression.

 re{ n,} Matches n or more occurrences of preceding expression.

 Page 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 PYTHON PROGRAMMING UNIT-6

 re{ n, m} Matches at least n and at most m occurrences of preceding expression.

 a| b Matches either a or b.

 (?#...) Comment.

 (?= re) Specifies position using a pattern. Doesn't have a range.

 (?! re) Specifies position using pattern negation. Doesn't have a range.

 (?> re) Matches independent pattern without backtracking.

 \w Matches word characters.

 \W Matches nonword characters.

 \s Matches whitespace. Equivalent to [\t\n\r\f].

 \S Matches nonwhitespace.

 \d Matches digits. Equivalent to [0-9].

 \D Matches nondigits.

 \A Matches beginning of string.

 \Z Matches end of string. If a newline exists, it matches just before newline.

 \z Matches end of string.

 \G Matches point where last match finished.

 \B Matches nonword boundaries.

 \n, \t, etc. Matches newlines, carriage returns, tabs, etc.

 \1...\9 Matches nth grouped subexpression.

\10

Matches nth grouped subexpression if it matched already. Otherwise refers

to the octal representation of a character code.

Mathematical Functions:

The math module is a standard module in Python and is always available. To use

mathematical functions under this module, you have to import the module using import

math.

 Function Description

 ceil(x) Returns the smallest integer greater than or equal to x.

 copysign(x, y) Returns x with the sign of y

 fabs(x) Returns the absolute value of x

 factorial(x) Returns the factorial of x

 floor(x) Returns the largest integer less than or equal to x

 fmod(x, y) Returns the remainder when x is divided by y

 frexp(x) Returns the mantissa and exponent of x as the pair (m, e)

 fsum(iterable) Returns an accurate floating point sum of values in the iterable

 isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number)

 ldexp(x, i) Returns x * (2**i)

 modf(x) Returns the fractional and integer parts of x

 Page 4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 PYTHON PROGRAMMING UNIT-6

 trunc(x) Returns the truncated integer value of x

 exp(x) Returns e**x

 expm1(x) Returns e**x - 1

 log(x[, base]) Returns the logarithm of x to the base (defaults to e)

 log10(x) Returns the base-10 logarithm of x

 pow(x, y) Returns x raised to the power y

 sqrt(x) Returns the square root of x

 atan2(y, x) Returns atan(y / x)

 cos(x) Returns the cosine of x

 hypot(x, y) Returns the Euclidean norm, sqrt(x*x + y*y)

 sin(x) Returns the sine of x

 tan(x) Returns the tangent of x

 degrees(x) Converts angle x from radians to degrees

 radians(x) Converts angle x from degrees to radians

 acosh(x) Returns the inverse hyperbolic cosine of x

 asinh(x) Returns the inverse hyperbolic sine of x

 atanh(x) Returns the inverse hyperbolic tangent of x

 cosh(x) Returns the hyperbolic cosine of x

 sinh(x) Returns the hyperbolic cosine of x

 tanh(x) Returns the hyperbolic tangent of x

 erf(x) Returns the error function at x

 erfc(x) Returns the complementary error function at x

 gamma(x) Returns the Gamma function at x

lgamma(x)

 Returns the natural logarithm of the absolute value of the Gamma

function at x

pi

 Mathematical constant, the ratio of circumference of a circle to it's

diameter (3.14159...)

 e mathematical constant e (2.71828...)

Internet Access:

 Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending e-mail and routing e-

mail between mail servers.

 Python provides smtplib module, which defines an SMTP client session object that can be used
to send mail to any Internet machine with an SMTP or ESMTP listener daemon.

 Here is a simple syntax to create one SMTP object, which can later be used to send an e-mail:

 Page 5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

import smtplib
smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

 Here is the detail of the parameters:

 host: This is the host running your SMTP server. You can specify IP address of the host or a
domain name like tutorialspoint.com. This is optional argument.

 port: If you are providing host argument, then you need to specify a port, where SMTP
server is listening. Usually this port would be 25.

 local_hostname: If your SMTP server is running on your local machine, then you can
specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically used to do the
work of mailing a message. It takes three parameters:

 The sender - A string with the address of the sender.

 The receivers - A list of strings, one for each recipient.

 The message - A message as a string formatted as specified in the various RFCs.
Example: Write a program to send email to any mail address.

import smtplib

from email.mime.text import MIMEText

body="The message you want to

send........" msg=MIMEText(body)

fromaddr="fromaddress@gmail.com"

toaddr="toaddress@gmail.com"

msg['From']=fromaddr

msg['To']=toaddr

msg['Subject']="Subject of mail"

server=smtplib.SMTP('smtp.gmail.com',587)

server.starttls()

server.login(fromaddr,"fromAddressPassword")

server.sendmail(fromaddr,toaddr,msg.as_string())

print "Mail Sent......."

server.quit()

Output:

Mail Sent..........

Note: To send a mail to others you have to change “Allow less secure apps: ON” in from
address mail. Because Google has providing security for vulnerable attacks

Dates and Times:

A Python program can handle date and time in several ways. Converting between date

formats is a common chore for computers. Python's time and calendar modules help track

dates and times.
The time Module

There is a popular time module available in Python which provides functions for
working with times and for converting between representations. Here is the list of all
available methods:

 Page 6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

 Sr.
Function with Description

No.

1 time.ctime([secs])
Like asctime(localtime(secs)) and without arguments is like asctime(
) time.localtime([secs])

2 Accepts an instant expressed in seconds since the epoch and returns a time-tuple t with the local

time (t.tm_isdst is 0 or 1, depending on whether DST applies to instant secs by local rules).
3 time.sleep(secs)

Suspends the calling thread for secs seconds.

4 time.time()
Returns the current time instant, a floating-point number of seconds since the
epoch. time.clock()

5 The method returns the current processor time as a floating point numberexpressed in
seconds on Unix.
time.asctime([tupletime])

6 Accepts a time-tuple and returns a readable 24-character string such as 'Tue Dec

11 18:07:14 2008'.
Example:

import time

print "time: ",time.time()

print "ctime: ",time.ctime()

time.sleep(5)
print "ctime: ",time.ctime()
print "localtime: ",time.localtime()

print "asctime: ",time.asctime(time.localtime(time.time()))

print "clock: ",time.clock()
Output:

time: 1506843198.01

ctime: Sun Oct 01 13:03:18 2017
ctime: Sun Oct 01 13:03:23 2017

localtime: time.struct_time(tm_year=2017, tm_mon=10, tm_mday=1, tm_hour=13,
tm_min=3, tm_sec=23, tm_wday=6, tm_yday=274, tm_isdst=0)

asctime: Sun Oct 01 13:03:23 2017
clock: 1.14090912202e-06

The calendar Module:
 The calendar module supplies calendar-related functions, including functions to print a text calendar for a

given month or year.

 By default, calendar takes Monday as the first day of the week and Sunday as the last one. To change this,
call calendar.setfirstweekday() function.

Sr. No. Function with Description

 calendar.calendar(year,w=2,l=1,c=6)

1
Returns a multiline string with a calendar for year formatted into three columns

separated by c spaces. w is the width in characters of each date; each line has length

 21*w+18+2*c. l is the number of lines for each week.

2
calendar.isleap(year)

Returns True if year is a leap year; otherwise, False.

 calendar.setfirstweekday(weekday)

3 Sets the first day of each week to weekday code weekday. Weekday codes are 0

 (Monday) to 6 (Sunday).

 Page 7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

4 calendar.leapdays(y1,y2)
Returns the total number of leap days in the years within range(y1,y2).
calendar.month(year,month,w=2,l=1)
Returns a multiline string with a calendar for month of year, one line per week plus two

5 header lines. w is the width in characters of each date; each line has length 7*w+6. l is the number of lines
for each week.

Example:

import calendar
print "Here it is the calendar:"
print calendar.month(2017,10)
calendar.setfirstweekday(6)
print calendar.month(2017,10)
print "Is 2017 is leap year?",calendar.isleap(2017)
print "No.of Leap days",calendar.leapdays(2000,2013)
print "1990-November-12 is",calendar.weekday(1990,11,12)

Output:
Here it is the calendar:

October 2017

Mo Tu We Th Fr Sa Su

 1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

October 2017

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Is 2017 is leap year? False
No.of Leap days 4 1990-
November-12 is 0

Data Compression

Common data archiving and compression formats are directly supported by the
modules including: zlib, gzip, bz2, lzma, zipfile and tarfile.

Example: write a program to zip the three files into one single “.zip”

file import zipfile

FileNames=['README.txt','NEWS.txt','LICENSE.txt']

with zipfile.ZipFile('reportDir1.zip', 'w') as myzip:

for f in FileNames:
myzip.write(f)

 Page 8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Multithreading

Running several threads is similar to running several different programs concurrently, but
with the following benefits:

 Multiple threads within a process share the same data space with the main thread and can
therefore share information or communicate with each other more easily than if they were
separate processes.

 Threads sometimes called light-weight processes and they do not require much memory overhead; they
care cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction
pointer that keeps track of where within its context it is currently running.

 It can be pre-empted (interrupted).

 It can temporarily be put on hold (also known as sleeping) while other threads are running - this is
called yielding.

Starting a New Thread

 To spawn another thread, you need to call following method available in thread module:

thread.start_new_thread (function, args[, kwargs])

 This method call enables a fast and efficient way to create new threads in both Linux and
Windows.

 The method call returns immediately and the child thread starts and calls function with the passed
list of agrs. When function returns, the thread terminates.

 Here, args is a tuple of arguments; use an empty tuple to call function without passing any
arguments. kwargs is an optional dictionary of keyword arguments.

Example:

import thread

import time

def print_time(tname,delay):
count=0

while count<5:

count+=1

time.sleep(delay)
print tname,time.ctime(time.time())

thread.start_new_thread(print_time, ("Thread-1", 2))

thread.start_new_thread(print_time, ("Thread-2", 5))
Output:

Thread-1 Sun Oct 01 22:15:08 2017
Thread-1 Sun Oct 01 22:15:10 2017
Thread-2 Sun Oct 01 22:15:11 2017
Thread-1 Sun Oct 01 22:15:12 2017
Thread-1 Sun Oct 01 22:15:14 2017

Thread-1Thread-2 Sun Oct 01 22:15:16 2017Sun Oct 01 22:15:16 2017
Thread-2 Sun Oct 01 22:15:21 2017
Thread-2 Sun Oct 01 22:15:26 2017
Thread-2 Sun Oct 01 22:15:31 2017

 Page 9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

The Threading Module:

The threading module exposes all the methods of the thread module and provides some
additional methods:

 threading.activeCount(): Returns the number of thread objects that are active.

 threading.currentThread(): Returns the number of thread objects in the caller's thread
control.

 threading.enumerate(): Returns a list of all thread objects that are currently active.

In addition to the methods, the threading module has the Thread class that implements
threading. The methods provided by the Thread class are as follows:

 run(): The run() method is the entry point for a thread.
 start(): The start() method starts a thread by calling the run method.
 join([time]): The join() waits for threads to terminate.
 isAlive(): The isAlive() method checks whether a thread is still executing.
 getName(): The getName() method returns the name of a thread.
 setName(): The setName() method sets the name of a thread.

Creating Thread Using Threading Module:
To implement a new thread using the threading module, you have to do the following:

 Define a new subclass of the Thread class.
 Override the __init_(self [,args]) method to add additional arguments.

 Then, override the run(self [,args]) method to implement what the thread should do

when started.
Once you have created the new Thread subclass, you can create an instance of it and then
start a new thread by invoking the start(), which in turn calls run() method.
Example:

import threading

import time

exitFlag = 0
class myThread (threading.Thread):

def __init__(self, threadID, name, counter):

threading.Thread.__init__(self)

self.threadID = threadID

self.name = name

self.counter = counter
def run(self):

print "Starting " + self.name

print_time(self.name, self.counter, 5)

print "Exiting " + self.name

def print_time(threadName, delay,
counter): while counter:

if exitFlag:

thread.exit()
time.sleep(delay)
print threadName, time.ctime(time.time())

 Page 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

counter -= 1
Create new threads

thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()
print "Exiting Main Thread"

Output:

Starting Thread-1Starting Thread-2Exiting Main Thread
Thread-1 Sun Oct 01 22:26:17 2017
Thread-1 Sun Oct 01 22:26:18 2017
Thread-2 Sun Oct 01 22:26:18 2017
Thread-1 Sun Oct 01 22:26:19 2017
Thread-1Thread-2 Sun Oct 01 22:26:20 2017Sun Oct 01 22:26:20 2017

Thread-1 Sun Oct 01 22:26:21 2017
Exiting Thread-1
Thread-2 Sun Oct 01 22:26:22 2017
Thread-2 Sun Oct 01 22:26:24 2017
Thread-2 Sun Oct 01 22:26:26 2017
Exiting Thread-2

Synchronizing Threads

 The threading module provided with Python includes a simple-to-implement locking

mechanism that allows you to synchronize threads. A new lock is created by calling the
Lock() method, which returns the new lock.

 The acquire(blocking) method of the new lock object is used to force threads to run

synchronously. The optional blocking parameter enables you to control whether the
thread waits to acquire the lock.

 If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be

acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks
and waits for the lock to be released.

 The release() method of the new lock object is used to release the lock when it is no

longer required.
Example:

import threading

import time

exitFlag = 0
class myThread (threading.Thread):

def __init__(self, threadID, name,

counter): threading.Thread.__init__(self)

self.threadID = threadID

self.name = name

self.counter = counter

 Page 11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

def run(self):

print "Starting " + self.name

threadLock.acquire()

print_time(self.name, self.counter, 5)

threadLock.release()
print "Exiting " + self.name

def print_time(threadName, delay,

counter): while counter:

if exitFlag:
thread.exit()

time.sleep(delay)

print threadName, time.ctime(time.time())
counter -= 1

threadLock =
threading.Lock() threads = []
Create new threads

thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

threads.append(thread1)
threads.append(thread2)

wait for all threads to complete
for t in threads:

t.join()
print "Exiting Main Thread"

Output:
Starting Thread-1Starting Thread-2
Thread-1 Sun Oct 01 22:32:54 2017
Thread-1 Sun Oct 01 22:32:55 2017
Thread-1 Sun Oct 01 22:32:56 2017
Thread-1 Sun Oct 01 22:32:57 2017

Thread-1 Sun Oct 01 22:32:58 2017
Exiting Thread-1
Thread-2 Sun Oct 01 22:33:00 2017
Thread-2 Sun Oct 01 22:33:02 2017
Thread-2 Sun Oct 01 22:33:04 2017
Thread-2 Sun Oct 01 22:33:06 2017

Thread-2 Sun Oct 01 22:33:08 2017
Exiting Thread-2
Exiting Main Thread

 Page 12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

GUI Programming

Python provides various options for developing graphical user interfaces (GUIs). Most
important are listed below:

 Tkinter: Tkinter is the Python interface to the Tk GUI toolkit shipped with Python..

 wxPython: This is an open-source Python interface for wxWindows
http://wxpython.org.

 JPython: JPython is a Python port for Java which gives Python scripts seamless access

to Java class libraries on the local machine http://www.jython.org.
There are many other interfaces available, which you can find them on the net.
Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter
provides a fast and easy way to create GUI applications. Tkinter provides a powerful object-
oriented interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you need to do is
perform the following steps:

 Import the Tkinter module.

 Create the GUI application main window.

 Add one or more of the above-mentioned widgets to the GUI application.

 Enter the main event loop to take action against each event triggered by the user.

Example:

import Tkinter
top = Tkinter.Tk()
Code to add widgets will go here...
top.mainloop()

Tkinter Widgets

 Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI

application. These controls are commonly called widgets.

 There are currently 15 types of widgets in Tkinter. We present these widgets as well as a

brief description in the following table:
 Operator Description

 Button The Button widget is used to display buttons in your application.

Canvas

The Canvas widget is used to draw shapes, such as lines, ovals,

polygons and rectangles, in your application.

Checkbutton

The Checkbutton widget is used to display a number of options as

checkboxes. The user can select multiple options at a time.

Entry

The Entry widget is used to display a single-line text field for accepting

values from a user.

Frame

The Frame widget is used as a container widget to organize other

widgets.

Label

The Label widget is used to provide a single-line caption for other

widgets. It can also contain images.

 Listbox The Listbox widget is used to provide a list of options to a user.

 Menubutton The Menubutton widget is used to display menus in your application.

Menu

The Menu widget is used to provide various commands to a user. These

commands are contained inside Menubutton.

 Page 13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Message

The Message widget is used to display multiline text fields for

accepting values from a user.

 The Radiobutton widget is used to display a number of options as radio

 Radiobutton buttons. The user can select only one option at a time. Scale The Scale

 widget is used to provide a slider widget.

Scrollbar

The Scrollbar widget is used to add scrolling capability to various

widgets, such as list boxes.

 Text The Text widget is used to display text in multiple lines.

 Toplevel The Toplevel widget is used to provide a separate window container.

Spinbox

The Spinbox widget is a variant of the standard Tkinter Entry widget,

which can be used to select from a fixed number of values.

PanedWindow

A PanedWindow is a container widget that may contain any number of

panes, arranged horizontally or vertically.

LabelFrame

A labelframe is a simple container widget. Its primary purpose is to act

as a spacer or container for complex window layouts.

 tkMessageBox This module is used to display message boxes in your applications.

Button:

The Button widget is used to add buttons in a Python application. These buttons can display
text or images that convey the purpose of the buttons. You can attach a function or a method
to a button which is called automatically when you click the button.
Example:

import Tkinter

import tkMessageBox

top = Tkinter.Tk()

def helloCallBack():
tkMessageBox.showinfo("Hello Python", "Hello World")

B = Tkinter.Button(top, text ="Hello", command = helloCallBack)
B.pack()
top.mainloop()

Output:

Entry
The Entry widget is used to accept single-line text strings from a user.

 If you want to display multiple lines of text that can be edited, then you should use the
Text widget.

 If you want to display one or more lines of text that cannot be modified by the user,

then you should use the Label widget.

 Page 14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Example:

from Tkinter import *
top = Tk()

L1 = Label(top, text="User Name")
L1.pack(side = LEFT)

E1 = Entry(top, bd =5)

E1.pack(side = RIGHT)

top.mainloop()
Output:

Radiobutton

 This widget implements a multiple-choice button, which is a way to offer many possible

selections to the user and lets user choose only one of them.

 In order to implement this functionality, each group of radiobuttons must be associated to

the same variable and each one of the buttons must symbolize a single value. You can

use the Tab key to switch from one radionbutton to another.
Example:

from Tkinter import *
def sel():

selection = "You selected the option " +
str(var.get()) label.config(text = selection)

root = Tk()

var = IntVar()

R1 = Radiobutton(root,text="Option
1",variable=var,value=1,command=sel) R1.pack(anchor = W)

R2 = Radiobutton(root,text="Option
2",variable=var,value=2,command=sel) R2.pack(anchor = W)

R3 = Radiobutton(root,text="Option
3",variable=var,value=3,command=sel) R3.pack(anchor = W)

label = Label(root)

label.pack()

root.mainloop()
Output:

 Page 15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Menu

 The goal of this widget is to allow us to create all kinds of menus that can be used by our

applications. The core functionality provides ways to create three menu types: pop-up,
toplevel and pull-down.

 It is also possible to use other extended widgets to implement new types of menus, such

as the OptionMenu widget, which implements a special type that generates a pop-up list
of items within a selection.

Example:

from Tkinter import *
def donothing():

filewin = Toplevel(root)

button = Button(filewin, text="Do nothing button")
button.pack()

root = Tk()
menubar = Menu(root)

filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label="New", command=donothing)

filemenu.add_command(label="Open", command=donothing)

filemenu.add_command(label="Save", command=donothing)

filemenu.add_command(label="Save as...",

command=donothing) filemenu.add_command(label="Close",

command=donothing) filemenu.add_separator()

filemenu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="File", menu=filemenu)

editmenu = Menu(menubar, tearoff=0)

editmenu.add_command(label="Undo", command=donothing)

editmenu.add_separator() editmenu.add_command(label="Cut",

command=donothing) editmenu.add_command(label="Copy",

command=donothing) editmenu.add_command(label="Paste",

command=donothing) editmenu.add_command(label="Delete",

command=donothing)

editmenu.add_command(label="Select All", command=donothing)

menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label="Help Index", command=donothing)

helpmenu.add_command(label="About...", command=donothing)

menubar.add_cascade(label="Help", menu=helpmenu)

root.config(menu=menubar)
root.mainloop()

 Page 16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Output:

Example: Write a program for Tic-Tac-Toe Game

from Tkinter import *

def callback(r,c):
global player

if player=='X' and states[r][c]==0:

b[r][c].configure(text='x')

states[r][c]='X'
player='O'

if player=='O' and states[r][c]==0:

b[r][c].configure(text='O')

states[r][c]='O'
player='X'

root=Tk()
states=[[0,0,0],[0,0,0],[0,0,0]]

b=[[0,0,0],[0,0,0],[0,0,0]]
for i in range(3):

for j in range(3):

b[i][j]=Button(font=('verdana',56),width=3,bg='yellow',command=lambda
r=i,c=j:callback(r,c))

b[i][j].grid(row=i,column=j)
player='X'
root.mainloop()

 Page 17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Example: Write a GUI for an Expression Calculator using

tk from Tkinter import *

from math import *

root=Tk()

root.title("Calculator")

root.geometry("210x200")

e=Entry(root,bd=8,width=30)

e.grid(row=0,column=1,columnspan=5)

def setText(txt):
l=len(e.get())

e.insert(l,txt)

def clear1():
txt=e.get()

e.delete(0,END)
e.insert(0,txt[:-1])

def clear():

e.delete(0,END)

def sqroot():

txt=sqrt(float(e.get()))

e.delete(0,END)

e.insert(0,txt)

def negation():
txt=e.get()

if txt[0]=="-":

e.delete(0,END)

e.insert(0,txt[1:])

elif txt[0]=="+":

e.delete(0,END)

e.insert(0,"-"+txt[1:])

else:
e.insert(0,"-")

def equals():

try:
s=e.get()
for i in range(0,len(s)):

if s[i]=="+" or s[i]=="-" or s[i]=="*" or s[i]=="/" or

s[i]=="%": expr=str(float(s[:i]))+s[i:]
break

elif s[i]==".":

expr=s

break
e.delete(0,END)
e.insert(0,eval(expr))

 Page 18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

except Exception:

e.delete(0,END)
e.insert(0,"INVALID EXPRESSION")

back1=Button(root,text="<--",command=lambda:clear1(),width=10)
back1.grid(row=1,column=1,columnspan=2)

sqr=Button(root,text=u'\u221A',command=lambda:sqroot(),width=4)
sqr.grid(row=1,column=5)

can=Button(root,text="C",command=lambda:clear(),width=4)
can.grid(row=1,column=3)

neg=Button(root,text="+/-",command=lambda:negation(),width=4)
neg.grid(row=1,column=4)

nine=Button(root,text="9",command=lambda:setText("9"),width=4)
nine.grid(row=2,column=1)

eight=Button(root,text="8",command=lambda:setText("8"),width=4)
eight.grid(row=2,column=2)

seven=Button(root,text="7",command=lambda:setText("7"),width=4)
seven.grid(row=2,column=3)

six=Button(root,text="6",command=lambda:setText("6"),width=4)
six.grid(row=3,column=1)

five=Button(root,text="5",command=lambda:setText("5"),width=4)
five.grid(row=3,column=2)

four=Button(root,text="4",command=lambda:setText("4"),width=4)
four.grid(row=3,column=3)

three=Button(root,text="3",command=lambda:setText("3"),width=4)
three.grid(row=4,column=1)

two=Button(root,text="2",command=lambda:setText("2"),width=4)
two.grid(row=4,column=2)

one=Button(root,text="1",command=lambda:setText("1"),width=4)
one.grid(row=4,column=3)
zero=Button(root,text="0",command=lambda:setText("0"),width=10)
zero.grid(row=5,column=1,columnspan=2)

 Page 19

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

dot=Button(root,text=".",command=lambda:setText("."),width=4)
dot.grid(row=5,column=3)

div=Button(root,text="/",command=lambda:setText("/"),width=4)
div.grid(row=2,column=4)

mul=Button(root,text="*",command=lambda:setText("*"),width=4)
mul.grid(row=3,column=4)

minus=Button(root,text="-",command=lambda:setText("-"),width=4)
minus.grid(row=4,column=4)

plus=Button(root,text="+",command=lambda:setText("+"),width=4)
plus.grid(row=5,column=4)

mod=Button(root,text="%",command=lambda:setText("%"),width=4)
mod.grid(row=2,column=5)

byx=Button(root,text="1/x",command=lambda:setText("%"),width=4)
byx.grid(row=3,column=5)

equal=Button(root,text="=",command=lambda:equals(),width=4,height=3)
equal.grid(row=4,column=5,rowspan=2)

root.mainloop()

 Page 20

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Turtle Graphics

 Graphics is the discipline that underlies the representation and display of geometric shapes in two and

three-dimensional space.

 A Turtle graphics library provides an enjoyable and easy way to draw shapes in a window and gives you an
opportunity to run several functions with an object.

 Turtle graphics were originally developed as part of the children‟s programming language called

Logo, created by Seymour Papert and his colleagues at MIT in the late 1960s.

 Imagine a turtle crawling on a piece of paper with a pen tied to its tail.

 Commands direct the turtle as it moves across the paper and tells it to lift or lower its tail, turn some
number of degrees left or right and move a specified distance.

 Whenever the tail is down, the pen drags along the paper, leaving a trail.

 In the context of computer, of course, the sheet of paper is a window on a display screen and the turtle is an
invisible pen point.

 At any given moment of time, the turtle coordinates. The position is specified with (x, y) coordinates.

 The coordinate system for turtle graphics is the standard Cartesian system, with the origin (0, 0) at the
centre of a window. The turtle‟s initial position is the origin, which is also called the home.

Turtle Operations:

Turtle is an object; its operations are also defined as methods. In the below table the list of
methods of Turtle class.

Turtle Methods WHAT IT DOES

home Moves the turtle to the origin – coordinates (0, 0) – and set its
 heading to its start-orientation.

fd | forward Moves the turtle forward for a specified distance, in the direction
 where the turtle is headed.

bk | backward Moves the turtle backward for a specified distance, in the
 direction where the turtle is headed. Do not change the turtle‟s

 heading.

right | rt Turns the turtle right by angle units. Units are by default degrees,
 but can be set via the degrees () and radians () functions.

left | lt Turns the turtle left by angle units. Units are by default degrees,

 but can be set via the degrees () and radians () functions.

setx Set the turtle‟s first coordinate to x, leaves the second coordinate

 unchanged.

sety Set the turtle‟s second coordinate to y, leaves the first coordinate
 unchanged.

goto Moves the turtle to an absolute position. If the pen is down,
 draws a line. Do not change the turtle‟s orientation.

degrees Set the angle measurement unit to radians. Equivalent to degrees

 (2 * math.pi)

radians Set the angle measurement unit, i.e., set the number of degrees

 for a full circle. The default value is 360
0
.

seth Sets the orientation of the turtle to to_angle.

Turtle Object:
t=Turtle() creates a new turtle object and open sits window. The window‟s drawing area is
200 pixels wide and 200 pixels high.

t=Turtle(width, height) creates a new turtle object and open sits window. The window‟s
drawing area has given width and height.

 Page 21

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Example-1: Write a program to draw

square. import turtle
turtle.bgcolor('orange')
turtle.pensize(8)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)

Example-2:
import turtle

for i in range(20,500,5):

turtle.forward(i)

turtle.left(90)

Example-3:

import turtle

c=["red","green","blue"]

i=0
turtle.pensize(5)

for angle in

range(0,360,30): if i>2:
i=0

turtle.color(c[i])
turtle.seth(angle)
turtle.circle(50)
i=i+1

Example-4:
import turtle

for i in range(36):

for j in range(4):
turtle.forward(70)
turtle.left(90)

turtle.left(10)

 Page 22

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Testing: Why testing is required?

Software testing is necessary because we all make mistakes. Some of those mistakes

are unimportant, but some of them are expensive or dangerous. We need to check everything

and anything we produce because things can always go wrong-humans make mistakes all the

time.
Software testing is very important because of the following reasons:

1. Software testing is really required to point out the defects and errors that were made

during the development phases.

2. It‟s essential since it makes sure of the customer‟s reliability and their satisfaction in
the application.

3. It is very important to ensure the quality of the product. Quality product delivered to the

customers helps in gaining their confidence.

4. Testing is necessary in order to provide the facilities to the customers like the delivery

of high quality product or software application which requires lower maintenance cost

and hence results into more accurate, consistent and reliable results.
5. Testing is required for an effective performance of software application or product.

6. It‟s important to ensure that the application should not result into any failures because

it can be very expensive in the future or in the later stages of the development.
7. It‟s required to stay in the business.

Basic concepts of testing:

Basics

Summary

 Software

 Learn how software quality is defined and what it means. Software

quality is the degree of conformance to explicit or implicit

 Quality

requirements and expectations.

 Dimensions of Learn the dimensions of quality. Software quality has dimensions

 Quality such as Accessibility, Compatibility, Concurrency, Efficiency …

 Software Learn what it means and what its relationship is with Software

 Quality Quality Control. Software Quality Assurance is a set of activities

 Assurance for ensuring quality in software engineering processes.

 Software

 Learn what it means and what its relationship is with Software

Quality Assurance. Software Quality Control is a set of activities

 Quality Control

 for ensuring quality in software products.

 SQA and SQC

 Learn the differences between Software Quality Assurance and

Software Quality Control. SQA is process-focused and prevention-

 Differences

oriented but SQC is product-focused and detection-oriented.

 Software Learn what SDLC means and what activities a typical SDLC model

 Development comprises of. Software Development Life Cycle defines the

 Life Cycle steps/stages/phases in the building of software.

 Page 23

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

 Software Learn what STLC means and what activities a typical STLC model

 Testing Life comprises of. Software Testing Life Cycle (STLC) defines the

 Cycle steps/ stages/ phases in testing of software.

 Definition of Learn the various definitions of the term „test‟. Merriam Webster

 Test defines Test as “a critical examination, observation, or evaluation”.

 Software

Just as every field has its myths, so does the field of Software

Testing. We explain some of the myths along with their related

 Testing Myths

facts.

Unit testing in Python:
The first unit testing framework, JUnit was invented by Kent Back and Erich Gamma

in 1997, for testing Java programs. It was so successful that the framework has been
implemented again in every major programming language. Here we discuss the python
version, unit test.

Unit testing is nothing but testing individual „units‟, or functions of a program. It
does not have a lot to say about system integration, whether the various parts of a program fit
together. That‟s a separate issue.

The goals of unit testing framework are:

 To make it easy to write tests. All a „test‟ needs to do is to say that, for this input, the
function should give that result. The framework takes care of running the tests.

 To make it easy to run tests. Usually this is done by clicking a single button or typing a

single keystroke (F5 in IDLE). Ideally, you should be comfortable running tests after
every change in the program, however minor.

 To make it easy to tell if the tests passed. The framework takes care of reporting results;

it either simply indicates that all tests passed, or it provides a detailed list of failures.
Example:

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):

self.assertEqual('foo'.upper(), 'FOO')

def test_isupper(self):

self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())

if __name__ == '__main__':
unittest.main()

Output:
..
--
Ran 2 tests in 0.016s

OK

 Page 24

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

Writing and Running Test cases
 Your object is to write test and not to prove that your program works, it‟s to try to find out where it

doesn‟t! Test every „extreme‟ case you can think of.

 For example, if you were to write and test a function to sort a list, then the first and last
elements get moved to correct position? Can you sort a 1-element list without getting an
error? How about an empty list?

 While you can put as many tests as you like into one test method that you shouldn‟t test
methods should be short and single-purpose. If you are testing different aspects of a
function, they should be in separate tests.

 Here are the rules for writing test methods:

o The name of a test method must start with the letters „test‟, otherwise it will

be ignored.
o This is so that you can write „helper‟ methods you can call from your tests,

but are not directly called by the test framework.
o Every test method must have exactly one parameter, which is nothing but

„self‟. You must put self in front of every built-in assertion method you call.
o The tests must be independent of one another, because they may be run in any

order.
o Do not assume they will execute in the order they occur in the program.

 Here are some of the built-in test methods you can call. Each has an optional message parameter, to be

printed if the test fails.

Method

Checks that

 assertEqual(a, b) a == b

 assertNotEqual(a, b) a != b

 assertTrue(x) bool(x) is True

 assertFalse(x)

 bool(x) is False

 assertIs(a, b)

 a is b

 assertIsNot(a, b)

a is not b

 assertIsNone(x)

 x is None

 assertIsNotNone(x)

x is not None

 assertIn(a, b)

 a in b

 assertNotIn(a, b)

a not in b

 assertIsInstance(a, b)

 isinstance(a, b)

 assertNotIsInstance(a, b)

not isinstance(a, b)

Example: Unittest for addition of two numbers.

import unittest
def add(a,b):

if isinstance(a,int) and
isinstance(b,int): return a+b

elif isinstance(a,str) and
isinstance(b,str): return int(a)+int(b)

else:

raise Exception('Invalid arguments')

 Page 25

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

PYTHON PROGRAMMING UNIT-6

 class TestAdd(unittest.TestCase):

 def test_add(self):

 self.assertEqual(5,add(2,3))

 self.assertEqual(15,add(-6,21))

 self.assertRaises(Exception,add,4.0,5.0)

 unittest.main()

Output:

.

--

 Ran 1 test in 0.008s

 OK

 Page 26

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

