UNIT VI

SMALL SINGLE LOW FREQUENCY TRANSISTOR AMPLIFIERS

6.1 Introduction

V-I characteristics of an active device such as BJT are non-linear. The analysis of a non- linear device is complex. Thus to simplify the analysis of the BJT, its operation is restricted to the linear V-I characteristics around the Q-point i.e. in the active region. This approximation is possible only with small input signals. With small input signals transistor can be replaced with small signal linear model. This model is also called small signal equivalent circuit.

6.1.1 Hybrid parameters (h-parameters)

If the input current I1 and output voltage V2 are taken as independent variables, the dependent variables V1 and I2 can be written as
$\left[\begin{array}{l}V_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right]\left[\begin{array}{l}I_{1} \\ V_{2}\end{array}\right]$
Where $\mathrm{h}_{11}, \mathrm{~h}_{12}, \mathrm{~h}_{21}, \mathrm{~h}_{22}$ are called as hybrid parameters.

$$
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}
$$

Input impedence with o/p port short circuited
$h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}$

Reverse voltage transfer ratio with i / p port open circuited
$h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0}$

Forward voltage transfer ratio with o / p port short circuited
$h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}$
output impedence with i / p port open circuited

6.2 THE HYBRID MODEL FOR TWO PORT NETWORK:

Based on the definition of hybrid parameters the mathematical model for two pert networks known as h-parameter model can be developed. The hybrid equations can be written as: $V_{1}=h_{i} I_{1}+h_{r} V_{2}$
$I_{2}=h_{f} I_{1}+h_{\bullet} V_{2}$
(The following convenient alternative subscript notation is recommended by the IEEE Standards:
$i=11=$ input $\quad o=22=$ output
$f=\mathbf{2 1}=$ forward transfer $r=12=$ reverse transfer)
We may now use the four h parameters to construct a mathematical model of the device of Fig.(1). The hybrid circuit for any device indicated in Fig.(2). We can verify that the model of Fig.(2) satisfies above equations by writing Kirchhoff's voltage and current laws for input and output ports.

If these parameters are specified for a particular configuration, then suffixes e,b or c are also included, e.g. $\mathrm{h}_{\mathrm{fe}}, \mathrm{h}$ ib are h parameters of common emitter and common collector amplifiers

Using two equations the generalized model of the amplifier can be drawn as shown in fig. $\mathbf{2}$.

Fig. 2

6.2.1 TRANSISTOR HYBRID MODEL:

The hybrid model for a transistor amplifier can be derived as follow:
Let us consider CE configuration as show in fig. 3 . The variables, i_{B}, $\mathrm{i}_{\mathrm{C}}, \mathrm{v}_{\mathrm{C}}$, and v_{B} represent total instantaneous currents and voltages i_{B} and v_{C} can be taken as independent variables and $\mathrm{v}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ as dependent variables.

Fig. 3
$\mathrm{V}_{\mathrm{B}}=\mathrm{f} 1\left(\mathrm{i}_{\mathrm{B}}, \mathrm{v}_{\mathrm{C}}\right)$
$\mathrm{I}_{\mathrm{C}}=\mathrm{f} 2\left(\mathrm{i}_{\mathrm{B}}, \mathrm{v}_{\mathrm{C}}\right)$.
Using Taylor 's series expression, and neglecting higher order terms we obtain.

$$
\begin{aligned}
& \Delta v_{\mathrm{B}}=\left.\frac{\partial f_{1}}{\partial i_{\mathrm{B}}}\right|_{v_{\mathrm{C}}} \Delta i_{\mathrm{B}}+\left.\frac{\partial f_{1}}{\partial v_{\mathrm{C}}}\right|_{i_{\mathrm{B}}} \Delta v_{\mathrm{C}} \\
& \Delta i_{\mathrm{C}}=\left.\frac{\partial f_{2}}{\partial i_{\theta}}\right|_{v_{\mathrm{C}}} \Delta i_{\mathrm{B}}+\left.\frac{\partial f_{2}}{\partial v_{\mathrm{C}}}\right|_{i_{\mathrm{B}}} \Delta v_{\mathrm{C}}
\end{aligned}
$$

The partial derivatives are taken keeping the collector voltage or base current constant. The $\Delta \mathrm{v}_{\mathrm{B}}$, $\Delta \mathrm{v}_{\mathrm{c}}, \Delta \mathrm{i}_{\mathrm{B}}, \Delta \mathrm{i}_{\mathrm{C}}$ represent the small signal (incremental) base and collector current and voltage and can be represented as $\mathrm{v}_{\mathrm{B}}, \mathrm{i}_{\mathrm{C}}, \mathrm{i}_{\mathrm{B}}, \mathrm{v}_{\mathrm{C}}$

$$
\begin{aligned}
\therefore v_{\mathrm{b}} & =h_{i e} i_{\mathrm{B}}+h_{r e} v_{\mathrm{C}} \\
i_{\mathrm{C}} & =h_{\mathrm{E}} i_{\mathrm{B}}+h_{\text {oe }} v_{\mathrm{b}}
\end{aligned}
$$

where

$$
\begin{aligned}
& h_{i e}=\left.\frac{\partial f_{i}}{\partial i_{\mathrm{B}}}\right|_{v_{\mathrm{c}}}=\left.\frac{\partial v_{\mathrm{B}}}{\partial i_{\mathrm{B}}}\right|_{v_{\mathrm{c}}} ; \quad h_{\mathrm{re}}=\left.\frac{\partial f_{1}}{\partial v_{c}}\right|_{i_{\mathrm{B}}}=\left.\frac{\partial v_{\mathrm{B}}}{\partial v_{\mathrm{c}}}\right|_{\mathrm{i}_{\mathrm{B}}} \\
& h_{f e}=\left.\frac{\partial f_{2}}{\partial i_{\mathrm{B}}}\right|_{v_{\mathrm{C}}}=\left.\frac{\partial i_{\mathrm{C}}}{\partial i_{\mathrm{B}}}\right|_{\mathrm{v}_{\mathrm{C}}} ; \quad h_{\mathrm{oe}}=\left.\frac{\partial \mathrm{f}_{2}}{\partial \mathrm{v}_{\mathrm{C}}}\right|_{\mathrm{i}_{\mathrm{B}}}=\left.\frac{\partial v_{\mathrm{B}}}{\partial v_{\mathrm{C}}}\right|_{\mathrm{i}_{\mathrm{B}}}
\end{aligned}
$$

The model for CE configuration is shown in fig. 4.

Fig. 4
To determine the four h-parameters of transistor amplifier, input and output characteristic are used. Input characteristic depicts the relationship between input voltage and input current with output voltage as parameter. The output characteristic depicts the relationship between output voltage and output current with input current as parameter. Fig. 5, shows the output characteristics of CE amplifier.

$$
h_{\mathrm{fe}}=\left.\frac{\partial i_{\mathrm{c}}}{\partial i_{\mathrm{i}}}\right|_{V_{\mathrm{c}}}=\frac{i_{\mathrm{c}-}-i_{\mathrm{C} 1}}{i_{\mathrm{b} 2}-i_{\mathrm{b}}}
$$

Fig. 5
The current increments are taken around the quiescent point Q which corresponds to $\mathrm{i}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}}$ and to the collector voltage $\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}$

$$
h_{o e}=\left.\frac{\partial i_{c}}{\partial v_{c}}\right|_{i_{\theta}}
$$

The value of $h_{o e}$ at the quiescent operating point is given by the slope of the output characteristic at the operating point (i.e. slope of tangent $A B$).

$$
\mathrm{h}_{\mathrm{ie}}=\left.\frac{\partial \mathrm{V}_{\mathrm{B}}}{\partial \mathrm{i}_{\mathrm{B}}} \approx \frac{\Delta \mathrm{~V}_{\mathrm{e}}}{\Delta \dot{\mathrm{i}}_{\mathrm{e}}}\right|_{\mathrm{V}_{\mathrm{C}}}
$$

h_{ie} is the slope of the appropriate input on fig. $\mathbf{6}$, at the operating point (slope of tangent EF at Q).

$$
h_{\mathrm{re}}=\frac{\partial V_{\mathrm{B}}}{\partial V_{\mathrm{C}}}=\left.\frac{\Delta V_{\mathrm{e}}}{\Delta V_{\mathrm{C}}}\right|_{\mathrm{I}_{\mathrm{B}}}=\frac{V_{\mathrm{\theta} 2}-V_{\mathrm{B} 1}}{V_{\mathrm{C} 2}-V_{\mathrm{C} 1}}
$$

Fig. 6

A vertical line on the input characteristic represents constant base current. The parameter hre can be obtained from the ratio $\left(\mathrm{V}_{\mathrm{B} 2}-\mathrm{V}_{\mathrm{B} 1}\right)$ and $\left(\mathrm{V}_{\mathrm{C} 2}-\mathrm{V}_{\mathrm{C} 1}\right)$ for at Q .

6.3 ANALYSIS OF A TRANSISTOR AMPLIFIER USING HPARAMETERS:

To form a transistor amplifier it is only necessary to connect an external load and signal source as indicated in fig. $\mathbf{1}$ and to bias the transistor properly.

Fig. 1
Consider the two-port network of CE amplifier. R_{S} is the source resistance and Z_{L} is the load impedence h -parameters are assumed to be constant over the operating range. The ac equivalent circuit is shown in fig. 2. (Phasor notations are used assuming sinusoidal voltage input). The quantities of interest are the current gain, input impedence, voltage gain, and output impedence.

Fig. 2

6.3.1 Current gain:

For the transistor amplifier stage, A_{i} is defined as the ratio of output to input currents.

$$
A_{I}=\frac{I_{L}}{I_{1}}=\frac{-I_{2}}{I_{1}}
$$

6.3.2 Input impedence:

The impedence looking into the amplifier input terminals ($1,1^{\prime}$) is the input impedence Z_{i}

$$
\begin{aligned}
& Z_{i}=\frac{V_{b}}{l_{b}} \\
& V_{b}=h_{i e} l_{b}+h_{\text {re }} V_{c} \\
& \frac{V_{b}}{T_{b}}=h_{\text {ie }}+h_{\text {re }} \frac{V_{c}}{T_{b}} \\
& =h_{\text {ie }}-\frac{h_{\text {re }} l_{\mathrm{c}} Z_{L}}{l_{\mathrm{b}}} \\
& Z_{i}=h_{\text {ie }}+h_{\text {re }} A_{1} Z_{L} \\
& =h_{\text {ie }}-\frac{h_{\text {re }} h_{\text {fe }} Z_{L}}{1+h_{\text {oe }} Z_{L}} \\
& . Z_{i}=h_{i e}-\frac{h_{\text {re }} h_{\text {fe }}}{Y_{L}+h_{\text {oe }}} \quad \text { (since } Y_{L}=\frac{1}{Z_{L}} \text {) }
\end{aligned}
$$

6.3.3 Voltage gain:

The ratio of output voltage to input voltage gives the gain of the transistors.

$$
\begin{aligned}
& A_{v}=\frac{V_{C}}{V_{b}}=-\frac{I_{c} Z_{L}}{V_{b}} \\
& \therefore A_{v}=\frac{I_{B} A_{i} Z_{L}}{V_{b}}=\frac{A_{i} Z_{L}}{Z_{i}}
\end{aligned}
$$

6.3.4 Output Admittance:

It is defined as

$$
\begin{gathered}
Y_{0}=\left.\frac{I_{c}}{V_{c}}\right|_{V_{s}}=0 \\
I_{c}=h_{i f}+h_{o e} V_{0} \\
\frac{l_{c}}{V_{0}}=h_{f e} \frac{I_{b}}{V_{0}}+h_{o e} \\
\text { when } V_{s}=0, \quad R_{s} \cdot I_{b}+h_{i e} \cdot l_{b}+h_{r e} V_{c}=0 . \\
\frac{b}{V_{0}}=-\frac{h_{r e}}{R_{s}+h_{i e}} \\
\therefore Y_{0}=h_{o e}-\frac{h_{r e}}{R_{s}+h_{f e}}
\end{gathered}
$$

Voltage amplification taking into account source impedance $\left(R_{S}\right)$ is given by

$$
\begin{aligned}
A_{\text {Vs }} & =\frac{V_{c}}{V_{s}}=\frac{V_{0}}{V_{b}} * \frac{V_{b}}{V_{s}} \quad\left(V_{b}=\frac{V_{s}}{R_{s}+Z_{i}} * Z_{i}\right) \\
& =A_{V} \cdot \frac{Z_{i}}{Z_{i}+R_{s}} \\
& =\frac{A_{i} Z_{L}}{Z_{i}+R_{s}}
\end{aligned}
$$

A_{v} is the voltage gain for an ideal voltage source $\left(R_{v}=0\right)$.
Consider input source to be a current source I_{S} in parallel with a resistance R_{S} as shown in $\underline{\text { fig. } \mathbf{3}}$.

Fig. 3
In this case, overall current gain $\mathrm{A}_{\text {IS }}$ is defined as

$$
\begin{aligned}
A_{I_{s}} & =\frac{I_{\mathrm{L}}}{I_{\mathrm{s}}} \\
& =-\frac{I_{\mathrm{e}}}{\mathrm{I}_{\mathrm{s}}} \\
& =-\frac{I_{\mathrm{e}}}{I_{\mathrm{b}}} * \frac{I_{\mathrm{b}}}{I_{\mathrm{s}}} \quad\left(I_{\mathrm{b}}=\frac{I_{\mathrm{s}} * R_{\mathrm{s}}}{R_{\mathrm{s}}+Z_{\mathrm{i}}}\right) \\
& =A_{\mathrm{I}} * \frac{R_{\mathrm{s}}}{R_{\mathrm{s}}+Z_{i}} \\
\text { If }_{\mathrm{s}} & \rightarrow \infty, \quad A_{\mathrm{I}} \rightarrow A_{\mathrm{I}}
\end{aligned}
$$

h-parameters

To analyze multistage amplifier the h-parameters of the transistor used are obtained from manufacture data sheet. The manufacture data sheet usually provides h-parameter in CE configuration. These parameters may be converted into CC and CB values. For example fig. $\underline{4}$ hre in terms of CE parameter can be obtained as follows.

Fig. 4
For CE transistor configuaration
Vbe = hie Ib + hre Vce
Ic = h fe Ib + hoe Vce
The circuit can be redrawn like $\mathbf{C C}$ transistor configuration as shown in fig. 5.
Vbc = hie Ib + hrc Vec

Ic $=$ hfe $\mathbf{I b}$ + hoe Vec
hybrid model for transistor in three different configurations

Typical h-parameter values for a transistor

Parameter	CE	CC	CB
h_{i}	1100Ω	1100Ω	22Ω
$\mathrm{~h}_{\mathrm{r}}$	2.5×10^{-4}	1	3×10^{-4}
$\mathrm{~h}_{\mathrm{f}}$	50	-51	-0.98
$\mathrm{~h}_{\mathrm{o}}$	$25 \mu \mathrm{~A} / \mathrm{V}$	$25 \mu \mathrm{~A} / \mathrm{V}$	$0.49 \mu \mathrm{~A} / \mathrm{V}$

Analysis of a Transistor amplifier circuit using h-parameters

A transistor amplifier can be constructed by connecting an external load and signal source and biasing the transistor properly.

Fig.1.4 Basic Amplifier Circuit

The two port network of Fig. 1.4 represents a transistor in any one of its configuration. It is assumed that h -parameters remain constant over the operating range.The input is sinusoidal and $\mathrm{I}_{1}, \mathrm{~V}_{1}, \mathrm{I}_{2}$ and V_{2} are phase quantities

Fig. 1.5 Transistor replaced by its Hybrid Model

Current Gain or Current Amplification ($\mathbf{A}_{\mathbf{i}}$)

For transistor amplifier the current gain A_{i} is defined as the ratio of output current to input current,i.e,

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{I}_{\mathrm{L}} / \mathrm{I}_{1}=-\mathrm{I}_{2} / \mathrm{I}_{1}
$$

From the circuit of Fig

$$
\mathrm{I}_{2}=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
$$

Substituting $\mathrm{V}_{2}=\mathrm{I}_{\mathrm{L}} \mathrm{Z}_{\mathrm{L}}=-\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}}$

$$
\mathrm{I}_{2}=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}-\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}} \mathrm{~h}_{\mathrm{o}}
$$

$$
\begin{aligned}
& \mathrm{I}_{2}+\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}} \mathrm{~h}_{\mathrm{o}}=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1} \\
& \mathrm{I}_{2}\left(1+\mathrm{Z}_{\mathrm{L}} \mathrm{~h}_{\mathrm{o}}\right)=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1} \\
& \mathrm{~A}_{\mathrm{i}}=-\mathrm{I}_{2} / \mathrm{I}_{1}=-\mathrm{h}_{\mathrm{f}} /\left(1+\mathrm{Z}_{\mathrm{L}} \mathrm{~h}_{\mathrm{o}}\right)
\end{aligned}
$$

Therefore,

$$
\mathrm{A}_{\mathrm{i}}=-\mathrm{h}_{\mathrm{f}} /\left(1+\mathrm{Z}_{\mathrm{L}} \mathrm{~h}_{\mathrm{o}}\right)
$$

Input Impedence ($\mathbf{Z}_{\mathbf{i}}$)

In the circuit of Fig , R_{S} is the signal source resistance. The impedence seen when looking into the amplifier terminals $\left(1,1^{\prime}\right)$ is the amplifier input impedence Z_{i},

$$
\mathrm{Z}_{\mathrm{i}}=\mathrm{V}_{1} / \mathrm{I}_{1}
$$

From the input circuit of Fig $V_{1}=h_{i} I_{1}+h_{r} V_{2}$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i}} & =\left(\mathrm{h}_{\mathrm{i}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2}\right) / \mathrm{I}_{1} \\
& =\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2} / \mathrm{I}_{1}
\end{aligned}
$$

Substituting
$\mathrm{V}_{2}=-\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}}=\mathrm{A}_{1} \mathrm{I}_{1} \mathrm{Z}_{\mathrm{L}}$
$\mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{r}} \mathrm{A}_{1} \mathrm{I}_{1} \mathrm{Z}_{\mathrm{L}} / \mathrm{I}_{1}$
$=h_{i}+h_{r} A_{1} \mathrm{Z}_{\mathrm{L}}$

Substituting for A_{i}

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i}} & =\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}} \mathrm{~h}_{\mathrm{r}} \mathrm{Z}_{\mathrm{L}} /\left(1+\mathrm{h}_{\mathrm{o}} \mathrm{Z}_{\mathrm{L}}\right) \\
& =\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}} \mathrm{~h}_{\mathrm{r}} \mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}\left(1 / \mathrm{Z}_{\mathrm{L}}+\mathrm{h}_{\mathrm{o}}\right)
\end{aligned}
$$

Taking the Load admittance as $\mathrm{Y}_{\mathrm{L}}=1 / \mathrm{Z}_{\mathrm{L}}$
$\mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}} \mathrm{h}_{\mathrm{r}} /\left(\mathrm{Y}_{\mathrm{L}}+\mathrm{h}_{\mathrm{o}}\right)$

Voltage Gain or Voltage Gain Amplification Factor($\mathbf{A}_{\mathbf{v}}$)

The ratio of output voltage V_{2} to input voltage V_{1} give the voltage gain of the transistor i.e,

$$
\mathrm{A}_{\mathrm{v}}=\mathrm{V}_{2} / \mathrm{V}_{1}
$$

Substituting

$$
\begin{aligned}
& \mathrm{V}_{2}=-\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}}=\mathrm{A}_{1} \mathrm{I}_{1} \mathrm{Z}_{\mathrm{L}} \\
& \mathrm{~A}_{\mathrm{v}}=\mathrm{A}_{1} \mathrm{I}_{1} \mathrm{Z}_{\mathrm{L}} / \mathrm{V}_{1}=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{i}}
\end{aligned}
$$

Output Admittance ($\mathbf{Y}_{\mathbf{o}}$)

Y_{o} is obtained by setting V_{S} to zero, Z_{L} to infinity and by driving the output terminals from a generator V_{2}. If the current V_{2} is I_{2} then $Y_{o}=I_{2} / V_{2}$ with $V_{S}=0$ and $R_{L}=\infty$.

From the circuit of fig

$$
\mathrm{I}_{2}=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
$$

Dividing by V_{2},
$\mathrm{I}_{2} / \mathrm{V}_{2}=\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1} / \mathrm{V}_{2}+\mathrm{h}_{\mathrm{o}}$

With $\mathrm{V}_{2}=0$, by KVL in input circuit,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{i}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2}=0 \\
& \left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{i}}\right) \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2}=0 \\
& \text { Hence, } \quad \mathrm{I}_{2} / \mathrm{V}_{2}=-\mathrm{h}_{\mathrm{r}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{i}}\right) \\
& \\
& =\mathrm{h}_{\mathrm{f}}\left(-\mathrm{h}_{\mathrm{r}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{i}}\right)+\mathrm{h}_{\mathrm{o}}\right. \\
& \mathrm{Y}_{\mathrm{o}}=\mathrm{h}_{\mathrm{o}}-\mathrm{h}_{\mathrm{f}} \mathrm{~h}_{\mathrm{r}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{i}}\right)
\end{aligned}
$$

The output admittance is a function of source resistance. If the source impedence is resistive then Y_{o} is real.

Voltage Amplification Factor($A_{v s}$) taking into account the resistance $\left(\mathbf{R}_{\mathrm{s}}\right)$ of the source

Fig. 5.6 Thevenin's Equivalent Input Circuit
This overall voltage gain A_{vs} is given by

$$
A_{\mathrm{vs}}=\mathrm{V}_{2} / \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{2} \mathrm{~V}_{1} / \mathrm{V}_{1} \mathrm{~V}_{\mathrm{S}}=\mathrm{A}_{\mathrm{v}} \mathrm{~V}_{1} / \mathrm{V}_{\mathrm{S}}
$$

From the equivalent input circuit using Thevenin's equivalent for the source shown in Fig. 5.6
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{S}} \mathrm{Z}_{\mathrm{i}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{s}}\right)$
$\mathrm{V}_{1} / \mathrm{V}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{i}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}\right)$

Then,

$$
\mathrm{A}_{\mathrm{vs}}=\mathrm{A}_{\mathrm{v}} \mathrm{Z}_{\mathrm{i}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}\right)
$$

Substituting $\quad \mathrm{A}_{\mathrm{v}}=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{i}}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vs}}=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}\right) \\
& \mathrm{A}_{\mathrm{vs}}=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} \mathrm{R}_{\mathrm{S}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{s}}\right) \mathrm{R}_{\mathrm{s}} \\
& \mathrm{~A}_{\mathrm{vs}}=\mathrm{A}_{\mathrm{is}} \mathrm{Z}_{\mathrm{L}} / \mathrm{R}_{\mathrm{S}}
\end{aligned}
$$

Current Amplification ($\mathbf{A}_{\text {is }}$) taking into account the sourse Resistance $\left(\mathbf{R}_{\mathbf{s}}\right)$

Fig. 1.7 Norton's Equivalent Input Circuit
The modified input circuit using Norton's equivalent circuit for the calculation of A_{is} is shown in Fig. 1.7
Overall Current Gain, $\mathrm{A}_{i \mathrm{is}}=-\mathrm{I}_{2} / \mathrm{I}_{\mathrm{S}}=-\mathrm{I}_{2} \mathrm{I}_{1} / \mathrm{I}_{1} \mathrm{IS}_{\mathrm{S}}=\mathrm{A}_{\mathrm{i}} \mathrm{I}_{1} / \mathrm{I}_{\mathrm{S}}$
From Fig. 1.7

$$
\mathrm{I}_{\mathrm{l}}=\mathrm{I}_{\mathrm{S}} \mathrm{R}_{\mathrm{S}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{i}}\right)
$$

$$
\mathrm{I}_{1} / \mathrm{I}_{\mathrm{S}}=\mathrm{R}_{\mathrm{S}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{i}}\right)
$$

and hence,

$$
\mathrm{A}_{\mathrm{is}}=\mathrm{A}_{\mathrm{i}} \mathrm{R}_{\mathrm{S}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{i}}\right)
$$

Operating Power Gain (A_{P})

The operating power gain A_{P} of the transistor is defined as

$$
\begin{aligned}
& A_{P}=P_{2} / P_{1}=-V_{2} I_{2} / V_{1} I_{1}=A_{v} A_{i}=A_{i} A_{i} Z_{L} / Z_{i} \\
& A_{P}=A_{i}^{2}\left(Z_{L} / Z_{i}\right)
\end{aligned}
$$

Small Signal analysis of a transistor amplifier

$\mathrm{A}_{\mathrm{i}}=-\mathrm{h}_{\mathrm{f}} /\left(1+\mathrm{Z}_{\mathrm{L}} \mathrm{h}_{\mathrm{o}}\right)$	$\mathrm{A}_{\mathrm{v}}=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{i}}$
$\mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{r}} \mathrm{A}_{1} \mathrm{Z}_{\mathrm{L}}=\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}} \mathrm{h}_{\mathrm{r}} /\left(\mathrm{Y}_{\mathrm{L}}+\mathrm{h}_{\mathrm{o}}\right)$	$\mathrm{A}_{\mathrm{VS}}=\mathrm{A}_{\mathrm{v}} \mathrm{Z}_{\mathrm{i}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}\right)=\mathrm{A}_{\mathrm{i}} \mathrm{Z}_{\mathrm{L}} /\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}\right)$ $=\mathrm{A}_{\mathrm{is}} \mathrm{Z}_{\mathrm{L}} / \mathrm{R}_{\mathrm{S}}$
$\mathrm{Y}_{\mathrm{o}}=\mathrm{h}_{\mathrm{o}}-\mathrm{h}_{\mathrm{f}} \mathrm{h}_{\mathrm{r}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{h}_{\mathrm{i}}\right)=1 / \mathrm{Z}_{\mathrm{o}}$	$\mathrm{A}_{\mathrm{is}}=\mathrm{A}_{\mathrm{i}} \mathrm{R}_{\mathrm{S}} /\left(\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{i}}\right)=\mathrm{A}_{\mathrm{vS}}=\mathrm{A}_{\mathrm{is}} \mathrm{R}_{\mathrm{S}} / \mathrm{Z}_{\mathrm{L}}$

Simplified common emitter hybrid model:

In most practical cases it is appropriate to obtain approximate values of $\mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}$ etc rather than calculating exact values. How the circuit can be modified without greatly reducing the accuracy. Fig. 4 shows the CE amplifier equivalent circuit in terms of h-parameters Since $1 / h_{o e}$ in parallel with R_{L} is approximately equal to R_{L} if $1 / h_{o e} \gg R_{L}$ then $h_{o e}$ may be neglected. Under these conditions.
$\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{B}}$.
$h_{r e} \mathrm{~V}_{\mathrm{c}}=\mathrm{h}_{\mathrm{re}} \mathrm{I}_{\mathrm{c}} \mathrm{R}_{\mathrm{L}}=\mathrm{h}_{\mathrm{re}} \mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{b}} \mathrm{R}_{\mathrm{L}}$.

Fig. 4
Since $\mathrm{h}_{\text {fe. }} \mathrm{h}_{\mathrm{re}}=0.01$ (approximately), this voltage may be neglected in comparison with $\mathrm{h}_{\text {ic }} \mathrm{I}_{\mathrm{b}}$ drop across h ie provided R_{L} is not very large. If load resistance R_{L} is small than hoe and $h_{r e}$ can be neglected.
$A_{l}=-\frac{h_{\text {fe }}}{1+h_{\text {oe }} R_{L}} \approx-h_{\text {fe }}$
$\mathrm{R}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}}$
$A_{V}=\frac{A_{l} R_{L}}{R_{i}}=-\frac{h_{\text {fe }} R_{L}}{h_{\text {ie }}}$
Output impedence seems to be infinite. When $\mathrm{V}_{\mathrm{s}}=0$, and an external voltage is applied at the output we fined $\mathrm{I}_{\mathrm{b}}=0, \mathrm{I}_{\mathrm{C}}=0$. True value depends upon R_{S} and lies between 40 K and 80 K .

On the same lines, the calculations for CC and CB can be done.

CE amplifier with an emitter resistor:

The voltage gain of a CE stage depends upon h_{fe}. This transistor parameter depends upon temperature, aging and the operating point. Moreover, h_{fe} may vary widely from device to device, even for same type of transistor. To stabilize voltage gain $\mathrm{A} v$ of each stage, it should be
independent of h_{fe}. A simple and effective way is to connect an emitter resistor R_{e} as shown in fig. 5. The resistor provides negative feedback and provide stabilization.

Fig. 5

An approximate analysis of the circuit can be made using the simplified model.

Current gain $A_{i}=\frac{I_{L}}{I_{b}}=-\frac{I_{C}}{I_{b}}=-\frac{h_{\text {fe }} I_{b}}{I_{b}}$

$$
=-h_{\mathrm{fe}}
$$

It is unaffected by the addition of R_{C}.

Input resistance is given by

$$
\begin{aligned}
R_{i} & =\frac{V_{i}}{l_{\mathrm{b}}} \\
& =\frac{h_{\mathrm{ie}} l_{\mathrm{b}}+\left(1+h_{\mathrm{fe}}\right) l_{\mathrm{b}} R_{e}}{I_{\mathrm{b}}} \\
& =h_{\mathrm{ie}}=\left(1+h_{\mathrm{fe}}\right) R_{\mathrm{e}}
\end{aligned}
$$

The input resistance increases by $\left(1+h_{\text {fe }}\right) \mathrm{R}_{\mathrm{e}}$

$$
A_{v}=\frac{A_{i} R_{L}}{R_{i}}=\frac{-h_{e} R_{L}}{h_{i e}+\left(1+h_{f e}\right) R_{e}}
$$

Clearly, the addition of R_{e} reduces the voltage gain.
If $\left(1+h_{f e}\right) R_{e} \gg h_{i e}$ and $h_{f e} \gg 1$
then

$$
A_{v}=\frac{-h_{e} R_{L}}{\left(1+h_{f e}\right) R_{e}} \approx-\frac{R_{L}}{R_{e}}
$$

Comparison of Transistor Amplifier Configuration

The characteristics of three configurations are summarized in Table .Here the quantities $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{v}}, \mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{o}}$ and A_{P} are calculated for a typical transistor whose h -parameters are given in table .The values of R_{L} and R_{s} are taken as $3 \mathrm{~K} \Omega$.

Table: Performance schedule of three transistor configurations

Quantity	$C B$	$C C$	$C E$
$\mathrm{~A}_{I}$	0.98	47.5	-46.5
$\mathrm{~A}_{V}$	131	0.989	-131
$\mathrm{~A}_{P}$	128.38	46.98	6091.5
R_{i}	22.6Ω	$144 \mathrm{k} \Omega$	1065Ω
R_{o}	$1.72 \mathrm{M} \Omega$	80.5Ω	$45.5 \mathrm{k} \Omega$

The values of current gain, voltage gain, input impedance and output impedance calculated as a function of load and source impedances

Characteristics of Common Base Amplifier

(i) Current gain is less than unity and its magnitude decreases with the increase of load resistance R_{L},
(ii) Voltage gain A_{V} is high for normal values of R_{L},
(iii) The input resistance R_{i} is the lowest of all the three configurations, and
(iv) The output resistance R_{o} is the highest of all the three configurations.

Applications The CB amplifier is not commonly used for amplification purpose. It is used for
(i) Matching a very low impedance source
(ii) As a non inverting amplifier to voltage gain exceeding unity.
(iii) For driving a high impedance load.
(iv) As a constant current source.

Characteristics of Common Collector Amplifier

(i) For low $\mathrm{R}_{L}(<10 \mathrm{k} \Omega)$, the current gain A_{i} is high and almost equal to that of a CE amplifier.
(ii) The voltage gain A_{V} is less than unity.
(iii) The input resistance is the highest of all the three configurations.
(iv) The output resistance is the lowest of all the three configurations.

Applications The CC amplifier is widely used as a buffer stage between a high impedance source and a low impedance load.

Characteristics of Common Emitter Amplifier

(i) The current gain A_{i} is high for $\mathrm{R}_{L}<10 \mathrm{k} \Omega$.
(ii) The voltage gain is high for normal values of load resistance R_{L}.
(iii) The input resistance R_{i} is medium.
(iv) The output resistance R_{o} is moderately high.

Applications: CE amplifier is widely used for amplification.

|Simplified common emitter hybrid model:

In most practical cases it is appropriate to obtain approximate values of $\mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}$ etc rather than calculating exact values. How the circuit can be modified without greatly reducing the accuracy. Fig 1. 8 shows the CE amplifier equivalent circuit in terms of h-parameters Since $1 / h_{o e}$ in parallel with R_{L} is approximately equal to R_{L} if $1 / h_{o e} \gg R_{L}$ then $h_{o e}$ may be neglected. Under these conditions.
$\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{B}}$.
$h_{\mathrm{re}} \mathrm{V}_{\mathrm{c}}=\mathrm{h}_{\mathrm{re}} \mathrm{I}_{\mathrm{c}} \mathrm{R}_{\mathrm{L}}=\mathrm{h}_{\mathrm{re}} \mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{b}} \mathrm{R}_{\mathrm{L}}$.

Fig 1.8
Since $h_{\text {fe. }} \mathrm{h}_{\mathrm{re}}$ » 0.01 , this voltage may be neglected in comparison with h ic I_{b} drop across $\mathrm{h}_{\text {ie }}$ provided R_{L} is not very large. If load resistance R_{L} is small than hoe and h_{re} can be neglected.
$A_{I}=-\frac{h_{\text {fe }}}{1+h_{\text {oe }} R_{L}} \approx-h_{\text {fe }}$
$\mathrm{R}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}}$
$A_{V}=\frac{A_{I} R_{L}}{R_{i}}=-\frac{h_{\text {fe }} R_{L}}{h_{\text {ie }}}$
Output impedence seems to be infinite. When $\mathrm{V}_{\mathrm{s}}=0$, and an external voltage is applied at the output we fined $\mathrm{I}_{\mathrm{b}}=0, \mathrm{I}_{\mathrm{c}}=0$. True value depends upon R_{S} and lies between 40 K and 80 K .

On the same lines, the calculations for CC and CB can be done.

CE amplifier with an emitter resistor:

The voltage gain of a CE stage depends upon h_{fe}. This transistor parameter depends upon temperature, aging and the operating point. Moreover, h_{fe} may vary widely from device to device, even for same type of transistor. To stabilize voltage gain $\mathrm{A} v$ of each stage, it should be independent of h_{fe}. A simple and effective way is to connect an emitter resistor R_{e} as shown in fig.1.9. The resistor provides negative feedback and provide stabilization.

Fig.1.9
An approximate analysis of the circuit can be made using the simplified model.
Current gain $A_{i}=\frac{I_{L}}{I_{b}}=-\frac{I_{C}}{I_{b}}=-\frac{h_{f e} I_{b}}{I_{b}}$

$$
=-h_{\mathrm{fe}}
$$

It is unaffected by the addition of R_{C}.
Input resistance is given by

$$
\begin{aligned}
R_{i} & =\frac{V_{i}}{l_{\mathrm{b}}} \\
& =\frac{h_{\text {ie }} l_{\mathrm{b}}+\left(1+h_{\mathrm{fe}}\right) l_{\mathrm{b}} R_{e}}{I_{\mathrm{b}}} \\
& =h_{\mathrm{ie}}=\left(1+h_{\text {fe }}\right) R_{e}
\end{aligned}
$$

The input resistance increases by $\left(1+h_{\text {fe }}\right) R_{e}$

$$
A_{v}=\frac{A_{i} R_{L}}{R_{i}}=\frac{-h_{e} R_{L}}{h_{i e}+\left(1+h_{f e}\right) R_{e}}
$$

Clearly, the addition of R_{e} reduces the voltage gain.
If $\left(1+h_{f e}\right) R_{e} \gg h_{i e}$ and $h_{f e} \gg 1$
then

$$
A_{v}=\frac{-h_{e} R_{L}}{\left(1+h_{\text {fe }}\right) R_{e}} \approx-\frac{R_{L}}{R_{e}}
$$

Subject to above approximation A_{v} is completely stable. The output resistance is infinite for the approximate model.

Common Base Amplifier:

The common base amplifier circuit is shown in Fig. 1. The V_{EE} source forward biases the emitter diode and V_{CC} source reverse biased collector diode. The ac source $\mathrm{v}_{\text {in }}$ is connected to emitter through a coupling capacitor so that it blocks dc. This ac voltage produces small fluctuation in currents and voltages. The load resistance R_{L} is also connected to collector through coupling capacitor so the fluctuation in collector base voltage will be observed across R_{L}.

The dc equivalent circuit is obtained by reducing all ac sources to zero and opening all capacitors. The dc collector current is same as I_{E} and V_{CB}

Fig. 1 is given by
$\mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$.

These current and voltage fix the Q point. The acequivalent circuit is obtained by reducing all dc sources to zero and shorting all coupling capacitors. r_{e} e represents the ac resistance of the diode as shown in Fig. 2.

Fig. 2
Fig. 3, shows the diode curve relating I_{E} and V_{BE}. In the absence of ac signal, the transistor operates at Q point (point of intersection of load line and input characteristic). When the ac signal is applied, the emitter current and voltage also change. If the signal is small, the operating point swings sinusoidally about Q point (A to B).

Fig 3
If the ac signal is small, the points A and B are close to Q , and $\operatorname{arc} A B$ can be approximated by a straight line and diode appears to be a resistance giyen by

$$
\begin{aligned}
r_{e}^{\prime} & =\left.\frac{\Delta V_{B E}}{\Delta l_{E}}\right|_{\text {smallchange }} \\
& =\frac{V_{\text {be }}}{i_{e}}=\frac{\text { acvoltageacrossbaseandemitter }}{\text { accurrenthroughemitter }}
\end{aligned}
$$

If the input signal is small, input voltage and current will be sinusoidal but if the input voltage is large then current will no longer be sinusoidal because of the non linearity of diode curve. The emitter current is elongated on the positive half cycle and compressed on negative half cycle. Therefore the output will also be distorted.
r^{\prime} is the ratio of $\Delta \mathrm{V}_{\mathrm{BE}}$ and $\Delta \mathrm{I}_{\mathrm{E}}$ and its value depends upon the location of Q . Higher up the Q point small will be the value of r^{\prime} e because the same change in $V_{b e}$ produces large change in I_{E}. The slope of the curve at Q determines the value of r_{e}. From calculation it can be proved that.
$\mathrm{r}_{\mathrm{e}}=25 \mathrm{mV} / \mathrm{I}_{\mathrm{E}}$

Common Base Amplifier

Proof:

In general, the current through a diode is given by
$I=I_{c o}\left(e^{\frac{q V}{k T}}-1\right)$
Where q is he charge on electron, V is the drop across diode, T is the temperature and K is a constant.

On differentiating w.r.t V , we get,

$$
\frac{d l}{d V}=I_{\infty} * e^{\frac{q V}{k T}} * \frac{q}{k T}
$$

The value of (q/KT) at $25^{\circ} \mathrm{C}$ is approximately 40 .

$$
\begin{aligned}
& \frac{d l}{d V}=\left.40 *\right|_{c o} * e^{\frac{q V}{k T}} \\
& \text { Therefore, } \quad=40 *\left(I+l_{\infty}\right)
\end{aligned}
$$

or, $\quad \frac{d V}{d l}=\frac{1}{40 *\left(I+I_{c o}\right)} \approx \frac{1}{40 * \mid}$
Therefore, ac resistance of the emitter diode $=\frac{d V}{d l}=\frac{25 \mathrm{mV}}{\mathrm{l}}$ Ohms
To a close approximation the small changes in collector current equal the small changes in emitter current. In the ac equivalent circuit, the current ' ic ' is shown upward because if ' ie ' increases, then 'ic' also increases in the same direction.

Voltage gain:

Since the ac input voltage source is connected across r^{\prime}. Therefore, the ac emitter current is given by
$\mathrm{i}_{\mathrm{e}}=\mathrm{V}_{\mathrm{in}} / \mathrm{r}_{\mathrm{e}}$
or, $\quad V_{\text {in }}=$ ie r_{e}^{\prime}
The output voltage is given by $\mathrm{V}_{\text {out }}=\mathrm{i}_{\mathrm{c}}\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}\right)$

Therefore, voltage gain $A_{V}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\left(R_{C} \| R_{L}\right)}{r_{e}^{\prime}}$

$$
=\frac{r c}{r}
$$

Under open circuit condition $\mathrm{v}_{\text {out }}=\mathrm{i}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}}$
Therefore, voltage gain in open circuit condition $=A v=\frac{R_{C}}{r_{e}^{\prime}}$

Small Signal CE Amplifiers:

CE amplifiers are very popular to amplify the small signal ac. After a transistor has been biased with a Q point near the middle of a dc load line, ac source can be coupled to the base. This produces fluctuations in the base current and hence in the collector current of the same shape and frequency. The output will be enlarged sine wave of same frequency.

The amplifier is called linear if it does not change the wave shape of the signal. As long as the input signal is small, the transistor will use only a small part of the load line and the operation will be linear.

On the other hand, if the input signal is too large. The fluctuations along the load line will drive the transistor into either saturation or cut off. This clips the peaks of the input and the amplifier is no longer linear.

The CE amplifier configuration is shown in fig. I.

Fig. 1
The coupling capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$ passes an ac signal from one point to another. At the same time it does not allow the de to pass through it. Hence it is also called blocking capacitor.

Fig. 2
For example in fig. 2, the ac voltage at point A is transmitted to point B. For this series reactance X_{C} should be very small compared to series resistance R_{s}. The circuit to the left of A may be a source and a series resistor or may be the Thevenin equivalent of a complex circuit. Similarly R_{L} may be the load resistance or equivalent resistance of a complex network. The current in the loop is given by

$$
\begin{aligned}
i & =\frac{y_{\text {in }}}{\sqrt{\left(R_{S}+R_{L}\right)^{2}+X_{C}^{2}}} \\
& =\frac{y_{\text {in }}}{\sqrt{R^{2}+X^{2}}}
\end{aligned}
$$

As frequency increases, $\quad X_{C}\left(=\frac{1}{2 \pi f c}\right)_{\text {decreases, and current increases until it reaches to its }}$ maximum value $v_{\text {in }} / R$. Therefore the capacitorcouples the signal properly from A to B when $\mathrm{X}_{\mathrm{C}} \ll \mathrm{R}$. The size of the coupling capacitor depends upon the lowest frequency to be coupled. Normally, for lowest frequency $\mathrm{X}_{\mathrm{C}} \square \square 0.1 \mathrm{R}$ is taken as design rule.

The coupling capacitor acts like a switch, which is open to dc and shorted for ac.
The bypass capacitor C_{b} is similar to a coupling capacitor, except that it couples an ungrounded point to a grounded point. The C_{b} capacitor looks like a short to an ac signal and therefore emitter is said ac grounded. A bypass capacitor does not disturb the dc voltage at emitter because it looks open to dc current. As a design rule $\mathrm{X}_{\mathrm{Cb}} \square 0.1 \mathrm{R}_{\mathrm{E}}$ at Analysis of CE amplifier:

In a transistor amplifier, the dc source sets up quiescent current and voltages. The ac source then produces fluctuations in these current and voltages. The simplest way to analyze this circuit is to split the analysis in two parts: dc analysis and ac analysis. One can use superposition theorem for analysis .

Analysis of CE amplifier

Voltage gain:

To find the voltage gain, consider an unloaded CE amplifier. The ac equivalent circuit is shown in
fig. 3. The transistor can be replaced by its collector equivalent model i.e. a current source and emitter diode which offers ac resistance r^{\prime}.

Fig. 3
The input voltage appears directly across the emitter diode.
Therefore emitter current $\mathrm{i}_{\mathrm{e}}=\mathrm{V}_{\mathrm{in}} / \mathrm{r}_{\mathrm{e}}$.
Since, collector current approximately equals emitter current and $i_{C}=i_{e}$ and $v_{\text {out }}=-i_{e} R_{C}($ The minus sign is used here to indicate phase inversion)

Further $\mathrm{V}_{\text {out }}=-\left(\mathrm{V}_{\text {in }} \mathrm{R}_{\mathrm{C}}\right) / \mathrm{r}_{\mathrm{e}}$
Therefore voltage gain $\mathrm{A}=\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{in}}=-\mathrm{R}_{\mathrm{C}} / \mathrm{r}_{\mathrm{e}}$
The ac source driving an amplifier has to supply alternating current to the amplifier. The input impedance of an amplifier determines how much current the amplifier takes from the ac source.

In a normal frequency range of an amplifier, where all capacitors look like ac shorts and other reactance are negligible, the ac input impedance is defined as
$\mathrm{z}_{\mathrm{in}}=\mathrm{v}_{\mathrm{in}} / \mathrm{i}_{\text {in }}$
Where $v_{i n}, i_{i n}$ are peak to peak values or $r m s$ values
The impedance looking directly into the base is symbolized $\mathrm{z}_{\mathrm{in} \text { (base) }}$ and is given by

$$
\mathrm{Z}_{\text {in(base })}=\mathrm{v}_{\text {in }} / \mathrm{i}_{\mathrm{b}},
$$

Since, $\mathrm{v}_{\text {in }}=\mathrm{i}_{\mathrm{e}} \mathrm{r}_{\mathrm{e}}$
$\mathrm{Z}_{\text {in }}$ (base) $=\mathrm{r}_{\mathrm{e}}^{\prime}$.
From the ac equivalent circuit, the input impedance $\mathrm{z}_{\text {in }}$ is the parallel combination of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and r_{e}.
$\mathrm{Z}_{\text {in }}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}\right\| \square \mathrm{r}_{\mathrm{e}}^{\prime}$
The Thevenin voltage appearing at the output is
$v_{\text {out }}=A v_{\text {in }}$
The Thevenin impedance is the parallel combination of R_{C} and the internal impedance of the current source. The collector current source is an ideal source, therefore it has an infinite internal impedance.
$\mathrm{Z}_{\text {out }}=\mathrm{R}_{\mathrm{C}}$.
The simplified ac equivalent circuit is shown in fig. 4.

Analysis of CE amplifier

FET AMPLIFIERS

INTRODUCTION

Field Effect Transistor (FET) amplifiers provide an excellent voltage gain and high input impedence. Because of high input impedence and other characteristics of JFETs they are preferred over BJTs for certain types of applications.

There are 3 basic FET circuit configurations:
i)Common Source
ii)Common Drain
iii)Common Gain

Similar to BJT CE,CC and CB circuits, only difference is in BJT large output collector current is controlled by small input base current whereas FET controls output current by means of small input voltage. In both the cases output current is controlled variable.

FET amplifier circuits use voltage controlled nature of the JFET. In Pinch off region, ID depends only on $\mathrm{V}_{\text {GS }}$.

THE FET SMALL SIGNAL MODEL:-

The linear small signal equivalent circuit for the FET can be obtained in a manner similar to that used to derive the corresponding model for a transistor.

We can express the drain current id as a function f of the gate voltage and drain voltage $V_{d s}$.

$$
\mathrm{I}_{\mathrm{d}}=\mathrm{f}\left(\mathrm{~V}_{\mathrm{gs}}, \mathrm{~V}_{\mathrm{ds}}\right)---------------(1)
$$

The transconductance g_{m} and drain resistance r_{d} :-
If both gate voltage and drain voltage are varied, the change in the drain current is approximated by using taylors series considering only the first two terms in the expansion

$$
\left.\Delta \mathrm{i}_{\mathrm{d}}=\frac{\partial \mathrm{id}}{\partial \mathrm{Vgs}} \right\rvert\, \mathrm{Vds}_{\mathrm{ds}}=\text { constant } \left.. \Delta \mathrm{v}_{\mathrm{gs}}+\frac{\partial \mathrm{id}}{\partial \mathrm{Vds}} \right\rvert\, \mathrm{vgs}=\text { constant } \Delta \mathrm{V}_{\mathrm{ds}}
$$

we can write $\Delta \mathrm{i}_{\mathrm{d}}=\mathrm{i}_{\mathrm{d}}$

$$
\begin{aligned}
& \Delta \mathrm{Vgs}_{\mathrm{g}}=\mathrm{Vgs} \\
& \Delta \mathrm{v}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{ds}} \\
& \mathrm{I}_{\mathrm{d}}=\mathrm{g}_{\mathrm{m}} \mathrm{vgs}+\frac{1}{r d} \mathrm{Vds} \rightarrow(1)
\end{aligned}
$$

Where $\mathrm{g}_{\mathrm{m}}=\frac{\partial \mathrm{id}}{\partial \mathrm{Vgs}}\left|\mathrm{Vds} \cong \frac{\Delta i d}{\Delta \mathrm{Vgs}}\right| \mathrm{Vds}$

$$
\left.\mathrm{g}_{\mathrm{m}}=\frac{i d}{\mathrm{Vg} s} \right\rvert\, \mathrm{Vds}
$$

Is the mutual conductance or transconductance .It is also called as gfs or yfs common source forward conductance .

The second parameter r_{d} is the drain resistance or output resistance is defined as

$$
\left.\mathrm{r}_{\mathrm{d}}=\frac{\partial V d s}{\partial i d}\left|\mathrm{Vgs} \cong \frac{\Delta v d s}{\Delta i d s}\right| \operatorname{Vgs}=\frac{V d s}{i d} \right\rvert\, \mathrm{Vgs}
$$

$\left.\mathrm{r}_{\mathrm{d}}=\frac{V d s}{i d} \right\rvert\, \operatorname{Vgs}$
The reciprocal of the rd is the drain conductance gd .It is also designated by Yos and Gos and called the common source output conductance. So the small signal equivalent circuit for FET can be drawn in two different ways.
1.small signal current -source model
2.small signal voltage-source model.

A small signal current -source model for FET in common source configuration can be drawn satisfying $\mathrm{Eq} \rightarrow$ (1) as shown in the figure(a)

This low frequency model for FET has a Norton's output circuit with a dependent current generator whose magnitude is proportional to the gate-to -source voltage. The proportionality factor is the transconductance ' g_{m} '. The output resistance is ' r_{d} '. The input resistance between the gate and source is infinite, since it is assumed that the reverse biased gate draws no current. For the same reason the resistance between gate and drain is assumed to be infinite.

The small signal voltage-source model is shown in the figure(b).
This can be derived by finding the Thevenin'sequivalent for the output part of fig(a) .
These small signal models for FET can be used for analyzing the three basic FET amplifier configurations:
1.common source (CS) 2.common drain (CD) or source follower
3. common gate(CG).
(a)Small Signal Current source model for FET
(b)Small Signal voltage source model for FET

Here the input circuit is kept open because of having high input impedance and the output circuit satisfies the equation for ID

Common Source (CS) Amplifier

Fig. 7.1 (a) CS Amplifier (b) Small-signal equivalent circuit

A simple Common Source amplifier is shown in Fig. 7.1(a) and associated small signal equivalent circuit using voltage-source model of FET is shown in Fig. 7.1(b)

Voltage Gain

Source resistance (R_{S}) is used to set the Q-Point but is bypassed by C_{s} for mid-frequency operation. From the small signal equivalent circuit ,the output voltage

$$
V_{O}=-R_{D} \mu V_{g s}\left(R_{D}+r_{d}\right)
$$

Where $\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{i}}$, the input voltage,
Hence, the voltage gain,

$$
A_{V}=V_{o} / V_{i}=-R_{D} \mu\left(R_{D}+r_{d}\right)
$$

Input Impedence

From Fig. 7.1(b) Input Impedence is

$$
\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{G}}
$$

For voltage divider bias as in CE Amplifiers of BJT

$$
\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{1} \| \mathrm{R}_{2}
$$

Output Impedance

Output impedance is the impedance measured at the output terminals with the input voltage $\mathrm{V}_{\mathrm{I}}=$ 0

From the Fig. 7.1(b) when the input voltage $\mathrm{V}_{\mathrm{i}}=0, \mathrm{~V}_{\mathrm{gs}}=0$ and hence

$$
\mu \mathrm{V}_{\mathrm{gs}}=0
$$

The equivalent circuit for calculating output impedence is given in Fig. 7.2.
Output impedence $Z_{o}=r_{d} \| R_{D}$
Normally r_{d} will be far greater than R_{D}. Hence $Z_{o} \approx R_{D}$

Common Drain Amplifier

A simple common drain amplifier is shown in Fig. 7.2(a) and associated small signal equivalent circuit using the voltage source model of FET is shown in Fig. 7.2(b). Since voltage V_{gd} is more easily determined than V_{gs}, the voltage source in the output circuit is expressed in terms of V_{gs} and Thevenin's theorem.

(a) CD or SF amplifier

(b) Small-signal equivalent circuit

Fig. 7.2 (a)CD Amplifier (b)Small-signal equivalent circuit

Voltage Gain

The output voltage,

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{R}_{\mathrm{S}} \mu \mathrm{~V}_{\mathrm{gd}} /(\mu+1) \mathrm{R}_{\mathrm{S}}+\mathrm{r}_{\mathrm{d}}
$$

Where $\quad V_{g d}=V_{i}$ the input voltage.
Hence, the voltage gain,

$$
\mathrm{A}_{\mathrm{v}}=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}=\mathrm{R}_{\mathrm{s}} \mu /(\mu+1) \mathrm{R}_{\mathrm{S}}+\mathrm{r}_{\mathrm{d}}
$$

Input Impedence

From Fig. 7.2(b), Input Impedence $\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{G}}$

Output Impedence

From Fig. 7.2(b), Output impedence measured at the output terminals with input voltage $V_{i}=0$ can be calculated from the following equivalent circuit.
As $V_{i}=0: V_{g d}=0: \mu \mathrm{Vgd}_{\mathrm{gd}} /(\mu+1)=0$
Output Impedence

$$
\mathrm{Z}_{\mathrm{O}}=\mathrm{r}_{\mathrm{d}} /(\mu+1) \| \mathrm{R}_{\mathrm{S}}
$$

When μ » 1

$$
\mathrm{Z}_{\mathrm{o}}=\left(\mathrm{r}_{\mathrm{d}} / \mu\right)\left\|\mathrm{R}_{\mathrm{S}}=\left(1 / \mathrm{g}_{\mathrm{m}}\right)\right\| \mathrm{R}_{\mathrm{S}}
$$

