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RANDOM VARIABLES & STOCHASTIC PROCESSES

UNIT-1: THE RANDOM VARIABLE

Introduction: The basic to the study of probability is the idea of a Physical experiment. A single
performance of the experiment is called a trial for which there is an outcome. Probability can be defined
in three ways. The First one is Classical Definition. Second one is Definition from the knowledge of Sets

Theory and Axioms. And the last one is from the concept of relative frequency.

Experiment: Any physical action can be considered as an experiment. Tossing a coin, Throwing or
rolling a die or dice and drawing a card from a deck of 52-cards are Examples for the Experiments.

Sample Space: The set of all possible outcomes in any Experiment is called the sample space. And it is
represented by the letter s. The sample space is a universal set for the experiment. The sample space can
be of 4 types. They are:
1. Discrete and finite sample space.
2. Discrete and infinite sample space.
3. Continuous and finite sample space.
4. Continuous and infinite sample space.

Tossing a coin, throwing a dice are the examples of discrete finite sample space. Choosing
randomly a positive integer is an example of discrete infinite sample space. Obtaining a number on a
spinning pointer is an example for continuous:finite sample space. Prediction or analysis of a random

signal is an example for continuous infinite sample space.

Event: An event is defined as a'subset of the sample space. The events can be represented with capital
letters like A, B, C etc... All the definitions and operations applicable to sets will apply to events also. As
with sample space events may be of either discrete or continuous. Again the in discrete and continuous
they may be either finite or infinite. If there are N numbers of elements in the sample space of an
experiment then there exists 2N number of events.

The event will give the specific characteristic of the experiment whereas the sample space gives all the

characteristics of the experiment.
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Classical Definition: From the classical way the probability is defined as the ratio of number of
favorable outcomes to the total number of possible outcomes from an experiment. i.e. Mathematically,

P(A) =F/T.

Where: P(A) is the probability of event A.
F is the number of favorable outcomes and
T is the Total number of possible outcomes.

The classical definition fails when the total number of outcomes becomes infinity.

Definition from Sets and Axioms: In the axiomatic definition, the probability P(A) of an event is always

a non negative real number which satisfies the following three Axioms.

Axiom 1: P(A) > 0.Which means that the probability of event is always a non negative number

Axiom 2: P(S) =1.Which means that the probability of a sample space consisting of all possible outcomes
of experiment is always unity or one.

Axiom3: P (Un=in)orP (A1 A2...AN)=P (A1) +P (A2)+... +P(AN)

This means that the probability of Union of N number of events is same as the Sum of the individual

probabilities of those N Events.

Probability as a relative frequency: The use of.common sense and engineering and scientific
observations leads to a definition of probability as a relative frequency of occurrence of some event.
Suppose that a random experiment repeated-ntimes and if the event A occurs n(A) times, then the
probability of event a is defined as the relative frequency of event a when the number of trials n tends to
infinity. Mathematically P(A) =Ltn=x n(A)/n

Where n (A)/n is called the relative frequency of event, A.

Mathematical Model of Experiments: Mathematical model of experiments can be derived from the
axioms of probability introduced. For a given real experiment with a set of possible outcomes, the
mathematical model can be derived using the following steps:

1. Define a sample space to represent the physical outcomes.

2. Define events to mathematically represent characteristics of favorable outcomes.

3. Assign probabilities to the defined events such that the axioms are satisfied.
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Joint Probability: If a sample space consists of two events A and B which are not mutually exclusive,
and then the probability of these events occurring jointly or simultaneously is called the Joint Probability.
In other words the joint probability of events A and B is equal to the relative frequency of the joint
occurrence. If the experiment repeats n number of times and the joint occurrence of events A and B is
n(AB) times, then the joint probability of events A and B is

. . (AB)
P(ANB)=lim,_.~ =

P(AnB)=P(A) +P(B)—P(AUB)then
P(AUB)=P(A)+P(B)— P(An RB) also since

P(ANB)=0,P(AUB) =< P(A)+ P(B)

Conditional Probability: If an experiment repeats n times and a sample space contains only two events
A and B and event A occurs n(A) times, event B occurs n(B) times and the joint event of A and B occurs

n(AB) times then the conditional probability of event A given event B is equal to the relative frequency
of the joint occurrence n(AB) with respect to n(B) as n tends to-infinity.

Mathematically,

A\ _. n(AB)
P (B) 1 7 - i) nB) >0

n(AB)/n

= lim
=% n(B)/n

n(AB)

p (1) tmr22
B limn_,oon(nm

4\_ P(ANB)
P(E)_ P(B) -PAB) =0

That is the conditional probability P(A/B) is the probability of event A occurring on the condition that the
probability of event B is already known. Similarly the conditional probability of occurrence of B when
the probability of event A is given can be expressed as

P(3)= ”Ej;;‘” P(A) = 0 [P(BNA)=P(An B)]
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From the conditional probabilities, the joint probabilities of the events A and B can be expressed as

P(ANnB)=P(4)PB)= P(2)PD.

Total Probability Theorem: Consider a sample space, s that has n mutually exclusive events Bn, n=1, 2,
3,...,N. such that BmNBn=0 for m =1, 2, 3, ....,N. The probability of any event A, defined on this
sample space can be expressed in terms of the Conditional probabilities of events Bn. This probability is
known as the total probability of event A. Mathematically,

P(A) =3N_, P (Z) P(Bn)

Proof: The sample space s of N mutually exclusive events, Bn, n=1, 2, 3, ...N is shown in the figure.

Le. BiuBuUB:U ... UBx=S.

Let an event A be defined on sample space s. Since a 1s subset of s, then A NS =A or
ANS=ANUN.:ByJ=Aor A= UN_.(AN By)

Applying probability P(A) =P [UN_,(ANn B,)]=UN_, P(AN B,)

Since the events P(A N B,) are nwtually exclusive. by applying axiom 3 of
probability we get.

P(A)=3N__P(AN B,)
From the definition of joint probability.
P(ANB,) =P (5)P(BY)
Baye’s Theorem: It states that if a sample space S has N mutually exclusive events Bn, n=1, 2, 3,...,N.

such that BmNBn=0 for m =1, 2, 3, ....,N. and any event A is defined on this sample space then the
conditional probability of Bn and A can be Expressed as
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p(2)p(8,)
P(B,/A) = 5,)

P(—:—l)P(B,H p('%)P(Bg)-& +p(Bi“}p(Bn)

Proof. This can be proved from total probability Theorem. and the definition of conditional
probabilities.

We know that the conditional probability. P (Z—") = P(B,nA)/P(A), P(A) = 0also
P(B,NnA)=P ( Bi) P(B,,) Aud from the total probability theoremny

P(A)=YV_, P(B, nA).

Therefore P(B, /A) = %
- P(Z-)P(By)
- TL/ ) 1P(—-—)P(Bn) Ol
4 P(3-)P(8y)
P(B,/A) = “ Hence Proved.

P(B%)P(BxH P()P(B)+ .. +P(ﬁ)msn)

Independent events: Consider two events A and B inasample space S, having non-zero probabilities. If
the probability of occurrence of one of the event is not affected by the occurrence of the other event, then

the events are said to be Independent events.
P(AnNnB)=P(A)P(B). For P(A) = 0 and P(B) = 0.
If A and B are two independent events.then the conditional probabilities will become
P(A/B)=P(A) and P(B/A)=P(B). That is the occurrence of an event does not depend on the occurrence
of the other event. Similarly the necessary and sufficient conditions for three events A, B and C to be
independent are:

P (AN B) = PCAIP(B)

PANC)=PCAPCC)

P(BnNC) = P(B)P(C) and

P(ANB NnC) =P(A) nP(B) n P(C).
Multiplication Theorem of Probability: Multiplication theorem can be used to find out probability of
outcomes when an experiment is performing on more than one event. It states that if there are N events
An, n=1,2,... N, inagiven sample space, then the joint probability of all the events can be expressed as
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P(AsNA NA; N Ax) = P(A;) P(A»/A)) P(AsJA1 N Ay) . . .PAAWVAINAN . . . Ax)
And if all the events are independent, then

P(A Tt MNMA> N A N ;’\N) =P(Ay) P(.Ag) p(.—\_:,) S P(J‘\N)

Permutations & Combinations: An ordered arrangement of events is called Permutation. If there are n
numbers of events in an experiment, then we can choose and list them in order by two conditions. One is
with replacement and another is without replacement. In first condition, the first event is chosen in any of
the n ways thereafter the outcome of this event is replaced in the set and another event is chosen from all
v events. So the second event can be chosen again in n ways. For choosing r events in succession, the
numbers of ways are n'.

N!

NP"—(N—T)!

In the second condition, after choosing the first event, in any of the n ways, the outcome is not replaced
in the set so that the second event can be chosen only in (n-1) ways. The third event in (n-2) ways and the

rth event in (n-r+1) ways. Thus the total numbers of ways are n(n-1)(n-2) ... (n-r+1).
N!
Ne, (N—1)1r!

RANDOM VARIABLE

Introduction: A random variable is a function of the events of a given sample space, S. Thus for a given
experiment, defined by a sample space, S with elements, s the random variable is a function of S. and is

www.FirstRanker.com



» FirstRanker.com

A Firstranker's choice ) .
www.FirstRanker.com www.FirstRanker.com

RANDOM VARIABLES & STOCHASTIC PROCESSES

represented as X(s) or X(x). A random variable X can be considered to be a function that maps all events
of the sample space into points on the real axis.

Typical random variables are the number of hits in a shooting game, the number of heads when tossing
coins, temperature/pressure variations of a physical system etc...For example, an experiment consists of
tossing two coins. Let the random variable X chosen as the number of heads shown. So X maps the real
numbers of the event “showing no head” as zero, the event “any one head” as One and “both heads” as
Two. Therefore the random variable is X = {0,1,2}

The elements of the random variable X are x1=0, x2=1 & x3=2.

Conditions for a function to be a Random Variable: The following conditions are required for a function
to be a random variable.

1. Every point in the sample space must correspond to only one value of the random variable. i.e. it must
be a single valued.

2. The set {X<x} shall be an event for any real number. The probability of this event is equal to the sum
of the probabilities of all the elementary events corresponding to {X<x}. This is denoted as P {X<x} .

3. The probability of events {X=o0} and {X=-o0}are zero.

Classification of Random Variables: Random variables‘are classified into continuous, discrete and

mixed random variables.

The values of continuous random variable-are continuous in a given continuous sample space. A
continuous sample space has infinite range-of values. The discrete value of a continuous random variable
is a value at one instant of time. For example the Temperature, T at some area is a continuous random
variable that always exists in the range say, from T1 and T2. Another example is an experiment where the
pointer on a wheel of chanceis spun. The events are the continuous range of values from 0 t0 12 marked
in the wheel.

The values of a discrete random variable are only the discrete values in a given sample space. The sample
space for a discrete random variable can be continuous, discrete or even both continuous and discrete
points .They may be also finite or infinite. For example the “Wheel of chance” has the continuous sample
space. If we define a discrete random variable n as integer numbers from 0 to 12, then the discrete
random variable is X = {0,1,3,4.....12}

The values of mixed random variable are both continuous and discrete in a given sample space. The

sample space for a mixed random variable is a continuous sample space. The random variable maps some
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points as continuous and some points as discrete values. The mixed random variable has least practical
significance or importance.

Probability Distribution Function: The probability distribution function (PDF) describes the
probabilistic behavior of a random variable. It defines the probability P {X<x} of the event {X<x} for all
values of the random variable X up to the value of x. It is also called as the Cumulative Distribution
Function of the random variable X and denotes as Fx(x) which is a function of x. Mathematically, Fx(X)
=P{X<x} . Where x is a real number in the range -oo<x<oo . We can call Fx(x) simply as the distribution
function of x. If x is a discrete random variable, the distribution function Fx(x) is a cumulative sum of all
probabilities of x up to the value of x. as x is a discrete Fx(x) must have a stair case form with step
functions. The amplitude of the step is equal to the probability of X at that value of x. If the values of x
are {xi}, the distribution function can be written mathematically as

Fx(x) =XN , P(x)) u(x — xp).
1 forx = 0.
Q:forx< @

is a unit step function and N is the number of elements in x.'"N ' may be infinite.

Where u(.\')—{

If X is a continuous random variable, the distribution function Fx(x) is an integration of all continuous
probabilities of x up to the value of x. Let fx(x) bea probability function of x, a continuous random

variable. The distribution function for X is given by

Fx(x) =7 fx(x)dx.

.

8 o
Fx () 1 Fx(x)

1/12 . 8

-
x

° 12

x VY
=]

12

Density function of x Distribution function of x

Probability density function: The probability density function (pdf) is a basic mathematical tool to
design the probabilistic behavior of a random variable. It is more preferable than PDF. The probability
density function of the random variable x is defined as the values of probabilities at a given value of x. It

is the derivative of the distribution function Fx(x) and is denoted as fx(x). Mathematically,
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dFX(x)

fx(x) =

Where x is a real number in the range -co<x<oo
We can call fx(x) simply as density function of x. The expression of density function for a discrete

random variable is
fx(x) = Y0, P(x;) 8(x — x;).

From the definition we know that

fio(x) = arx(x _a[xY, P(:;) u(x—x)] _ ?=1P(Ii) % - ?;1P(xi) 8(x — x;)
Since derlvatlve of a unit step function u(x) is the unit impulse function 6(x) . And it is defined as
1 forx=20
)
)= { otherwise

For continuous random variables, since the distribution function is continuous in the given range, the

density function fX(x) can be expressed directly as a derivative of the distribution function. i.e.

f; (x)— (X) where -0 < x < «

Properties of Probability Distribution Function: If FX(X) is a probability distribution function of a
random variable X, then

(1 Fx(—0)=0.

(ii) Fx(oo)=1.

) 0= Fy =1

(iv) Fx(x1) < FX(x2) if xi<xz.

(V)  Pix; <X<= x,} =Fi(x;) - Fx(x;)
(vi) Fx(x)=Fx(x) =Fx(Xx)

Properties of Probability Density Function: If £X(x) is a probability density function of a random
variable X, then
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(i) 0 < fx(x) forall x.

@) [ froodx=1.

(i) Fx®)=["_fyom dx.

iv) P{x;<X < x,}= f;f fxx dx

Real Distribution and Density Function: The following are the most generally used distribution and
density functions.

1. Gaussian Function.

2. Uniform Function.

3. Exponential Function.

4. Rayleigh Function.

5. Binomial Function.

6. Poisson’s Function.

1. Gaussian Function: The Gaussian density and distribution function of a random variable X are given

by

fX(X):T\TX —(x ax)® /ZO'X for all x.
Fx(x) = Jﬁ [© e @) /25y% dx forallx

Where Jx = 0.-0 < (x <= 90. Are constants called standard deviation and mean values of X

respectively. The Gaussian density function is also called as the normal density function.

fAx) 45 E(X) 4
1 —
o 7T 0.8a1
V2O .= / \
4 N\
0.607 N
TR ; 0.5
Vemoy 3
o N—— 0.15% _T_ =
> =
Py - Oy o, ax+ Ox X - O -, @B+ O ’
Density Distribution
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The plot of Gaussian density function is bell shaped and symmetrical about its mean value aX. The total
area under the density function is one. i.e.

2
1 oo e—(x_aX)
e
V‘ZTI’O'XZ —@® 20~

Applications: The Gaussian probability density function is the most important density function among
all density functions in the field of Science and Engineering. It gives accurate descriptions of many
practical random quantities. Especially in Electronics & Communication Systems, the distribution of
noise signal exactly matches the Gaussian probability function. It is possible to eliminate noise by

knowing its behavior using the Gaussian Probability density function.

2. Uniform Function: The uniform probability density function is defined as

el a<x<=b
tx(x) = { /(b o a)
0 other wise
Where ‘@’ and ‘b’ are real constants, -« < a < =«. And b > a. The uniform distribution
function is Fx(x) = fi(x)dx.

A —f*_1 __(x—a)
Fx(x) —’a (b—a) dx (b-a) °
Fx(a)=0.
. _(b—a) _
Fx(b)= e 1.
0 forx >a
(x—a)/ Gk
Therefore Fx(x) = /(x — b) a<x<
1 x>b
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fix) & Fudx)

1
1
b—a _t,/-l
-
-
ol
=

a b * - b =

Density Distribution

Applications: 1.The random distribution of errors introduced in the round off process is uniformly

distributed. 2. In digital communications to round off samples.

3. Exponential function: The exponential probability density function for a continuous random variable,

X is defined as
1 —(x—a:)/
. - e b forx > a
fe(x)= { b g
0 forx <a
Where a and b are real constants , -« < a < . And b == 0. The distribution function 1s

Fx(x) =[", f(x)dx

—(xX-3)

Fx(x) :f":%e b dx

Fx(X) = 1- ¢~(x-a)/e

Therefore
0 forx<a
Fx(X)=491—-e"7 forx=a
1 forx = oo
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fox) & Fx)

| -

—

. 1/

Density X x
Distridbution

Applications: 1. The fluctuations in the signal strength received by radar receivers from certain types of

targets are exponential. 2. Raindrop sizes, when a large number of rain storm measurements are made, are
also exponentially distributed.

4. Rayleigh function: The Rayleigh probability density function of random variable X is defined as
L ipra: - —(x—a)*/b S B
£ie(x) = { , (x —a)e forx = a
0 for x < a
Where a and b are real constants

Fx(x) =f:% (x — a)e~x—a)/bqy

(x—a)?

A

Let

2

— (x —a)dx =dy

b

Therefore Fx(x) =/ al e Ydy = —e™Y|;

Fx(X) = 1- (e—(x—a)z/b

Thercfore
0 forx < a
Fx(x) =41 1 — (e &x—a)?*/b forx =a
1 for x = oo
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(-

flx) & Fy(x) 4

1
0.607 \E /

/ \ %

d \
P N > < >
a I X a r; X
a-+ \’; a+ ‘_
2 N2
Density Distribution

Applications: 1. It describes the envelope of white noise, when noise is passed through a band pass
filter.2. The Rayleigh density function has a relationship with the Gaussian density function.3. Some

types of signal fluctuations received by the receiver are modeled as Rayleigh distribution.

5. Binomial function: Consider an experiment having only twopossible outcomes such as one or zero;
yes or no: tails or heads etc... If the experiment is repeated for N number of times then the Binomial

probability density function of a random variable X is.defined as
fx(X) = XX =0 N, P¥(1 — p)V*8(x — k).

Fx(X) = Y¥—o Ne, ¥ (1 — )V *u(x — k)
Where

N!

Ney = (N—k)!k!

f.ix) T* Fuax) 4

- g 1 '7
. —

T\]\T“Twﬁ S 4’_’—, -

Density = -
Distribution

Applications: The distribution can be applied to many games of chance, detection problems in radar and
sonar and many experiments having only two possible outcomes in any given trial.
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6. Poisson’s function: Poisson’s probability density function of a random variable X is defined as

.
fx(x)=e? Z}’ézoi—!(?(x —le}

k
N— —bVvx b 35
Fx(x)=e ZK:o_k! u(x — k)
Poisson’s distribution is the approximated function of the Binomial distribution when N> and p—>0 .

Here the constant b=Np. Poisson’s density and distribution plots are similar to Binomial density and

distribution plots.

Applications: It is mostly applied to counting type problems. It describes 1. The number of telephone
calls made during a period of time. 2. The number of defective elements in a given sample. 3. The
number of electrons emitted from a cathode in a time interval.4. The number of items waiting in a queue

etc...

Conditional distribution Function: If A and B are two events. If A is an event {X<x} for random
variable X, then the conditional distribution function of X'when the event B is known is denoted as
FX(x/B) and is defined as

Fx(xB) = P {X < x/B}
We know that the conditional probability

P(A/B) =——— P(AnB) Then Fy(x/B) =P&=x05)

P(B)
The expression for discrete random variable is
, X;
Fx(x/B) =21, P () u(x — x;)
The properties of conditional distribution function will be similar to distribution function and are given
by
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(i) Fx(—/B)=0.

(ii) Fx(eo/B)=1.

(i) 0< Fywm = 1.

(iv) Fx(xys) < FX(x2/B) if x1<X;,

(V) Pix; =X<= x,/B} =Fx(x,/B) - Fx(x;p)
(vi) Fx(xX/B) =Fx(x/B) = Fx(x/B)

Conditional density Function: The conditional density function of a random variable, X is defined as
the derivative of the conditional distribution function.

dF «x

5 F)
fy(x/B) = —XE
dx

For discrete random variable
/ X;
fx(x/B) =Xi, P () 6 (x — x;)
The properties of conditional density function are similar to.the density function and are given by
(i) 0 < fx(x/B) for all x.
i ~c0
(ii) J_oo fX(X/B) dx=1.
see f X
(iii) Fx(x/B)=[__ fyexsm dx.
; X
(iv) P{x; <X < x,/B}= Jxlz fX(X/B) dx
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UNIT-11 OPERATIONS ON A ONE RANDOM
VARIABLE

Expected Value of a Random Variable

e The expectation operation extracts a few parameters of a random variable and
provides a summary description of the random variable in terms of these
parameters.

e Itis far easier to estimate these parameters from data than to estimate the
distribution or density function of the random variable.

Expected value or mean of a random variable

The expected value  of a random variable X is defined by
EX = T xfy (x)dx

provided T xfy (X)dx exists.

EX is also called the mean or statistical average of the random variable X and denoted
by .

Note that, for a discrete RV X defined by- the probability mass function (pmf)
Py (%),i=12,..,N, thepdf f, (x) is.given by

(=3, (X)X %)

Sy =EX = T )&1 Py (X )O(x=X;)dx

N ©
:Z:l Px (%) [ XO(x=%)dx
N
=_§Xi Px (%)
Thus for a discrete random variable X with  p, (x),i=12,....,N,
N
Hx zéxi Px (%)
Interpretation of the mean
e The mean gives an idea about the average value of the random value. The

values of the random variable are spread about this value.
e Observe that
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o0

#x = | xfyx (x)dx

T xf, (Xx)dx .
== o[ e (x)dx =1
[ Ty (x)dx -

Therefore, the mean can be also interpreted as the centre of gravity of the pdf curve.

[N

Fig. Mean of a random variable

Example 1 Suppose X is arandom variable defined by the pdf
1

fy(X)=<b-a
0

a<x<b
otherwise

Then

EX = [ xf, (x)dx

b
:jxidx
a b-a

_a+b

2
Example 2 Consider the random variable X with pmf as tabulated below

Value of the 0 1 2 3
random variable x

Px (%)

|
|+
N
N |-

L Hx =:Zixi Px (%)

:O><£+l><£+2><l+3><1
8 4 2
7
8
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Remark If f, (x) is an even function of x, then T xfy (x)dx =0. Thus the mean of a RV

—00

with an even symmetric pdf is 0.

Expected value of a function of a random variable

Suppose Y = g(X) is a function of a random variable X as discussed in the last class.

Then, EY =Eg(X)= [ g(x)f, (x)dx

We shall illustrate the theorem in the special case g(X)when y = g(x)
and monotonically increasing function of x. In this case,

£ ( )_f (X)}
x=g"(y)

iS one-to-one

9'(x) 9(x)
EY = ] ¥, (y)dy y,
R ACHO)R
y{y g (g‘l(y)

——

Y1

v

where 'y, = g(—o0) and y, = g().
Substituting x =g (y) so that y = g(x) and'dy = g'(x)dx, we get

EY=[ g(x) f, (X)dx

The following important properties of the expectation operation can be immediately

derived:

(a) If cis a constant,

‘ Ec=c

Clearly
Ec= T cfy (x)dx=c T fy (x)dx=c

(b) If g,(X) and g,(X) are two functions of the random variable X and

¢, and c, are constants,

E[c, 9, (X) +¢,9,(X)]=¢,Eg, (X) +¢,Eg, (X)

Y1
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E[G01(X) + €0 (¥)]= | L0100+ 6,0, 001 ()
=1 6,8,00 F (90 + [ €000 T ()0

= 6, [ 6,001, (0dx-+c, | 9,00 T (9

=¢,Eg, (X) +¢c,Eg, (X)
The above property means that E is a linear operator.

Mean-square value
EX2 = [ x?f, (X)dx

Variance
For arandom variable X with the pdf f, (x)and men g, ,the variance of X is

denoted by &% and defined as
o2 = E(X — )2 = [ (X— 42 )? F (x)x

—00

Thus for a discrete random variable X with p, (x),i=12,...,N,
2 N 2
Ox _E(Xi — iy )" Py (%)

The standard deviation of X is defined as

oy = E(X =y )?

Example 3 Find the variance.of the random variable discussed in Example 1.

o = E(X — 1)’

a+b 1

b
=[(x— 2_—_dx

e{( 2 ) b-a

b b 2 p

=bi[fx2dx-2xa;bjxdx+(a—;bJ fdx

—a a a a
_(b—a)2

12

Example 4 Find the variance of the random variable discussed in Example 2.
As already computed
17

Hyx )
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or =E(X —pu, )’
17, 1 17, 1 17, 1 17, 1
=(0-=)x=+(1-2) x=+(2-=)x=+(3-=)" x=
0= xg+ A=) xg+(@-0) < +@-)" 7

1w
128

Remark
e Variance is a central moment and measure of dispersion of the random

variable about the mean.

e E(X —uy)? isthe average of the square deviation from the mean. It
gives information about the deviation of the values of the RV about the
mean. A smaller o implies that the random values are more clustered

about the mean, Similarly, a bigger o means that the random values are

more scattered.
For example, consider two random variables X, and X, with pmf as

shown below. Note that each of X, and X, has zero means. o =% and

6>2<2 =§ implying that X, has more spread about the mean.

X -1]0 [1 X
P ()| 1]1]1 ! o1
4 | 2 | 2
Py (X)
5|
X 21-1(0 |1 |2
P, ) 11111101
6|6|3|6|6
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Fig. shows the pdfs of two continuous random variables with same mean but different
variances

Big variance

£,

Small variance

£,

e We could have used the mean absolute deviation E|X — x| for the same

purpose. But it is more difficult both for analysis and numerical
calculations.
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Properties of variance
(1) ox =EX" -

oy =E(X — 1y )’
=E(X? =24y X + 415
=EX? - 2u, EX + E1}
= EX? =241 + pii
=EX? — 1
(2) If Y =cX +b, where c and b are constants, then o7 =c’c}
ol =E(cX +b-cu, —b)®
= Ec*(X — 1y )?

2.2
=coy

(3) If cisaconstant,
var(c) =0.
nth moment of a random variable

We can define the nth moment and the nth central-moment of a random variable X

by the following relations

nth-order moment EX" = Ojo x"fy (X)dx n=1,2,..

—00

nth-order central moment E(X — z,)" = [ (X — uy )" fy (X)dx n=1,2,...

—00

Note that
e The mean ug= EX is the first moment and the mean-square value EX?
is the second moment
e The first central moment is 0 and the variance o =E(X — uy)* is the
second central moment

e The third central moment measures lack of symmetry of the pdf of a random

E(X — 1y )3

3
Oy

variable. is called the coefficient of skewness and If the pdf is

symmetric this coefficient will be zero.
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e The fourth central moment measures flatness of peakednes of the pdf of a

E(X — uy )4

Oy

random variable. is called kurtosis. If the peak of the pdf is

sharper, then the random variable has a higher kurtosis.
Inequalities based on expectations
The mean and variance also give some quantitative information about the bounds of

RVs. Following inequalities are extremely useful in many practical problems.

Chebysev Inequality

Suppose X is a parameter of a manufactured item with known mean
1y and varianceo. The quality control department rejects the item if the absolute
deviation of X from u, is greater than 2o,. What fraction of the manufacturing
item does the quality control department reject? Can you roughly guess it?

The standard deviation gives us an intuitive idea how the random variable is
distributed about the mean. This idea is more precisely. expressed in the remarkable
Chebysev Inequality stated below. For a~random variable X with mean

u, and variance o}

P{X —,uX|Zg}S—G%
&
Proof:

02 = [ (x=c)? fx ()X

—00

> ] (x=ay)? i (X)dx

[X -y [2&

> [ g, (x)dx

[X—px [2&

=52P{]X — uy| =€}

P{]X—yx|28}S:—i2

Markov Inequality

For a random variable X which take only nonnegative values
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P{X Za}S@ where a > 0.

a

E(X) :Txfx (x)dx

> [ xf, (X)dx

> [ af, (x)dx

=aP{X > a}
P{X >a}<——= E(X)

a
E(X —k)?

Remark: P{(X —k)*>a}<

Example

Example A nonnegative RV X has the mean g, =1.Find an upper bound of the
probability P(X > 3}).
By Markov’s inequality

E(X) _1

P(X23)s =2 =2,

Hence the required upper bound :%
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UNIT-3: MULTIPLE RANDOM VARIABLES & OPERATIONS ON MULTIPLE

RANDOM VARIABLES

In many practical situations, multiple random variables are required for analysis than a single
random variable. The analysis of two random variables especially is very much needed. The theory of

two random variables can be extended to multiple random variables.

Joint Probability Distribution Function: Consider two random variables X and Y. And let two events
be A{X <x} and B{Y<y} Then the joint probability distribution function for the joint event {X < x,
Y<y} is defined as FX,Y (X, y) = P{ X <X, Y<y} = P(ANB)

For discrete random variables, if X ={x1, x2, x3,....xn} and Y ={yl, y2, y3,..., ym} with joint
probabilities P(xn, ym) = P{X= xn, Y= ym} then the joint probability distribution function is

FX'Y(x.y)=Z£Y:1 Z%:1 l:)(.xnv YIn) ll(:X — xn) Ll( Y —¥m )

Similarly for N random variables Xn, where n=1, 2, 3 ... N the joint distribution function is given as
Fx1,x2,x3,...xn (x1,x2,x3,...xn) = P{X1<X1, X2< X2, X35 X3, ..o Xn <xn}

Properties of Joint Distribution Functions: The properties of a joint distribution function of two
random variables X and Y are given as follows.
(1) FX,Y (-0,-0) =0
FX, Y (X,-0) =0
FX,Y (-0,y)=0
(2) FX,Y (o0,00) = 1
(3)0<FX)Y (x,y)<1
(4) FX, Y (%, y) is a monotonic non-decreasing function of both x and y.
(5) The probability of the joint event {x1< X <x2, y1 <Y <y2}is given by
P{X1<X<x2,yl<Y<y2}=FX,Y (x2,y2) + FX, Y (x1,yl) - FX, Y (x1,y2) - FX, Y (x2, y1)
(6) The marginal distribution functions are given by FX, Y (x, ) = FX (x) and FX, Y (0, y) = FY (y).
Joint Probability Density Function: The joint probability density function of two random variables X

and Y is defined as the second derivative of the joint distribution function. It can be expressed as
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2 ;
d FX,Y(-x'y)

dxay

It is also simply called as joint density function. For discrete random variables X = {x1, x2, x3,...,xn}

fxy(x. y) =

and Y ={y1, y2, y3,..., ym} the joint density function is

N MM
fx,}"--"~-"-) —= E E P(Xn‘ YIHI)S(.X — X") 6( Y = ¥Vm )

n—1m—1

By direct integration, the joint distribution function can be obtained in terms of density as

F xy®y) = ffoo J 3Ioo f X, YY) dx dy

For N random variables Xn, n=1,2,...N, The joint density function becomes the N-fold partial derivative
of the N-dimensional distribution function. That is,

a°F
X1.X2.X3 ._"XN('XI.XZ,X3 S\’

IXI. X2, X3z -(Xl X.X Y'n) B axlax26x3 ..... aXn

By direct integration the N-Dimensional distribution function is

xN
FX}_ X X3eeraves \_\(\] \‘ \l]) _J J"W J‘CO TR f_w fX1X2.X3..X.‘V(x1,.r2,x3...,_rN)d‘\.‘- d.\';

dX_: e V.dXx

Properties of Joint Density Function: The properties of a joint density function for two random
variables X and Y are given as follows:
(1) fyy (x. v) =0 A Joint probability densitry funcrion is always non-negative.

o s - : 3 al = ’ 1c » .
(2) f_oo f_oo fX.Y‘ XY dx dy =1 1Le. the area under the density function curve 1s always

equals to one.

(3) The joint distribution function is always equals to

FX.y(x'.V) f_ f fX Y“”dxdy

(4) The probability of the joint cvent {x1= X =x2. yl =Y = y2}is given as
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I T o 7 R ST FPE
P X1 _‘X;.\g_ Vi < ¥ _-)r.lj.__‘;‘l f 1 fo‘«“V’drdv

(5) The marginal distribution function of X and Y are
X0 o ~
FX("") — f_m f_m ,/‘X‘Y('x‘y) dx dy

Fyon = f f—oofX Y dx dy

(6) The marginal density functions of X and Y are

Fats = [ Fryor a

~ oo ~
fy(;)’) — f_oofx'y(x,y:) S

Conditional Density and Distribution functions:
Point Conditioning: Consider two random variables X and Y. The distribution of random variable X
when the distribution function of a random variable Y is known at some value of y is defined as the

conditional distribution function of X. It can be expressed as

ok

X,Y(x y) dx
fyon

FX ( x‘/ X’:y) —
and the conditional density function of X 1s

fx (% Y=y) =— [Fx X/ Y=vy)]

fY(J')

| [ x y(xy) - . P vt
fix (x/ Y=y) = X" or we can simply write fx (x/y) =X
fy» = fyo)

Simularly. the conditional density function of Y i1s

; : T 5y ey
t‘, (}r// x) — XY

I x(x)
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For discrete random variables, Consider both X and Y are discrete random variables. Then we know that
the conditional distribution function of X at a specified value of w is given by
+A N i
Fx (x/(y-Ay<Y<y+Ay)) = T ,
l Ply 11( - )
Li=y_Ay y=Y;

Aly=V. Ay > 0

Fx (X'Y=yx) =)0, p(,%u(\x)
Yk

Then the conditional density function of X is

fx X/Y=yy) =2N_, PO s(x-x i)

P(y;)

Similarly, for random variable Y the conditional distribution function at x = xk is
p(xk,y;)
Fy (y/%) =X, = e WGy

And conditional density function is

fy (y/%0) =XV, "(“” 5(y-y;)

Interval Conditioning: Consider the event B is defined in the interval y1 <Y <y2 for the random
variable Yi.e. B={yl <Y <y2}. Assume that P(B) =P(y1 <Y <y2) 0, then the conditional distribution
function of x is given by
B 5
S x @ 4 dy
y2
fyl Fyon ay

Fx (\ is G V)) =

We know that the conditional density function

fs}f fY(Y') dy f f fX YY) da dy

By P 4y g
Or Fx (¥/ V1= B IR = y2) = s XY\r) dx dy

1 e fX.Y(x‘y') dx dy
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By differentiating we can get the conditional density function of X as

y2
fyl fyn) @y

y2 (o
1 of xy&Y) ax dy

(W <Y<y)=

Similarly, the conditional density function of Y for the given interval x1< X < x2is

2 d A4 " f:zf vy dx
tY (y( X = D Bt X5)) = e 1 1y
J;xl .[_cofx'y(x‘.\y) S d_\r

Statistical Independence of Random Variables: Consider two random variables X and Y with events
A= {X<x}and B = {Y <y} for two real numbers x and y. The two random variables are said to be
statistically independent if and only if the joint probability is equal to the product of the individual
probabilities.

P {X<x,Y <y} P {X<x } P {Y <y} Also the joint distribution function is

F Xy@y = i X (x) F YO)

And the joint density function is

f Xy@En= fxeofym

These functions give the condition for two random variables X and Y to be statistically independent.

The conditional distribution functions for. independent random variables are given by

F o oxy) FyomFuey

INE 5 A _Txy@®Y)  Fraxfyon
FX (X’ X _y) — PX (}&/ }r) — —_X ¥
F,im Fo iy

Therefore Fx (X/'y) = Fx (X)
Also Fy (y/ X) =Fv (y)
Similarly, the conditional density functions for independent random variables are

fx Xy = fym

fr 7/ X) = fy»m

Hence the conditions on density functions do not affect independent random variables.
Sum of two Random Variables: The summation of multiple random variables has much practical

importance when information signals are transmitted through channels in a communication system. The
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resultant signal available at the receiver is the algebraic sum of the information and the noise signals
generated by multiple noise sources. The sum of two independent random variables X and Y available at

the receiver is W =X+Y
If Fx (X) and Fv (y) are the distribution functions of X and Y respectively, then the probability
distribution function of W is given as Fw (w) =P {W<w }=P {X+Y<w }.Then the distribution function is

00 ,X
FW(W-)_I—OO f—oo fX,Y(x'y‘) dx dy
Since X and Y are independent random variables,

fxyen= fxofym

Therefore

00 W=y
FW(w)=f_oofy(y) f_oo fX(x‘) dx dy

Differentiating using Leibniz rule, the density function is

f

, _dF (M ) d w-y
ww) —— W LT i
= ok f v g J—co fX(x) il

W(“) f_oofym xw-y) dy

Similarly it can be written as

W(v.) = f fX(’c) yw=x) dx
This expression is known as the convolution integral. It can be expressed as

fw('\k’-) - fx(x) % fy(y)

Hence the density function of the sum of two statistically independent random variables is equal to the
convolution of their individual density functions.

Sum of several Random Variables: Consider that there are N statistically independent random variables
then the sum of N random variables is given by W=X1+X2+X3+...+XN.
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Then the probability density function of W is equal to the convolution of all the individual density
functions. This is given as

fww) =Fx,e0 * [y * [y * ¥ [y @y

Central Limit Theorem: It states that the probability function of a sum of N independent random
variables approaches the Gaussian density function as N tends to infinity. In practice, whenever an
observed random variable is known to be a sum of large number of random variables, according to the

central limiting theorem, we can assume that this sum is Gaussian random variable.

Equal Functions: Let N random variables have the same distribution and density functions. And Let
Y=X1+X2+X3+...+XN. Also let W be normalized random variable

vV 2 _ N 2
1Xn Y Zn'an andcry —Zn=1OX,,
So
Zn 1Xn Zn— X_n

1/2
[Zn 10X71 ]

Since all random variables have same distribution

1
Ox,” 2 Dl lo-Xn ]2 = V0x?> =VN 0y and X, =X

Therefore

1 S8
\V:\/I—V__O'X n= 1(Xn X)

Then W is Gaussian random variable.

W=

Unequal Functions: Let N random variables have probability density functions, with mean and variance.
The central limit theorem states that the sum of the random variables W=X1+X2+X3+...+XN have a

probability distribution function which approaches a Gaussian distribution as N tends to infinity.
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Introduction: In this Part of Unit we will see the concepts of expectation such as mean, variance,
moments, characteristic function, Moment generating function on Multiple Random variables. We are

already familiar with same operations on Single Random variable. This can be used as basic for our

topics we are going to see on multiple random variables.

Function of joint random variables: If g(x,y) is a function of two random variables X and Y with joint

density function fx,y(x,y) then the expected value of the function g(x,y) is given as

g =E[gx.y)]

g =), 906y fxyeeyaxay

Similarly, for N Random variables X1, X2, . .. XN With joint density function fx1,x2, ... Xn(x1,x2, ...

xn), the expected value of the function g(x1,x2, ... xn) is given as

g :f_i,; f_: . ’]_olg(xl,XZ" . Xp) fxu«

ey, ey de.dx... .d%y
o XN ’ )

Joint Moments about Origin: The joint moments about the origin for two random variables, X, Y is the
expected value of the function g(X,Y) =E( X",Yk) and is denoted as mnk.. Mathematically,

e =E [X" Y¥] = [7 [7 x"y* fy peepraxay

Where n and k are positive integers. The sum n+k is called the order of the moments. 1f k=0, then

mo =E [X]=X = [ [ Xfyyepacay

1 7 . oL (o o)
11]01 = E [X ] —Y — f—m f_m ny'Y(_.l'.y)dx dy
The second order moments are m20= E[X2] ,m02= E[Y2] and m11 = E[XY]

For N random variables X1, X2, ... XN, the joint moments about the origin is defined as

v

Mpin2,. .. nN = E[Xlnl'inz" . 'XNnN]
a0 o n. n, ny
f_{x: r o« » f_:x! Xl 1,X2 ’,I N 'XN f . (.rl"vz,. . .,rN) dxlde . = » de

"14"2,. . XN
Where n1,n2, ... nN are all positive integers.
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Correlation: Consider the two random variables X and Y, the second order joint moment m11 is called
the Correlation of X and Y. I tis denoted as RXY. RXY =mll = E [XY] =

f—Ty f—Tf xyfx,y(x'wdx dy

For discrete random variables

Rxy = 12771 1%Xn Ym PXY (*n.¥Ym)

Properties of Correlation:
1. If two random variables X and Y are statistically independent then X and Y are said to be uncorrelated.

That is RXY = E[XY]=E[X] E[Y].

Proof: Consider two random variables, X and Y with joint density function fx,y(Xx,y)and marginal density
functions fx(x) and fy(y). If X and Y are statistically independent, then we know that fx,y(X,y) = fx(x)
fy(y).

The correlation is

Rxy = f_::c fjx Xy f x,y(X¥) dx dy.
- f_xx f_yf xyf oof o dxdy.

=f:, x fyon dX f:,. yf y@® dy.
Rxy = E[XY]= E[X] E[Y].

2. Ifthe Random variables X and Y are orthogonal then their correlation is zero. i.e. RXY =0.
Proof: Consider two Random variables X and Y with density functions fx(x) and fy(y). If X and Y are
sald to be orthogonal, thelr jomt occurrence is zero. That is fx,y(x,y)=0. Therefore the correlation is

xy =E[XY]= [ O xyf. e dx dy =0.
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Joint central moments: Consider two random variables X and Y. Then the expected values
of the function g(x.y)=(x — X)"(y — Y)* are called joint central moments. Mathematically

Hak =E[(x _X_)" (y _Y_)k]

= [ [ x—X)"(y—Y)f,,an ds dy =0. Where n. k are positive integers0.1.2.... The

order of the central moment is n+k. The 0™ Order central moment is pio, = E[1]=1. The first
order central moments are u,, =E[x-X] =E[X] -E[ X]=0and p,, =E[y-¥] =E[Y] -E[ ¥]=0. The

second order central moments are
o =El(x— )T)2]=ax2- s =ElGr— Y_)2]=O'Y: and u,, =E[(x — )T)l(y . y_)1]= Oxy

For N random Variables X;. Xj. . . Xy . the joinf central moments are defined as
Hnin2,. . aN — E[(xs —X)™ (x; — X))z . . . (xy — Xp)™¥]

f_wm- . f:om (e ~ X)) ™ (=X % ooy —
XNV) aNfxla2,. . aN(x1x2,. . aN)dvldy2. . .deV

The order of the joint central moment n,+n,+. . .+ny.

Covariance: Consider the random variables X and Y. The second order joint central moment
j1; 1s called the covariance of X and Y. It is expressed as Cxy= oyy = ty,=E[x-X] E[v-Y]
Cre= |7 [ =T =TT fropirn dudy

For discrete random variables X and Y. Gy = XN _ 3K (% — X3) (7 — Yi)*P(Xn. yi0)
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Correlation coefficient: For the random variables X and Y, the normalized second order
Central moment is called the correlation coefficient It is denoted as p and is given by

Wiy __ Cxy _ Cxy _ oxy _E[x-X]E[y-Y]
Jizottoz  Jax?oy? oxay oxoy Gx0y .

p=

Properties of p: 1. The range of correlation coefficient is -1< p< 1.

(B

.If X and Y are independent then p=0.

(F% )

. If the correlation between X and Y is perfect then p+1.

4. If X=Y, then p=1.

Properties of Covariance:
1. If X and Y are two random variables, then the covariance is

Cxy=Rxy-XY

Proof: If X and Y are two random variables, We know that
Cxy = E[x-X] E[y-Y]

= E[XY- XY-YX- XY]

= E[XY]- E[XY]-E[YX]-E[ XY]

= E[XY]- XE[Y]-YE[X]- XYE[1 ]
=E[XY])-XY-YX+X¥Y

=E[XY]-XY

2. If two random variables X and Y are independent, then the covariance is zero. i.e. CXY = 0. But
the converse is not true.
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Proof: Consider two random variables X and Y. If X and Y are independent. We know that
E[XY]=E[X]E[Y] and the covariance of X and Y is

Cxv=Rxyv- XY
=E[XY]-XY
= E[X] E[Y]-XY

=Cxy=X¥Y-XY =0.
3. If X and Y are two random variables, Var(X+Y) = Var(X) + Var(Y) + 2 CXY.

Proof: If X and Y are two random variables. We know that Var(X)=ox? = E[X"]-E[X]’
Then Var(X+Y) = E[(X+Y)*]-(E[X+Y])’

= E[X*+Y*+2XY]-(E[X] +E[Y])’

= E[X°+E[Y*[+2E[XY]-E[X]*-E[Y]*-2E[X]E[ Y]

= E[X’]- E[X]*+E[Y"] -E[Y]+2(E[XY]-E[X]E[Y])

= OXZ +O'y2+ 2 CXY

Therefore Var(X+Y) = Var(X) + Var(Y) + 2 Cxy hence proved.

4. If X and Y are two random variables, then the covariance of X+a,Y+b, Where ‘a’and ‘b’ are
constants is Cov (X+a,Y+b) = Cov (X,Y) = CXY.

Proof: If X and Y are two random variables. Then
Cov(X+a.Y+b)=E[((X+a)-(X + a) (Y+b)-Y + b)]
= E[(X+a-X-a)(Y+b-Y-b)]

= E[(X -X)(Y-Y)]

Therefore Cov (X+a.Y+b) = Cov (X.Y) = Cxy. hence proved.
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5. If X and Y are two random variables, then the covariance of aX,bY, Where ‘a’and ‘b’ are
constants is Cov (aX,bY) =abCov (X,Y) = abCXY.

Proof: Proof: If X and Y are two random variables. Then
Cov(aX.bY)=E[((aX)-(aX) (bY-bY)]

= E[a(X -X)b(Y-Y)]

= E[ab(X -X)(Y-Y)]

Therefore Cov (aX.bY) = abCov (X.Y) = abCxy hence proved.
6. If X, Y and Z are three random variables, then Cov (X+Y,Z) = Cov (X,Z) + Cov (Y,2).
Proof: We know that Cov(X+Y.Z)=E[((X+Y)-(X + Y) (Z-2)]

— E[X+Y-X — ¥ (Z-2)]

=E[((X—-X) + (Y-—Y)) (Z-2)]
=E[(X-X)(Z— 2)]+E[(Y —Y) (Z-2)]

Therefore Cov (X+Y.Z) = Cov (X.Z) + Cov (Y.Z). hence proved.

Joint characteristic Function: The jomt characteristic function of two random variables X
and Y is defined as the expected value of the joint function g(x.¥)=e/“'¥e/“2¥ Tt can be
expressed as Typwiwn = E[e/®Xe/@?" =g/ 92 Where wl and w2 are real

variables.
Therefore Dy ywsan = [, [7, €992 £ xy, dx dy.

This is known as the two dimensional Fourier transform with signs of w1 and w2 are
reversed for the joint density function. So the inverse Fourier transform of the joint
characteristic function gives the joint density function agam the signs of wl and w2 are
reversed. Le. The jomt density function is f, = 2., Oy pwreneUerk+jezy) 4o

dew?2.
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Joint Moment Generating Function: the jomt moment generating function of two random

variables X and Y 1s defined as the expected value of the joint function g(x.y)=e?Xe?2 i

can be expressed as

My yos.62) = E[e%1X @27 ]= o 1X+02Y Where 91 and 92 are real variables.
Therefore My yorany = [ [7 e?¥*0f iy dx dy.

And the joint density function is

fx’y(x.y;F f_x f_x MX‘Y(&1.E:;.Q_(81X+62Y] dg1 d92.

Gaussian Random Variables:

(2 Randoin variables): If two random variables X and Y are said to be jointly Gaussian. then

the joint density function is given as

_ 1 -1 (x—X)*  2p((X -X)Y-¥) , (v—V¥)*
ex — +
fx'_\,(X¥ I 2raxoy/1—p* p{z(l-Pz) [ ax? ox Oy oyp? ]}

o

This is also called as bivariate Gaussian density function.

N Random variables: Consider N random variables X,. n=1.2. . . . N. They are said to be
jomtly Gaussian if then jomt density function(N variate density function) 1s given by

= 1 —[X =X ICx] X — K]
1wz, xny o Ricx 1t P A ;

- 2
X1xz., xy <

Where the covariance matrix of N random variables is

Civ Bigmee Cin X, — X,
[Cx1=|C2r Cea... Cov| [x —X]= X? — X2
Cyvi Cyz. .. Cyn N — Xn

[X — X]¢ = transpose of [X — X]
|Cx|= determinant of [Cy]
And [[Cx] '] = inverse of [Cx].

The joint density function for two Gaussian random variables X; and X, can be derived by

substituting N=2 m the formula of N Random vaniables case.
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Properties of Gaussian Random Variables:
1. The Gaussian random variables are completely defined by their means, variances and covariances.

2. If the Gaussian random variables are uncorrelated, then they are statistically independent.
3. All marginal density functions derived from N-variate Gaussian density functions are Gaussian.
4. All conditional density functions are also Gaussian.

5. All linear transformations of Gaussian random variables are also Gaussian.

Linear Transformations of Gaussian Random variables: Consider N Gaussian random variables Yn,
n=1,2, .. .N. having a linear transformation with set of N Gaussian random variables Xn, n=1,2, . . .N.
The linear transformations can be written as

Y2|_|a21 a;. .. axnw||X2

Yy Ani  Apz- -« Aun] Xy

The transformation T is

ay; Q2- .. 4y

a s PO
[T]= 2:l 2z 2:N

aNl aN'ZI . o aNN

Therefore [Y]=[T] [X]. Also with mean values of X and Y. [Y-Y] = [T] [X-X].

And [X-X1=[T]? [Y-Y].
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UNIT-4: RANDOM PROCESSES: TEMPORAL CHARACTERISTICS

The random processes are also called as stochastic processes which deal with randomly varying
time wave forms such as any message signals and noise. They are described statistically since the

complete knowledge about their origin is not known. So statistical measures are used. Probability

distribution and probability density functions give the complete statistical characteristics of random
signals. A random process is a function of both sample space and time variables. And can be represented

as {X x(s,t)}.

Deterministic and Non-deterministic processes: In general a random process may be deterministic or
non deterministic. A process is called as deterministic random process if future values of any sample
function can be predicted from its past values. For example, X(t) = A sin (o0t+6), where the parameters
A, ©0 and © may be random variables, is deterministic random process because the future values of the
sample function can be detected from its known shape. If future values of a sample function cannot be

detected from observed past values, the process is called non-deterministic process.

Classification of random process: Random processes are mainly classified into four types based on the
time and random variable X as follows. 1. Continuous Random Process: A random process is said to be
continuous if both the random variable X and time t are continuous. The below figure shows a continuous

random process. The fluctuations of noise voltage in any network is a continuous random process.

A

/'\f‘L
i
|

\ /
\ :

JM:

\H”u function of acontimious random process

2. Discrete Random Process: In discrete random process, the random variable X has only discrete values
while time, t is continuous. The below figure shows a discrete random process. A digital encoded signal

has only two discrete values a positive level and a negative level but time is continuous. So it is a discrete

random process.
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(h

——

Sample function of  discrete random proces

3. Continuous Random Sequence: A random process for which the random variable X is continuous but t
has discrete values is called continuous random sequence. A continuous random signal is defined only at
discrete (sample) time intervals. It is also called as a discrete time random process and can be represented
as a set of random variables {X(t)} for samples tk, k=0, 1, 2,....

M

1 [l

¥

6

~~x

[i

.\mwhlmunwwduuumnmmanmmnnuqmwu'

4. Discrete Random Sequence: In diserete random sequence both random variable X and time t are
discrete. It can be obtained by sampling and quantizing a random signal. This is called the random
process and is mostly used in digital signal processing applications. The amplitude of the sequence can be

quantized into two levels or multi levels as shown in below figure s (d) and (e).
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?4” T o S

S lbl | T FY e

(d) | Sample function of adiscrete random sequence

e

= = i
v e def TLLA,.J H 1,

(e) Sample function of adiscrete random sequence (multi levels)

Joint distribution functions of random process: Consider a random process X(t). For a single random
variable at time t1, X1=X(t1), The cumulative distribution function is defined as FX(x1;t1) = P {(X(t1)
x1} where x1 is any real number. The function FX(x1;t1) is known as the first order distribution function
of X(t). For two random variables at time instants t1 and t2 X(t1) = X1 and X(t2) = X2, the joint
distribution is called the second order joint distribution function of the random process X(t) and is given
by FX(x1, x2 ; t1, t2) = P {(X(t1)< x1, X(t2)< x2}. In general-for N random variables at N time intervals
X(t1) = Xii=1,2,...N, the Nth order joint distribution function of X(t) is defined as FX(x1, x2...... XN ;
t1, t2,..... tN) = P {(X(t])<x1, X(t2) <x2,.... X(tN)<xN}.

Joint density functions of random process::-Joint density functions of a random process

can be obtained from the derivatives ofthe distribution functions.

: . . 3 : dFx(x1:t1)
1. Fust order density funcuon: fx(xi:t1) =de
1
d?Fx(x1.x2: t1.t2)
dx,0x,

(B8]

Second order density function: fy(x; xy:t; th) =

_ 9%Fx(x1x2..... XN t1.12....tN)

- -th " - v . .
3. N order density function: fx(x; x2 XN tL 2 tN)

Independent random processes: Consider a random process X(t). Let X(ti) = xi, i=1,2,...N be N
Random variables defined at time constants t1,t2, ... t N with density functions fX(x1;t1), fX(x2;t2), ...
fX(XN ; tN). If the random process X(t) is statistically independent, then the Nth order joint density
function is equal to the product of individual joint functions of X(t) i.e. X(x1, x2...... XN ; t1,t2,..... tN)
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= fX(x1;t1) TX(x2;t2). . . . X(xN ; tN). Similarly the joint distribution will be the product of the
individual distribution functions.

Statistical properties of Random Processes: The following are the statistical properties of random
processes.
1. Mean: The mean value of a random process X(t) is equal to the expected value of the
random process i.e. X(t) = E[X(t)] = f_ww xf, (x; t)dx

2. Autocorrelation: Consider random process X(t). Let X; and X; be two random

variables defined at times t1 and t; respectively with joint density function

fx(x1. x2: t1. t2). The correlation of X; and Xs. E[X X3] = E[X(t;) X(t2)] 1s called the
autocorrelation function of the random process X(t) defined as

Roox(t1.2) = E[X1 Xa] = E[X(t1) X(t2)] or

0

Ryx(t1.h) = f_u;o ffoo X X8, (x1,x2 ; t1,t2) dxydx,

Cross correlation: Consider two random processes X(t) and Y(t) defined with
random variables X and Y at time instants t; and 2 respectively. The joint density
function 1s fi{x.y : t1.tz). Then the correlation of X and Y. E[XY] = E[X(t;) Y(t2)] 15
called the cross correlation function of the random processes X(t) and Y(t) which is

I

defined as

Rxy(t1.t2) = E[X Y] = E[X(11) Y(t2)] or

Ryy(t1.t2) = f_mm f_wm xy fx‘y(‘X. y ;- tl, I‘Z) d \’d}’

Stationary Processes: A random process is said to be stationary if all its statistical properties such as
mean, moments, variances ete... do not change with time. The stationarity which depends on the density
functions has different levels or orders.
1. First order stationary process: A random process is said to be stationary to order one or first
order stationary if its first order density function does not change with time or shift in time value. If
X(t) is a first order stationary process then fX(x1;t1) = £X(x1;t1+At) for any time t1. Where At is shift
in time value. Therefore the condition for a process to be a first order stationary random process is
that its mean value must be constant at any time instant. i.e. E[X(t)] = constant.
2. Second order stationary process: A random process is said to be stationary to order two or

second order stationary if its second order joint density function does not change with time or shift in
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time value i.e. TX(x1, x2 ; t1, t2) = X(x1, x2;t1+At, t2+At) for all t1,t2 and At. It is a function of time
difference (t2, t1) and not absolute time t. Note that a second order stationary process is also a first
order stationary process. The condition for a process to be a second order stationary is that its
autocorrelation should depend only on time differences and not on absolute time. i.e. If RXX(t1,t2) =
E[X(t1) X(t2)] is autocorrelation function and t =t2 —t1 then RXX(t1,t1+ 1) = E[X(t1) X(t1+ 1)] =
RXX(1) . RXX(71) should be independent of time t.

3. Wide sense stationary (WSS) process: If a random process X(t) is a second order stationary

process, then it is called a wide sense stationary (WSS) or a weak sense stationary process. However
the converse is not true. The condition for a wide sense stationary process are 1. E[X(t)] = constant. 2.
E[X(t) X(t+1)] = RXX(7) is independent of absolute time t. Joint wide sense stationary process:
Consider two random processes X(t) and Y (t). If they are jointly WSS, then the cross correlation
function of X(t) and Y (t) is a function of time difference t =t2 —tlonly and not absolute time. i.e.
RXY(t1,t2) = E[X(t1) Y(t2)] . If T =t2 —t1 then RXY (t,t+ 1) = E[X(t) Y(t+ 1)] = RXY(1). Therefore

the conditions for a process to be joint wide sense stationary are 1. E[X(t)] = Constant. 2. E[Y(t)] =
Constant 3. E[X(t) Y(t+ 1)] = RXY(7) is independent of time t.

4. Strict sense stationary (SSS) processes: A random process X(t) is said to be strict Sense
stationary if its Nth order joint density function does not change with time or shift in time value. i.e.
X(x1, x2...... XN ; t1, t2,..... tN) = X(x1, x2.~....- XN ; t1+At, t2+At, . . . tIN+At) forall t1,t2... N
and At. A process that is stationary to all orders n=1,2,. .. N is called strict sense stationary process.

Note that SSS process is also a WSS process. But the reverse is not true.

Time Average Function: Consider a random process X(t). Let x(t) be a sample function
which exists for all time at a fixed value in the given sample space S. The average value of
x(t) taken aver all times is called the time average of x(t). It is also called mean value of x(t).

It can be expressed as ¥ = A[x(t)] = limr_ 2_1]. _]‘_TT x(t)dt.

Time autocorrelation function: Consider a random process X(t). The time average of the

product X(1) and X(t+ 1) is called time average autocorrelation function of x(t) and is denoted
4 1 (T \ X

as Rux(1) = A[X(t) X(t+1)] or Rxx(7) = limp_, o, — = ] x(t)x(t t T)dt

Time mean square function: If t = 0, the rime menoe of X fﬂ is called time mean square

2 1

value of x(f) defined as = A[X"(1)] = lim,_,, = J—'r x?(t)dt.

Time cross correlation function: Let X(f) and Y(t) be two random processes with sample

functions x(t) and y(t) respectively. The time average of the product of x(t) y(t+ 1) is called

fine Cross couelation function of x(t) and y(t). Denoted as

Ru(1) = limg g 27} v(Dv(t + t)de.
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Ergodic Theorem and Ergodic Process: The Ergodic theorem states that for any random process X(t),
all time averages of sample functions of x(t) are equal to the corresponding statistical or ensemble
averages of X(t). i.e. x = X or Rxx(t) = RXX(t) . Random processes that satisfy the Ergodic theorem are

called Ergodic processes.

Joint Ergodic Process: Let X(t) and Y (t) be two random processes with sample functions x(t) and y(t)
respectively. The two random processes are said to be jointly Ergodic if they are individually Ergodic and
their time cross correlation functions are equal to their respective statistical cross correlation functions.
i.e. X =Xy=Y 2. Rxx(t) = RXX(1), Rxy(r) = RXY(1) and Ryy(t) = RYY (7).

Mean Ergodic Random Process: A random process X(t) is said to be mean Ergodic if time average of
any sample function x(t) is equal to its statistical average, which is constant and the probability of all

other sample functions is equal to one. i.e. E[X(t)] =X = A[x(t)] = x with probability one for all x(t).

Autocorrelation Ergodic Process: A stationary random process X(t) is said to be Autocorrelation
Ergodic if and only if the time autocorrelation function‘ofany sample function x(t) is equal to the
statistical autocorrelation function of X(t). i.e. A[x(t).x(t+1)] = E[X(t) X(t+1)] or Rxx(t) = RXX(1).

Cross Correlation Ergodic Process: Two stationary random processes X(t) and Y (t) are said to be cross
correlation Ergodic if and only if its time cross correlation function of sample functions x(t) and y(t) is
equal to the statistical cross correlation function of X(t) and Y (t). i.e. A[x(t) y(t+t)] = E[X(t) Y(t+t)] or
Rxy(t) = RXY(1).

Properties of Autocorrelation function: Consider that a random process X(t) is at least WSS and is a
function of time difference t = t2-t1. Then the following are the properties of the autocorrelation function
of X(t).
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Mean square value of X(1) is E[Xz(t‘p] = Rxx(0). It is equal to the power (average) of
the process, X(t).

Proof: We know that for X(t). Rxx(7) = E[X(t) X(t+ 1)] . If 1= 0. then Rxx(0) = E[X(1)
X(1)] = E[X?(t)] hence proved.

Autocorrelation function is maximum at the origin i.e. |[Rgx(1)] = Rax(0).

Proof: Consider two random variables X(ty) and X(12) of X(t) defined at time intervals
t1 and t respectively. Consider a posifive quantity [X(f;) iX(tg)]3 >0

Taking Expectation on both sides. we get E[X(t;) iX(tg)]2 =0

E[X(t)+ X7(t) + 2X(ty) X(12)] = 0

EX*(t)]+ E[X(t) + 2E[X(t) X(12)] = 0

Ryx(0)+ Rxx(0)+ 2 Ryx(t.t2) = 0 [Sinee E[X(1)] = Rxx(0)]

Grven X(1) 1s WSS and © = to-1;.

Therefore 2 Ryx(0+ 2 Rxx(t) = 0

Rxx(0+ Rxx(1) = 0 or

|[Rgx(T)| = Rax(0) hence proved.

Rxx¢(1) 1s an even function of t i.e. Rxx(-t) = Rxx(1).
Proof: We know that Rxx(t) = E[X(t) X(t+ 1)]

Let t = - t then

Rx(-7) = E[X(1) X(t- 1)]

Letu=t-tort=utrt

Therefore Ryxx(-1) = E[X(u+ 1) X(n)] = E[X(n) X(u+ 1)]

If a random process Xi(1) has a non zero mean value, E[X(1)] = 0 and Ergodic with no
periodic components. then limzjom Ryx(T) = X7,

Proof : Consider a random variable X(t)with random variables X(t;) and X(t2). Given
the mean value is E[X(1)] = X = 0 . We know that

Rxx(1) = E[X(O)X(1+1)] = E[X(1;) X(1»)]. Since the process has no periodic
components, as|t| — . the random vanable becomes independent. 1.e.

limjzj- Rxx (1) = E[X(t1) X(12)] = E[X(11)] E[ X(12)]

Since X(1) is Ergodic E[X(11)] =E[ X(1)] = X

Therefore limzj— Rxx(T) = X* hence proved.

If X(1) is periodic then its autocorrelation function is also periodic.

Proof: Consider a Random process X(t) which is periodic with period Ty

Then X(t) = X(t+ To) or

X(t+ 1) = X{t+1 £ Tp). Now we have Ryx(t) = E[X(t)X(t+1)] then

Rxx(1+ To) = E[X()X(t+1+ To)]

Given X(t) 1s WSS, Ryx(1+ Tp) = E[X(H)X(t+71)]

Ryx(tt To) = Rxx(7)

Therefore Ryx(7) 1s periodic hence proved.
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6. If X(t) is Ergodic has zero mean. and no periodic components then
lim 7|~ Rxx (1) = 0.
Proof: It is already proved that lim;j.e Ryx (1) = X2, Where X is the mean value of
X(1) which is given as zero.
Therefore lim 7|~ Rxx(T) = 0 hence proved.
The autocorrelation function of random process Rxx(T) cannot have any arbitrary
shape.
Proof: The autocorrelation function Ryx(t) 1s an even function of v and has maximum
valie at the origin. Hence the autocorrelation function cannot have an arbitrary shape
hence proved.
8. If a random process X(t) with zero mean has the DC component A as Y(1) =A + X(0).
Then Ryy(t) = A™+ Ryxx(1).
Proof: Given a random process Y(f) =A + X(t).
We know that Ryv(1) = E[Y(1)Y(t+1)] =E[(A + X(1)) (A + X(t+ 1))]
~E[(A% + AX(1) + AX(t+ T)+ X(6) X(1+ 7]
- E[(A%] + AE[X(t)] + E[AX(t+ 0]+ E[X(t) X(t+ 1)]
=A*+0+0+ Ry(0).
Therefore Ryy(t) = A+ Rxx(7) hence proved.

9. If a random process Z(t) is sum of two random processes X(t) and Y (t)
i.e. Z(t) = X(t) + Y(t). Then Rzz(7t) = Rxx(t)+ Rxyv(t)+ Ryx(t)+ Ryv(T)
Proof: Given Z(t) = X(t) + Y (1).
We know that Rzz(t) = E[Z(D)Z(t+T1)]
=E[(X(1)+Y (1) (X(t+)Y (t+1))]
= E[(X (1) X(t+1)+ X(1) Y(t+71) +Y (1) X(t+71) +Y (1) Y(t+1))]
= E[(X(t) X(t+7)]+ E[X() Y(t+71)] +E[Y () X(t+1)] +E[Y () Y(t+71))]
Therefore Rzz(1) = Ry 1)+ Rxy(T)+ Ryx(1t)+ Ryy(T) hence proved.

Properties of Cross Correlation Function: Consider two random processes X(t) and Y(t) are at least
jointly WSS. And the cross correlation function is a function of the time difference t = t2-t1. Then the
following are the properties of cross.correlation function.

1. RXY(1) = RYX(-7) is a Symmetrical property.

Proof: We know that RXY (1) = E[X(t) Y (t+ t)] also RYX(t) = E[Y(t) X(t+ 7)] Let t =- T then
RYX(-t) = E[Y(t) X(t- 7)] Let u=t- T or t= u+ 7. then RYX(-1) = E[Y (u+ 1) X(u)] = E[X(u) Y (u+ 1)]
Therefore RY X(-t) = RXY(t) hence proved.

2. If RXX(t) and RY'Y(7) are the autocorrelation functions of X(t) and Y (t) respectively then the cross

correlation satisfies the inequality

|Rxy (V)| = /Rxx(0)Ryy(0).
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2

X(t) Y(t+1) .
+ ==20
[\"Rxx(o) v Rn'(_OJ]
[ X2(1) Y2((t+1) X(E)v(t+7) ] >
JRxx(0)  [Ryy(0)" — [Rxx(0)Ryy(0)"

X2(1) V2((t+1) X(t)Y(t+T) >0

El——— : B AR B
[\‘RXX(O)] [J‘Rw(O)] - [IRXI(O)Ryy(O)]

We know that E[X"(t')] = Rxx(0) and E[Yz(t)] = Ryy(0) and E[X(1) X(t+ 1)] = Rxy(7)

. Rygx(0) . Ryy(0 Ry (T
Therefore —2% ) + M )i 2# >
Rxx(0) Ryv(0) JERxx(0)Ryy(0)
Ryy(T)
9. Bxrto

VRxx(0)Ryy(0) —

Ry (1) >0
VRxx(0)Ryy(0)

JRxx(DRyy(0). = [Rgy (D] O1
3. If RXX(t) and RY'Y(7) are the autocorrelation functions-of X(t) and Y (t) respectively then the cross
correlation satisfies the inequality:

IRy (D) < 3 [Rxx(0)+ Ryy(0)]

Proof: We know that the geometric mean of any two positive numbers cannot exceed their arithmetic
mean that is if RXX(t) and RY 'Y (1) are two positive quantities then at t=0,

JRix(0Ryy (0) < % [Rse(0)+ Ryv(0)] We know that |Ryy ()] < \/Ryx(0)Ryy(0)

4.1f two random processes X(t) and Y (t) are statistically independent and are at least WSS, then RXY (1)
=X'Y . Proof: Let two random processes X(t) and Y (t) be jointly WSS, then we know that RXY ()
=E[X(t) Y (t+ t)] Since X(t) and Y(t) are independent RXY (1) =E[X()]E[ Y (t+ 1)]

Proof: We know that Rxy(t) =E[X(t) Y(t+ 7)]. Taking the limits on both sides

limj7~e Rgy(T) = limp-q E[X(T) Y(t + 1)

As |z| — oo, the random processes X(t) and Y(t) can be considered as independent
processes therefore

lim|;|—e Ry (T) = E[X(O]E[ Y(t+ )] =X ¥
Given X = =0
Therefore lim|; |-, Rxy(T) = 0. Similarly limj;|, ., Ryx(T) = 0. Hence proved.
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Covariance functions for random processes: Auto Covariance function: Consider two random
processes X(t) and X(t+ 1) at two time intervals t and t+ 1. The auto covariance function can be expressed

as

Cyx(t. t+1) = E[(X(H)-E[X(D)]) (X(t+1) — E[X({t+T)])] or
Cxx(t. t+1) = Ryx(t. t+1) - E[(X(t) E[X(t+1)]
Tf X(t) is WSS. then Cxx(t) = Rxx(7) - X2. At t= 0, Cxx(0) = Rxx(0) - X2 =E[X’]- ¥ = g X2

Therefore at T = 0, the auto covariance function becomes the Variance of the random process. The

autocorrelation coefficient of the random process, X(t) is defined as

Cxx(tt+1) :
LrT) = =
pXX( t) \/rcxx(t,t)cxx(t+r,t+r) if T=0
Cxx(tt .
pxx(0) = CXX(‘ ) =1. Also loxx(tL,t+ D) =1
xx(t.t)

Cross Covariance Function: If two random processes X(t)-and Y (t) have random variables X(t) and

Y (t+ 1), then the cross covariance function can be defined as

CXY(t, t+1) = E[(X()-E[X(1)]) ((Y(t+1) — E[Y(t+r)PJor CXY(t, t+1) = RXY(t, t+1) - E[(X(t) E[Y(t+7)].
If X(t) and Y(t) are jointly WSS, then CXY (1) =RXY (1) -X Y. If X(t) and Y(t) are Uncorrelated then
CXY(t, t+1) =0.

The cross correlation coefficient of random processes X(t) and Y(t) is defined as

B Cxy(tt+1) »
Pxy(t. t47) JCxx(tE) Cyy (tH TtH1) if T =0.
Cxy(0) Cxy(0)
pXY(O) = (XY— = 2

v Cxx(0)Cyy(0) oxoy

Gaussian Random Process: Consider a continuous random process X(t). Let N random variables
X1=X(t1),X2=X(t2), . .. , XN =X(tN) be defined at time intervalst1, t2, . .. tN respectively. If random

variables are jointly Gaussian for any N=1,2,.... And at any time instants t1,t2,. . . tN. Then the random

process X(t) is called Gaussian random process. The Gaussian density function is given as
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e . - | . gy Al -
(% XNt W)= SR g P ¢ [X — X1 [Cxx] ' [X — X1)/2

Poisson’s random process: The Poisson process X(t) is a discrete random process which represents the
number of times that some event has occurred as a function of time. If the number of occurrences of an
event in any finite time interval is described by a Poisson distribution with the average rate of occurrence
is A, then the probability of exactly occurrences over a time interval (0,t) is

P[X(t)=K] = SR=0ID) ¢ 5

And the probability density function is

(At)Ke
k,

fx(X) = Xr=o 5 (x-k).

UNIT-5: RANDOM PROCESSES: SPECTRAL CHARACTERISTICS

In this unit we will study the characteristics of random processes regarding correlation and covariance
functions which are defined in time.domain. This unit explores the important concept of characterizing
random processes in the frequency domain. These characteristics are called spectral characteristics. All the
concepts in this unit can be easily learnt from the theory of Fourier transforms.
Consider a random process X (t). The amplitude of the random process, when it varies randomly with
time, does not satisfy Dirichlet’s conditions. Therefore it is not possible to apply the Fourier transform
directly on the random process for a frequency domain analysis. Thus the autocorrelation function of a
WSS random process is used to study spectral characteristics such as power density spectrum or power
spectral density (psd).
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Power Density Spectrum: The power spectrum of a WSS random process X (t) is defined as the
Fourier transform of the autocorrelation function RXX (1) of X (t). It can be expressed as

. ~0
Sxx(®) = |_, Ryx® e-jor 4
We can obtain the autocorrelation function from the power spectral density by taking the inverse Fourier

transform i.e.

, 1 (o
Rxx (1) = ;f-:c- Sxx(@ ¢Jo g

Therefore, the power density spectrum SXX(w) and the autocorrelation function RXX (t) are Fourier

transform pairs.
The power spectral density can also be defined as

2
E[X_(a)| ]

Sxx(®) =limp_, i

Where XT(w) is a Fourier transform of X(t) in interval [-T,T]

Average power of the random process: The average powerPXX of a WSS random process X(t) is

defined as the time average of its second order moment-or-autocorrelation function at t =0.

Mathematically
Pxx= A {E[X’®O]}

: 1 T
Pxx=limy_, ] E[X?(t)]dt
Ol‘ PXX =RXX (I)IT = 0

We know that from the power density spectrum

Rxx 271— [—'IS x (@) oot g4

At 1=0 Pxx = Rxx (0)——J Sxx“") dw

Therefore average power of X(t) is
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1 (o0
Py — ;f_x Syx @ g0

Properties of power density spectrum: The properties of the power density spectrum SXX(w) for a

WSS random process X(t) are given as
Sxx(.(!)):.'_" 0
1.
Proof: From the definition, the expected value of a non negative function

2. The power spectral density at zero frequency is equal to the area under the curve of the autocorrelation Rxx
(7) i.e.
5 _ €0
Sxx(0) = f—‘xv Ryx@ 47

Proof: From the definition we know that

Px
Sxx(®) = [__ Ryx) o-jor g at ©=0.

v r 0
Sxx(0) = |_,, Ryx® qr
3. The power density spectrum of a real process X(t)is:an even function i.e.
SXX(-o)= SXX(w)
Proof: Consider a WSS real process X(t). then

o -

0 0
Sxx(®) = f—ac RXX(” e J¥T g7 also Sxx(-0) = ’ o RXX(” el¥T gr

Substitute T = -t then

o0
Sxx(-m) = f_x Ry (-1 p-jor 4¢

Since X (t) is real, from the properties of autocorrelation we know that, RXX (-t) = RXX (1)

. _ [
Sxx(-®) = |_,, Ryy@ gior 4

4. SXX(w) is always a real function
5. If SXX(w) is a psd of the WSS random process X(t), then

1 po 7 ;
— | Sxx@ 40 = A {E[X°(®]} = Rxx (0)
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6. 1T X(t) is a WSS random process with psd SXX(w), then the psd of the derivative of X(t) is equal to »?
times the psd SXX().

SXX(0) = 0 Sxx(®)

Cross power density spectrum: Consider two real random processes X(t) and Y (t). which are jointly
WSS random processes, then the cross power density spectrum is defined as the Fourier transform of the

cross correlation function of X(t) and Y(t).and is expressed as

e ~ 0 A .
Sxv(®) = [ Ryp p-jwrg, and Syx(@) = [_ Ryg@ ,-jwr g by inverse Fourier
transformation. we can obtam the cross correlation functions as

1 o 1 o
*) — - T " = y :
l\xy ( I) —~ f—-)'_ 5m,(w| I9OT 4 alld R’fj\ (1) py ‘. b}.x.(u) 810" da

=

Therefore the cross psd and cross correlation functions are forms a Fourier transform pair.
If XT(w) and YT(w) are Fourier transforms of X(t) and Y (t) respectively in interval [-T,T], Then the

cross power density spectrum is defined as

1 1

E[ ]

X (@Y_
(@) x :
= and Syx(®) = limy_,

Sxy(®) =limy_,

2T 2T

Average cross power: The average cross power PXY of the WSS random processes X(t) and Y (t) is
defined as the cross correlation function at ©=0. That is

: I o e
Py =limp_, — f—'r Rgy(t,t)dt  or

2 ? n SRy - 1 %
Pxy =Rxy(7)|T = 0= R4y (0) Also Pxy = ;f_, Syy(@) g, and Pyx= ;.f_w Syx @) au

Properties of cross power density spectrum: The properties of the cross power for real random

processes X(t) and Y (t) are given by

(1)SXY (-0)= SXY(w) and SYX(-0)= SYX ()
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Proof: Consider the cross correlation function Ryy(t). The cross power density spectrum is
Sxyy(m) = Jf; Ryy (@ p-iwr q¢
Let t=-1Then
Sxx(@) = [ Ryyio pjor g Since Ryy(-1) = Ry (1)
T
Sx—y'\(ﬂ)’ 5is J-X) ny(r) g—]-wr ar

Therefore Syy(-m)= Sxy(®) Sumilarly Syx(-®)= Syx(®) hence proved.

(2) The real part of SXY(w) and real part SYX(w) are even functions of o i.e.
Re [SXY(w)] and Re [SYX(w)] are even functions.

Proof: We know that Sxy(®) = f_: Rywm —jwr 4 and also we know that

e J@T=cosmt-jsinmt, Re [Sxy(m)] = _f_mw Ry cosot dt

Since cos ot 1s an even function 1.e. cos ot = cos (-mt)

oo on
Re [SYY((O)] R f—x RXY(‘T) cosotdr f—'x; RXY(T) cos(—ot) dr

Therefore Sxyv(m)= Sxy(-®) Similarly Syx(w)= Syx(-®) hence proved.
(3) The imaginary part of SXY(w) and imaginary part SYX(w) are odd functions of o i.e.
Im[SXY(w)] and Im [SYX(w)] are odd functions.

i S o
Proof: We know that Sxy (o) = f_m Ryy () o-jwr 4 and also we know that

e J“T=cosmt-jsinmt.

o al

Illl [SXY((!))] = J‘j\[ RXY(')(fsinoat) dr S- f"‘-I: RXY'Vr]SiDQt dr - 1111 [S?{Y‘:(‘))]

Therefore Im [Sxy(w)] = - Im [Sxy(®)] Sumilarly Im [Syx(®)] = - Im [Syx{®)] hence proved.

(4) SXY(m)=0 and SYX(w)=0 if X(t) and Y (t) are Orthogonal.
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Proof: From the properties of cross correlation function, We know that the random processes

X(t) and Y(t) are said to be orthogonal if their cross correlation function is zero.
1.e. Rxv(t) = Ryx(1) =0.

~0
We know that Sxy(®) = |__ Ryy(@ -jor ¢

Therefore Syy(®)=0. Similarly Syx(®)=0 hence proved.

(5) If X(t) and Y(t) are uncorrelated and have mean values and , then
Sxy(@)=2rX Y §(w).
Proof: We know that Sxy(®) = f_xw S
= Sxy(®) = f_nx E[X()Y(t + 1)]e 7®T dr
Since X(t) and Y(t) are uncorrelated. we know that
E[X(@®)Y(t+1)=E[X(@IE[Y(t + 1)]
Therefore Sxy(m) = f_xx E[X(OIE[Y(t + 1)]e 7®Tdr
Sxy(®) = f_xx XYe 197t dg
Sxy(®)=XY f:oe"j“” dt

Therefore Sxy(0)=2nX Y §(w). hence proved.

UNIT-6: LINEAR SYSTEMS RESPONSE TO RANDOM INPUTS

Consider a continuous LTI system with impulse response h (t). Assume that the system is always causal
and stable. When a continuous time Random process X (t) is applied on this system, the output response

is also a continuous time random process Y (t). If the random processes X and Y are discrete time
signals, then the linear system is called a discrete time system. In this unit we concentrate on the

statistical and spectral characteristics of the output random process Y (t).
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System Response: Let a random process X (t) be applied to a continuous linear time invariant system
whose impulse response is h(t) as shown in below figure. Then the output response Y (t) is also a random

process. It can be expressed by the convolution integral, Y (t) = h (t) *X (t)

X(t) Y (t)

A h (t) —>

Y (t)=["_ h(@X(t—1)dr.

Mean Value of Output Response: Consider that the random process X (t) is wide sense stationary
process.

Mean value of output response=E[Y (t)], Then
E[Y ®I =E[h () * X (1]

=E [[7, (D)X (t — D)dr]
=7 h()E[X(t —1)]dT
But E[X(t — )] = X =constant, since X (t) is WSS.

Then E[Y ()] = Y = X f_r:o h(r) dr. Also if H (w) is the Fourier transform of h (1), then

o

H(w)= [ h(r)e/“t dt. Atw=0,H (0)= [~ h(t) dtis called the zero frequency response
of the system. Substituting this we get E[Y ()] = Y = X H (0) is constant. Thus the mean
value of the output response Y (t) of a WSS random process is equal to the product of the

mean value of the input process and the zero frequency response of the system.

Mean square value of output response is
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E[Y*(t)]=E[(h (t) * X (1))°]

=E[(h(t) * X (1)) (h (t) * X (t))]

=E[[_ ()X —1)dTy [~ R(T)X( —1,)d T,]
el .. X@—r)X(t—1)h(r)h(r;)d1,d7,]

EV(0]= [, J2, ELX(t — t)X(t — t)]h(z)h(r,)d 7, d7,
Where 7, and 1 are shifts in time intervals. If input X(t) is a WSS random process then|
E[X(t —1)X({t—15)] = Ryx(1, —T3)
Therefore E[Y'()] = [ [ Rex(1; — 12) h(1)h(1,)d 1yd1,
This expression is independent of time t. And it represents the Output power.

Autocorrelation Function of Output Response: The autocorrelation of Y (t) is

Ryy (1, 12) =E[Y (t1) Y (12)
=E[(h(t) * X {t1)) (h (t2) * X (T))]
[ 7 n(@)X(t —)d 1y [7 h(r)X (6, — 1,)d 12
=E[["_ [ X(t; —t)X(t, — 1)h(r)h(r)d 1,d1,]

. [_wm ’_a; E[X(t, —1)X(t; — 1)]h(r)h(1,)d 1, dT,
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We know that E [X(t;, — 7,)X(t, — 7,)] =Ryx(t, — t; + T, — T,).
If input X (t) is a WSS random process, Let the time difference t= t;-t; and t=t; Then
E[X(t—1)X(t+71—1,)]=Ryx(t + 1, — 7). Then
Ryy(t,t + T) = Ryy(t,7) = f_: fjom Ryx(t + 1, — 15) h(7)h(7,)d 1,d7,

If = Rxx(1) is the autocorrelation function of X (t), then Ryy(T) = Rxx(t) * h(t) h(-T)

It is observed that the output autocorrelation function is a function of only . Hence the output random
process Y(t) is also WSS random process.

If the input X (t) is WSS random process, then the cross correlation function of input X (t) and output Y(t) is

Ryvit,t +7)=E[X (1) Y (t+1)]

Ryy(T) = E [X (1)), R(T1) X (t+T- 7y} d7y]

Rer(t) =) EX () X (t+t-1,)] h(r,)dr,]

Ryy(T) =" Ry (T — )] h(t;)dTy which is the convelution of Ryx(t) and h (x).
Therefore Ryy (T) = Ryx (1) * h (1) similarly we can show that Ryx(T) = Rgx(T) * h (1)

This shows that X (t) and Y(t) are jointly WSS. And we can also relate the autocorrelation functions

and the cross correlation functions as
Ryy(t) = Ryy(t) *h ()

Ryy(T) = Ryx(t) *h (1)

Spectral Characteristics of a System Response: Consider that the random process X (t) isa WSS

random process with the autocorrelation function Rxx(t) applied through an LTI system. It is noted that
the output response Y (t) is also a WSS and the processes X (t) and Y (t) are jointly WSS. We can obtain
power spectral characteristics of the output process Y (t) by taking the Fourier transform of the correlation
functions.

www.FirstRanker.com



:l », FirstRanker.com

A Firstranker's choice _ .
www.FirstRanker.com www.FirstRanker.com

RANDOM VARIABLES & STOCHASTIC PROCESSES

Power Density Spectrum of Response: Consider that a random process X (t) is applied on an LTI
system having a transfer function H(w). The output response is Y (t). If the power spectrum of the input

process is SXX (), then the power spectrum of the output response is given by SYY () =
|H(w)|? Sxx (w).

Proof: Let Ryy(T) be the autocorrelation of the output response Y (i). Then the power spectrum of

the response is the Fourier transform of Ry (7).

Therefore Syr (w) = F [Syy (w)]

= [T R(@)e > dr

We know that Ryy (1) = | f_a; Rex (T + 1y — 1) h(r ) R(12)d 1, dT»

Then Sy (@) = [7_[* [7 Rgx(t + 73 —7,) h(ty)(1,)d 1,dT, e T¥7dT

= [T h() [T h(x,) [O Ryx(T+ 1 — 1) e7/47dr d1, dty

= fjom h(t,)ei®™ fj:o h(t,)el®Ts ff; Rxx(T+ T, — T5) e /9T ei®T1J%T2q7 d7, d!
Let T +11-To=t, dt=dt

Therefore Sy (w) = fjow h(ty)el“™dt, f_to h(t,)e’®2dt, f_oooo Ryx(t) e 7°tdt
We know that H (w) = [~ h(T)e /** dt.

Therefore Sy (w) = H*(w) H(w) Sy (w) = H(-w)H(w) Sxx (w)

Therefore Sy (w) = |H(w)|? Syx (w). Hence proved.

Similarly, we can prove that the cross power spectral density function is

Sxv (W) = Sxx (w) H(w) and Syx (w) = Sxx (w) H(-w)
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Spectrum Bandwidth: The spectral density is mostly concentrated at a certain frequency value. It
decreases at other frequencies. The bandwidth of the spectrum is the range of frequencies having
significant values. It is defined as “the measure of spread of spectral density” and is also called rms
bandwidth or normalized bandwidth. It is given by

J’fooo wzsxxl':w]dw

w2

rms

IS
-0 xxlwldw

Types of Random Processes: In practical situations, random process can be categorized into different
types depending on their frequency components. For example information bearing signals such as audio,

video and modulated waveforms etc., carry the information within a specified frequency band.
The Important types of Random processes are;

1. Low pass random processes

2. Band pass random processes

3. Band limited random processes

4. Narrow band random processes

(1).Low pass random processes:
A random process is defined as a low passirandom process X (t) if its power spectral density SXX (®) has
significant components within the frequency band as shown in below figure. For example baseband

signals such as speech, image and-video are low pass random processes.

T T

i
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(2).Band pass random processes: A random process X (t) is called a band pass process if its power
spectral density SXX () has significant components within a band width W that does not include o =0.

But in practice, the spectrum may have a small amount of power spectrum at o =0, as shown in the below
figure. The spectral components outside the band W are very small and can be neglected.

For example, modulated signals with carrier frequency 0 and band width W are band pass random
processes. The noise transmitting over a communication channel can be modelled as a band pass process.

£ ;
ey S
"\ TS

—pp—a 2= 1 B

(3).Band Limited random processes: A random process is said to be band limited if its power spectrum
components are zero outside the frequency band of width W that does not include  =0. The power

density spectrum of the band limited band pass process is shown in below figure.

e — -

4

=, ¥,
f<—H—1| je— |}—=>|

(4).Narrow band random processes: ‘A band limited random process is said to be a narrow band
process if the band width W is.very small compared to the band centre frequency, i.e. W<< ®0, where
W=band width and 0 is the frequency at which the power spectrum is maximum. The power density
spectrum of a narrow band process N(t) is shown in below figure.

- \ (”.'.)

re— 17— b 4
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Representation of a narrow band process: For any arbitrary WSS random processes N(t), The
quadrature form of narrow band process can be represented as N(t) = X(t) Cos w0t — Y (t)Sin ®0t

Where X(t) and Y (t) are respectively called the in-phase and quadrature phase components of N(t). They

can be expressed as

X (t) = A (t) Cos[B(1)]
Y (t) = A(t) Sin[&(t)] and the relationship between the processes A(t) and 6(t) are given by

A (t) = VX0 4 Y20 and O (t) = tan™ ( m

X(t)
Properties of Band Limited Random Processes: Let N (t) be any band limited WSS random process
with zero mean value and a power spectral density, SNN(w). If the random process is represented by

N (t) = X (t) Cos w0t — Y (t)Sin 00t then some important properties of X (t) and Y (t) are given below

If N (t) is WSS, then X (t) and Y (t) are jointly WSS.
If N (1) has zero meani.e. E[N(t)] =0, then E[x ()] =E[Y(t)] =0
The mean square values of the processes are equal i.e. E [N*(t)] = E [X*(t)] = E [¥}(t)].

Both processes X (t) and Y (t) have the same autocorrelation functions i.e. Ryx(7) = Ryy (7).

G e WaE O e

The cross correlation functions of X (t) and Y (t) are given by Ryx(t) = — Ry (7). If the
processes are orthogonal, then Ry (T) = Ryx(7) =0.

6. Both X (t) and Y (t) have the same power spectral densities

S (- '
Syr (W) = Syx (w) ={ N OO Sy wtay) soriwisw,

0

7. The cross power spectrums are Sgy (w) = -Syy (w).

8. If N (t)is a Gaussian random process, then X (t) and Y (t) are jointly Gaussian.

9. The relationship between autocorrelation and power spectrum Syy (w) is
- i (-]
Rx‘x (T) = = fo SNN(:.u}cos[(w—mo)r]d(U and

Ry () = %fom S ntw) cosliw-wo ) T] dw

10. If N (t) is zero mean Gaussian and its psd, Sy(w) is symmetric about £y, then X (t) and Y (t}

are statistically independent.
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