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RANDOM VARIABLES & STOCHASTIC PROCESSES 
 
 

UNIT-1:  THE RANDOM VARIABLE 
 

Introduction:  The  basic  to  the  study of  probability is  the  idea  of  a  Physical  experiment.  A  single 

performance of the experiment is called a trial for which there is an outcome. Probability can be defined 

in three ways. The First one is Classical Definition. Second one is Definition from the knowledge of Sets 

Theory and Axioms. And the last one is from the concept of relative frequency. 

 
 

Experiment: Any physical action can be considered as an experiment. Tossing a coin, Throwing or 

rolling a die or dice and drawing a card from a deck of 52-cards are Examples for the Experiments. 

 
 

Sample Space: The set of all possible outcomes in any Experiment is called the sample space. And it is 

represented by the letter s. The sample space is a universal set for the experiment. The sample space can 

be of 4 types. They are: 

1. Discrete and finite sample space. 

2. Discrete and infinite sample space. 

3. Continuous and finite sample space. 

4. Continuous and infinite sample space. 

Tossing  a  coin,  throwing  a  dice  are  the  examples  of  discrete  finite  sample  space.  Choosing 

randomly a positive integer is an example of discrete infinite sample space. Obtaining a number on a 

spinning pointer is an example for continuous finite sample space. Prediction or analysis of a random 

signal is an example for continuous infinite sample space. 

 
 

Event: An event is defined as a subset of the sample space. The events can be represented with capital 

letters like A, B, C etc… All the definitions and operations applicable to sets will apply to events also. As 

with sample space events may be of either discrete or continuous. Again the in discrete and continuous 

they may be either finite or infinite. If there are N numbers of elements in the sample space of an 

experiment then there exists 2N number of events. 

The event will give the specific characteristic of the experiment whereas the sample space gives all the 

characteristics of the experiment. 
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RANDOM VARIABLES & STOCHASTIC PROCESSES 
 
 

Classical  Definition:  From  the  classical  way  the  probability  is  defined  as  the  ratio  of  number  of 

favorable outcomes to the total number of possible outcomes from an experiment. i.e. Mathematically, 

P(A) =F/T. 

Where: P(A) is the probability of event A. 

F is the number of favorable outcomes and 

T is the Total number of possible outcomes. 

The classical definition fails when the total number of outcomes becomes infinity. 

 
 

Definition from Sets and Axioms: In the axiomatic definition, the probability P(A) of an event is always 

a non negative real number which satisfies the following three Axioms. 

Axiom 1: P(A) ≥ 0.Which means that the probability of event is always a non negative number 

Axiom 2: P(S) =1.Which means that the probability of a sample space consisting of all possible outcomes 

of experiment is always unity or one. 

Axiom 3: P ( Un=1N ) or P (A1 A2 . . . AN) = P (A1) + P (A2) + . . .  + P (AN) 

This means that the probability of Union of N number of events is same as the Sum of the individual 

probabilities of those N Events. 

 
 

Probability  as  a  relative  frequency:  The  use  of  common  sense  and  engineering  and  scientific 

observations leads to a definition of probability as a relative frequency of occurrence of some event. 

Suppose that a random experiment repeated n times and if the event A occurs n(A) times, then the 

probability of event a is defined as the relative frequency of event a when the number of trials n tends to 

infinity. Mathematically P(A) =Lt n->∞  n(A)/n 

Where n (A)/n is called the relative frequency of event, A. 
 
 

Mathematical Model of Experiments: Mathematical model of experiments can be derived from the 

axioms  of probability introduced.  For  a  given  real  experiment  with  a  set  of possible outcomes,  the 

mathematical model can be derived using the following steps: 

1. Define a sample space to represent the physical outcomes. 

2. Define events to mathematically represent characteristics of favorable outcomes. 

3. Assign probabilities to the defined events such that the axioms are satisfied. 
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Joint Probability: If a sample space consists of two events A and B which are not mutually exclusive, 

and then the probability of these events occurring jointly or simultaneously is called the Joint Probability. 

In other words the joint probability of events A and B is equal to the relative frequency of the joint 

occurrence. If the experiment repeats n number of times and the joint occurrence of events A and B is 

n(AB) times, then the joint probability of events A and B is 

 
 
 
 
 
 
 
 
 
 
 
 
Conditional Probability: If an experiment repeats n times and a sample space contains only two events 

A and B and event A occurs n(A) times, event B occurs n(B) times and the joint event of A and B occurs 

n(AB) times then the conditional probability of event A given event B is equal to the relative frequency 

of the joint occurrence n(AB) with respect to n(B) as n tends to infinity. 

Mathematically, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That is the conditional probability P(A/B) is the probability of event A occurring on the condition that the 

probability of event B is already known. Similarly the conditional probability of occurrence of B when 

the probability of event A is given can be expressed as 
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From the conditional probabilities, the joint probabilities of the events A and B can be expressed as 
 
 
 
 
 
Total Probability Theorem: Consider a sample space, s that has n mutually exclusive events Bn, n=1, 2, 

3,…,N. such that Bm∩Bn=ⱷ for m =1, 2, 3, ….,N. The probability of any event A, defined on this 

sample space can be expressed in terms of the Conditional probabilities of events Bn. This probability is 

known as the total probability of event A. Mathematically, 

 
 

 
 

Proof: The sample space s of N mutually exclusive events, Bn, n=1, 2, 3, …N is shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Baye’s Theorem: It states that if a sample space S has N mutually exclusive events Bn, n=1, 2, 3,…,N. 

such that Bm∩Bn=ⱷ for m =1, 2, 3, ….,N. and any event A is defined on this sample space then the 

conditional probability of Bn and A can be Expressed as 
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Independent events: Consider two events A and B in a sample space S, having non-zero probabilities. If 

the probability of occurrence of one of the event is not affected by the occurrence of the other event, then 

the events are said to be Independent events. 

 
 

If A and B are two independent events then the conditional probabilities will become 

P(A/B)= P(A) and P(B/A)= P(B) . That is the occurrence of an event does not depend on the occurrence 

of the other event. Similarly the necessary and sufficient conditions for three events A, B and C to be 

independent are: 

 
 
 
 
 
 
 

Multiplication Theorem of Probability: Multiplication theorem can be used to find out probability of 

outcomes when an experiment is performing on more than one event. It states that if there are N events 

An, n=1,2, . . .  N, in a given sample space, then the joint probability of all the events can be expressed as 
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And if all the events are independent, then 
 
 
 
 

Permutations & Combinations: An ordered arrangement of events is called Permutation. If there are n 

numbers of events in an experiment, then we can choose and list them in order by two conditions. One is 

with replacement and another is without replacement. In first condition, the first event is chosen in any of 

the n ways thereafter the outcome of this event is replaced in the set and another event is chosen from all 

v events. So the second event can be chosen again in n ways. For choosing r events in succession, the 

numbers of ways are nr. 

 
 
 
 
In the second condition, after choosing the first event, in any of the n ways, the outcome is not replaced 

in the set so that the second event can be chosen only in (n-1) ways. The third event in (n-2) ways and the 

rth event in (n-r+1) ways. Thus the total numbers of ways are n(n-1)(n-2) . . .  (n-r+1). 

 
 
 
 
 
 

RANDOM VARIABLE 
 

Introduction: A random variable is a function of the events of a given sample space, S. Thus for a given 

experiment, defined by a sample space, S with elements, s the random variable is a function of S. and is 
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represented as X(s) or X(x). A random variable X can be considered to be a function that maps all events 

of the sample space into points on the real axis. 

Typical random variables are the number of hits in a shooting game, the number of heads when tossing 

coins, temperature/pressure variations of a physical system etc…For example, an experiment consists of 

tossing two coins. Let the random variable X chosen as the number of heads shown. So X maps the real 

numbers of the event “showing no head” as zero, the event “any one head” as One and “both heads” as 

Two. Therefore the random variable is X = {0,1,2} 

The elements of the random variable X are x1=0, x2=1 & x3=2. 

Conditions for a function to be a Random Variable: The following conditions are required for a function 

to be a random variable. 

1. Every point in the sample space must correspond to only one value of the random variable. i.e. it must 

be a single valued. 

2. The set {X≤x} shall be an event for any real number. The probability of this event is equal to the sum 

of the probabilities of all the elementary events corresponding to {X≤x}. This is denoted as P{X≤x} . 

3. The probability of events {X=∞} and {X=-∞}are zero. 

 
 

Classification of Random Variables: Random variables are classified into continuous, discrete and 

mixed random variables. 

The  values  of  continuous  random  variable  are  continuous  in  a  given  continuous  sample  space.  A 

continuous sample space has infinite range of values. The discrete value of a continuous random variable 

is a value at one instant of time. For example the Temperature, T at some area is a continuous random 

variable that always exists in the range say, from T1 and T2. Another example is an experiment where the 

pointer on a wheel of chance is spun. The events are the continuous range of values from 0 t0 12 marked 

in the wheel. 

The values of a discrete random variable are only the discrete values in a given sample space. The sample 

space for a discrete random variable can be continuous, discrete or even both continuous and discrete 

points .They may be also finite or infinite. For example the “Wheel of chance” has the continuous sample 

space. If we define a discrete random variable n as integer numbers from 0 to 12, then the discrete 

random variable is X = {0,1,3,4…..12} 

The values of mixed random variable are both continuous and discrete in a given sample space. The 

sample space for a mixed random variable is a continuous sample space. The random variable maps some 
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points as continuous and some points as discrete values. The mixed random variable has least practical 

significance or importance. 

 
 

Probability   Distribution   Function:   The   probability   distribution   function   (PDF)   describes   the 

probabilistic behavior of a random variable. It defines the probability P {X≤x} of the event {X≤x} for all 

values of the random variable X up to the value of x. It is also called as the Cumulative Distribution 

Function of the random variable X and denotes as FX(x) which is a function of x. Mathematically, FX(x) 

= P{X≤x}  . Where x is a real number in the range -∞≤x≤∞ . We can call FX(x) simply as the distribution 

function of x. If x is a discrete random variable, the distribution function FX(x) is a cumulative sum of all 

probabilities of x up to the value of x. as x is a discrete FX(x) must have a stair case form with step 

functions. The amplitude of the step is equal to the probability of X at that value of x. If the values of x 

are {xi} , the distribution function can be written mathematically as 

 
 
 
 
 
 
is a unit step function and N is the number of elements in x. N may be infinite. 

If x is a continuous random variable, the distribution function FX(x)  is an integration of all continuous 

probabilities of x up to the value of x. Let fX(x) be a probability function of x, a continuous random 

variable. The distribution function for X is given by 

 
 
 
 
 
 
 
 
 
 
 
 

Probability density function: The probability density function (pdf) is a basic mathematical tool to 

design the probabilistic behavior of a random variable. It is more preferable than PDF. The probability 

density function of the random variable x is defined as the values of probabilities at a given value of x. It 

is the derivative of the distribution function FX(x) and is denoted as fX(x). Mathematically, 
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Where x is a real number in the range -∞≤x≤∞ 

We can call fX(x) simply as density function of x. The expression of density function for a discrete 

random variable is 

 
 
 
From the definition we know that 
 
 
 

Since derivative of a unit step function u(x) is the unit impulse function δ(x) . And it is defined as 

 
 
 

For continuous random variables, since the distribution function is continuous in the given range, the 

density function fX(x) can be expressed directly as a derivative of the distribution function. i.e. 

 
 
 
 
 

Properties of Probability Distribution Function: If FX(x) is a probability distribution function of a 

random variable X, then 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Properties of Probability Density Function: If fX(x) is a probability density function of a random 

variable X, then 
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Real Distribution and Density Function: The following are the most generally used distribution and 

density functions. 

1. Gaussian Function. 

2. Uniform Function. 

3. Exponential Function. 

4. Rayleigh Function. 

5. Binomial Function. 

6. Poisson’s Function. 

 
 

1. Gaussian Function: The Gaussian density and distribution function of a random variable X are given 

by 

 
 
 
 
 
 
 
 

Where Are constants called standard deviation and mean values of X 

respectively. The Gaussian density function is also called as the normal density function. 
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The plot of Gaussian density function is bell shaped and symmetrical about its mean value aX. The total 

area under the density function is one. i.e. 

 
 
 
 
 
 

Applications: The Gaussian probability density function is the most important density function among 

all density functions in the field of Science and Engineering. It gives accurate descriptions of many 

practical random quantities. Especially in Electronics & Communication Systems, the distribution of 

noise  signal  exactly  matches  the  Gaussian  probability  function.  It  is  possible  to  eliminate  noise  by 

knowing its behavior using the Gaussian Probability density function. 

 
 

2. Uniform Function: The uniform probability density function is defined as 
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Applications:  1.The  random  distribution  of  errors  introduced  in  the  round  off  process  is  uniformly 

distributed. 2. In digital communications to round off samples. 

 
 

3. Exponential function: The exponential probability density function for a continuous random variable, 

X is defined as 
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Applications: 1. The fluctuations in the signal strength received by radar receivers from certain types of 

targets are exponential. 2. Raindrop sizes, when a large number of rain storm measurements are made, are 

also exponentially distributed. 

 
 

4. Rayleigh function: The Rayleigh probability density function of random variable X is defined as 
 
 
 
 
 
Where a and b are real constants 
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Applications: 1. It describes the envelope of white noise, when noise is passed through a band pass 

filter.2. The Rayleigh density function has a relationship with the Gaussian density function.3. Some 

types of signal fluctuations received by the receiver are modeled as Rayleigh distribution. 

 
 

5. Binomial function: Consider an experiment having only two possible outcomes such as one or zero; 

yes or no: tails or heads etc… If the experiment is repeated for N number of times then the Binomial 

probability density function of a random variable X is defined as 

 
 
 
 
 
 
 
Where 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applications: The distribution can be applied to many games of chance, detection problems in radar and 

sonar and many experiments having only two possible outcomes in any given trial. 
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6. Poisson’s function: Poisson’s probability density function of a random variable X is defined as 

 
 
 
 
 
 
 

Poisson’s distribution is the approximated function of the Binomial distribution when N∞ and p0 . 

Here the constant b=Np. Poisson’s density and distribution plots are similar to Binomial density and 

distribution plots. 

 
 

Applications: It is mostly applied to counting type problems. It describes 1. The number of telephone 

calls made during a period of time. 2. The number of defective elements in a given sample. 3. The 

number of electrons emitted from a cathode in a time interval.4. The number of items waiting in a queue 

etc… 

 
 

Conditional distribution Function: If A and B are two events. If A is an event {X≤x} for random 

variable X, then the conditional distribution function of X when the event B is known is denoted as 

FX(x/B) and is defined as 

 
 

We know that the conditional probability 

 
 
 

The expression for discrete random variable is 

 
 
 

The properties of conditional distribution function will be similar to distribution function and are given 

by 
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Conditional density Function: The conditional density function of a random variable, X is defined as 

the derivative of the conditional distribution function. 

 
 
 
 
 

For discrete random variable 

 
 
 

The properties of conditional density function are similar to the density function and are given by 
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UNIT-II OPERATIONS ON A ONE RANDOM 

VARIABLE 

Expected  Value of  a Random Variable 

 

 

 The expectation operation extracts a few parameters of a random variable and 

provides a summary description of the random variable in terms of these 

parameters. 

  It is far easier to estimate these parameters from data than to estimate the 

distribution or density function of the random variable. 
 

Expected value or mean of a random variable 

 
  The expected value  of a random variable X  is defined by  

    ( )XEX xf x dx




   

provided ( )Xxf x dx




  exists. 

EX  is also called the mean or statistical average of the random variable  X  and denoted 

by  .X  

 

Note that, for a discrete RV X  defined by the probability mass function (pmf)  

( ), 1,2,...., ,X ip x i N  the pdf  ( )Xf x  is given by 

1

( ) ( ) ( )
N

X X i i

i

f x p x x x


   

1

1

1

( ) ( )

       = ( ) ( )

       = ( )

N

X X i i
i

N

X i i
i

N

i X i
i

EX x p x x x dx

p x x x x dx

x p x

 









 



   

 



 

Thus for a  discrete random variable X  with   ( ), 1,2,...., ,X ip x i N    

 

X
1

       = ( )
N

i X i
i

x p x


  

 

Interpretation of the mean 

 

 The mean gives an idea about the average value of the random value. The 

values of the random variable are spread about this value. 

 Observe that  
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( )

( )

                ( ) 1

( )

X X

X

X

X

xf x dx

xf x dx

f x dx

f x dx
















 


 



 

Therefore, the mean can be also interpreted as the centre of gravity of the pdf curve. 

               
                        Fig.  Mean of  a random variable 

     
Example 1   Suppose X  is a random variable defined by the pdf 

1

( )            
otherwise

0
X

a x b
f x b a


 

 



 

Then 
 

( )

1
     

     
2

X

b

a

EX xf x dx

x dx
b a

a b





 

 





 

Example 2   Consider the random variable X  with pmf as tabulated below 

 

 

Value of the 

random variable x  

0 1 2 3 

( )Xp x  1

8  

1

8  

1

4  

1

2  

X
1

       = ( )

1 1 1 1
            =0 1 2 3

8 8 4 2

17
            =

8

N

i X i
i

x p x


 

        
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Remark If ( )Xf x  is an even function of ,x  then  ( ) 0.Xxf x dx




 Thus the mean of a RV 

with an even symmetric pdf is 0. 

 

Expected value of a function of a random variable 

 

Suppose ( )Y g X  is a function of a random variable X as discussed in the last class. 

Then,  ( ) ( ) ( )XEY Eg X g x f x dx




    

 

We shall illustrate the theorem in the special case ( )g X when ( )y g x  is one-to-one 

and monotonically increasing function of .x  In this case, 

 

1 ( )

( )
( )

( )

X

Y

x g y

f x
f y

g x 


  

 

1

12

1

( )

( ( ))
      =

( ( )

Y

y
X

y

EY yf y dy

f g y
y dy

g g y









 




 

 

where 1 2( ) and ( ).y g y g     

Substituting  1( ) so that  ( ) and ( ) ,x g y y g x dy g x dx     we get  

 

= ( ) ( )XEY g x f x dx




  

The following important properties of the expectation operation can be immediately 

derived: 

 

(a) If c is a constant,  

            Ec c  

 

Clearly 

             ( ) ( )X XEc cf x dx c f x dx c
 

 

     

 

 

(b) If 1 2( ) and ( ) g X g X are two functions of the  random variable  X  and 

1 2 and c c  are constants,  

  1 1 2 2 1 1 2 2[ ( ) ( )]= ( ) ( )E c g X c g X c Eg X c Eg X   

( )g x  

1y
 

1y
 

 

2y

 

 

x  

1y
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1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

[ ( ) ( )] [ ( ) ( )] ( )

                                = ( ) ( ) ( ) ( )

                               =  ( ) ( ) ( ) ( )

            

X

X X

X X

E c g X c g X c g x c g x f x dx

c g x f x dx c g x f x dx

c g x f x dx c g x f x dx





 

 

 

 

  

 

 

1 1 2 2                  = ( ) ( )c Eg X c Eg X

 

The above property means that E  is a linear operator. 

 

 

Mean-square value 

               2 2 ( )XEX x f x dx




   

Variance 

For  a random variable X  with the  pdf  ( )Xf x and men ,X the variance of  X  is 

denoted by  2

X  and defined as 

               2 2 2( ) ( ) ( )X X X XE X x f x dx  




     

Thus for a discrete random variable X  with   ( ), 1,2,...., ,X ip x i N    

 

                      

2 2
X

1

      = ( ) ( )
N

i X X i
i

x p x 


  

 

The standard deviation of X  is defined as 

                               
2( )X XE X    

 

 

 

Example 3 Find the variance of the random variable discussed in Example 1. 

 
2 2

2

2

2

2

( )

1
     ( )

2

1
     = [ 2

2 2

( )
     

12

X X

b

a

b b b

a a a

E X

a b
x dx

b a

a b a b
x dx xdx dx

b a

b a

  


 



  
     

  




 

 

Example 4  Find the variance of the random variable discussed in Example 2. 

As already computed  

17

8
X   
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2 2

2 2 2 2

( )

17 1 17 1 17 1 17 1
     (0 ) (1 ) (2 ) (3 )

8 8 8 8 8 4 8 2

117
     

128

X XE X  

           



 

 
 

Remark 

 Variance is a central moment and measure of dispersion of the random 

variable about the mean. 

 2( )XE X   is the average  of the square deviation  from  the mean. It 

gives information about the deviation of the values  of the RV about the 

mean. A smaller  2

X  implies that the random values are more clustered 

about the mean, Similarly, a bigger  2

X means that the random values are 

more scattered.  

    For example, consider two random variables 1 2 and XX  with pmf as 

shown below.  Note that each of 1 2 and XX  has zero means. 
1

2 1

2
X   and 

2

2 5

3
X    implying that  2 X  has more spread about the mean. 
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1
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2
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6
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6
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Fig. shows the pdfs of two continuous random variables with same mean but different 

variances 

 
 

 

 

 We could have used the mean absolute deviation XE X   for the same 

purpose. But it is more difficult both for analysis and numerical 

calculations. 
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Properties of variance 

     (1)    2 2 2
X XEX    

 

               

2 2

2 2

2 2

2 2 2

2 2

( )

     ( 2 )

     2

     2

     

X X

X X

X X

X X

X

E X

E X X

EX EX E

EX

EX

 

 

 

 



 

  

  

  

 

 

(2) If ,  where  and  are constants,Y cX b c b   then 2 2 2
Y Xc   

2 2

2 2

2 2

( )

     ( )

     

Y X

X

X

E cX b c b

Ec X

c

 





   

 

  

(3) If   c is a constant, 

var( ) 0.c 

 nth moment of a random variable  

We can define the nth moment  and the nth central-moment of a  random variable X 

by the following relations 

nth-orde   moment   ( )    1, 2,..

nth-orde   central moment  ( ) ( ) ( )  1, 2,...

n n
X

n n
X X X

r EX x f x dx n

r E X x f x dx n 









 

   

 

Note that  

 The mean X =  EX  is the first moment  and the mean-square value 2  EX  

is the second moment 

 The first central moment is 0 and the variance 2 2( )X XE X    is the 

second central moment 

 The third central moment measures lack of symmetry of the pdf of a random 

variable. 
3

3

  ( )X

X

E X 




 is called the coefficient of  skewness and If the pdf  is 

symmetric  this coefficient will be zero. 
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 The  fourth central moment  measures flatness of peakednes of the pdf of a 

random variable. 
4

4

  ( )X

X

E X 




 is called kurtosis.  If the  peak of the pdf is 

sharper,  then the random variable has a higher kurtosis. 

Inequalities based on expectations 

The mean and variance also give some quantitative information about the bounds of 

RVs. Following inequalities are extremely useful in many practical problems. 

 

Chebysev Inequality 

Suppose X  is a parameter of a manufactured item with known   mean 

2and variance .X X   The quality control department rejects the item if the absolute 

deviation of X  from  X  is greater than  2 .X  What fraction of the manufacturing 

item does the quality control department reject? Can you roughly guess it? 

The standard deviation gives us an intuitive idea how the random variable is 

distributed about the mean. This idea is more precisely expressed in the remarkable 

Chebysev Inequality stated below.  For a random variable X with mean 

2

X X  and variance   

        
2

2
 { } X

XP X


 


    

Proof:  

          

2

2 2

2

2

2

2

( ) ( )

      ( ) ( )

     ( )

     { }

   { }

X

X

X

x X X

X X
X

X
X

X

X

x f x dx

x f x dx

f x dx

P X

P X

 

 



 





  

 






 

 

 

 

 

  

   

 

 

Markov Inequality 

For a random variable X which take only nonnegative values 
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( )

{ }
E X

P X a
a

            where 0.a   

       

0

( ) ( )

         ( )

         ( )

          { }

X

X
a

X
a

E X xf x dx

xf x dx

af x dx

aP X a







 

 

 

 

 

( )
   { }

E X
P X a

a
    

Remark:
2

2 ( )
 {( ) }

E X k
P X k a

a


    

Example 

 

Example A nonnegative RV X  has  the mean 1.X  Find an upper bound of the 

probability ( 3}).P X   

By Markov’s inequality 

( ) 1
( 3}) .

3 3

E X
P X     

Hence the required upper bound 
1

.
3

  
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RANDOM VARIABLES & STOCHASTIC PROCESSES 
 

UNIT-3: MULTIPLE RANDOM VARIABLES & OPERATIONS ON MULTIPLE 

RANDOM VARIABLES 

 

In many practical situations, multiple random variables are required for analysis than a single 

random variable. The analysis of two random variables especially is very much needed. The theory of 

two random variables can be extended to multiple random variables. 

 
 

Joint Probability Distribution Function: Consider two random variables X and Y. And let two events 

be A{X ≤ x} and B{Y≤y} Then the joint probability distribution function for the joint event {X ≤ x, 

Y≤y} is defined as FX,Y (x, y) = P{ X ≤ x, Y≤y} = P(A∩B) 

For discrete random  variables, if X = {x1,  x2, x3,…,xn}  and  Y = {y1,  y2,  y3,…,  ym}  with  joint 

probabilities P(xn, ym) = P{X= xn, Y= ym} then the joint probability distribution function is 

 
 
 
 
 

Similarly for N random variables Xn, where n=1, 2, 3 … N the joint distribution function is given as 

Fx1,x2,x3,…xn (x1,x2,x3,…xn) = P{X1≤ x1, X2≤ x2, X3≤ x3, ............  Xn ≤xn} 

 
 

Properties  of  Joint  Distribution  Functions:  The  properties  of  a  joint  distribution  function  of  two 

random variables X and Y are given as follows. 

(1) FX,Y (-∞,-∞) = 0 

FX, Y (x,-∞) = 0 

FX, Y (-∞, y) = 0 

(2) FX,Y (∞,∞) = 1 

(3) 0 ≤ FX,Y (x, y) ≤ 1 

(4) FX, Y (x, y) is a monotonic non-decreasing function of both x and y. 

(5) The probability of the joint event {x1≤ X ≤x2, y1 ≤ Y ≤ y2} is given by 

P {x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2} = FX, Y (x2, y2) + FX, Y (x1, y1) - FX, Y (x1, y2) - FX, Y (x2, y1) 

(6) The marginal distribution functions are given by FX, Y (x, ∞) = FX (x) and FX, Y (∞, y) = FY (y). 

Joint Probability Density Function: The joint probability density function of two random variables X 

and Y is defined as the second derivative of the joint distribution function. It can be expressed as 
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It is also simply called as joint density function. For discrete random variables X = {x1, x2, x3,…,xn} 

and Y = {y1, y2, y3,…, ym} the joint density function is 

 
 
 
 

By direct integration, the joint distribution function can be obtained in terms of density as 

 
 
 
 

For N random variables Xn, n=1,2,…N, The joint density function becomes the N-fold partial derivative 

of the N-dimensional distribution function. That is, 

 
 
 
 
 

By direct integration the N-Dimensional distribution function is 
 
 
 
 
 
 

Properties  of  Joint  Density  Function:  The  properties  of  a  joint  density  function  for  two  random 

variables X and Y are given as follows: 
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Conditional Density and Distribution functions: 

Point Conditioning: Consider two random variables X and Y. The distribution of random variable X 

when the distribution function of a random variable Y is known at some value of y is defined as the 

conditional distribution function of X. It can be expressed as 
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For discrete random variables, Consider both X and Y are discrete random variables. Then we know that 

the conditional distribution function of X at a specified value of yk is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 

Then the conditional density function of X is 
 
 
 
 

Similarly, for random variable Y the conditional distribution function at x = xk is 
 
 
 
 
And conditional density function is 
 
 
 
 

Interval Conditioning: Consider the event B is defined in the interval y1 ≤ Y ≤ y2 for the random 

variable Y i.e. B = { y1 ≤ Y ≤ y2}. Assume that P(B) =P(y1 ≤ Y ≤ y2) 0, then the conditional distribution 

function of x is given by 

 
 
 
 
 
 

We know that the conditional density function 
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By differentiating we can get the conditional density function of X as 
 
 
 
 
 
 

Similarly, the conditional density function of Y for the given interval x1 ≤ X ≤ x2 is 
 
 
 
 
 
 

Statistical Independence of Random Variables: Consider two random variables X and Y with events 

A= {X≤ x } and B = {Y ≤ y} for two real numbers x and y. The two random variables are said to be 

statistically independent if and only if the joint probability is equal to the product of the individual 

probabilities. 

P {X≤x ,Y ≤ y} P {X≤x } P {Y ≤ y} Also the joint distribution function is 

 
 
 

And the joint density function is 
 
 
 

These functions give the condition for two random variables X and Y to be statistically independent. 

The conditional distribution functions for independent random variables are given by 

 
 
 
 

Therefore FX (x/ y) = FX (x) 

Also FY (y/ x) = FY ( y) 

Similarly, the conditional density functions for independent random variables are 

 
 
 
 
 
 

Hence the conditions on density functions do not affect independent random variables. 

Sum of  two  Random Variables:  The  summation  of  multiple  random  variables  has  much  practical 

importance when information signals are transmitted through channels in a communication system. The 
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resultant signal available at the receiver is the algebraic sum of the information and the noise signals 

generated by multiple noise sources. The sum of two independent random variables X and Y available at 

the receiver is W =X+Y 

If  FX  (x)  and  FY  (y)  are  the  distribution  functions  of  X  and  Y  respectively,  then  the  probability 

distribution function of W is given as FW (w) =P {W≤w }= P {X+Y≤w }.Then the distribution function is 

 
 
 
 

Since X and Y are independent random variables, 
 
 
 
 

Therefore 
 
 
 
 

Differentiating using Leibniz rule, the density function is 

 
 
 
 
 
 
 
 
 

Similarly it can be written as 
 
 
 
 

This expression is known as the convolution integral. It can be expressed as 
 
 
 
 
Hence the density function of the sum of two statistically independent random variables is equal to the 

convolution of their individual density functions. 

 
 

Sum of several Random Variables: Consider that there are N statistically independent random variables 

then the sum of N random variables is given by W=X1+X2+X3+…+XN. 

 
 
 
  

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

 
 
 

RANDOM VARIABLES & STOCHASTIC PROCESSES 
 
 

Then the probability density function of W is equal to the convolution of all  the individual density 

functions. This is given as 

 
 
 
 
 
 

Central Limit Theorem:  It states that the probability function of a sum of N independent  random 

variables approaches  the Gaussian  density function  as  N tends to  infinity.  In  practice,  whenever an 

observed random variable is known to be a sum of large number of random variables, according to the 

central limiting theorem, we can assume that this sum is Gaussian random variable. 

 
 

Equal Functions: Let N random variables have the same distribution and density functions. And Let 

Y=X1+X2+X3+…+XN. Also let W be normalized random variable 

 
 
 
 
 
So 
 
 
 
 
 
 
Since all random variables have same distribution 
 
 
 
 

Therefore 
 
 
 
 

Then W is Gaussian random variable. 
 
 

Unequal Functions: Let N random variables have probability density functions, with mean and variance. 

The central limit theorem states that the sum of the random variables W=X1+X2+X3+…+XN have a 

probability distribution function which approaches a Gaussian distribution as N tends to infinity. 
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Introduction:  In this Part of Unit we will see the concepts of expectation such as mean, variance, 

moments, characteristic function, Moment generating function on Multiple Random variables. We are 

already familiar with same operations on Single Random variable. This can be used as basic for our 

topics we are going to see on multiple random variables. 

 
 

Function of joint random variables: If g(x,y) is a function of two random variables X and Y with joint 

density function fx,y(x,y) then the expected value of the function g(x,y) is given as 

 
 
 
 
 
 
 
Similarly, for N Random variables X1, X2, . . . XN With joint density function fx1,x2, . . .  Xn(x1,x2, . . . 

xn), the expected value of the function g(x1,x2, . . .  xn) is given as 

 
 
 
 
 
 
Joint Moments about Origin: The joint moments about the origin for two random variables, X, Y is the 

expected value of the function g(X,Y) =E( Xn,Yk) and is denoted as mnk.. Mathematically, 

 
 
 
 
Where n and k are positive integers. The sum n+k is called the order of the moments. If k=0, then 
 
 
 
 
 
 

The second order moments are m20= E[X2] ,m02= E[Y2] and m11 = E[XY] 

For N random variables X1, X2, . . .  XN, the joint moments about the origin is defined as 

 
 
 
 
 
 

Where n1,n2, . . .  nN are all positive integers. 
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Correlation: Consider the two random variables X and Y, the second order joint moment m11 is called 

the Correlation of X and Y. I t is denoted as RXY. RXY = m11 = E [XY] = 

 
 
 
 
For discrete random variables 
 
 
 
 
 

Properties of Correlation: 

1. If two random variables X and Y are statistically independent then X and Y are said to be uncorrelated. 

That is RXY = E[XY]= E[X] E[Y]. 

Proof: Consider two random variables, X and Y with joint density function fx,y(x,y)and marginal density 

functions fx(x) and fy(y). If X and Y are statistically independent, then we know that fx,y(x,y) = fx(x) 

fy(y). 

The correlation is 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. If the Random variables X and Y are orthogonal then their correlation is zero. i.e. RXY = 0. 

Proof: Consider two Random variables X and Y with density functions fx(x) and fy(y). If X and Y are 

said to be orthogonal, their joint occurrence is zero. That is fx,y(x,y)=0. Therefore the correlation is 
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Properties of Covariance: 

1. If X and Y are two random variables, then the covariance is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. If two random variables X and Y are independent, then the covariance is zero. i.e. CXY = 0. But 

the converse is not true. 
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3. If X and Y are two random variables, Var(X+Y) = Var(X) + Var(Y) + 2 CXY. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. If X and Y are two random variables, then the covariance of X+a,Y+b, Where ‘a’and ‘b’ are 

constants is Cov (X+a,Y+b) = Cov (X,Y) = CXY. 
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5. If  X  and  Y  are  two  random  variables,  then  the  covariance  of  aX,bY,  Where  ‘a’and  ‘b’  are 

constants is Cov (aX,bY) = abCov (X,Y) = abCXY. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. If X, Y and Z are three random variables, then Cov (X+Y,Z) = Cov (X,Z) + Cov (Y,Z). 
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Properties of Gaussian Random Variables: 

1. The Gaussian random variables are completely defined by their means, variances and covariances. 

2. If the Gaussian random variables are uncorrelated, then they are statistically independent. 

3. All marginal density functions derived from N-variate Gaussian density functions are Gaussian. 

4. All conditional density functions are also Gaussian. 

5. All linear transformations of Gaussian random variables are also Gaussian. 

 
 

Linear Transformations of Gaussian Random variables: Consider N Gaussian random variables Yn, 

n=1,2, . . .N. having a linear transformation with set of N Gaussian random variables Xn, n=1,2, . . .N. 

The linear transformations can be written as 
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UNIT-4: RANDOM PROCESSES: TEMPORAL CHARACTERISTICS 

 
 
 

The random processes are also called as stochastic processes which deal with randomly varying 

time  wave  forms  such  as  any  message  signals  and  noise.  They  are  described  statistically  since  the 

complete  knowledge  about  their  origin  is  not  known.  So  statistical  measures  are  used.  Probability 

distribution  and  probability  density  functions  give  the  complete  statistical  characteristics  of  random 

signals. A random process is a function of both sample space and time variables. And can be represented 

as {X x(s,t)}. 

 
 

Deterministic and Non-deterministic processes: In general a random process may be deterministic or 

non deterministic. A process is called as deterministic random process if future values of any sample 

function can be predicted from its past values. For example, X(t) = A sin (ω0t+ϴ), where the parameters 

A, ω0 and ϴ may be random variables, is deterministic random process because the future values of the 

sample function can be detected from its known shape. If future values of a sample function cannot be 

detected from observed past values, the process is called non-deterministic process. 

 
 

Classification of random process: Random processes are mainly classified into four types based on the 

time and random variable X as follows. 1. Continuous Random Process: A random process is said to be 

continuous if both the random variable X and time t are continuous. The below figure shows a continuous 

random process. The fluctuations of noise voltage in any network is a continuous random process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Discrete Random Process: In discrete random process, the random variable X has only discrete values 

while time, t is continuous. The below figure shows a discrete random process. A digital encoded signal 

has only two discrete values a positive level and a negative level but time is continuous. So it is a discrete 

random process. 
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3. Continuous Random Sequence: A random process for which the random variable X is continuous but t 

has discrete values is called continuous random sequence. A continuous random signal is defined only at 

discrete (sample) time intervals. It is also called as a discrete time random process and can be represented 

as a set of random variables {X(t)} for samples tk, k=0, 1, 2,…. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Discrete Random Sequence:  In discrete random sequence both random variable X and time t are 

discrete. It can be obtained by sampling and quantizing a random signal. This is called the random 

process and is mostly used in digital signal processing applications. The amplitude of the sequence can be 

quantized into two levels or multi levels as shown in below figure s (d) and (e). 
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Joint distribution functions of random process: Consider a random process X(t). For a single random 

variable at time t1, X1=X(t1), The cumulative distribution function is defined as FX(x1;t1) = P {(X(t1) 

x1} where x1 is any real number. The function FX(x1;t1) is known as the first order distribution function 

of X(t). For two random variables at time instants t1 and t2  X(t1) = X1 and X(t2) = X2, the joint 

distribution is called the second order joint distribution function of the random process X(t) and is given 

by FX(x1, x2 ; t1, t2) = P {(X(t1)≤ x1, X(t2)≤ x2}. In general for N random variables at N time intervals 

X(ti) = Xi i=1,2,…N, the Nth order joint distribution function of X(t) is defined as FX(x1, x2…… xN ; 

t1, t2,….. tN) = P {(X(t1)≤ x1, X(t2) ≤x2,…. X(tN)≤ xN}. 

 
 

Joint density functions of random process:: Joint density functions of a random process 

can be obtained from the derivatives of the distribution functions. 

 
 
 
 
 
 
 
 
 
 
 

Independent random processes: Consider a random process X(t). Let X(ti) = xi, i= 1,2,…N be N 

Random variables defined at time constants t1,t2, … t N with density functions fX(x1;t1), fX(x2;t2), … 

fX(xN ; tN). If the random process X(t) is statistically independent, then the Nth order joint density 

function is equal to the product of individual joint functions of X(t) i.e. fX(x1, x2…… xN ; t1, t2,….. tN) 
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=  fX(x1;t1)  fX(x2;t2).  .  .  .   fX(xN  ;  tN).  Similarly  the  joint  distribution  will  be  the  product  of  the 

individual distribution functions. 

 
 

Statistical properties of Random Processes:  The following are the statistical properties of random 

processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stationary Processes: A random process is said to be stationary if all its statistical properties such as 

mean, moments, variances etc… do not change with time. The stationarity which depends on the density 

functions has different levels or orders. 

1.   First order stationary process: A random process is said to be stationary to order one or first 

order stationary if its first order density function does not change with time or shift in time value. If 

X(t) is a first order stationary process then fX(x1;t1) = fX(x1;t1+Δt) for any time t1. Where Δt is shift 

in time value. Therefore the condition for a process to be a first order stationary random process is 

that its mean value must be constant at any time instant. i.e. E[X(t)] = constant. 

2.   Second order stationary process: A random process is said to be stationary to order two or 

second order stationary if its second order joint density function does not change with time or shift in 
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time value i.e. fX(x1, x2 ; t1, t2) = fX(x1, x2;t1+Δt, t2+Δt) for all t1,t2 and Δt. It is a function of time 

difference (t2, t1) and not absolute time t. Note that a second order stationary process is also a first 

order  stationary process.  The  condition  for  a  process  to  be  a  second  order  stationary is  that  its 

autocorrelation should depend only on time differences and not on absolute time. i.e. If RXX(t1,t2) = 

E[X(t1) X(t2)] is autocorrelation function and τ =t2 –t1 then RXX(t1,t1+ τ) = E[X(t1) X(t1+ τ)] = 

RXX(τ) . RXX(τ) should be independent of time t. 

3.   Wide sense stationary (WSS) process: If a random process X(t) is a second order stationary 

process, then it is called a wide sense stationary (WSS) or a weak sense stationary process. However 

the converse is not true. The condition for a wide sense stationary process are 1. E[X(t)] = constant. 2. 

E[X(t) X(t+τ)] = RXX(τ) is independent of absolute time t. Joint wide sense stationary process: 

Consider two random processes X(t) and Y(t). If they are jointly WSS, then the cross correlation 

function of X(t) and Y(t) is a function of time difference τ =t2 –t1only and not absolute time. i.e. 

RXY(t1,t2) = E[X(t1) Y(t2)] . If τ =t2 –t1 then RXY(t,t+ τ) = E[X(t) Y(t+ τ)] = RXY(τ). Therefore 

the conditions for a process to be joint wide sense stationary are 1. E[X(t)] = Constant. 2. E[Y(t)] = 

Constant 3. E[X(t) Y(t+ τ)] = RXY(τ) is independent of time t. 

4.   Strict  sense  stationary  (SSS)  processes:  A  random  process  X(t)  is  said  to  be  strict  Sense 

stationary if its Nth order joint density function does not change with time or shift in time value. i.e. 

fX(x1, x2…… xN ; t1, t2,….. tN) = fX(x1, x2…… xN ; t1+Δt, t2+Δt, . . . tN+Δt) for all t1, t2 . . .  tN 

and Δt. A process that is stationary to all orders n=1,2,. . . N is called strict sense stationary process. 

Note that SSS process is also a WSS process. But the reverse is not true. 
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Ergodic Theorem and Ergodic Process: The Ergodic theorem states that for any random process X(t), 

all  time averages  of sample functions  of x(t)  are  equal  to  the corresponding statistical  or  ensemble 

averages of X(t). i.e. ̅x = ̅X or Rxx(τ) = RXX(τ) . Random processes that satisfy the Ergodic theorem are 

called Ergodic processes. 

 
 

Joint Ergodic Process: Let X(t) and Y(t) be two random processes with sample functions x(t) and y(t) 

respectively. The two random processes are said to be jointly Ergodic if they are individually Ergodic and 

their time cross correlation functions are equal to their respective statistical cross correlation functions. 

i.e. x ̅ =X ̅y =Y ̅ 2. Rxx(τ) = RXX(τ), Rxy(τ) = RXY(τ) and Ryy(τ) = RYY(τ). 

 
 

Mean Ergodic Random Process: A random process X(t) is said to be mean Ergodic if time average of 

any sample function x(t) is equal to its statistical average, which is constant and the probability of all 

other sample functions is equal to one. i.e. E[X(t)] =X ̅ = A[x(t)] = ̅x with probability one for all x(t). 

 
 

Autocorrelation  Ergodic  Process:  A  stationary  random  process  X(t)  is  said  to  be  Autocorrelation 

Ergodic if and only if the time autocorrelation  function of any sample function x(t) is equal to the 

statistical autocorrelation function of X(t). i.e. A[x(t) x(t+τ)] = E[X(t) X(t+τ)] or Rxx(τ) = RXX(τ). 
 
 

Cross Correlation Ergodic Process: Two stationary random processes X(t) and Y(t) are said to be cross 

correlation Ergodic if and only if its time cross correlation function of sample functions x(t) and y(t) is 

equal to the statistical cross correlation function of X(t) and Y(t). i.e. A[x(t) y(t+τ)] = E[X(t) Y(t+τ)] or 

Rxy(τ) = RXY(τ). 
 
 

Properties of Autocorrelation function: Consider that a random process X(t) is at least WSS and is a 

function of time difference τ = t2-t1. Then the following are the properties of the autocorrelation function 

of X(t). 
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Properties of Cross Correlation Function: Consider two random processes X(t) and Y(t) are at least 

jointly WSS. And the cross correlation function is a function of the time difference τ = t2-t1. Then the 

following are the properties of cross correlation function. 

1. RXY(τ) = RYX(-τ) is a Symmetrical property. 

Proof: We know that RXY(τ) = E[X(t) Y(t+ τ)] also RYX(τ) = E[Y(t) X(t+ τ)] Let τ = - τ then 

RYX(-τ) = E[Y(t) X(t- τ)] Let u=t- τ or t= u+ τ. then RYX(-τ) = E[Y(u+ τ) X(u)] = E[X(u) Y(u+ τ)] 

Therefore RYX(-τ) = RXY(τ) hence proved. 

2. If RXX(τ) and RYY(τ) are the autocorrelation functions of X(t) and Y(t) respectively then the cross 

correlation satisfies the inequality 
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3. If RXX(τ) and RYY(τ) are the autocorrelation functions of X(t) and Y(t) respectively then the cross 

correlation satisfies the inequality: 

 
 
 

Proof: We know that the geometric mean of any two positive numbers cannot exceed their arithmetic 

mean that is if RXX(τ) and RYY(τ) are two positive quantities then at τ=0, 
 
 
 

4.If two random processes X(t) and Y(t) are statistically independent and are at least WSS, then RXY(τ) 

=X ̅Y ̅. Proof: Let two random processes X(t) and Y(t) be jointly WSS, then we know that RXY(τ) 

=E[X(t) Y(t+ τ)] Since X(t) and Y(t) are independent RXY(τ) =E[X(t)]E[ Y(t+ τ)] 
 
 
 
 
 
 
 
 
 
 
 

  

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

 
 
 

RANDOM VARIABLES & STOCHASTIC PROCESSES 
 
 
 

Covariance  functions  for  random  processes:  Auto  Covariance  function:  Consider  two  random 

processes X(t) and X(t+ τ) at two time intervals t and t+ τ. The auto covariance function can be expressed 

as 

 
 
 
 
 
 
 

Therefore at τ = 0, the  auto covariance function becomes the Variance of the random process.  The 

autocorrelation coefficient of the random process, X(t) is defined as 

 
 
 
 
 
 
 
 
 

Cross Covariance Function: If two random processes X(t) and Y(t) have random variables X(t) and 

Y(t+ τ), then the cross covariance function can be defined as 

CXY(t, t+τ) = E[(X(t)-E[X(t)]) ((Y(t+τ) – E[Y(t+τ)])] or CXY(t, t+τ) = RXY(t, t+τ) - E[(X(t) E[Y(t+τ)]. 

If X(t) and Y(t) are jointly WSS, then CXY(τ) = RXY(τ) -X ̅Y ̅. If X(t) and Y(t) are Uncorrelated then 

CXY(t, t+τ) =0. 

The cross correlation coefficient of random processes X(t) and Y(t) is defined as 

 
 
 
 
 
 
 
 
 
 
Gaussian  Random  Process:  Consider  a  continuous  random  process  X(t).  Let  N  random  variables 

X1=X(t1),X2=X(t2), . . . ,XN =X(tN) be defined at time intervals t1, t2, . . .  tN respectively. If random 

variables are jointly Gaussian for any N=1,2,…. And at any time instants t1,t2,. . . tN. Then the random 

process X(t) is called Gaussian random process. The Gaussian density function is given as 
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Poisson’s random process: The Poisson process X(t) is a discrete random process which represents the 

number of times that some event has occurred as a function of time. If the number of occurrences of an 

event in any finite time interval is described by a Poisson distribution with the average rate of occurrence 

is λ, then the probability of exactly occurrences over a time interval (0,t) is 

 
 
 
 

And the probability density function is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT-5: RANDOM PROCESSES: SPECTRAL CHARACTERISTICS 
 

In this unit we will study the characteristics of random processes regarding correlation and covariance 

functions which are defined in time domain. This unit explores the important concept of characterizing 

random processes in the frequency domain. These characteristics are called spectral characteristics. All the 

concepts in this unit can be easily learnt from the theory of Fourier transforms. 

Consider a random process X (t). The amplitude of the random process, when it varies randomly with 

time, does not satisfy Dirichlet’s conditions. Therefore it is not possible to apply the Fourier transform 

directly on the random process for a frequency domain analysis. Thus the autocorrelation function of a 

WSS random process is used to study spectral characteristics such as power density spectrum or power 

spectral density (psd). 
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Power Density Spectrum:  The power spectrum of a WSS random process X (t) is defined  as the 

Fourier transform of the autocorrelation function RXX (τ) of X (t). It can be expressed as 

 
 
 
 
We can obtain the autocorrelation function from the power spectral density by taking the inverse Fourier 

transform i.e. 

 
 
 
 

Therefore, the power density spectrum SXX(ω) and the autocorrelation function RXX (τ) are Fourier 

transform pairs. 

The power spectral density can also be defined as 

 
 
 
 

Where XT(ω) is a Fourier transform of X(t) in interval [-T,T] 

 

Average power of the random process: The average power PXX of a WSS random process X(t) is 

defined as the time average of its second order moment or autocorrelation function at τ =0. 

Mathematically 

 
 
 
 
 
 
 
 
 
 
 
We know that from the power density spectrum 
 
 
 
 
 
 
 
 
 

Therefore average power of X(t) is 
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Properties of power density spectrum: The properties of the power density spectrum SXX(ω) for a 

WSS random process X(t) are given as 

 
 

1. 

Proof: From the definition, the expected value of a non negative function 

 

2. The power spectral density at zero frequency is equal to the area under the curve of the autocorrelation RXX 

(τ) i.e. 
 
 
 

Proof: From the definition we know that 
 
 
 
 
 
 
 

3. The power density spectrum of a real process X(t) is an even function i.e. 

SXX(-ω)= SXX(ω) 

Proof: Consider a WSS real process X(t). then 

 
 
 
 

Substitute τ = -τ then 
 
 
 

Since X (t) is real, from the properties of autocorrelation we know that, RXX (-τ) = RXX (τ) 
 
 
 

4.  SXX(ω) is always a real function 

5. If SXX(ω) is a psd of the WSS random process X(t), then 
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6. If X(t) is a WSS random process with psd SXX(ω), then the psd of the derivative of X(t) is equal to ω2 

times the psd SXX(ω). 
 
 
 
 
 
Cross power density spectrum: Consider two real random processes X(t) and Y(t). which are jointly 

WSS random processes, then the cross power density spectrum is defined as the Fourier transform of the 

cross correlation function of X(t) and Y(t).and is expressed as 

 
 
 
 
 
 
 

Therefore the cross psd and cross correlation functions are forms a Fourier transform pair. 

If XT(ω) and YT(ω) are Fourier transforms of X(t) and Y(t) respectively in interval [-T,T], Then the 

cross power density spectrum is defined as 

 
 
 
 
 
 
Average cross power: The average cross power PXY of the WSS random processes X(t) and Y(t) is 

defined as the cross correlation function at τ =0. That is 

 
 
 
 
 
 

Properties  of  cross  power  density  spectrum:  The  properties  of  the  cross  power  for  real  random 

processes X(t) and Y(t) are given by 

 

(1)SXY(-ω)= SXY(ω) and SYX(-ω)= SYX(ω) 
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(2) The real part of SXY(ω) and real part SYX(ω) are even functions of ω i.e. 

Re [SXY(ω)] and Re [SYX(ω)] are even functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(3) The imaginary part of SXY(ω) and imaginary part SYX(ω) are odd functions of ω i.e. 

Im [SXY(ω)] and Im [SYX(ω)] are odd functions. 

 
 
 
 
 
 
 
 
 
 

(4) SXY(ω)=0 and SYX(ω)=0 if X(t) and Y(t) are Orthogonal. 
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(5) If X(t) and Y(t) are uncorrelated and have mean values and , then 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-6: LINEAR SYSTEMS RESPONSE TO RANDOM INPUTS 

 

Consider a continuous LTI system with impulse response h (t). Assume that the system is always causal 

and stable. When a continuous time Random process X (t) is applied on this system, the output response 

is also a continuous time random process Y (t). If the random processes X and Y are discrete time 

signals,  then  the  linear  system  is  called  a  discrete  time  system.  In  this  unit  we  concentrate  on  the 

statistical and spectral characteristics of the output random process Y (t). 
 
 

  

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

 
 
 

RANDOM VARIABLES & STOCHASTIC PROCESSES 
 
 
 

System Response: Let a random process X (t) be applied to a continuous linear time invariant system 

whose impulse response is h(t) as shown in below figure. Then the output response Y (t) is also a random 

process. It can be expressed by the convolution integral, Y (t) = h (t) *X (t) 

 
 
 
 
 
 
 
 
 
 
 
Mean Value of Output Response: Consider that the random process X (t) is wide sense stationary 

process. 

Mean value of output response=E[Y (t)], Then 

E[Y (t)] = E [h (t) * X (t)] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean square value of output response is 
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It is observed that the output autocorrelation function is a function of only τ. Hence the output random 

process Y(t) is also WSS random process. 

If the input X (t) is WSS random process, then the cross correlation function of input X (t) and output Y(t) is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Spectral Characteristics of a System Response: Consider that the random process X (t) is a WSS 

random process with the autocorrelation function Rxx(τ) applied through an LTI system. It is noted that 

the output response Y (t) is also a WSS and the processes X (t) and Y (t) are jointly WSS. We can obtain 

power spectral characteristics of the output process Y(t) by taking the Fourier transform of the correlation 

functions. 
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Power Density Spectrum of Response: Consider that a random process X (t) is applied on an LTI 

system having a transfer function H(ω). The output response is Y (t). If the power spectrum of the input 

process is SXX (ω), then the power spectrum of the output response is given by SYY (ω) = 
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Spectrum  Bandwidth:  The  spectral  density is  mostly concentrated  at  a  certain  frequency  value.  It 

decreases  at  other  frequencies.  The  bandwidth  of  the  spectrum  is  the  range  of  frequencies  having 

significant values. It is defined as “the measure of spread of spectral density” and is also called rms 

bandwidth or normalized bandwidth. It is given by 

 
 
 
 
 
 
 
 
Types of Random Processes: In practical situations, random process can be categorized into different 

types depending on their frequency components. For example information bearing signals such as audio, 

video and modulated waveforms etc., carry the information within a specified frequency band. 

The Important types of Random processes are; 

1. Low pass random processes 

2. Band pass random processes 

3. Band limited random processes 

4. Narrow band random processes 

 
 

(1).Low pass random processes: 

A random process is defined as a low pass random process X (t) if its power spectral density SXX (ω) has 

significant components  within the frequency band as shown in below figure.  For example baseband 

signals such as speech, image and video are low pass random processes. 
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(2).Band pass random processes: A random process X (t) is called a band pass process if its power 

spectral density SXX (ω) has significant components within a band width W that does not include ω =0. 

But in practice, the spectrum may have a small amount of power spectrum at ω =0, as shown in the below 

figure. The spectral components outside the band W are very small and can be neglected. 

For example, modulated signals with carrier frequency ω0 and band width W are band pass random 

processes. The noise transmitting over a communication channel can be modelled as a band pass process. 

 
 
 
 
 
 
 
 
 
 

(3).Band Limited random processes: A random process is said to be band limited if its power spectrum 

components are zero outside the frequency band of width W that does not include ω =0. The power 

density spectrum of the band limited band pass process is shown in below figure. 

 
 
 
 
 
 
 
 
 
 

(4).Narrow  band  random processes:  A band  limited random  process  is  said  to  be  a narrow  band 

process if the band width W is very small compared to the band centre frequency, i.e. W<< ω0, where 

W=band width and ω0 is the frequency at which the power spectrum is maximum. The power density 

spectrum of a narrow band process N(t) is shown in below figure. 
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Representation  of  a  narrow  band  process:  For  any  arbitrary  WSS  random  processes  N(t),  The 

quadrature form of narrow band process can be represented as N(t) = X(t) Cos ω0t – Y(t)Sin ω0t 

Where X(t) and Y(t) are respectively called the in-phase and quadrature phase components of N(t). They 

can be expressed as 

 
 
 
 
 
 
 
 
 

Properties of Band Limited Random Processes: Let N (t) be any band limited WSS random process 

with zero mean value and a power spectral density, SNN(ω). If the random process is represented by 

N (t) = X (t) Cos ω0t – Y(t)Sin ω0t then some important properties of X (t) and Y (t) are given below 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com


