R. FirstRanker.couniv-

Signal: A function of ore (or) more irdep.perstibanken bositheld Which Contain some information is called signal

Ex:- Electric Voltage (or) current, such as radio signals,
Tv signal.
System: A system is set of Elements (ar) functional block that are Comected together and. produce an op in response to an ip signal.
Ex:- A audio amplifier, attenuator TV set. transmitter, racier atc.
Cbrification of signals:-
The signals Can be clarified in to two Ports depending upon independent variable (time)
a) Continous Time (CT) signal.
b) Discrete Time (DT) signal.

Both the CT and DT signals can be clarified
9) into following parts.

Firstranker.conedd sigmals
Firstranker'sfsoice www.FirstRanker.com
c) Envexy El power sigral . www.FirstRanker.com
d) Deterministic \& random Signals.

C\&DT signals:-1) A "CT" signal is definced.
Continacesly. w.r.t time.
2) A "DT" signal is defened. only at specifie \&. regular time instant."

$$
h_{1}, 1
$$

Tig: CT\&DI signals.
Continous fuer of time: $7^{r} \times(t)=e^{-a t}$

1) Anlog Cuait piocom er, signal. Wuch
ap-amp. filtus, amplifier eto.
a). Digital act prous DT sigral. such coxcuit ore miroporocinors 'Cauntus, fip -flops etc.

Anlog \& Digital systam:-15
\Rightarrow When amplitude of CT sigral Vaxies Continocesty. it is called: "Anlog secoal."
\Rightarrow whicn. Amplitude op signal. Eates only finite values it is called" "digitial" sgnal. ?
a)

Paciodic \& Non-poriodic sigrals:-
Periodic: A signal sus said to be poriodic of it cupeots at ógullor in tervals:
Non-pxuodic: A sigral is/Said to be non-paio die if it x rot ropat at regeilar inlervals.

Ex: CT for pcriodic

- DT for Non-peridic
www.FirstRanker.com.
Even Signal:- A signal. is said to be Even Signal if invasion of time does not change: the amplitude te

Condition for be cen. $\left\{\begin{array}{l}x(t)=x(-t) \\ \text { signal to be } \\ \hline(n)=x(-n)\end{array}\right.$

Cosine ware is sample of Even sig nat

$$
\cos \theta=\cos (-\theta)
$$

* also called "Symmetric signal"

Odd Signal:-
A Signal is Said to be od signal if inverxion of time axis aloe invars Amplitude of the signal.

$$
\text { Condition for }\left\{\begin{array}{l}
x(t)=-x(-t)^{\prime} \\
x(n)=-x(-n)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Condition for }) x(t)=-x(x) \\
& \text { Signal to be }(n)=-x(-n) \\
& \text { odd. }
\end{aligned}
$$

D. FirstRankeratsomoalled, anti-symmetric signal. Q $\underbrace{\text { Fittrankerschoice ww.FirstRanker.com www.FirstRanker.com }}$

\Rightarrow Sinc Wait is Example of odd signal
\Rightarrow EEven \& Odd symmetry of the signal have specific hormonic (or) feuq content.
\Rightarrow Even Eodd. symmaly puop fittor dinegon.

$$
x(t)=x_{e}(t)+x_{0}(t)
$$

$$
\begin{aligned}
& +x_{0}(t,)^{2} \\
& \text { oodd: }
\end{aligned}
$$

Euen
Cortinow $\frac{\text { time signal }}{\text { Evin pait: }}=$
Evin part $=x_{e}(t)=y / 2[x(t)+x(-t)]$

$x_{0}(t)<y_{2}[y(t)-y(t)]$ odd pat $x_{0}(t)<\gamma_{2}[y(t)-y(-t)]$

FirstRanker.CO| ${ }^{\text {Firstranker'ond }}|x(n)|^{2}$ for DT signal.

Power of CT\&DT Signal:-

Deterministic and Random Signal.
$\Longrightarrow A$ Deterministic signal Can be Completely. repented be. Mathematical Equation any time

Ex $x(t)=\operatorname{Cos} t \omega t$

$$
x(n)=\cos 2 \pi f_{n}
$$

$\Rightarrow A$ signal which Cont be ueporiented by no Mathenatical Eave Called random signal.
any Man

Hor we ore taking.
\Rightarrow Variancios
\Rightarrow Co-Variance.

Determine whether, the following DT signal are Periodic (ar) not? if periodic determine fundamental
Period.
i) $\cos (0.01 \pi n)=x(n)$
ii) $\cos (3 \pi n)$
iii) $\sin (3 n)$
-v) $\frac{\cos 2 \pi n}{5}+\cos \frac{2 \pi n}{7}$.
vi) $\sin (\pi+0.2 n)$
v) $\cos (n / 8) \cos n \pi / 8$
i) $x(n)=\cos (0.01 \pi n)^{\prime}$

शानn $=0.01 \pi n$ compare with $\times(n)=\cos 2 \pi f_{n}$

$$
f=\frac{0 \cdot 0}{2}=\frac{1}{1200}=k / N
$$

 Periodic. $N=200$

Compare with $x(n)=\cos 2 \pi f^{\prime} n$.

$$
\begin{aligned}
& \cos 2 \pi f^{\prime} \alpha=\cos (3 \pi h) \\
& f=\frac{3 \pi}{2 H}=3 / 2 \\
& f=k / N+N=2
\end{aligned}
$$

$$
\cos 2 \pi f_{h}=\sin 3 \%
$$

$$
f=\frac{\sin 3}{\cos 2 \pi}=k / n
$$

Which is not ratio of two integers.
The signal is non-poriodic
iv)

$$
\begin{aligned}
& x(n)=\cos \frac{2 \pi n}{5}+\cos \frac{2 \pi n}{7} \\
& x(n) \cdot \cos 2 \pi f_{1} n+\cos 2 \pi f_{2} n .
\end{aligned}
$$

$$
2 \not 2 f_{1} x=\frac{2 x x}{5}
$$

$$
f=1 / 5=N_{1}=5
$$

2) $\pi f_{Q} \alpha=\frac{2 \pi \eta}{7}$

$$
f_{2}=1 / 7 \quad N_{2}=7
$$

a) $-\frac{N_{1}}{N_{2}}=5 / 7$ io the ratio of two integers. the sequencer is periodic. The periodic of $x(n)$ is least Common Multiple. of $\mathrm{N}_{1} \xi \mathrm{~N}_{2}$. Hex least Common. Multiple of $N_{1}=5$ and $N_{2}=7$

Therefore. this sequence is periodic with $\begin{array}{r}N=35 \\ N\end{array}$
T. FirstRanker.com//

www.FirstRanker.com
Hoe $2 \pi f_{1} n=n / 8 \Rightarrow f_{1}=\frac{1}{16 \pi}$ which is not rations

$$
\text { 2ा } n=n=n \pi / s \Rightarrow f_{1}=1 / 16
$$

Thus $\cos (n / 8)$ is ron-periodie and $\cos (n \pi / 8)$ is
Periodic. $x(n)$ is non-perioder since it is the product o of Periodic \& non-priode serial:
vi) $x(n)=\sin (\pi+0.2 n)$

Compare with $x(n): \sin (2 \pi f+\theta)$
$\theta=\pi$ I.C play shift \&

$$
2 \pi f_{n}=0.2^{n}
$$

$f=\frac{0.2}{2 \pi}=\frac{1}{10}$ which is not rational.
Hence this itignal so non-perindic.
vii) $x(n): c$

$$
\cos \pi / 4 n+j \sin \pi / 4 n
$$

Compare with, $\times(n)=\cos$ gif $f_{n}+j \sin 2$ il f

$$
\text { Here } \operatorname{sifn}=\pi / 4 n \Rightarrow f=1 / 8=k / N
$$

which is rational.

- Hence this signal is

Periodic with NO 8

(Or) power signals and calculate Energy (or) powort.
a) $x(n):(1 / 2)^{n} v(n)$
c) $x(t)=\operatorname{rect}\left(t / T_{0}\right)$
b) $x(t)=\cos ^{2} \theta_{0} t$
d) $x(t)=\operatorname{rect}\left(t / T_{0}\right) \cos \omega_{0} t$.

We have fallow the given steps:-
(1) Obsowe. The Signal. Carefully. it it 9 s periodic \& infinite deration then-it can be pavo signal. Hence. Calculate its pour directly.
(2) If the signal is periodic but of finite duration, then it can be Energy signal. Hence calculate its Energy.
it can be directly
(3) if the signal is not periodic, then it con be Energy
(ealcubte it Energy directly. signal. Hence calculate it Energy directly..
i) $x(n)=(1 / 2)^{n} u(n)$.

This signal is not periodic. Hence as per step 3. Calculate its Energy directly

$$
\begin{aligned}
\text { Calculate } & E=\sum_{n=-\infty}^{\infty}|\times(n)|^{2} \\
& \sum_{n=-\infty}^{\infty}\left[(1 / 2)^{n}\right]^{2}=\sum_{n=0}^{\infty}(1 / 4)^{n}
\end{aligned}
$$

 be.

$$
E=\frac{1}{1-1 / 4}=4 / 3
$$

Since. Energy is finite. E non-zero. it is Energy Signal with $E=4 / 3$
ii) $x(t)=\operatorname{rec}\left(t / T_{0}\right)$ The rect $\left(t / T_{0}\right)$

$\operatorname{rect}\left(t / T_{0}\right)$,

$$
= \begin{cases}\text { (t /Tor } & \text { for } \left.\left.T_{0}\right|_{2} \leq t \leq T_{0}\right)_{2} \\ 0 & \text { \&lsechets }\end{cases}
$$

it mo-peridie. Hence if Can be Energy Signal as Per Signal. as per step 3 Hence, Calculate Energy directly

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty} l \times\left.(t)\right|^{2} d t \\
& =\int_{-T_{0} / 2}^{T b / 2}(i)^{2} d t \\
& \mid(t)]\left._{-T_{0} / 2}^{T b}\right|_{2}=T_{0} .
\end{aligned}
$$

This is squared cosine wave, hence it is
Periodic. Therefore this can be periodic signal. As per step 1, Calculate power of this signal directly

$$
P=\lim _{T \rightarrow \infty} 1 / T \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

The given signal $x(t)$: $\cos ^{2} \cos _{3} t$. has Home period.
To ξ_{1} it is rel signal.

$$
P=\lim _{T_{0} \rightarrow \infty} / T_{0} \int_{-T_{0} / 2}^{T_{0} / 2}\left[\cos ^{2} \omega_{0} t\right]^{2} d t
$$

Hence $\left[\cos ^{2} \omega_{0} t\right]^{2}=\cos ^{4} \omega_{0} t$. it can be Expanded by standard trigonometric Gelation.

This term will be alow zera Scene it is integration of

FirstRanker. $\cos _{(0)}^{m}(t)^{T_{0} / L}$
Firstrankelirnchoice $/ T_{0}$ wwwi.FtisptRanker.com
www.FirstRanker.com
N) $x(t)=\operatorname{ract}\left(t / T_{0}\right) \cos \omega_{0} t$

The geven efunction qo the product of cosine. wale \& rect function.

yid follomet

R. FirstRanker.com ^

\rightarrow Coscoot is periodic \& infinite duration signal.
\Rightarrow Basically it is power signal.
$\Rightarrow \operatorname{Cos} \omega_{0} t$ is Mattiplicd. With the rectangular pulse. Hence the resultant signal is Cosine wave of duration $-T_{0} / 2 \leq t \leq T_{0} / 2$
it is assumed that there are Multiple No. of Cycle of cosine wave in. $-T_{0} / 2 \leq t \leq T_{0} / 2$

The final signal is pexioder but finite. devotion. Hence it Can be Energy Signal.

FirstRanker.com ∞_{∞}
Firstranker's choice $E=\int_{-\infty}^{\infty}$

Hroce Enegy is finite $\&$ non-zero. Hence it is Energy slgnal with $E=T 0 / 2$
v) $\quad x(n)=a(n)$.

This sgnal. is priodeic (Scince $u(n)$) oxepeat after Eury sample. and of initinit duration. Hence it. may be powor sigral.

 www.FirstRanker.com
will be

$$
\begin{aligned}
& P: \lim _{N \rightarrow \infty} \frac{1}{2 N+1}(N+1) \\
& \frac{\lim _{N \rightarrow \infty}}{} \frac{N+1}{2 N+1}: \lim _{N \rightarrow \infty} \frac{1+1 / N}{2+1 / N} \text { !/2 }
\end{aligned}
$$

The pow or, is finite \& ron-zero. hence unit step function is power signal with $=P=1 / 2$

Elementry Signal.
\Rightarrow standard signal are used for the analysis of System
\rightarrow Thess standard sigralare.
a) Unit step function.
b) Unit impute function.
c) unit, ramp function.
d) Complex Exponential function.
e) Sinusoidal function.

$$
\begin{array}{r}
\quad \frac{C T}{u(t)=} \begin{array}{l}
\begin{cases}1 & \text { for } t \geq 0 \\
0 & \text { for } t<0\end{cases} \\
\\
\end{array} \underbrace{}_{0} \rightarrow t(t)
\end{array}
$$

$$
\begin{aligned}
& V(n)= \begin{cases}D T & \text { for } n \geq 0 \\
0 & \text { for } n<0\end{cases}
\end{aligned}
$$

chan De Supply. is applied to the
\Rightarrow it 95 generated chen, $D c$ supply. is applied to the Orcient.

$$
u(n)=\{0,0,1,1 \cdot 1, \cdots]
$$

2) Unit impulse:-
gt)
Area.
under unit impulx appacches Amplitude of unit sample 1 as its width appeosches zero. Thess it has zero value Emery where Supt $t=0$

$$
\begin{gathered}
\int_{-\infty}^{\infty} \delta(t) d t=1 \quad \xi t \rightarrow 0 \\
\delta(t)=0 \quad \text { for } t \neq 0
\end{gathered}
$$ is ' 1 at $n=0$ \& it has zero value at all. Other Value of n.

$$
\delta(n)= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}
$$

3) Unit $\operatorname{Pamp}:$
it is Linearly growing fun for position value of independent variable

$$
r(t)= \begin{cases}t & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

The amplitude of Every sample increase Linearly with - its number for positive value of " n ".

$$
n(n)= \begin{cases}n & \text { for } n \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

\Rightarrow The ramp fun indicate Linear relationship.
\Rightarrow It indicate constant current charging of the capaci tor.

Complex Exponential E Sinusoidal. Signals:-
DI
CT

1) it is Exponentially growing (or) decaying signal.

R. FirstBankele.com

Relationshif: b/t the signals:-
(i)

$$
\begin{aligned}
& {[d d t r(t)=u(t)} \\
& d r(t)=d t u(t) \\
& \left\{d r(t)=\int u(t) d t\right. \\
& r(t)=\int u(t) d t
\end{aligned}
$$

- Relation b/w unitstep \& unit ramp Signal 1
(or)

$$
u(t)=\int 8(t) d t
$$

intriscuel
Ex . The derviative of the following Sigral.

$$
\begin{aligned}
& \text { i) } x(t)=u(t)-u(t-a), \quad, a>0 \\
& \text { 2) } x(t)=t[u(t)-u(t-a)], a>0 \\
& \text { 3) } x(t)=\operatorname{sgn}(t)=\left\{\begin{array}{l}
1 \quad t>0 \\
-1<0
\end{array}\right. \\
& \text { 1) } d \int_{d t} x(t)=\frac{d}{d t}[u(t)-u(t-a)] \\
& +\frac{d}{d t} u(t)-d / d t u(t-a) \\
& r \delta(t)=\delta(t-a)
\end{aligned}
$$

i)

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\frac{d}{d t}[t[u(t)-u(t-a)] \\
y(t) & =u(t)-u(t-a) \\
\frac{d}{d t} x(t) & =\frac{d}{d t}[t y(t)] \\
& \frac{d}{d t} t y(t)=t \frac{d}{d t} y(t)+v(t) \frac{d}{d t} \cdot t \\
& t[\delta(t)-\delta(t-a)]+y(t) \cdot 1= \\
t & {[\delta(t) \text { www.rirstinanker.com }}
\end{aligned}
$$

Transformation in independent variable of ingral.
Independent Variable t'(or) in Can be Muttipulaiu
b) i) Delay Advancing
2) Time folding,
8) Time Scaling.

1) Delay Advancing
unit step function.
unit step function delayed by 2 units.

$$
\dot{u}(t)=\left\{\begin{array}{l}
\text { for } t \geq 0 \\
0 \text { for } t<0
\end{array}\right.
$$

Genit step function advanced by $\frac{\text { units }}{-2}$ $u(t+2)$

FirstRankericom advanced it is shifted host.

${ }^{2}$) when function is delay it is Shifted, Right.
2) Time folding:-

The time folding Opoation is used in Convola Lion. Consider the Continous time Signal. $x(t)$. Then mistime folded signal. is obtained by epa ling "t "with "-t" ie ult

RifirstRanker.com

Pime Scalling on CT \&. DT Uignal.
Precerdence Rele for Time shitting E time Scaling

Ruler
5) fuert do the shifing opration. \Rightarrow then do the time scalling Opeation.
$x(t)$ is rectangular pulse of amplitude deration $-1 \leq t \leq 1$
ste 1:- Shift $x(t)$ to Left by, 3 , to get $x(t+3)$.

(b) $t \times(2 t+3)$

Step 2: Compoun $x(t+3)$ by' 2 to get $\times(2 t+3)$.

The $x(2 t+3)$ of fig (c) is folded in time to

- FirstRanker.COThe io show fig given below. Firsfonkex ch bite ! - www.FirstRanker.com

Transformation on Amplitude of the Signals.
The Amplitude of the stgral. Can be changed with amplitude Sculling. Consider the unit Step function $u(t)$. Let

$$
y(t)=2 u(t)
$$

Hex amplitude, of cent step function is. This function is Skected in. fig (b) Observe that the amplitude of step function'2". Similarly negative amplitudes are also possible. Comider.

$$
N(t)=-2 u(t)
$$

This fan is skated in fig (c) Obscome that the step function hos - ve amplitude ire -2^{*}

Unit step function

steptan with amplicude:'2 (positive)

Step fundian with amplitudi 2 (Negatiue)
Amplitude Scalling can alno be pexformod on discrete tiens signal. Considu the unit step. Sequence $u(n)$ Let. $\quad y(n)=2 u(n)$.
$x_{1}(-1)$ \& $x_{2}(t)$. be the two Continous time
signals. Then addition. of $x_{1}(t) \& x_{2}(t)$. ant be give in as,

$$
y(t)=x_{1}(t)+x_{2}(t)
$$

Similarly, the sulstraction of $x_{1}(t) \xi_{1} x_{2}(t)$ is given as.

$$
\begin{aligned}
& \text { subtraction } \\
& Y(t): x_{1}(t)-x_{2}(t) \rightarrow C T
\end{aligned}
$$

$$
y(n)=x_{2}(n)=x_{2}(n) \longrightarrow D T
$$

Multiplication \& Decision:-
Let- $x_{1}(t) \& x_{2}(t)$ are Continous signal then thea Multiplication. Gaien as:

$$
\begin{aligned}
& y(t): x_{1}(t) \cdot x_{2}(t) \\
& y(n)=x_{1}(n) \cdot x_{2}(n) \\
& y(t)=\frac{x_{1}(t)}{x_{2}(t)} \\
& y(n)=\frac{x_{1}(n)}{x_{2}(n)}
\end{aligned}
$$

Differentiation \& Integration:-
Let $x(t)$ be the Continows time signal. Then its differentiation. w.r. to given as

$$
y(t)=\int_{-\infty}^{w w w . F i r s t c ⿻ a 弓 a ̈ h k e r . c o m ~}
$$

Let the current it) is following through an inducclar the voltage across it will be

$$
V(t)=L \frac{d}{d t} i(t)
$$

Here $y(t)$ is integration of $x(t)$, integration is used to represent voltage across the capacitor " c "

$$
v(t)=\frac{1}{c} \int_{-\infty}^{t} f(s) d s
$$

Problem:-
Draw the waveform represented by following step function.
a) $f_{1}(t)=2 u(t-1)$
b) $f_{2}(t)=-2 u(t-2)$
d) $f(t)=f_{1}(t)-f_{2}(t)$
c) $f(t)=f_{1}(t)+f_{2}(t)$
b)
$f_{1}(t)=2 u(t-1)$.
The above Eau. Represents a unit step function
multiplied by amplitude of 2 . There is a time shift of
lac. This time shift well be towards. positive value

The above Eau ceppesents a unit step fun
Multiplied by. amplitude of -2 . There is time shift of 2 sec. Since the time shift is subtracted it ceil be towards positive value, of fig (b) Shew s the generation of $f_{2}(t)$ of above qu.
3) $f(t)=f_{1}(t)+f_{2}(t)$
$\left.f_{1} \& t\right) \& f_{2}(t)$ Values in the above Equation we are getting $f(t)$

$$
f(t)=2 u(t-1)-2 u(t-2)
$$

IV). $f(t)=f_{1}(t)-f_{2}(t)$.

 Amp tudud

$$
f_{l}(t)=2 u(t-1)
$$

R. FirstRankerserm \& thir propeutios

Firstrâhker's chofeg www.FirstRanker.com www.FirstRanker.com
\Rightarrow A system is a set of Elements (or) functional blaks that ore Connected Fogether \& produce an op in respons e to an if p sigral.

Casification
two types of systems
(1) Continous time system.
(2) Discrete time system.

CT: It handle Continous time sgrals. Anlog fittors amptiferess, attencuators, anlog transmittex \& racieet
DT: it handle discete time signal. computers.
eft. disotmories, shitt rogestars ete.
Printers! Mrooproanor, Mamoreste time syan. camplox of desorete time systam.

Perties.
(1) Dynamicity propperty : statie \& dynamic
(1) Sheft invariance: Time vartant ε inc
(3) Lirearity poropery: Lenear \& non dimarar
(4) cousality proportey Cousal \& non Cam
(5) stability propority: stable \& unstable system
(6) Invatibility propectys Invausible \& noninversible

- Dyramicity praperty:-
(1) Static System:-

The Continous time system is said to be statec (or) Pyytanyc (memory lor). instantancais) if its op depends unon the present i/ ponly.

Ey

$$
V(t)=R i(t)
$$

Dynamic:
$t-1$
= past value $t \neq$ prainent $t+1$. Futer
The Continaus time system is valu Said to be Deyramic if its opvalues depend.
ifp\& past values.

In dynamic system the $n^{\text {th }}$ op sample Value depend upon $n^{\text {th }} i$ ip sample \& just previous ice (1. $(n-1)^{\text {th }}$ ip samples. This system need to be store the Previous sample. Value.

$$
y(n)=x(n)+x(n-1)
$$

Q. Time In variant E Time Variant System:-

Time invariant - A Continaus time system is time invariant if the time shift in the isp signal result in Corresponding time shift in the op. Ex Nighaday $f(x(t-t))=y(t-t)$, wien time Time Variant: A Continous System is time varient if the time shift in the Ip signal seselt $\operatorname{NA}^{\text {Co co there is }}$ no time slaife in the of thenit is Said to be Time Variant system.

$$
f(x(n-1 c)] \cdot y(t)
$$

Ex temperate in a day. temperature is Vaxice withe time.

Causal:- The system is Said to be Causal if its op at any time depends upon present \& Past if \Rightarrow only.

$$
\text { Ex } \quad Y(n)=x(n): \pi(n-1)
$$

Non Causal:
The system is Said to be Non Causal if O/P at any time depends us on present, past, future i p. values.

$$
y(n): x(n)+x(n-1)+x(n+1)
$$

Linear E Non-Linear system:-
Linear: A system is Said to be linear if it Satrofiy the super position principle.

Super position principle = Sum of
ip is Equal to the cum of the two induridue
$9 \mid p$.

$$
\begin{array}{r}
f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]=a_{1} y_{1}(t)+ \\
a_{2} y_{2}(t)
\end{array}
$$

If it don't Satisfy the supper position. paanciper.

$$
\begin{aligned}
& y_{1}(t)=f\left(x_{1}(t)\right) y_{2}(t): f\left(x_{2}(t)\right) \\
&\left.f\left(a_{1}(t)+a_{2} v_{2}(t)\right]=a_{1} y_{1}(t) t(t)\right]
\end{aligned}
$$

Stable E Unstable System:
When. Eure bounded, isp produces bound ac opp then the system is "stable.". bounded ip then it is constable".

Problem
Determine whether the following Continous time system are stable (or) not?

$$
\begin{aligned}
& \text { are stable (or) not? } \\
& \text { i) } y(t)=t \times(t) \text { \& } y(t)=x(t) \sin 100 \pi t
\end{aligned}
$$

i) $y(t)=t x(t)$
\Rightarrow Here Let $x(t)$ be bounded And, $t \rightarrow \infty, y(t) \rightarrow \infty$
\Rightarrow t \Rightarrow Here $x(t)$ is Multiplied by't'.
i) $y(t)=x(t) \sin 100 \pi t$

Let $x(t)$ is bounded. Here $x(t)$ is Multiplied by know that value of the sine function

First Ranker. catcher op $y(t)$ is bounded as long as Firstrankews choice d www. firstRanker,com is bounded. Hence Ww. FirstRanker,com is system. sable. FirstRanker.com

Ex.
Determine whether. the following discrete time eyslant are stable (or) not?

$$
\begin{aligned}
& \text { or stable (or) not? } \\
& \text { i) y }(n)=x(n)+x(n-1)+x(n-1) \text { ii) } y(n)=r^{n} x(n) n_{>1}
\end{aligned}
$$

Problems Determine whether the following Continua time system are Causal (or) non-Causal.
i) $y(t)=x(t) \cos (t+1)$
2) $y(t)=x(2 t) 3) y(t)=x(-1$
2) $\frac{d y(t)}{d t}+10 y(t)+5=x(t)$
5) $y(t)=\int_{-\infty}^{t} x(t) d t$

$$
1 y(t)=x(t) \cos (t+1)
$$

Here Observe that $y(t)$ depends union.
Present ip $p(t)$. A Cosine function Can be Colum ted. at $t+1$. Hence this is Causal system.
2) $y(t)=x(2 t)$

Here, if $t=2$ then.

$$
\begin{gathered}
y(2)=x(2.2) \\
=x(9)
\end{gathered}
$$

P. FirstRanker.com

Finstrankeripchbicet 2 depends on voiture i $p \times 1 a)$. Hence, hes www.FirstRanker.com www.FirstRanker.com
is non-Coural system.
iii) $y(t)=x(-t)$

Here of $t=-2$ then $\quad Y(-2)=x(-(-2))$.
Thus of p depends canon texture i / p. Hence this is non-Caunal system.
v) $\frac{d y(t)^{2}}{d t}+d 10 y(-)^{2}+5=x(t)$

Here Observer that op $y(t)$ expends present isp. Hence this po Cosusal. System.
$v y(t)=\int_{-\infty}^{t} x(t) d t$.
Here opdepends union present \& past isp. Hence this ia Causal system.

Chock whether the following Continous lime system as Linear (or) non-linear.

$$
\begin{aligned}
& \text { as Linear (or) non-linear. } \\
& y_{2}(t)=t \times(t) \\
& y_{1}(t): f\left[x_{1}(t)\right]: x^{2}(t) \\
& \text { 2) } x_{1}(t), y_{2}(t): f\left[x_{2}(t)\right], t x_{2}(t) \\
& \text { Combination of op become. }
\end{aligned}
$$

Hence Linear Combination of olpbeconc.

$$
\begin{aligned}
& \text { Linear } a_{1} y_{1}(t)+a_{2} y_{2}(t) \\
& y_{3}(t): \\
& a_{1} t x_{1}(t)+a_{2} t x_{2}(t
\end{aligned}
$$

$$
+a_{2} t x_{2}(t)
$$

Firstranke Pboice vespowww. to the Lineor Combinat inanker.com ifp becomes.

$$
\begin{aligned}
v_{3}(t): & f\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] \\
& t\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] \\
& a_{1}\left[x_{1}(t)+a_{2} t x_{2}(t)\right.
\end{aligned}
$$

Oncomparing above Eqv $y_{3}(t): y_{3}^{\prime}(t)$. Hence this is a tencar system.
ii) $y(t)=x^{2}(t)$

The op of the system to two ip $x_{1}(t)$ \& $x_{2}(t$

$$
\begin{aligned}
& f\left[x_{1}(t)\right]=2 x_{1}^{2}(t) \\
& f\left(x_{2}(t)=2 x_{2}^{2} t t\right.
\end{aligned}
$$

Hence Linear Combination of thex $0 / p$ becan

$$
\begin{array}{r}
\left.y_{3}(t)=a_{1} y_{1} H\right)+a_{2} y_{2}(t) \\
, a_{1} x_{1}^{2}(t)+2 x_{2}^{2}(t)
\end{array}
$$

Now het is find the ocesponse of the Syslam to combination of i/p

$$
\frac{\left(y_{3}^{\prime}(t)+f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]\right.}{\text { www.FirstRanker.com }}\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] L
$$

Firstranker's choiced www.FirstRanker.com www.FirstRanker.com

Chuck whether the dollowing Contenous tims system are time time in variont (α) time varient.

$$
\begin{aligned}
& \text { are time time in variant }(\alpha) \text { time varient. } \\
& \text { i) } y(t)=\sin x(t) \quad 2) y(t)=t \times(t) 3) y(t)=A(t) \cos 200 \\
& \pi t
\end{aligned}
$$

Anilloy
Sigach Camber oxppexented in terms of Oghthonanal.

Orthogonality Concept in Vector: fig -1.
All the sigralis are basically Vectors. A vector can be represented in trims of its Coordinate. system en. For Example Conixder the vector f. as shown fig 1. There is another vector x. The dot product of 'f 'and ' x '

$$
f \cdot x=|f||x| \cos \theta
$$

Here ' θ 'is angle $b / \omega f_{\varepsilon} x$.
In the above fig' c ' x is the Component of Vector ' f ' along' x '. In other words ' $c x$ ' is the Projection of 'f 'on ' x '. Here \&'can be Expruned as vector addition as.

$$
f=c x+c
$$

Here 'e 'sis an Error valor. Note ce' is mini only it is perpendecetar.

Perpendicular. In this Coax observe that

(a)
ign $c_{1} \& c_{2}$ are greater than c.
But $\varepsilon \varepsilon_{1} \varepsilon_{2}$ are greater than C. Here ' C ' is minimum Only when it is fr to ' x '. The Compony of f along sc is $C x$. it is also given as $|f| \cos o$.

$$
C|x|=f \cos \theta
$$

Multiplying both side by $|x|$

$$
C|x|^{2}=|f|(x \mid \cos \theta
$$

R.H.S Of above Eave. represents the dot product of vector f \& x. Hence.

$$
\begin{aligned}
& c|x|^{2}=f \cdot x \\
& c \cdot 1 /|x|^{2} f \cdot x \\
& x \cdot x=|x|^{2}, e \cdot \frac{f \cdot x}{x \cdot x} \\
& \text { xanker.com }
\end{aligned}
$$

R. FirstRanker.com
dixcoill be Canceled since f. $x \xi$ www.FirstRanker.com wWw.FirstRanker.com X. x are vector products.
fig $2(a) \& 2 b)$ Observe that $c_{1} x$ will be zero when ' f ' is tr to ' x '. In other words, will not have Component along' x ' then. ' f' and ' x ' are tr to Each other.
Hence the dot product $f: x$, f
will zeroi.e
$f . x:|f||x| \cos \theta$
$|f||x| \cos 90^{\circ}: 0$
The vector 'find' x ' are said to be Orthogonal. if their dot product is zero. In other word, veto are Orthogonal. it they are Mutually perpendicular.

Drthogoralily in signals:-
Now let us apply the Orthogonality conapt of Vectors to real signals. Let us Consider signal $f(t)$ to be represented in terms of $x(t)$ Our an interval triste

$$
e(t)=f(t)-c \times(t)
$$

\Rightarrow Minimum value of $e(t)$ will give best aphis mation of $f(t)$ in $x(t)$.
\rightarrow Minimum value of $\varepsilon(t)$, minimum Energy of $e(t)$ (or) mean square value of $e(t)$ serves apples Peale Measure.

Hence for Minimum Energy of $c(t)$. representation of $f(t)$ in $x(t)$ witt better.

Energy of eft) will be.

$$
E e^{2} \int_{t_{1}}^{t_{2}} e^{2}(t) d t
$$

And Mean, square value of $e(t)$ will be given

$$
\begin{aligned}
& \frac{e^{2}}{e^{2}}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} e^{2}(t) d t \\
& e^{2}(t) \\
& \frac{E_{e}}{t_{2}-t_{1}}
\end{aligned}
$$

Here Ecis Energy of e(t) Over the

$$
E_{c}=\int_{t_{1}}^{t_{2}}[f(t)-c x(t)]^{2} d t
$$

THenethe vadue of e(t) 2 (auer the intonal itntoke2 And $e^{2}(t)$ 1s Mcon Savarer. vadule elt) $]$. Here the value of c'should be sclected such that Ee will be Minimum. Thes Can Obtained by differentiating Ee w.r.to C E Equating it to zero l.e

$$
\text { for Minimum } E_{e}, \frac{d E_{e}}{d c}=0
$$

$$
\begin{aligned}
& \quad \text { i.e } \frac{d}{d c}\left[\int_{t_{1}}^{t_{2}}[f(t)-c x(t)]^{2}\right] d t=0 \\
& =\frac{d}{d c} \int_{t_{1}}^{t_{2}} f^{2}(t) d t-\frac{d}{d c} 2 c f(t) \cdot x(t) d t+\frac{d}{d c} \int_{t_{1}}^{t_{2}} c^{2} x^{2}(t) \\
& \quad d t=0
\end{aligned}
$$

- fert torm is independent of ' c ' hence it will be zero.

$$
\begin{aligned}
& -2 \int_{t_{1}}^{t_{2}} f(t) \cdot x(t) d t+2 C \int_{t_{1}}^{t_{2}} x^{2}(t) d t=2 \\
= & 2\left[-2 \int_{\text {ww.FirstRanker.com }}^{t_{2}} f(t) \cdot x(t) d t+C \int_{t_{1}}^{t_{2}} x^{2}(t) d t=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { RirstRanker. } \left.\iint_{\text {Firstranker's choiee }} \int_{t_{1}}^{d}(t) \times(t) d t+c\right)_{\text {ww.FirstRanker.com }}^{L_{1}} x^{2}(t) d t=0
\end{aligned}
$$

$$
\begin{aligned}
& c \int_{t_{t}}^{t_{2}} x^{b_{2}}(t) d t: \int_{t_{1}}^{t_{2}} f(t) x(t) d t
\end{aligned}
$$

Here are clcarly obscrethat above Eavi is Similar to the system Equation.

The Demominator of the above soue vepoerent Energey of $x(t)$. it Can't bezero. Hence numerator munt be zero. to make 'c' 300. If 'c zero there will be no component of $f(t)$ along $x(t)$. then $f(t)$ and $x(t)$ are said to be Orthe ral Ouer an intorval [$\left.t_{1} t_{2}\right]$..e

$$
\text { Onthogonality } \int_{t_{1}}^{t_{2}} f(t) \times(t) d t=0
$$

D. 1 Firstranankerg (z) Ind $x(t)$ are Complex Signals, Firstankerls ghoiff $f(t)$ www.FirstRanker.oomeen awwwintitustrardker.com then they are Orthogonal. Seen an in over. $\left[t_{1}, t_{2}\right]$

$$
\text { for } \int_{t_{1}}^{t_{2}} f(t) \times(t) d t=0
$$

if $x(t) \& f(t)$ are Orthogonal signal then they are Orthogonal Over an tonal $\left[t_{1}, t_{2}\right]$ if

$$
f(t) x^{*}(t) d t=0(0 r) \int_{t 1}^{t_{2}} f^{*}(t) \times(t) d t=0 \text {. }
$$

$x^{*}(t)$ is complor conjugate of $x(t)$.
Problem Show that the following singnal are Orthog oral Our an intaval $[0,1]$

$$
\begin{aligned}
& \text { anal }[0,1] \\
& f(t)=1, x(t)=\sqrt{3}(1-2 t]
\end{aligned}
$$

So). We know that the Signals are Orthogonal of

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} f(t) \times(t)=0 \\
\int_{t_{1}}^{t_{2}} f(t) \times(t) d t=\int_{0}^{1} 1[\sqrt{3}(1-2 t)] d t \\
\int_{\text {www.FirstRanker.com }}^{1} \sqrt{3} d t-\int_{0}^{1} 2 \sqrt{3} t d t
\end{gathered}
$$

$$
\sqrt{3} \cdot[t]_{0}^{1}-2 \sqrt{3}\left[\frac{t^{2}}{2}\right]_{0}^{1}=0 .
$$

Thess the two given signal. are Orthogonal our intoval $[0,1]$.
2) A rectangular function is defined as.

$$
f(t)= \begin{cases}A & \text { for } 0 \leq t \leq \pi / 2 \\ -A & \text { for } 0 \pi / 2 \leq t \leq 3 \pi / 2 \\ A & \text { for } \pi / 2 \leq t \leq 2 \pi\end{cases}
$$

Approximate above ben by $A \cos$ b/w the interval. (0.2π) Such that Mean Sauce Euros. is Minimum.

Sol $f(t)=c \times(t)$

$$
\begin{array}{r}
\text { Here } c=\int_{t_{1}}^{t_{2}} \frac{f(t) x(t) d t}{\int_{t_{1}}^{t_{2}} x^{2}(t) d t}=A \cos t \int_{0}^{\pi / 2} A \cdot A \cos t d t+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}(-A) A \cos t \\
\\
\quad+\int_{01 / 2}^{\pi / 2} A \cdot A \cos t d t \\
\left.\int_{0}^{2 \pi} A \cos t\right)^{2} d t
\end{array}
$$

$$
=\frac{A^{2}[\sin \pi / 2-\sin 0]-A^{2}\left[\sin \frac{3 \pi}{2}-\sin \pi / 2+A^{2}[\sin 2 \pi-\right.}{\sin 3 \pi / 2]} \frac{A^{2}}{2}\left[t+\frac{\sin 2 t}{2}\right]_{0}^{2 \pi}
$$

$$
=4 / \pi
$$

Thess $f(t)=4 \pi A \cos t$ is the required Appoxsmatis Orthogonal Signal space:-
Let $x_{1}(t), x_{2}(t) \& x_{3}(t)$ be orthogonal.
to each other. This Mean. then three signals will be mutually fr to Each other.
it forms a three dimensional, $x_{3}(t)$
signal. Space. such signal. Space. This signal
Space is used to represent any signal lying in that

$$
\begin{aligned}
& { }_{o w w w . F i r s t R a n k e r . c o m / l / L}^{\sin }+A^{2} \sin t \\
& A^{2} \int_{0}^{\pi \pi} \frac{1+\cos 2 t}{2} d t
\end{aligned}
$$

Signal. Space. Any signal $f(t)$ can be represented in this dimensional signal space.
Signal Approximation using Orthogonal unctions
Let us Consider the set of signal which are mutually Orthogonal Ouer an interval [t ic $t_{1} t_{2}$ Thar signals Can represents any signal $f(t)$ ax

$$
\begin{aligned}
& f(t) \cong C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{N} x_{N}(t) \\
& f(t)=\sum_{n=1}^{N} C_{n} x_{n}(t)
\end{aligned}
$$

In the above Eave any two signals $x_{m}(t) \varepsilon_{1} x_{n} t$ are orthogonal our an interval $\left[t_{1}, t_{2}\right]$ ice

$$
\int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}(t) d t= \begin{cases}0 & \text { for } m \neq n \\ E n & \text { for } m \pm n\end{cases}
$$

In the above Eque Obocue that any two different y are orthogonal, when $m=n$ it as the

First Ranker, ,com
Firstranker's choice
norge of the signals i.e En. www.FirstRanker.com
Error (t) in the approximation of Eave is given as $e(t): f(t)-\sum_{n=1}^{N} \operatorname{cn}_{n} x_{n}(t)$

Hence Ever Energy will be

$$
\left.E_{e}=\int_{t_{1}}^{t_{2}} e^{2}(t) d t=\int_{t_{1}}^{t_{2}}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n} t\right)\right]
$$

Here E_{C} is the fun. of $G_{1}, C_{2}, C_{3} \ldots . C_{N}$ Hence Ec will be Minimized w.r. to C_{i} if

$$
\begin{equation*}
\frac{\partial}{\partial c_{j}}\left\{\int_{t_{1}}^{\frac{\partial E_{e}}{\partial c_{j}}=0} t_{2}^{t_{2}}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n}(t)\right]^{2} d t\right\}=0 \tag{1}
\end{equation*}
$$

Above Eq. will be executed for $i=1,23 \ldots \mathrm{~N}$

$$
\begin{gathered}
\frac{\partial}{\partial c_{j}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} 2 c_{n} f(t) x_{n}(t) d t+\int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} c_{n}^{2}\right. \\
\left.x_{n}{ }^{2}(t)\right]=0
\end{gathered}
$$

Hove Eau is Eucuted for $i=1,2,3 \ldots N$ Hoe Obscrue. that erst integration term is - Independent of C, Hire its derivative will be

FirstRanker.com the of Scond and this d Firstranke| Thechoicederumaure www.FirstRanker.com www.FirstRanker.com intagration terms will be non, zoro only when $n=i$ theoe terms wall be Constant \& . their. derivaties are zero.

$$
\begin{aligned}
& \frac{\partial}{\partial C_{i}}\left\{\int_{t_{1}}^{t_{2}} 2 C_{1} f(t) x_{i}(t)+\int_{t_{1}}^{t_{2}} C_{1}^{2} x_{i}^{2}(t) d t\right\} \\
& -2 \int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t+2 C_{i} \int_{t_{1}}^{t_{2}} x_{i}^{2}(t) d t=0 \\
& C_{i}=\int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t \\
& \int_{t_{1}}^{t_{2}} t_{2} x_{i}^{2}(t) d t
\end{aligned}
$$

We know that $\int_{t_{2}}^{t_{i}^{2}}(t) d t=$ Ei i.c Energe. 2.
$=$ Hnce above Eque becomas.

$$
\begin{aligned}
& C_{i}=\frac{1}{E_{i}} \int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t \cdot \rightarrow \text { (a) } \\
& \text { www.FirstRanker.com }
\end{aligned}
$$

Now let ur Consider the Mean Square.
Error in SIgnal approximation wing Orthogonal functions.

The Error Energy is given by Eave.

$$
\begin{gathered}
E_{e}=\int_{t_{1}}^{t_{2}}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n}(t)\right]^{2} d t \\
=\int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} c_{n} f(t) x_{n}(t) d t+\int_{t_{1}}^{t_{2}} \\
\sum_{n=1}^{2} c_{n}^{2} x_{n}^{2}(t) d t
\end{gathered}
$$

last integration term is Energy of $x(n)$ i.e E_{n}. And. with the help of Eau (a)
we can write. middle term of above Equation as.

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t=C_{n} E_{n} \\
& E_{c}=\int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \sum_{n=1}^{N} c_{n} C_{n} E_{n}+\sum_{n=1}^{N} c_{n}^{2} E_{n} . \\
&= \int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \sum_{n=1}^{N} C_{n}^{2} E_{n}+\sum_{n=1}^{N} C_{n}^{2} E_{n} .
\end{aligned}
$$

The Naan save Error \& Error Energy as related as.

$$
\overline{e^{2}(t)} \cdot \frac{E_{e}}{t_{2}-E_{1}}=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\sum_{n_{1}=}^{N} c_{n}^{2}\right.
$$

In the above EaM. $C_{n}{ }^{2} E_{n}$ is always post ire Hence Error Energy Ge can be reduced if number of tams. N used for reprewnitation are income ideally. Fe $\rightarrow 0 . \& N \rightarrow \infty$ under this Condition. the Orthogonal signal set is Said to be complex.
Closed (or) Complete set of Orthogonal function
The Nan square Error approaches zero as number of terms $C^{2} E_{n}$. are Mede infinite

$$
\begin{aligned}
& 0=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\sum_{n=1}^{\infty} C_{n}^{2} E_{n}\right] \text { with } \\
& \overline{Q^{2}(t)}=0 \text { os } N=\infty \\
& \text { www.FirstRanker.com }
\end{aligned}
$$

FirstRanker.com ∞
$\int_{t_{1}} f_{n=1}^{2}(t)$ wistranker's choirs Ranker. com $n n_{n}$
www.FirstRanker.com

With N approaching infinity Eau Can. be written as.

$$
f(t)=\sum_{n=1}^{\infty} \ln _{n} X_{n}(t)
$$

Hoe $x_{1}(t), x_{2}(t) \cdots x_{n}(t)$ is a set of Muterall. Orthogonal. Jundion. it is Said to be complete tor) closed set if there Easts, no function $p(t)$ for which

$$
\int_{t_{1}}^{t_{2}} P(t) x_{n}(t) \cdot d t=0 \quad \text { for } n=1,2 \ldots
$$

if $P(t)$ Girts $\&$. above integral is zero. then Obviously. $p(t)$ must be a member of set $\{x n d t)\}$

For the set of mutually orthogonal signals. $x_{n}(t)$ our an interval $\left(t_{1}, t_{2}\right)$.

$$
\int_{t_{2}}^{t_{2}}(t) x_{n}(t) d t=\left\{\begin{array}{l}
0 \text { if } m \neq n \\
E_{n} \text { if } m=n
\end{array}\right.
$$

For this Complete set, the function $f(t)$

$$
C_{i}=\frac{\int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t}{\int_{t_{1}}^{t_{2}} x_{i}^{2}(t) d t}=\frac{1}{E_{i}} \int_{4_{1}}^{t_{2}} f(t) x_{i}(t) d t
$$

The set of $x_{n}(t)$ is Called athogonal, basis functions.
Whogonality in Complex functions:-
Consider that the set of signals $x_{1}(t), x_{2}(t)$ $x_{3}(t) \ldots .$. are Complex. then they are Mutually Orthogonal if

$$
\begin{aligned}
& \text { Logonal. if } \\
& \int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}^{*}(t) d t=\int_{t_{1}}^{t_{2}} x_{m}^{*}(t) x_{n}(t) d t \cdot\left[\begin{array}{l}
0 \text { for } \\
E_{n} \text { for }
\end{array}\right.
\end{aligned}
$$

Then $f(t)$ Can be Expressed as,

$$
f(t)=\sum_{n=1}^{\infty} c_{n} x_{n}(t)
$$

Where C_{n} is Given in the Similar bastion

Where E_{n} is green for Complex. Sigralsare.

$$
E_{n}=\int_{t_{1}}^{t_{2}} x_{n}(t) \cdot x_{n}^{*}(t) d t
$$

Figonomctric Fourics Sexies:-
we know that any fen, $f(t)$ can be Expound as

$$
f(t)=\sum_{n=1}^{\infty}\left(n x_{n} \mid t\right)
$$

Hoc $x_{n} H$) represent Orthogonal. signal set.
They are also Called basic unction. This Equis Called. generalized Fourier decries.
$m \neq n$
We have see that the set.

$$
\left\{1, \cos \omega_{0} t \cdot \cos 2 \omega_{0} t \cdots \cos \omega_{0} t, \ldots \text { sin } \omega_{0} t\right. \text {, }
$$

$$
\left.\sin 2 \omega_{0} t \ldots \sin n \omega_{0} t-\cdots\right\}
$$

is Orthogonal Dur the period To. Horewo
is / called fundamental frequency, and $n w_{0}$ is Called $n^{\text {th }}$ harmonic. Thou is DC Component of Cosiest
\rightarrow Trignometric fourier series! T-2
As we know that sinnwot a cosnrwot both are asthog nat over the given interval, Now we choose a composite set of function comisting of a set cos ω_{0} l \& in wot for $(n=0,1,2, \ldots)$ as forms a complete orthogonal set.
\because for $n=0, \sin n \omega_{0} t=0$ \& for $n=1 \cos m \omega_{0} t=1$
The set of orthogonal fur are given as 1, cos wot, cos $2 \omega_{0} t \ldots$ cos $\omega_{0} t . . \sin \omega_{0} t, \sin 2 \omega_{0} t . . \sin n \omega_{0} t$.

Now any $f_{n} f(z)$ can be reprexated in terms of there functions over any interval

$$
\begin{align*}
& (0, \tau)(0 r)\left(t_{0}, t_{0}+T\right)(0 r)\left(t_{0}, t_{0}+\frac{2 \pi}{\omega_{0}}\right) \\
& \Rightarrow f(t)=a_{0}+a_{1}, \cos \omega_{0} t+\ldots \text { an } \cos n \omega_{0} t+\cdots+b_{1} \sin \omega_{0} t+b_{2} \sin 2 \omega_{0} t \\
& +b_{n} \sin 2 \omega_{0} t \\
& f(t)=a_{0}+\sum_{n=1}^{\infty}\left(t_{0}, t_{0}+\frac{2 \pi}{\omega_{0}}\right)
\end{align*}
$$

eq (1) is the ray trignometric fourier series seporerentation of $f(t)$ over the interval $\left(t_{0}, t_{0}+\tau\right)$
where $a_{0}, a_{1} \ldots a_{n}, b_{1}, b_{2} \ldots b_{n}$ are the components of $f(t)$ along the mutually arthogonal set (or) the constant values, os ax given by

As we kate, 1

$$
\begin{aligned}
\text { we katar } & C_{12}
\end{aligned}=\frac{t_{2} f_{1}(t) f_{2}(t) d t}{\int_{1}^{t_{2}} \int_{2}^{2}(t) d t}
$$

$$
=\frac{1}{2} \int_{t_{0}}^{t_{0}+t}\left[1+\cos 2 n \omega_{0} t\right] d t
$$

$$
=\frac{1}{2}\left[t-\frac{\sin 2 n \omega_{0} t}{2 n \omega 0}\right]_{t o}^{t_{0}+t}
$$

$$
=\frac{1}{2}\left[t_{0}+T-t_{0}+\frac{\sin 2 n \omega_{0}\left(t_{0}+T\right)}{2 n \omega 0}-\frac{\sin 2 n \omega_{0} t_{0}}{2 n \omega_{0}}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{\sin \left(2 n \omega_{0} t_{0}+2 n \omega_{0} \frac{2 \pi}{\omega_{0}}\right)}{2 n \omega_{0}}-\frac{\sin 2 n \omega_{0} t}{2 n \omega_{0}}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{1}{2 n \omega_{0}}\left\{\sin \left(2 n \omega_{0} t+4 n \pi\right)-\sin \left(2 n \omega_{0} t_{c}\right)\right\}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{1}{2 n \omega_{0}}\left\{\sin \left(2 n \omega_{0} t_{0}\right)-\sin \left(2 n \omega_{0} t_{0}\right)\right\}\right.
$$

$$
=\frac{1}{2}[T+0]=T / 2
$$

let $\begin{aligned} n=0, & t_{0}^{t o t} f(t) \cos (0) d t \\ a_{0} & =\frac{t_{0}}{t_{0}+T} \cos ^{2}(0) d t \\ & \int_{0}^{t o} \cos ^{t}\end{aligned}$

$$
a_{0}=\frac{t_{0}^{t_{0}^{++}} f(z) d t}{t_{t_{0}^{+\sigma}}^{t_{0}}(1) d t}
$$

$$
\begin{aligned}
& a_{n}=\int_{0}^{t_{0}^{+} t} f(z) \cos n \omega_{0} t d t=\frac{t_{0}^{+t}}{t_{0}^{+} T} f(t) \cos n \omega_{0}^{2} n \omega_{0} t d t d L \\
& a_{n}=\frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(z) \cos n \omega_{0} t d z
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{t_{0}^{+T}}^{t_{0}} f(z) d t \\
& \text { \& } b_{n}=\frac{\int_{0}^{t_{0}^{+}} \int_{t_{0}}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t}{\sin ^{2} \omega_{0} t d t} \\
& b_{n}=\frac{2}{\tau} \int_{0}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t
\end{aligned}
$$

The constant term a_{0} in the average value of $f(t)$ over the interval $\left(t_{0}, t_{0}+T\right)$, x thus a_{0} is the de component of $f(t)$ over this interval.
\rightarrow Alternate form of the trignomelric series:-
we have.

$$
\begin{aligned}
& \text { have } \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{a} t\right) \\
& a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t=A_{n} \cos \left[n \omega_{0} t+\phi_{n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \quad \infty \\
& \phi_{n}=-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right) \\
& f(t)=a_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right)
\end{aligned}
$$

the coefficients An are called spectral amplitudes Ψ On is the spectral phase.

$$
\begin{aligned}
& 11 y \quad F_{n}^{t_{10}^{0}} \int_{t_{0}^{+}+\pi}^{t_{0}^{t}} f(t)\left(e^{\beta n \omega_{0} t}\right) d t \\
& F_{n}=\frac{1}{T} \int_{0}^{t_{0}+\tau} f(t) e^{-3 n \omega_{0} t} d t
\end{aligned}
$$

Thus any fr may ber expressed as a discrete sum of expowen--tial functions $\left\{e^{i n \omega_{0} t}\right\},(n=0, \pm 1, \pm 2 \ldots)$ aver an interval to $<t<t_{0}+T$.

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega 0 t} \\
& x F_{n}=\frac{1}{t_{0}^{+}} \int_{\text {to }} f(z) e^{-j n \omega 0 t} d t
\end{aligned}
$$

There two eq are referred as fourier series pair
\rightarrow Relation b/w the trignometric a the exponential fourier series:
Now consider an exponential fourier series

$$
\begin{align*}
& \text { Now comider an exponent } \\
& \qquad f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}\left(t_{0}<t<t_{0}+T\right) \\
& F_{0}+F_{1} e^{j \omega 0 t}+F_{2} e^{j 2 \omega_{0} t} . F_{n} e^{j n \omega 0 t}- \tag{1}\\
& F_{-1} e^{j \omega_{0} t}+F_{-2} e^{\rho 2 \omega 0 t .} .
\end{align*}
$$

where $F_{n}=\frac{1}{T} \int_{t_{0}+T}^{t_{0}+T} f(t) e^{-\rho n c s t} d t$
Hl $F_{-n}=\frac{1}{T} \int_{t 0}^{t_{0}^{+}} f(t) e^{i n \omega_{0} t} d t$
from (1) (1) Fin\& F_{-n} are complex conjugates

$$
\text { ie } F_{n}=F_{-n}^{*}
$$

Now let $F_{n}=\alpha_{n}+\rho \rho_{n}$

$$
\begin{equation*}
F_{-n}=\alpha_{n}-j \beta_{n} \tag{4}
\end{equation*}
$$ adding there twe www.FirstRanker.com \qquad

$$
\begin{aligned}
& \alpha_{n}=\frac{1}{2}\left(F_{n}+F_{-n}\right) \otimes \\
& \beta_{n}=\frac{1}{2 g}\left(F_{n}-F-n\right)
\end{aligned}
$$

(or)

$$
\begin{aligned}
& 2 \alpha_{n}=F_{n}+F_{-n} \otimes \\
& -2 \beta_{n}=+S\left(F_{n}-F-n\right)
\end{aligned}
$$

sub (3) α (4) in eq (A)

Now compare this with the sandard trighometrie en

$$
f(t)=a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \cos t+b_{n} \sin n \omega_{0} t\right)
$$

$$
\begin{aligned}
(t) & =a_{0}+\sum_{n=-\infty} \\
& \Rightarrow F_{0}=a_{0}\left|2 \alpha_{n}=a_{n}\right|-2 \beta_{n}=b_{n}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=F_{0}+\left(\alpha_{1}+j \beta_{1}\right) e^{j \omega_{0} t}+\left(\alpha_{2}+j \beta_{2}\right) e^{j 2 \omega_{0} t} \\
& +\left(\alpha_{n}+\rho \beta_{n}\right) e^{\rho n \omega_{0} t} t \ldots\left(\alpha_{1}-\rho \beta_{1}\right) e^{-\rho \omega_{0} t_{t}} \\
& \left(\alpha_{2}-\rho \beta_{2}\right) e^{-\rho 2 \omega_{0} t} \ldots\left(\alpha_{n}-\rho \beta_{n}\right) e^{-\rho n \omega_{0} t}+. . . \\
& f(t)=F_{0}+\left[\left(\alpha_{1} e^{\rho \omega_{0} t}+\alpha_{2} e^{j 2 \omega_{0} t} \ldots \alpha_{+1} e^{-j \omega_{0} t}+\alpha_{+2} e^{-j 2 \omega_{0} t}\right.\right. \\
& \left.\alpha_{n} e^{j n \omega_{0} 2}+\alpha_{n} e^{\text {jncoot }}\right) \\
& +\rho\left(\beta_{1} e^{j \omega 0 t}+\beta_{2} e^{j 2 \omega_{0} t}+\cdots \beta_{n} e^{j n \omega_{0} t}+\beta_{+1} e^{-j \omega 0 t}\right. \\
& \left.\left.+\beta_{+2} e^{-j 2 \omega_{0} t} \ldots \beta_{+n} e^{-j n \omega_{0} t} \ldots\right)\right] \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[\ln \left(e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}+j \beta_{n}\left(e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}\right)\right]\right. \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n}\left(\frac{e^{j n \omega_{0} t+e^{-j n} \omega_{0} t}}{2}\right)+g^{2} 2 \beta_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 \xi}\right]\right. \\
& P(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n} \cos n \omega_{0} t-2 \beta_{n} \sin n \omega_{0} t\right]
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=F_{0} \\
& a_{n}=2 \alpha_{n}=F_{n}+F_{-n} \\
& b_{n} \because-2 f_{n}=j\left(F_{n}-F_{-n}\right)
\end{aligned}
$$

This is the representation of trignometric interns of exponential Ny we can " exponential in term of trignometric $\&$ is

$$
\begin{gather*}
a_{n}=F_{n}+F_{n} \quad b_{n}=\rho\left(F_{n}-F_{-n}\right) \\
\Rightarrow \frac{b_{n}}{\rho}=F_{n}-F_{-n} \\
a_{n}=F_{n}+F_{-n}-\left(5 \Rightarrow-I b_{n}=F_{n}=F_{-n}\right.
\end{gather*}
$$

Adding \& subtracting (5) \&5 we get

$$
\begin{aligned}
& F_{n}=\frac{1}{2}\left[a_{n}-j b_{n}\right] s \\
& F_{-n}=\frac{1}{2}\left[a_{n}+j b_{n}\right]
\end{aligned}
$$

\rightarrow Rep resentation of a periodic fun by the fourier series over the entire interval $(-\infty$ trot $<\infty)$:

Up to know we represent a given $f n f(t)$ by the $F S$ over a finite interval $\left(t_{0}, t_{0}+T\right.$) \& outside shis interval, the fur its corresponding F s are need not be equal. This equality blow $f(z)$ os its series holds over the interval $\left(t_{0}, t_{0}+\tau\right)$. Now we want that this equality holds over the entire interval $(-\infty<t<\infty)$

Now we cowrider some function $f(t)$ of its exponeution F.S representation over an interval (to, to $+T$)

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} r}\left(t_{0}<t<t_{0}+\tau\right) \tag{1}
\end{equation*}
$$

where $\omega_{0}=\frac{2 \pi}{T}$
The two sides of the equation need not be equal outside this interval.

Let the right-hound side of (t) be $\phi(t)$
Thus $f(t)=\sigma(t) \quad\left(t_{0}<t<t_{0}+\tau\right)$.
adding there fowwe.FirstRanket.com

$$
\begin{aligned}
& \alpha_{n}=\frac{1}{2}\left(F_{n}+F_{-n}\right) \Delta \\
& \beta_{n}=\frac{1}{2 j}\left(F_{n}-F-n\right)
\end{aligned}
$$

(or)

$$
\begin{aligned}
2 \alpha_{n} & =F n+F-n g \\
-2 \beta_{n} & =+J(F n-F-n)
\end{aligned}
$$

sub (3) α (4) in eq (A)

$$
\begin{aligned}
& f(t)=F_{0}+\left(\alpha_{1}+j \beta_{1}\right) e^{j \omega_{0} t}+\left(\alpha_{2}+j \beta_{2}\right) e^{j 2 \omega_{0} t} \\
& +\left(\alpha_{n}+j \beta_{n}\right) e^{j n \omega_{0} t} t \ldots\left(\alpha_{1}-j \beta_{1}\right) e^{-j \omega_{0} t}+ \\
& \left(\alpha_{2}-\rho \beta_{2}\right) e^{-\rho 2 \omega_{0} t} \ldots\left(\alpha_{n}-\rho \beta_{n}\right) e^{-\rho n \omega_{0} t}+. . . \\
& f(t)=F_{0}+\left[\left(\alpha_{1} e^{j \omega_{0} t}+\alpha_{2} e^{j 2 \omega_{0} t} \ldots \alpha_{+1} e^{-j \omega_{0} t}+\alpha_{+2} e^{-j 2 \omega_{0} t}\right.\right. \\
& \left.\alpha_{n} e^{j n \omega_{0} \%}+\alpha_{+n} e^{j n \omega 0 t}\right) \\
& +\rho\left(\beta_{1} e^{j \omega 00 t}+\beta_{2} e^{j 2 \omega_{0} t}+\cdots \beta_{n} e^{j n \omega_{0} t}+\beta_{+1} e^{-j \omega_{0} t}\right. \\
& \left.\left.+\beta_{+2} e^{-\beta 2 \omega_{0} t} \ldots . \beta_{+n} e^{-j n \omega_{0} t} \ldots\right)\right] \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[\ln \left(e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}+j \beta_{n}\left[e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}\right)\right]\right. \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n}\left(\frac{e^{j n \omega_{0} t+e^{-j n \omega_{0} t}}}{2}\right)+g^{2} 2 \beta_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 j} .\right.\right. \\
& P(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n} \cos n \omega_{0} t-2 \beta_{n} \sin n \omega_{0} t\right]
\end{aligned}
$$

Now compare this with the standard trignometrie on

$$
\begin{aligned}
& f(t)=a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \cos t+b_{n} \sin n \omega_{0} t\right) \\
& \qquad 1-\alpha_{n}=a_{n} \mid-2 \beta_{n}=b_{n}
\end{aligned}
$$

$$
\begin{aligned}
(t) & =a_{0}+\sum_{n=-\infty}\left(a_{n} \cos n \omega_{0}\right. \\
& \Rightarrow F_{0}=a_{0}\left|2 \alpha n=a_{n}\right|-2 \beta n=b_{n}
\end{aligned}
$$

Firstanker's $\phi(t)=\sum_{\text {choice }}$ Fine Www.Firstranker.comes of Www.FirstRanker.com
Now comrider the f_{n} ' $\phi(t+T)$ ',

$$
\begin{aligned}
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0}(t+T)} \\
&=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j n \omega_{0} T} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j 2 \pi n} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{i n \omega_{0} t}=\phi(t) \\
& \phi(t+T)=\phi(t)
\end{aligned}
$$

i.e, the $f_{n} \phi(t)$ repeats itself after every T seconch, such. f_{n} is called a periodic fr.
ie the exponential (as Trignometric) 'FS depend repeats then - lues every T seconds. Thus if $f(t)$ be a period dic fur of period, 1 , then it can be represented by an exponential (on trignometric) F.S over the entire interval $(-\infty<t<\infty)$.
\therefore A periodic f n $f(t)$ with period τ can be sep by a FS (Cover the entire interval $(-\infty<t<-0)$,

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}(-\infty<t<\infty)
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\text { \& } F_{n}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-j n \omega_{0} t} d t
$$

\rightarrow Fourier series -Dirichlet's conditions:
The sufficient conditions under which a $s / g f(t)$ can be represented in terms of its fourier series mus satisfy are Called dirichlet conditions. They are
(i) The $f_{n} f(t)$ in a single-valued fo of the variable t t ' in the pheon (t, t_{n})
ie the fr r $f(t)$ must have single value at any instant of time

At to, it has 2 values do it, is not a single valued f_{n}

it is a single valued fo
ii) The $f_{n} f(t)$ has a finite number of discontinutios in the interval $\left(t, t_{n}\right)$

it has no finite umber as discontinuties x it is not possible to find the value of $f(z)$ at such a number of discontinutios

It has finite number of distinuities is the value of $f(t)$ at the distincontinutier can be calculated

$$
f(t=T)=\frac{f\left(T^{-}\right)+f\left(T^{+}\right)}{2}
$$

iii) The $f_{n} f(t)$ has a finite number of miniman as maxima in the interval $\left(t, t_{2}\right)$

It has nub fixed number of maxima marina

It has fixed number of minimal \& maxima (1)
iv) the $f_{n} f(z)$ is absolutely integrable

$$
i e \int_{t_{1}}^{t_{2}}|f(t)| d t<\infty
$$ integrable

Firstronker's choice
where $\phi(t)=\sum_{n=\infty} F_{n} e^{j \text { wwww.Firstranahker.conms of } t^{2} \text { www.FirstRanker.com }}$
Now courider the in ' $\phi(t+T)$ ',

$$
\begin{aligned}
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0}(t+T)} \\
&=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j n \omega_{0} T} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j 2 \pi n} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}=\phi(t) \\
& \phi(t+T)=\phi(t)
\end{aligned}
$$

ie, the fun $\phi(t)$ repeats itself after every τ seconch, such.
f_{n} is called a periodic fr.
ie the exponential (os trignometric). FS depend repeats then -lues every T seconds. Thus if $f(t)$ be a periodic fur of period, t, then it can be represented by an exponential (orin trignometric) F:S over the entire interval $(-\infty<t<\infty)$.
\therefore A periodic fun frt) with period τ can be sep by a FA
Cover the entire interval $(-\infty<t<-\infty)$,

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}(-\infty<t<\infty)
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\text { \& } F_{n}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-j n \omega_{0} t} d t
$$

\rightarrow Fourier series - Dirichlet's conditions:
The sufficient conditions under which a $\operatorname{sig} f(t)$ can be represented in terms of its fourier series must satisfy are called dirichlet's conditions. They are
(i) The $f_{n} f(t)$ is a single-valued fin of the variable - t ' in the inter (t, t_{n})
ie the $f u f(t)$ must have single value at any instant of time
properties of Fourier series:

1) linearity properly:

If $x(t) \stackrel{F \cdot S}{\rightleftarrows} a_{n} g$
$y(t) \leftharpoonup F S \leftrightarrows$ bn then

$$
A x(t)+B y(t) \leftharpoonup F S \Longleftrightarrow A_{n}+B b_{n}
$$

proof: we have

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{0} t} \\
& \infty y(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{i n \omega_{0} t}
\end{aligned}
$$

Also we have, $a_{n}=\int^{+\tau} x(t) e^{-j n \omega o t} d t$

$$
x b_{n}=\int_{T} y(z) e^{-j n \omega_{0} t} d t
$$

let $c(t)=A x(t)+B y(t)$ then,

$$
\begin{aligned}
C_{n} & =\int_{T}[A x(t)+B y(t)] e^{-j n \omega_{0} t} d t \\
& =\int_{T} A x(t) e^{-j n \omega_{0} t} d t+\int_{T} B g(t) e^{-j n \omega_{0} t} d t \\
C_{n} & =A a_{n}+B b_{n}
\end{aligned}
$$

2) Live shifting properly:

If $x(t) \stackrel{F S}{\longleftrightarrow} a_{n}$ then

$$
x\left(t-t_{0}\right) \stackrel{F S}{\longleftrightarrow} e^{- \text {-ncototo }} a_{n}
$$

proof: we have

$$
\begin{aligned}
& F_{s}[x(t)]=a_{n}=\int_{T} k(t) e^{-j n \omega_{0} t} d t \\
& F s\left[x\left(t-t_{0}\right)\right]^{T}=\int_{\tau} k\left(t-t_{0}\right) e^{-j r \omega_{0} t} d t
\end{aligned}
$$

$$
\begin{aligned}
F(s)\left[x\left(t-t_{0}\right)\right. & =\int_{T} x(p) e^{-j n \omega_{0}(p+t) d p} \\
& =\int_{T} x(p) e^{-j n \omega_{0} p} \cdot e^{-j n \omega_{0} t_{0}} d p \\
& =e^{-j n \omega_{0} t_{0}} \int_{T} x(p) e^{-j n \omega_{0} p} d p \\
& =e^{- \text {-incooto }} a n
\end{aligned}
$$

3) lime-heversal properly:

If $x(z) \stackrel{F S}{\stackrel{ }{\longleftrightarrow}}$ an then

$$
x(-t) \stackrel{F}{\leftrightarrows} a_{-n}
$$

Proof:

$$
\begin{aligned}
F s[x(t)]=a_{n} & =\int_{T} x(t) e^{-j n \omega_{0} t} d t \\
\text { let } y(t) & =x(-t) \\
F \cdot s[y(t)] & =\int_{T} y(t) e^{-j n \omega_{0} t} d t \\
& =\int_{t} x(-z) e^{-j n \omega_{0} t} d t \\
\text { let } p & =-t \Rightarrow d p=-d t \\
& =\int_{t_{0}+t} x(-t) e^{-j u \omega_{0} t} d t
\end{aligned}
$$

ae have

$$
\begin{aligned}
& p=-t \quad d p=-d t \\
& =\int_{-t_{0}^{+\tau} \tau} x(p) e^{j p n \omega 0}(-d p) \\
& =\int_{t_{0}}^{t_{0}^{+} \pi} x(p) e^{j u \cos p} d p
\end{aligned}
$$

$=a_{-n}$ is the FS coefficiculs of the tine reversal \& aslg are time reversal of the FS coefficients of the corresponding signal.
4) time scaling:

$$
r(t) \stackrel{F S}{\rightleftarrows} a_{n}
$$

then $i(a t) \stackrel{F S}{\longleftrightarrow}$ an but the fundamental F_{q} is a wo

$$
F \subseteq[(x \in t)]=
$$

$k(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \omega_{0} t}$, then

$$
k(\text { at })=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \omega_{0} a t}
$$

where a ' is the scaling factor x
5) frequency shifting:

If $x(t) \stackrel{F S}{\rightleftarrows}$ an then

$$
x(t) e^{j n \omega_{0} t} \longleftrightarrow{ }^{F S} a_{n-m}
$$

proof:

$$
\begin{aligned}
F S[x(t)]=a_{n} & =\int_{<r)} x(t) e^{-j n c o d} d t \\
F S\left[x(t) e^{g m \omega_{0} t}\right] & =\int_{<T)} x(t) e^{g n \omega_{0} t} \cdot e^{-\xi n \omega_{0} t} d t \\
& =\int_{T} x(t) e^{-j(n-m) \omega_{0} t} d t
\end{aligned}
$$

6) Conjugation?

If $x(t) \stackrel{F S}{\leftrightarrows}$ an then

$$
\begin{aligned}
x(t) & { }^{F S} a_{-n} \\
F s[x(t)] & =a_{n}=\int_{2 r J} x(t) e^{-j n \omega_{0} t} d t \\
F s[x(t)] & =\int_{(T)}^{*} x^{*}(t)\left(e^{-j n \omega_{0} t}\right)^{*} d t \\
F s[x(t)] & =\int_{<t)}^{*} x(t) e^{j n \omega_{0} t} d t \\
& =d_{n}^{*}
\end{aligned}
$$

\rightarrow symmetric Condition:

1) It is a periodic fr is symmelsrical about the vertical axis, the cosrrespordi--ing fourier series contains only corine terms.
2) It is a periodic fur is antisymmetsical about the vertical axis, the F s contains sine terms only.

To prove this,
conrider afn $f_{e}(t)$, it is said to be an even f_{n} of it, if $f_{e}(t)=f_{e}(-t)$
\&fo(t) is said to be an odd fr of ' f ' it

$$
f_{0}(t)=-f_{0}(-t)
$$

properties of cen x odd fr:
A product of an even a an odd f_{n} or an odd f_{n}
2) " even os even f_{n}
3) "1 odd α even fur or odd f_{n}
4) u odd x od d . evenfin
problems
\rightarrow Find the cosine representation FS for the signal shown in fig

$$
\begin{aligned}
& \text { we have the trignometric } \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& a_{0}=\frac{n^{10+t}}{t} \int_{0}^{1+\tau} f(t) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{t}{2 \pi} d t=\frac{1}{2} \frac{8}{T} \\
& a_{n}=\frac{2}{T_{0}^{T}} f(t) \cos n \omega_{0} t d t \\
& =\frac{2}{2 \pi} \int_{0}^{2 t}\left(\frac{t}{2 \pi}\right) \cos (n t) d t \\
& =\frac{1}{2 \pi^{2}}\left[t \int \cos n t d t-\int(i) \frac{\sin n t}{n} d t\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[\frac{t \sin n t}{n}+\frac{\cos n t}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[0+\frac{1}{n^{2}}-0-\frac{1}{n^{2}}\right]=0 \\
& b_{n}=\frac{2}{T} \int_{0}^{T} f(z) \sin n \omega_{0} t d t \\
& =\frac{2}{2 \pi} \int_{0}^{2}\left(\frac{z}{2 \pi}\right) \sin n t d t \\
& =\frac{1}{2 \pi^{2}} \int_{0}^{2 t} t \sin n t d t \\
& b_{n}=\frac{1}{2 \pi^{2}}\left[z \int \sin n t d t-\int(1) \frac{\cos n t}{n} d t\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[-\frac{t \cos n t}{n}+\frac{\sin n t}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[\frac{(-2 \pi) \cos 2 \pi n}{n}+0+0+0\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi^{2}}\left[\frac{(-2 \pi) \cos 2 \pi n}{n}+0+0+0\right] \\
= & -\frac{1}{\pi n} \cos 2 \pi n=\frac{-1}{n \pi}(1)=\frac{-1}{n \pi} \\
f(t)= & a_{0}+\sum_{n=1}^{\infty}\left[a n \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
= & \frac{1}{2}+\sum_{n=1}^{\infty}\left[0+\frac{-1}{n \pi} \sin n t\right] \\
= & \frac{1}{2}-\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin (n t) \\
\therefore f(t) & =\frac{1}{2}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n t}{n}
\end{aligned}
$$

\rightarrow find out above for exponential F.S.

$$
f(r)=\frac{t}{2 \pi} \text { for } 0 \leqslant t \leqslant 2 \pi
$$

we have, $f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {jun } \omega_{0} t}$

$$
\begin{aligned}
F_{n} & =\frac{1}{T} \int_{0}^{T} f(r) e^{-j n \omega o t} d t \\
F_{n} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{t}{2 \pi}\right) e^{-\rho n \omega 0 t} d t \\
& =\frac{i^{2 \pi}}{4 \pi^{2}} \int_{0}^{2} t \cdot e^{-j n t} d t \\
& \left.=\frac{1}{4 \pi^{2}} \int t \int e^{-j n t} d t-\int \frac{(1) e^{-j n t}}{(-j n)} d t\right] \\
& =\frac{1}{4 \pi^{2}}\left[\frac{+t e^{-j n t}}{-j n}-\frac{e^{-j n t}}{j^{2} n^{2}}\right] \\
& =\frac{1}{4 \pi^{2}}\left[\frac{t e^{-j n t}}{-j n}+\frac{\left.e^{-j n t}\right]^{2 \pi}}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{4 \pi^{2}}\left[\frac{2 \pi e^{-j 2 \pi n}}{-j n}+\frac{e^{-j 2 \pi n}}{n^{2}}-0-\frac{1}{n^{2} t}\right]
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{(4 \pi)^{2}}\left[\frac{2 \pi(1)}{-j n}+\frac{1}{n^{2}}-\frac{1}{n^{2}}\right]^{\text {www.FirstRa }} \\
&=\frac{1}{-j 2 \pi n}=\frac{j}{2 \pi n} \\
& \Rightarrow f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \cos t} \\
&=\sum_{n=-\infty}^{\infty} \frac{j}{2 \pi n} e^{j n t} \\
& f(z)=\frac{j}{2 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{e^{j n t}}{n}\right)
\end{aligned}
$$

\rightarrow Det the trignomatric FS a exponential is of a fully rectified cosine fur shown in fig. क draw the comply spectrum

Let $z_{0}=\frac{-\pi}{2}$

$$
f(t)=\cos \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

then to $t=\frac{\pi}{2}$

$$
\begin{aligned}
T & =\frac{\pi}{2}-2_{0}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \\
\omega_{0} & =\frac{2 \pi}{T}=\frac{2 \pi}{\pi}=2 \operatorname{sad} d \sec \\
f(t) & =a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin \omega_{0} t\right) \\
a_{0} & =\frac{1}{\tau} \int_{0}^{f_{0}+\pi} f(t) d t \\
& =\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\pi / 2}(\cos t) d t \\
& =\frac{1}{\pi}[+\sin t]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[+\sin \left(\frac{\pi}{2}\right)-\sin (-\pi)=1 /\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{2}{t} \int_{t_{0}}^{T} f(z) \cos n \omega_{0} t d t \\
& =\frac{2^{\pi / 2}}{\pi} \int_{-\pi / 2}^{t / 2} \cos t \cos n t d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}[\cos (2 n+1) t+\cos (2 n-1) t] d t \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n+1) t}{(2 n+1)}+\frac{\sin (2 n-1))}{(2 n-1)}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}-\frac{\sin (2 n+1)\left(-\frac{\pi}{2}\right)}{(2 n+1)}+\frac{\sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}-\frac{\sin (2 n-1)\left(-\frac{\pi}{2}\right)}{(2 n-1)}\right] \\
& =\frac{1}{\pi}\left[\frac{2 \sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}+\frac{2 \sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}\right] \\
& a_{n}=\frac{2}{\pi}\left[\frac{(-1)^{n}}{(2 n+12}+\frac{(-1)^{n+1}}{2 n-1}\right] \\
& b_{n}=\frac{2}{T} \int_{t_{0}}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t \\
& b_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \sin 2 t d t \\
& =\frac{1}{\pi}\left[\int_{-\pi / 2}^{\pi / 2}[\sin (2 n+1) t+\sin (2 n-1) t\} d t\right] \\
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) t}{2 n+1}-\frac{\cos (2 n-1) t}{2 n-1}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) \frac{\pi}{2}}{2 n+1}+\frac{\cos (2 n+1)\left(\frac{\pi}{2}\right)}{(2 n+1)}-\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\cos (2 n-1)\left(-\frac{1}{2}\right)}{2 n-1}\right]
\end{aligned}
$$

www.FirstRanker.com

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) \frac{\pi}{2}}{(2 n+1)}+\frac{\cos (2 n+1) \frac{\pi}{2}}{2 n-1}-\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1}\right] \\
& =\frac{0}{2} \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& f(t)=\frac{2}{\pi}+\sum_{n=1}^{\infty}\left[\frac{2}{\pi}\left(\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right) \cos 2 n t+0\right]
\end{aligned}
$$

exponenti al F.S:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\rho n \omega o t} \\
& F_{n}=\frac{1}{T} \int_{\pi / 0}^{10+T} f(z) e^{-j n \omega_{0} t} d z \\
& F_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \cdot e^{-j 2 n t} d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left(\frac{e^{j t}+e^{-j t}}{2}\right) c^{-j 2 n t d z} \\
& =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2}\left[e^{j t} \cdot e^{-j 2 n t}+e^{-j t} \cdot e^{-j 2 n t}\right] d t \\
& =\frac{1}{2 \pi}\left[\int_{-\pi / 2}^{\pi / 2} e^{-j(+2 n-1) t} d t+\int_{-\pi / 2}^{\pi / 2} e^{-j(2 n+1) t} d t\right. \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1)}\right]_{-\pi / 2}^{\pi / 2} \\
& 1\left[e^{-j(2 n-1) L} \cdot e^{-j(2 n+1) t}\right]^{\pi / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{1}{2 \pi}\left[\frac{e^{\rho(2 n-1) \frac{\pi}{2}}-e^{-\rho(2 n-1) \frac{\pi}{2}}}{+\rho(2 n-1)}+\frac{e^{j(2 n+1) \frac{\pi}{2}}-e^{-\rho(2 n+1) \frac{\pi}{2}}}{j(2 n+1)}\right] \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}\right] \\
& F_{n}=\frac{1}{\pi}\left[\frac{(-1)^{n+1}}{2 n-1}+\frac{(-1)^{n}}{2 n+1}\right] \\
& f_{0}=\frac{1}{\pi}\left[\frac{(-1)}{-1}+\frac{1}{1}\right]=\frac{1}{\pi}[1+1]=\frac{2}{\pi}
\end{aligned}
$$

$$
f(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{J n \omega_{0} t} \\
& f(t)=\sum_{n=-\infty}^{\infty} \frac{1}{\pi}\left[\frac{(-1)^{n+1}}{(2 n-1)}+\frac{(-1)^{n}}{2 n+1}\right] e^{j 2 n t} \\
& \\
& 1\left[(-1)^{n}+(-1)^{n+1}\right]
\end{aligned}
$$

$$
F_{n}=\frac{1}{\pi}\left[\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right]
$$

$$
\angle F_{1}=\frac{1}{\pi}\left[\frac{(-1)^{1}}{3}+\frac{(-1)^{2}}{2-1}\right]
$$

$$
\begin{aligned}
1 & =\frac{1}{\pi}\left[\frac{(-1)}{3}+\frac{(-1)}{2-1}\right] \\
& =\frac{1}{\pi}\left[-\frac{1}{3}+1\right]=\frac{1}{\pi}\left[1-\frac{1}{3}\right]=\frac{1}{\pi}\left[\frac{2}{3}\right]=\frac{2}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
F_{2} & =\frac{1}{\pi}\left[\frac{(-1)^{2}}{4+1}+\frac{(-1)^{2+1}}{4-1}\right] \\
& =\frac{1}{\pi}\left[\frac{1}{5}-\frac{1}{3}\right]=\frac{1}{\pi}\left[\frac{3-5}{15}\right]=\frac{-2}{15 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\frac{2}{\pi}+\frac{2}{3 \pi} e^{j 2 t}-\frac{2}{15 t} e^{j 4 t} \\
& \\
& +\frac{2}{3 \pi} e^{-j 2 t}-\frac{2}{15 \pi} e^{-j 4 t}+
\end{aligned}
$$

Unis the F-S is

$$
\begin{aligned}
& =\frac{0}{2} \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cdot \operatorname{con} \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& f(t)=\frac{2}{\pi}+\sum_{n=1}^{\infty}\left[\frac{2}{\pi}\left(\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right) \cos 2 n t+0\right]
\end{aligned}
$$

for exponenti al F.S:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {jucoot }} \\
& F_{n}=\frac{1}{t} \int_{t_{0} / 2}^{n=-\infty+T} f(z) e^{-j n \omega_{0} t} d t \\
& F_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \cdot e^{-j 2 n t} d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2 / 2}\left(\frac{e^{j t}+e^{-j t}}{2}\right) c^{-j 2 n t} d t \\
& =\frac{1}{2 \pi} \int_{-\pi / 2}^{-\pi / 2}\left[e^{j t} \cdot e^{-j 2 n t}+e^{-j t} \cdot e^{-j 2 n t}\right] d t \\
& =\frac{1}{2 \pi}\left[\int_{-\pi / 2}^{1 / 2} e^{-j(+2 n-1) t} d t+\int_{-\pi / 2}^{\pi / 2} e^{-j(2 n+1) t} d t\right. \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1)}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) \frac{\pi}{2}}-\frac{e^{-j(2 n-1)\left(-\frac{\pi}{2}\right)}}{-j(2 n-1)}+e^{-j(2 n+1) \pi / 2}-j(2 n+1)}{\text { ww. }} \text {-j(2n-1)} ;\right.
\end{aligned}
$$

Deriving fourier transform from fourier series (or) rep purely of an arbitary fur over the entire interval $(-\infty, \infty)$

As we know that any non periodic signal can be no y -rented in terms of its sum of exp fur over any flitters, (tact $<t_{0}+\tau$) or any periodic signal can be represented inc, $(-\infty, \infty)$.

Now we want to represent an arbitary fur (non periods a sum of exponential in over the entire interval $(-\infty<t c o)$

fig shows the sped rum of a periodic gate fur for sank specific values of T.

If we can obsome the spectrum, then as the period ' I ' is made larger, the fundamental $f q$ becomes smaller. The f_{q} spectrum becomes denser. But the amplitudes of th iq components becomes smaller.
The shape if the spectrum remains unaltered.
Now, consider an arbitary fur $f(2)$, we want to sup this function as a sum of exponential firs over the entree int $(-\infty<t<\infty)$

This can be cochiened by conksucteng a new periodic $f_{n} F_{T}(H$ of period τ, where the $f(f(t)$
 repeats itself for every τ seconds.

Now this $f_{n} f_{T}(z)$ is a periodic f_{n} sit can be represented with exponential $F S$ over the entice interval $(-\infty, \infty)$

In the limit, if T becomes α, then the pulses in the periodic fur repeat after an is' (infinite) Interval.
i-e in the limit $t \rightarrow \infty f_{T}(t)$ o $f(t)$ are same

$$
\operatorname{lt}_{t \rightarrow \infty} f_{T}(t)=f(t)
$$

Thus the $F S$ representing $f_{T}(z)$ over the entire interval awl alto represent $f(t)$ over the entire interval if we take $T \rightarrow \infty$ in this series

The expone $F S$ for $F_{T}(H)$ can be represented by,

$$
f_{T}(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\therefore F_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f_{T}(t) e^{-\operatorname{sncoot}} d t
$$

Fowier trawfork of signumin:

$$
\begin{aligned}
\operatorname{sgn}(t) & =1, t>0 \\
& =-1, t<0
\end{aligned}
$$

This is not obsolutdy integrable
so, Instead of $\operatorname{sgn}(t)$, we cam cowider the fn $e^{-a l t} \operatorname{sgn}(t)$ as the limit $a \rightarrow 0$

$$
\begin{aligned}
& F[\operatorname{sgn}(t)]=a_{a \rightarrow 0}^{L L} F\left[e^{-a|t|} \operatorname{sgn}(t)\right] \\
& =t_{a \rightarrow 0} \int_{-\infty}^{\infty} e^{-a|t|} s g n(t) d t e^{-j \omega t} \\
& =\operatorname{lt}_{a \rightarrow 0}\left[\int_{0}^{\infty} e^{-a t} c^{-3 \omega t} d t,-\int_{-\infty}^{0} e^{a t} \cdot e^{-3 \omega t} d t\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[\int_{0}^{\infty} e^{-(a+3 \omega) t} d t-\int_{-\infty}^{0} e^{(a-g \omega) t} d t\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[\left.\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right|_{0} ^{\infty}-\left.\frac{e^{(a-j \omega) t}}{a-j \omega}\right|_{\infty} ^{0}\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[e \frac{1}{a+j \omega}-\frac{1}{a-j \omega}\right]=\operatorname{Lt}_{a \rightarrow 0}\left[\frac{a-j \omega-a-j \omega}{a^{2}+\omega^{2}}\right] \\
& =\operatorname{lt}_{a \rightarrow 0}\left[\frac{-2 j \omega}{a^{2}+\omega^{2}}\right]=\frac{-2 j \omega}{\omega^{2}}=\frac{-2 j}{\omega}=\frac{2}{j \omega} \\
& 3 g_{n}(2) \longleftrightarrow \frac{2}{\rho \omega} \\
& \text { spectrum }
\end{aligned}
$$

\rightarrow Fourier trousform of step fu! we have,

$$
\begin{aligned}
& u(t)=\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t) \\
& \operatorname{sgn}(2)=2 u(t)-1 \\
& F(\omega)=F[u(t)]=F\left[\frac{1}{2}\right]+F\left[\frac{1}{2} \text { sgnt }\right] \\
&=\frac{1}{2} F E(1]+\frac{1}{2} F[\text { sgut }] \\
&=\frac{1}{2} 2 \pi \delta(\omega)+\frac{1}{2} \frac{2}{j \omega} \\
& \underbrace{|F(\omega)|}_{\omega}=\pi \delta(\omega)+\frac{1}{j \omega}
\end{aligned}
$$

\rightarrow Inverse F.T\& $\delta(\omega):$

$$
\begin{aligned}
& F(\omega)=\delta(\omega) \\
& \begin{aligned}
& F(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j \omega g} d \omega \\
&=\frac{1}{2 \pi}(1)=\frac{1}{2 \pi} \\
& F^{-1}[\delta(\omega)]=f(z)=\frac{1}{2 \pi} \\
& F^{-1}[\delta(\omega)]=\frac{1}{2 \pi} \\
& F^{-1}[2 \pi \delta(\omega)]=1
\end{aligned} \\
& \Rightarrow F[1]=2 \pi \delta(\omega)
\end{aligned}
$$

\rightarrow Inuerse Fourier tranfosin of $\delta\left(\omega-\omega_{0}\right)$:

$$
\begin{aligned}
& F(\omega)=\delta\left(\omega-\omega_{0}\right) \\
& F(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) \\
&=\frac{1}{2 \pi} \int_{-\infty}^{j \omega t} d \omega \\
& E^{-1}\left[\delta\left(\omega-\omega_{0}\right) e^{j \omega t} d \omega\right. \\
&
\end{aligned}
$$

$$
\begin{aligned}
& F^{-}\left[2 \pi \delta\left(\omega-\omega_{0}\right)\right]=e^{j \omega_{0} t} \\
& F\left[e^{j \omega_{0} t}\right]=2 \pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

\rightarrow F.T \&f cosine signal:

$$
\begin{aligned}
& f(t)=\cos \omega_{0} t=\frac{1}{2}\left[e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right] \\
& F[f(t)]=F(\omega)=F\left[\frac{1}{2}\left\{e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right\}\right] \\
&=\frac{1}{2}\left[F\left[e^{j \omega_{0} t}\right]+F\left[e^{-j \omega_{0} t}\right]\right] \\
&=\frac{1}{2}\left[2 \pi \delta\left(\omega+\omega_{0}\right)+2 \pi \delta\left(\omega^{2} \omega_{0}\right)\right] \\
& F\left[\cos \omega_{0} t\right]=\pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right] \\
&(F(\omega)
\end{aligned}
$$

$\rightarrow F \cdot T$ \& simuriodal signal:

$$
\begin{aligned}
f(t) & =\sin \omega_{0} t \\
& =\frac{1}{2 j}\left[e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right] \\
E[f(t)] & =\frac{1}{2 j}\left[F\left[e^{j \omega_{0} t}\right]-F\left[e^{j \omega_{0} t}\right]\right] \\
& =\frac{1}{2 j}\left[2 \pi \delta\left(\omega-\omega_{0}\right)-2 \pi \delta\left(\omega+\omega_{0}\right)\right] \\
& =\frac{\pi}{9}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right] \\
& =j \pi\left[\delta\left(\omega t \omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

\rightarrow Find the F-T of the following

$$
\begin{aligned}
& f(z)=e^{j \omega_{0} t} u(z) \\
& F[u(z)]=\frac{1}{j \omega}+\pi \delta(\omega) \\
& F\left[e^{j \omega_{0} t} u(t)\right]=\frac{1}{j\left(\omega-\omega_{0}\right)}+\pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
F\left[\sin \omega_{0} t u(t)\right] & =F\left[\left\{\frac{e^{j \omega_{0} t}-e^{-\rho \omega t}}{2 \rho}\right\} u(t)\right] \\
& =\frac{1}{2}\left\{\left[F\left[e^{j \omega_{0} t} u(t)\right]-F\left[e^{-\rho \omega_{0} t} u(t)\right]\right]\right. \\
& =\frac{1}{2 \rho}\left[\left\{\frac{1}{j\left(\omega-\omega_{0}\right)}+\pi\left(\delta\left(\omega-\omega_{0}\right)\right\}-\left\{\frac{1}{j\left(\omega+\omega_{0}\right)}+\pi \delta\left(\omega_{0}+\omega_{0}\right)\right)\right]\right. \\
& =\frac{1}{2 \rho}\left[\frac{1}{j}\left\{\frac{\omega+\omega_{0}-\omega+\omega_{0}}{\left(\omega-\omega_{0}\right)\left(\omega+\omega_{0}\right)}\right\}+\pi\left\{\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right\}\right] \\
& =\frac{1}{2 \rho}\left[\frac{1}{\rho}\left\{\frac{2 \omega_{0}}{\omega^{2}-\omega_{0}^{2}}+\pi \delta\left(\omega-\omega_{0}\right)-\pi \delta\left(\omega+\omega_{0}\right)\right]\right. \\
& =\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}+\frac{\pi}{2} j\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

$\rightarrow f(z)=A \sin \omega_{0} t u(t)$

$$
=A\left[\frac{e^{j \beta \omega_{0} t}-e^{-j \omega_{0} t}}{2 g}\right] u(t)
$$

$$
=\frac{A}{2 j} e^{j \omega_{0} t} u(t)-\frac{A}{2 \rho} e^{-\rho \omega_{0} t} u(t)
$$

$$
\begin{aligned}
F[f f(t)] & =F\left[\frac{A}{2 \rho} e^{j \omega_{0} t} u(t)-\frac{A}{2 g} e^{-j \omega_{0} t} u(t)\right] \\
& =\frac{A}{2 j}\left[\pi \delta\left(\omega-\omega_{0}\right)+\frac{1}{j\left(\omega-\omega_{0}\right)}-\frac{A}{2 j}\left[\pi \delta\left(\omega+\omega_{0}\right)+\frac{1}{j(\omega-\omega 0)}\right]\right. \\
& =\frac{\pi A}{2 \xi}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]+\frac{A}{2}\left[\frac{2 \omega_{0}}{\omega^{2}-\omega_{0}^{2}}\right]
\end{aligned}
$$

\rightarrow F.T of triangular pulse:

$$
\begin{aligned}
& \Delta(t)=\left\{\begin{array}{ll}
1-|t| ;|t| \leq a \\
0 ; & \text { otherwise }
\end{array}\right] \\
& D\left(\frac{t}{\tau}\right)
\end{aligned}=\left\{\begin{array}{l}
1-\frac{2|t|}{\tau} ;|z| \angle \tau / 2 \\
0 ; \text { othercuise }
\end{array}\right] \begin{aligned}
F[\omega] & =F\left[\Delta\left(\frac{t}{\tau}\right)\right] \\
& =\int_{-\tau / 2}^{v^{2}}\left[1-\frac{2|t|}{\tau}\right] e^{-j \omega t} d t
\end{aligned}
$$

FirstRanker.com

Firstranker's choice

$$
\begin{aligned}
&+\frac{e^{-j \omega}}{-j \omega}+j \omega \frac{j}{\gamma \omega} \\
&= \frac{e^{j \omega \pi / 2}}{j \omega}-\frac{e^{-j \omega \pi / 2}}{\delta \omega}=\frac{2}{\tau(j \omega)^{2}}-\frac{e^{j \omega \% / 2}}{/ 3 \omega}+\frac{2}{\tau} \frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{e^{-j \omega / 2 / 2}}{j \omega} \\
&+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{}-\frac{2}{\tau} \frac{1}{(j \omega)^{2}}
\end{aligned}
$$

$$
+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}-\frac{2}{\tau} \frac{1}{(j \omega)^{2}}
$$

$$
=\frac{-4}{\tau(j \omega)^{2}}+\frac{2}{\tau} \frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}
$$

$$
=\frac{2}{\tau}\left[\frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}-\frac{2}{(j \omega)^{2}}\right]
$$

$$
\begin{aligned}
& =\frac{2}{\tau}\left[\frac{e^{j \omega}}{(j \omega)^{2}}+\frac{e}{(j \omega)^{2}}-\overline{(j \omega)^{2}}\right] \\
& =\frac{2}{\tau}\left[\left\{\frac{e^{j \omega \tau / 4}}{j \omega}\right]^{2}+\left\{\frac{\left.e^{-j \omega \tau / 4}\right\}^{2}-2\left\{\frac{e^{j \omega \tau / 4}}{j \omega}\right\}\left\{\frac{e^{-j \omega T}}{j \omega}\right\}}{}\right\}=\left[\begin{array}{l}
j \omega \tau / 4
\end{array}\right]\right.
\end{aligned}
$$

$$
=\frac{2}{\tau}\left[\left\{\frac{e^{j \omega \tau / 4}}{j \omega}-\frac{e^{-j \omega \tau / 4}}{j \omega}\right\}^{2}\right]
$$

$$
4 \frac{2}{\tau}\left[\frac{e^{j \omega \tau / 4}-e^{-j \omega \tau / 4}}{2 j \omega}\right]^{2}
$$

$$
\begin{aligned}
& \int_{-\tau / 2}^{0}\left(1+\frac{2 t}{\tau}\right) e^{-j \omega t} d t+\int_{0}^{\tau / 2}\left(1-\frac{2 t}{\tau}\right) e^{-j \omega t} d t \\
& =\int_{-\tau / 2}^{0}\left(1+\frac{2 t}{\tau}\right) e^{-j \omega t} d t+\int_{0}^{\tau}\left(1-\frac{2 t}{\tau}\right) e^{-j \omega t} d t \\
& =\left[\frac{e^{-j \omega t}}{-j \omega}\right]_{-\tau / 2}^{0}+\frac{2}{\tau}\left[\frac{-t e^{-j \omega t}}{j \omega}-\frac{e^{-j \omega t}}{(j \omega)^{2}}\right]_{-T / 2}^{0}+\left[\frac{e^{-j \omega t}}{-j \omega}\right]_{0}^{2 / 2} \\
& -\frac{2}{\tau}\left[\frac{-t e^{-j \omega t}}{j \omega}-\frac{e^{-j \omega t}}{(j \omega)^{2}}\right]_{0}^{\alpha / 2} \quad j \omega \tau / 2 \\
& =-\frac{1}{j \omega}+\frac{e^{-\rho \omega(-\tau / 2)}}{j \omega}+\frac{2}{\tau}\left[0-\frac{1}{(\rho \omega)^{2}}-\frac{\tau}{2} \frac{e^{+\rho \omega \tau / 2}}{\rho \omega}+\frac{e^{j \omega \tau / 2}}{(\rho \omega)^{2}}\right] \\
& +\frac{e^{-\rho \omega \tau / 2}}{-g \omega}+\frac{y}{\rho \omega}-\frac{2}{\tau}\left[\frac{-\frac{\gamma}{2} e^{-\rho \omega \gamma / 2}}{j \omega}-\frac{e^{-\rho \omega \gamma / 2}}{(\rho \omega)^{2}}+0+\frac{1}{(j \omega)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{\tau}\left[\frac{\sin (\omega \tau / 4)}{4(\tau / 4)}\right]^{2} \times\left(\frac{\tau}{4}\right)^{2} \\
& =\frac{8}{\tau} \cdot \frac{\tau^{2}}{16}[\operatorname{san}(\omega \tau / 4)]^{2} \\
& =\frac{8}{\tau} \frac{\theta^{2}}{2} \frac{\tau}{2} \operatorname{san}^{2}\left(\frac{\omega \tau}{4}\right) \\
& =\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\omega \tau}{\tau}\right) \\
& F\left[\Delta\left(\frac{t}{\tau}\right)\right]=\frac{\tau}{2} \sin ^{2}\left(\frac{\omega \tau}{4}\right)
\end{aligned}
$$

\rightarrow F.T \& Impulse train:
we have the exponential F.S of unit impute train is

$$
f(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)=\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} e^{j n \omega_{0} t}
$$

ITXert τ_{0} is the spacing $b(w$ the

$$
\begin{aligned}
F[F(t)] & =F\left[\sum_{n=-\infty}^{\infty} \delta(t-n T)\right] \\
& =F\left[\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} e^{j n \omega_{0} t}\right] \\
& =\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} F\left[e^{j n \omega_{0} t}\right] \\
& =\frac{1}{T_{0}} \sum_{n=\infty}^{\infty}\left[2 \pi \delta\left(\omega-n \omega_{0}\right)\right] \\
& =\frac{2 \pi}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right) \\
& F(\omega)=\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)
\end{aligned}
$$

\rightarrow ET \& a periodic function:
Generally F_{T} is applicable for a periodic fun, \& $F-T$
If a periodic fur doer not exist,
. It fails to satisfy the condition of absolutely integrability.

But the transform does exit in the limit, lly for $\cos \omega_{0} t \alpha$ sincoot
ie we con assume the periodic fur exists only in the finite interval $(-\pi / 2, \tau / 2) \propto$ in the limit let $\tau \rightarrow \infty$
we can expren a periodic fur $f(t)$ with period r as

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

laking F-t on both sids

$$
\begin{aligned}
& \text { Caking } F-t \text { on both } \\
& \begin{aligned}
F[f(r)] & =F\left[\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}\right] \\
& =\sum_{n=-\infty}^{\infty} F_{n} F\left[e^{j n \omega_{0} t}\right] \\
& =\sum_{n=-\infty}^{\infty} F_{n} 2 \pi \delta(\omega-n \omega 0) \\
\therefore F & F f(t)]=2 \pi \sum_{n=-\infty}^{\infty} F_{n} \delta(\omega-n \omega 0)
\end{aligned}
\end{aligned}
$$

\therefore The FT of a periodic sig courists of impute located at the harmonic $f r$ of the signal \& thestiongtr of each impulse is same as 2π times the value of the corresponding coefficient in the exponential FS
\rightarrow Find the F.T of sequence of equidistant impulses.

Now we cowreder a sequence of equidistant impuhn of unit strength is seperated by $\tau \mathrm{sec}$, is let it be $\delta_{\tau}(t)$

$$
\begin{aligned}
& \delta_{\tau}(z)=\delta(z)+\delta(z-T)+\delta(z+2 \tau) \ldots \\
& +\delta(z+T)+\delta(z+2 T) . \\
& \delta_{T}(z)=\sum_{n=-\infty}^{\infty} \delta(z-n \tau)
\end{aligned}
$$

This is a periodic s / g with period $t x$ then we can find its F is

The F-S $\delta_{+}(Z)$ is

$$
\begin{aligned}
\delta_{T}(t) & =\sum_{n=-\infty}^{\infty} F_{n} e^{\rho n \omega_{0} t} \\
\text { where } F_{n} & =\frac{1}{T} \int_{-T / 2}^{T / 2} \delta_{T}(t) e^{-j n \omega_{0} t} d t \\
& =\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j n \omega_{0} t} d t \\
F_{n} & =\frac{1}{T}(1)=\frac{1}{T}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{T}(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {din } \omega_{0} t} \\
& \delta_{T}(t)=\sum_{n=-\infty}^{\infty} \frac{1}{T} e^{i n \omega_{0} t} \\
& \delta_{T}(t)=\frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i n \omega_{0} t}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\text {ranker's }} F(\omega) e^{\text {wwi.FisstRanaker.com }} \\
& E=\int_{-\infty}^{\infty} f(t) f(z) d t \\
&=\int_{-\infty}^{\infty} f(t) \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega d t \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) d \omega \int_{-\infty}^{\infty} f(z) e^{\rho \omega t} d t \\
&=\frac{1}{2 \pi} \int_{2}^{\infty} F(\omega) F(-\omega) d \omega \\
& E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega \\
& \int_{-\infty}^{\infty} f^{2}(z) d t=\left.\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega)\right|^{2} d \omega
\end{aligned}
$$

www.FirstRanker.com
\therefore The energy of a signal is given by $\frac{1}{2 \pi}$ times the areas under the curve $|F(\omega)|^{2}$

The energy contained in the freq components with in a band of $f_{q}\left(\omega_{1}, \omega_{2}\right)$ is $\frac{1}{2 \pi}$ times the area \&o $|F(\omega)|^{2}$ under the band $\left(\omega_{1}, \omega_{2}\right)$

There is also a band of $\left(-\right.$ se $\left(-\omega_{1}, \omega_{2}\right) f q$ which alto has aloe exactly the save anount of energy ar that
ther the energy contained in the f_{q} band $\left(\omega_{1}, \omega_{2}\right)$ is given by

$$
\begin{aligned}
\Delta E & =2-\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}}|F(\omega)|^{2} d \omega \\
& =\frac{1}{\pi} \int_{\omega_{1}}^{\omega_{2}}|F(\omega)|^{2} d \omega
\end{aligned}
$$

$\frac{1}{\pi}|F(\omega)|^{2} \rightarrow$ represents the everggy per unit band aiddt's which reprereuts the evergy demily donoted as $s(\omega)$

$$
S(\omega)=\frac{1}{\pi}|F(\omega)|^{2}
$$

\therefore The evergy $\triangle E$ arrociated with components of fz lieing in the iuterval $\left(\omega_{1}, \omega_{2}\right)$ is

$$
\begin{gathered}
\Delta E=\int_{\omega_{1}}^{\omega_{2}} s(\omega) d \omega \alpha \\
E=\int_{0}^{\infty} s(\omega) d \omega
\end{gathered}
$$

\rightarrow Find $F \tau$ \&f $e^{-2 t} u(t-1)$

$$
\begin{aligned}
& F\left[e^{-a t} u(t)\right]=\frac{1}{a+\rho \omega} \\
& F\left[e^{-2 t} u(t)\right]=\frac{1}{2+\rho \omega} \\
& F\left[e^{-2(t-1)} u(t-1)\right]=\frac{1}{2+\rho \omega} e^{-\rho \omega(1)} \\
& e^{2} F\left[e^{-2 z} u(t-1)\right]=\frac{e^{-j \omega}}{2+\rho \omega} \\
& F\left[e^{-2 t} u(t-1)\right]=\frac{e^{-(2+\rho \omega)}}{2+\rho \omega}
\end{aligned}
$$

\rightarrow Find

$$
\rightarrow f(t)=e^{-0.5 t}
$$

\rightarrow F.T coswot

$$
\left.\begin{array}{rl}
F\left[\cos \omega_{0} t\right] & =\int_{T \rightarrow \infty}^{L t} \int_{-\tau / 2}^{\alpha / 2} \cos \omega_{0} t e^{-j \omega t} d t \\
& =L_{T \rightarrow \infty} \int_{-\tau / 2}^{T / 2}\left\{\frac{\left(j \omega_{0} t\right.}{t e^{-j \omega_{0} t}}\right. \\
2
\end{array} e^{-j \omega t} d t\right]
$$

$$
\begin{aligned}
& t e^{-3 t} u(t) \\
& F\left[e^{-3 t} u(t)\right]=\frac{1}{3+j \omega} \\
& f(z) \longleftrightarrow F(\omega) \\
& -j t f(z) \longleftrightarrow \frac{d f}{d w} \\
& t f(t) \longleftrightarrow j \frac{d f}{d \omega} \\
& F\left[z e^{-3 t} u(t)\right]=j \frac{d}{d \omega}\left(\frac{1}{3+j \omega}\right) \\
& =\frac{-j}{(3+j \omega)^{2}}(\rho)=\frac{1}{(3+j \omega)^{2}} \\
& f(a t)=\frac{1}{|a|}+\left(\frac{\omega}{a}\right) \\
& F\left[e^{-0.5 t}\right] \longleftrightarrow \frac{1}{10.51} F\left(\frac{\omega}{0.5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{r} L_{T \rightarrow \infty}\left[\frac{\sin \left(\omega-\omega_{0}\right) r / 2}{\omega-\omega_{0}}+\frac{\sin \left(\omega+\omega_{0}\right) \tau / 2}{\omega+\omega_{0}}\right] \\
& =\pi \operatorname{Lt}_{T \rightarrow \infty}\left[\frac{2}{-\pi \pi} S a\left(\omega-\omega_{0}\right) \tau / 2+\frac{2}{2 \pi} \delta S_{a}\left(\omega+\omega_{0}\right) \tau / 2\right] \\
& =\pi \operatorname{Lt}_{T \rightarrow \infty}\left[\frac{K}{\pi} S_{a}\left(\omega-\omega_{0}\right) \tau / 2+\frac{k}{\pi} S a\left(\omega+\omega_{0}\right) \tau / 2\right] \\
& =\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
\end{aligned}
$$

$$
\rightarrow f(z)=t e^{-a t} u(z)
$$

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

$$
=\int_{-\infty}^{-\infty} t e^{-a t} u(t) e^{-j \omega t} d t
$$

$$
=\int_{0}^{-\infty} t e^{-(a+j \omega) t} d t
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} t e^{-(a+j \omega)} d t \\
& =t \int e^{-(a+\rho \omega) t} d t-\int \frac{(0) e^{-(a+j \omega) t}}{-(a+\rho \omega)} d t
\end{aligned}
$$

$$
=\left[t \frac{e^{-(a+\rho \omega) t}}{-(a+\rho \omega)}+\frac{e^{-(a-\rho \omega) t}}{-(a+\rho \omega)^{2}}\right]_{0}^{\infty}
$$

$$
F(\omega)=\frac{1}{(a+\rho \omega)^{2}}
$$

F-T propertion

1) linearity psoperty.

$$
\begin{aligned}
& \text { Ifax }(t)+(t) F^{T} a x(\omega)+b y(\omega) \\
& f(t)
\end{aligned}=a x(t)+b y(t) \quad \begin{aligned}
f(\omega) & =\int_{-\infty}^{\infty}[x(t)+b y(t)] e^{-j \omega t} d t \\
& =\left[a \int_{\infty}^{\infty} x(t) e^{-j \omega t}\right]+b \int_{-\infty}^{\infty} y(t) e^{-j \omega t} d L \\
& =a x(\omega)+b y(\omega)
\end{aligned}
$$

2) Tive slift property:

$$
\begin{aligned}
& x\left(z+z_{0}\right)=e^{-j a \omega_{0} t} d \partial x(j \omega) \\
& f\left(z-z_{0}\right)=\int_{-\infty}^{\infty} f\left(z-t_{0}\right) e^{-j n \omega_{0} t} d z
\end{aligned}
$$

put $t-z_{0}=p$

$$
\begin{aligned}
t & =p+t_{0} \\
f(p) & =\int_{-}^{\infty} f(p) e^{-j u \omega_{0}(p+20)} d t \\
& =\int_{-\infty}^{\infty} f(p) e^{-j n \omega_{0} p+e^{0} \omega_{i} \omega_{0} t} d t \\
& =F\left(\omega_{p}\right) e^{-j n \omega_{0} t}
\end{aligned}
$$

f_{q} sifting $F^{\prime}\left[x\left(\omega-\omega_{0}\right)\right]=x(t) e^{-1 \text { jj } \omega_{0} t}$

$$
\begin{aligned}
& f(1)=\frac{1}{2 T} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \\
&\left.=\frac{1}{2 T}-\infty-\omega_{0}\right) e^{j \omega t} d \omega \\
& \omega-\omega_{0}=P \quad j(P) e^{j(P}
\end{aligned}
$$

Lime seversal

$$
\begin{aligned}
x(-z) & \stackrel{F}{-T} x(-\omega) \\
r(f(-z) & =\int_{-\infty}^{\infty} f(-z) e^{+i \omega t} d z \\
& =F(-\omega)
\end{aligned}
$$

$\frac{\text { Lime scaling }}{}$

$$
\begin{aligned}
F[x(a t)] & =\frac{1}{a} \times\left(\frac{\omega}{a}\right) \\
x(a t) & =\int_{-\infty}^{\infty} f(a t) \cdot e^{-j \omega t} d t \\
a t & =P \\
t=P / a & =\int_{-}^{\infty} f(p) e^{-j \omega(p / a)} d t \\
& =\int_{-\infty}^{\infty} f(p) \cdot e^{-\frac{1}{a}}[j \omega p] \\
& =\frac{1}{a} \times\left(\frac{\omega}{a}\right)
\end{aligned}
$$

Convolution

$$
\begin{aligned}
f(t)=h(t) * & \begin{aligned}
h(t) * k(t) & =\int_{-\infty}^{\infty} h(t) * x(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} h(t) e^{j \omega t} k(t) e^{j \omega t} d t \\
& =H(\omega) \times(\omega)
\end{aligned}
\end{aligned}
$$

$\cos \leftrightarrow$
\rightarrow Convolution:

$$
f(t)=x(t) * y(t) \stackrel{F T}{\longrightarrow} F(\omega)=x(\omega) \cdot y(\omega)
$$

A convolution operation is Arawstonmed to modulates, in frequency domain.

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty}[x(t) * y(z)] e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) y(z-\tau) d \tau\right] e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(t-\tau) e^{-j \omega t} d t\right] d t
\end{aligned}
$$

put $z-\tau=\alpha$, then $z=\tau+\infty$

$$
\begin{aligned}
& \text { ut } z-\tau=\alpha \text {, then } t z=d \alpha \\
& F(\omega)=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{-} y(\alpha) e^{-j \omega(\tau+\alpha)} d \alpha \epsilon d \tau\right. \\
& F \int^{\infty}\left(y(\alpha) e^{-j \omega \tau} \cdot e^{-j \omega \alpha} d \alpha\right]
\end{aligned}
$$

$$
d t=d \alpha
$$

$$
\begin{aligned}
&=\int_{-\infty}^{\infty} x(\tau)\left[-\int_{-\infty}^{\infty} y(\alpha)\right. \\
&=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(\alpha) e^{-j \omega \tau} \cdot e^{-j \omega \alpha} d \alpha\right] d \tau \\
&-i \omega \tau \sim \int_{-\infty}^{\infty} y(\infty) e^{-j \omega \alpha} d \alpha
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(1) \\
& =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{-\infty}^{\infty} y(\alpha) e^{-j \omega \alpha} d \alpha
\end{aligned}
$$

$$
F(w 1 .)^{-\infty} x(\omega) \cdot y(\omega)
$$

\rightarrow Frequency differentiation:
If $x(t) \stackrel{\text { F. } T}{\longrightarrow} x(\omega)$, then

$$
-i t x(t) \stackrel{F \cdot T}{\stackrel{d}{d \omega} x(\omega)}
$$

Differentiating the $f q$ spectrum is equivalent to multiplying the time domain signal by complex number -it:
proof:

$$
\begin{aligned}
& x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& \begin{aligned}
\frac{d}{d \omega} x(\omega) & =\int_{-\infty}^{\infty} x(t) \frac{d}{d \omega}\left[e^{-j \omega t}\right] d t \\
& =\int_{-\infty}^{\infty} x(t)(-j t) e^{-j \omega t} d t \\
& =-j t \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
\frac{d}{d \omega} x(\omega) & =-j t x(\omega)
\end{aligned}
\end{aligned}
$$

\rightarrow Rime Differentiation:

$$
\begin{aligned}
& \text { If } x(t) \stackrel{F \cdot T}{T} \times(\omega) \text {, then } \\
& \frac{d}{d t} x(t) \stackrel{F \cdot T}{\longleftrightarrow} j \omega \times(\omega)
\end{aligned}
$$

Dit
Differentiation in time domain corresponds to cultirlying by jus is iq domain. It accentuates high frequency components of the sign proof:.

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega \\
& \begin{aligned}
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega)\left[\frac{d}{d t} e^{j \omega t}\right] d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) j \omega e^{j \omega t} d \omega \\
&
\end{aligned}
\end{aligned}
$$

\rightarrow Parsevah Theorem or Rayleigh's The orem: If $x(t) \stackrel{F T}{\longleftrightarrow} x(\omega)$, then

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega=\int_{-\infty}^{\infty}|x(f)|
$$

Energy of the signal can be obtained by interchanging its energy spectrum Proof:

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} x(t) \cdot x^{*}(z) d t=0
$$

Inverse F:T stater that

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega
$$

Taking conjugate of both sides

$$
x^{*}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) e^{-j \omega t} d \omega+
$$

subifitute $x^{*}(t)$ in eq (1)

$$
\begin{aligned}
\text { sfitute } x^{*}(t) \text { in eq } \\
\begin{aligned}
& E=\int_{-\infty}^{\infty} k(t)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) e^{-j \omega t}\right] d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) \cdot x(\omega) d \omega \\
& E\left.\left.=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \right\rvert\, x(\omega)\right)^{2} d \omega \\
& \omega=2 \pi f, d \omega=2 \pi d f \\
& E=\frac{1}{2 \pi} \int_{\infty}^{\infty}|x(\omega)|^{2} \not \approx d f=\int_{\infty}^{\infty}|x(\phi)|^{2} 0
\end{aligned}
\end{aligned}
$$

\rightarrow Introduction to Hilbert Cranform:
Hilbert transform of a signal $x(t)$ is defined as the transform in which share angle of all Compon--cents of the signal shifted by $\pm 90^{\circ}$.

Hilbert tramform of $x(z)$ is represented wish $\bar{x}(x)$, \& it is given by

$$
\begin{aligned}
& \text { is given by } \\
& \bar{x}(t)=\frac{1}{\pi} \int_{-}^{\infty} \frac{x(k)}{t-k} d k
\end{aligned}
$$

The inverse Hilbert transform is ginemby

$$
\hat{k}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(k)}{(t-k)} d k
$$

$x(t), \bar{x}(z)$ is called Hilbert trawsionm pair
Properties of hilbert Trans onm
A signal $x(t)$ and its Hilbert transforms $\bar{x}(t)$
have
i) The same amplitude spectrum
2) The some autocorrelation function
3) The energy spectral demit is same \& $\bar{x}(t)$
4) $x(t) \propto \bar{x}(t)$ are orthogonal
5) The Hibert transform of $\bar{x}(t)$ in $x(t)$
6) If fourier transforms exist then Hilbert transf alto exists for evergy α power signal.

Sampling Theorem:
A continous time signal cam be com.
pletely represented in its samples and recovered back if the sampling frequency is twice of the lighter frequency content of the signal. ic

$$
f_{s} \geqslant 2 w
$$

Where f_{s} is the sampling frequency
w is the higher $f q$ content.
\rightarrow roo of of sampling theorem are two parts: 1) Representation of $x(z)$ in terms of its samples
2) Reconstruction of $x(t)$ from its samples.
\rightarrow Reconstruction of signal from its sample step 1:. Take inverse. Fourier tramiforn of $x(t)$ which is in terms of $x_{\delta}(f)$.
2 . Show that $x(t)$ is obtained back with the help of interpolation function.

Step 1:
Relation between $x(f) \propto x_{\delta}(f)$
Let in assume $f_{s}=2 \omega$, then as per below

$$
\begin{align*}
x_{\delta}(f) & =f_{s} \times(f) \\
x(f) & =\frac{1}{f} \times \delta(f) \tag{1}
\end{align*}
$$

for $-w \leq f \leqslant w$

$$
f_{s}=2 \omega
$$

$$
\begin{align*}
& X(\omega)=\sum_{\text {www }}^{f \text { irstRanker.com }}=x(n) e \\
& x(f)=\sum_{n=-\infty}^{\infty} x(n) e^{-j z \pi f n} \tag{2}
\end{align*}
$$

In above equation ' f ' is the $f q$ of $D T$ signal. If we replace $x(f)$ by $x_{\delta}(f)$, then f becomes frequency of $C T$ signal.i.e,

$$
x_{\delta}(f)=\sum_{n=-\infty}^{\infty} k(n) e^{-j 2 \pi \frac{f}{F_{s}} n}
$$

In above equation f^{-}is frequency \& CT signal. And $\frac{f}{f_{s}}=f q$ of DT signal:

$$
\begin{align*}
& x(n)=x\left(n T_{s}\right) \\
& x_{\delta}(f)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{-92 \pi f_{n} T_{s}} \tag{3}
\end{align*}
$$

$$
\frac{1}{f_{s}}=T_{s}
$$

substitute above equation in eq (1)

$$
x(f)=\frac{1}{f_{s}} \sum_{n=\infty}^{\infty} x\left(n T_{s}\right) e^{-j 2 \pi f_{n} T_{s}}
$$

Inverse Fourier Trawform of above equation giver $x(z)$ ie,

$$
\begin{aligned}
& i \text { on giver } x(z) \text { ie, } \\
& x(z)=\text { IF T }\left\{\frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{\left.-j 2 \pi f_{n} T_{s}\right\}}\right. \\
& x(z)=\int_{-\infty}^{\infty}\left[\frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{\left.-j 2 \pi f_{n} T s\right] e^{j i 2 f t} d f}\right.
\end{aligned}
$$

Here the integration can be taken from $-\omega \leq f \leq \omega$. Since $x(f)=\frac{1}{f_{s}} x_{\delta}(f)$ for -w $\omega f \leq$

$$
\begin{gathered}
\leq f \leq \omega \cdot \text { since } x(f)=\frac{1}{f_{s}} \delta(f) \\
\left.\therefore x(t)=\int_{-\omega}^{\omega} \frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{-j 2 \pi f n T_{s}} \cdot e^{j 2 \pi f^{\prime}} d f \right\rvert\,
\end{gathered}
$$

FirstRakakgriconthe order of summation os Firstranker's choir σ www.FirstRanker.com www.FirstRanker.com integration.

$$
\begin{aligned}
& x(t)=\sum_{n=\infty}^{\infty} x\left(n T_{s}\right) \frac{1}{f_{s}} \int_{-\infty}^{\omega} e^{\rho 2 \pi f\left(t-n T_{s}\right)} d f \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}} \cdot\left[\frac{e^{j 2 \pi f\left(t-n T_{s}\right)}}{j 2 \pi\left(t-n T_{s}\right)}\right]_{-\omega}^{\omega} \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}}\left[\frac{e^{\left.j 2 \pi \omega\left(t-n T_{s}\right)-e^{-j 2 \pi \omega(1 / s)} n \pi s\right)}}{02 \pi\left(t-n T_{s}\right)}\right] \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}} \frac{\sin 2 \pi \omega\left(t-n T_{s}\right)}{\pi\left(t-n T_{s}\right)} \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \frac{\sin \pi\left(2 \omega t-2 \omega_{n} T_{s}\right)}{\pi\left(f_{s} t-f_{s} n T_{s}\right)}
\end{aligned}
$$

Here $f_{s}=2 \omega$, hence $T_{s}=\frac{1}{f_{s}}=\frac{1}{2 \omega}$
simplifying above equation,

$$
\begin{array}{r}
x(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \frac{\sin \pi(2 \omega t-n)}{\pi(2 \omega t-n)} \\
x(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \sin c(2 \omega t-n) \\
\\
\quad \frac{\sin \pi \theta}{\pi \theta}=\operatorname{sinc} \theta
\end{array}
$$

step 2: Let us interpret the above equation.
Expounding we get,

$$
\begin{aligned}
& \text { Expounding we get, } \\
& x(t)=\cdots+x\left(-2 T_{s}\right) \sin c(2 \omega t+2)+x\left(-T_{s}\right) \\
& \sin c(2 \omega t+1)+x(0) \sin (2 \omega t)+x\left(T_{s}\right) \\
& \sin (2 \omega t-1)+
\end{aligned}
$$

Firstrymet scifote and analytical pro of for Bond Bw.Firstignker.com limited signal:

1) A band limited signal of finite energy, which has no fq_{q} components higher than w Hertz, is completely described by specify. -ing the values of the signal at instants of tine seperated by $\frac{1}{2 \omega}$ seconds and 2) A band limited signal of finite energy. which has no frequency components higher than Wtertr, may be completely recovered from the knowledge of its samples taken at the rate of nw samples per second

The first part of above statement tells about sampling of the signal and $2^{n d}$ pant tells about reconstruction of the signal. Above statement cam be combined stated alternately as follows.
see the fist page.
part I: Representation of $k(t)$ in its sample $x\left(n T_{s}\right)$
Step 1 : Define $k_{\delta}(t)$
2: Fourier transform of $x_{\delta}(t)$ i.e $x_{\delta}(f)$
3 : Relation between $x(f) \& x_{\delta}(f)$
4. Relation between $x(t) \propto x\left(n T_{s}\right)$
step 1: Define $x \delta(t)$
Step 2: Fourier trawntorm of $x_{\delta}(t)$ ie $x_{\delta}(f)$.

- FirstRankerncDetlueen $x(f)$ \& $x_{\delta}(f)$

step', Define $k_{\delta}(t)$
The sampled signal $x_{\delta}(t)$ in given an

$$
\begin{equation*}
x_{\delta}(z)=\sum_{n=-\infty}^{\infty} x(t) \delta\left(z-n T_{s}\right) \tag{1}
\end{equation*}
$$

Here observe that $x \delta(t)$ is the prods of $x \delta$ and impulse train $\delta(z)$ as shown in $\operatorname{fig}(a)$

$f i g(a)$
$\delta(t-n T s)$ indicates the
In equation (1), $\delta(t-n T s)$ indicates and samples placed at $\pm T_{S}, \pm 2 T_{S}, \pm 3 T_{S}$ and so on.
step 2: FT of $x_{\delta}(t)$ ie $\times \delta(f)$
Taking $F \cdot T$ of eq (1)

$$
\begin{aligned}
& \text { King } F=T \text { or } \\
& x \delta(f)=F T\left\{\sum_{n=-\infty}^{\infty} x(t) \delta\left(A-n T_{s}\right)\right\} \\
&=F T\{\text { product \&f } x(t) \text { simpuh } \\
&\text { train }\}
\end{aligned}
$$ domain becomes convolution in ${ }^{\text {www.FirstRanker.com }}$, domain ie,

$$
x_{\delta}(f)=F \cdot T\left\{x(z) * F T\left\{\delta\left(t-n T_{s}\right)\right\}\right.
$$

By definitions, $x(t) \stackrel{F-T}{\xrightarrow[T]{T}} x(f)$ Q

$$
\delta\left(z-n T_{s}\right) \stackrel{F}{\longrightarrow} f_{s} \sum_{n=-\infty}^{\infty} \delta\left(f-n f_{s}\right)
$$

\because eq (2) becomes

$$
x_{\delta}(f)=x(f) * f_{s} \sum_{n=-\infty}^{\infty} \delta_{\left(f-i f_{s}\right)}
$$

\because convolution is linear,

$$
\begin{aligned}
x \delta(f)= & f_{s} \sum_{n=-\infty}^{\infty} x(f) * \delta\left(f-n f_{s}\right) \\
= & f_{s} \sum_{n-\infty}^{\infty} \times\left(f-n f_{s}\right) \\
= & \cdot, f_{s} \times\left(f-2 f_{s}\right)+f_{s} \times\left(f-f_{s}\right)+ \\
& f_{s} \times(f)+f_{s} \times\left(f-f_{s}\right)+f_{s}\left(f-f_{s},\right.
\end{aligned}
$$

\rightarrow Sampling techniques:
Here, We have different types of sampling the signal.
Ideal sampling (or) Instantaneous sampling (or) Impute sampling:

Ideal sampling is same or infant-- aneous sampling. In fig(1) shows the

FirstBlankeercophan
firstankers

fig (b)
If closing time ' t ' of the switch approaches zero the output $x_{\delta}(t)$ gives only instantaneous value. The waveform shown in $\mathrm{Fig}(b)$. Since the width of the pule approaches zero, the instantaneous sampling gives train of impulses in $\times \delta(t)$. The area I each impute in the sampled version is equal to instantaneous value \& inst signal $x(t)$.

We know that the train of imputsercan be represented mathematically a,

$$
\begin{equation*}
s_{\delta}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \tag{i}
\end{equation*}
$$

This in called sampling function and its waveform is shown in fig (a). The sampled signal $x_{\delta}(t)$ is given by multiplication of $x(d)$ and $s \delta(t)$.

$$
\begin{align*}
&(d) \text { and } s \delta(t) \\
& \because x \delta(t)=x(t) s_{\delta}(t)=x(t) \sum_{n=-\infty}^{\infty} \delta\left(z-n T_{s}\right) \tag{2}\\
&=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)-(2)
\end{align*}
$$

Firsthanker.com
the ideally sampled
www.FirstRanker.com www.FirstRanker.cognal given by above eq cam be written a
spectrum of ideally sampled signal

$$
\therefore x_{\delta}(f)=f_{s} \sum_{n=-\infty}^{\infty} x\left(f-n f_{s}\right)
$$

\rightarrow Natural sampling (or) chopper sampling
In intantancous sampling, we have seen that the sampler whose width r approd zero. Because of this impracticable method the power in the instant aneourly sampled pubs is negligible hence it is not suitable for tramnixion. Therefore the possible methods like natural sampling os flat top souping are ured.

In natural sampling, the pale has a Finite width τ. The waveform of the sampled signal appears to be chopped off from the original signal waveform.

Let us comider an analog coubinows time signal $x(t)$ to be sampled at the rate of $f_{S} H_{z}$ and f_{S} is the higher than Ngquist sate such that sampling theorem in Satisted. A sampled signal $s(t)$ is obtained by runt -plication of the sampling function a signal

EirstiRankefralph ct) es a train of periodic Firstranker's.choice pubes of cuidthwnw. Firstifinkef.com que ne ww. FirstRanker.com fo Hz .

fig 1

$f \circ g(2)$
Fig (i) shows a functional diagram of natural sampler. When $c(t)$ goes high; a switch 's' is closed. Therefore, $s(t)=x(t) \quad$ when $(t)=A$ camplitude of $c(t)$) $s(t)=0 \quad$ when $c(t)=0$
signal $s(t)$ can ado be defined mathe-- matically as $s(t)=c(t) \times(t)$

Here $c(t)$ is the periodic train of pules of width $\tau \propto r_{q} f_{s}$.

Exponential F.S for periodic waveform b given as

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n t / T_{0}} \tag{2}
\end{equation*}
$$

For the periodic pulse train of $c(t)$ we have, $T_{0}=T_{s} \frac{1}{\text { wnw her Firstanker.com }}$
or (2) will be [with $x(t)=c(t)$]

$$
c(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{92 \pi f_{s} n t}
$$

putting $\frac{1}{T_{0}}=f_{5}$
$c(t)$ in a rectangular pule train. e_{n} for this waveforms of given as

$$
c_{n}=\frac{T_{A}}{T_{0}} \sin c\left(T_{n} T\right)
$$

Here $T^{\prime}=$ puli width $=\tau$

$$
\begin{align*}
f_{n} & =\text { Harmonic } f q \\
f_{n} & =n r_{s} \text { or }, f_{n}=\frac{n}{T_{0}}=n f_{0} \\
\therefore c_{n} & =\frac{r A}{T_{s}} \operatorname{sinc}\left(f_{n} \tau\right) \tag{4}
\end{align*}
$$

substitute' c_{n} value in eq (3)

$$
c(t)=\sum_{n=-\infty}^{\infty} \frac{r A}{T_{s}} \operatorname{sinc}\left(f_{n} \tau\right) e^{j 2 \pi f_{s} n t}
$$

on putting the value if $a(z)$ in

$$
\begin{aligned}
& s(t)=c(t) \times(t) \\
& s(t)=\frac{\tau A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin c\left(f_{n} r\right) e^{j 2 \pi f_{s} r t} \cdot x(t) \\
& \text { naturally sample }
\end{aligned}
$$

This equation represents naturally sampled signal.

$$
F \cdot T \text { of } s(t)
$$

fe shifting property of $F \cdot T$, that

$$
\begin{aligned}
& e^{\rho 2 \pi f_{s n z}} \times(z) \longleftrightarrow x\left(f-f_{s} n\right) \\
& s(f)=\frac{\tau A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin \left(\left(f_{n} \tau\right)\right. \\
& \times\left(f-f_{s} n\right)
\end{aligned}
$$

we know that $S_{n}=n f_{s}$
spectrum of naturally sampled signal

$$
s(F)=\frac{\gamma A}{T s} \sum_{n=-\infty}^{\infty} \sin c\left(n f_{s}^{T}\right) \times\left(f-n_{n}^{2}\right.
$$

\rightarrow Flat to p sampling (er) Rectangular pulse sampling:

Natural sampling is little complex, but it is very easy to get flat top sample. The top of the samples semiains conrad and equal to instantaneous value of bare bound signal $x(t)$ at the start of the sampling. The duration of each sample is \mathcal{I} and sampling rate is equal to $f_{S}=\frac{1}{\tau_{s}}$.

FirstRanker.com
Firsuankfiesogtaides the couple and hold circuit.: used for generating fl to P www. FirstRanker.com waveform shown in fig (2)

The switch s, closes at each sampling instant to sample the modulating signal. The capacitor ' c ' holds the sampled voltage for period τ at the end of whichitch s_{e} is closed in order to dixharge the capacitor.

Thur the signal generated ar a result of sample a hold process is the flat top sampled signal. The spectrum of the gere. -rated flat top sampling signal along with the modulating signal and the sampling signal is shown below fog (2) x li

\Leftrightarrow flat top sampling

FISStRanker.com
Firfritubtr'sthope sampling in mostly wed in digital tram].

Flat top sampling ${ }^{(1+}$ (an be mathematically considered as convolution of the sampled signal and pulse signal $h(E)$.

$$
\begin{align*}
\because & s(t)=x_{\delta}(t) * h(z) \tag{1}\\
& x(t) * \delta(t)=x(t) \tag{2}
\end{align*}
$$

Convolution of $x \delta(t) \propto h(z)$, we get a pulse whose duration is equal to $h(t)$ only but amplitude is defined by $x \delta(t)$.
$x \delta(t)$ is given as

$$
\begin{equation*}
x \delta(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \quad \delta\left(z-n T_{s}\right) \tag{3}
\end{equation*}
$$

From eq (1)

$$
\begin{align*}
s(t) & =x \delta(t) * h(t) \\
& =\int_{-\infty}^{\infty} x \delta(u) h(t-u) d u \\
& =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \delta\left(u-n T_{s}\right) h(t-u) d u \\
& \text { from eq (3) } \\
& \left.\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \int_{-\infty}^{\infty} \delta\left(u-n T_{s}\right) h(t-u) d u-\right\} \tag{2}
\end{align*}
$$

From the shifting property of delta function we know that,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(z) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \tag{5}
\end{equation*}
$$

FirstRanker.fom
 www.FirstRănkeg.Com

$$
\begin{align*}
& a s(t)=\sum_{n=\infty}^{\infty} x\left(n T_{s}\right) h\left(t-n \tau_{s}\right) \tag{6}\\
& s(t)=x_{s}(t) * h(t)
\end{align*}
$$

By taking $F . T$ of both sides

$$
s(f)=x_{\delta}(f) H(f)
$$

convolution in time domain is connetret to multiplication in $f q$ domain.

$$
\begin{equation*}
x_{\delta}(f)=f_{s} \sum_{n=-\infty}^{\alpha} x\left(f-n f_{s}\right) \tag{-8}
\end{equation*}
$$

eq .(2) become
spectrum of flat top sampled signal

$$
s(f)=f_{S} \sum_{n=-\infty}^{\infty} x\left(f-n f_{s}\right)+(f)
$$

\rightarrow Effects of under sampling (Alioning):
When comidering the recontanction of a signal. you should already be familiar with the idea of nyquist rate. Thin concent allows us to find the sampling rate that will provide for perfect reconstruction of our signal. If we sample at too low of a rate (below the Nyquist rate), then problem will arise that will make

FirstRankeranmateon impossince. The problem is Renown as alluww.EirstRanker.com www.FirstRanker.com

Aliasing occurs when there is an overlap in the shitted, periodic copies of our original siguah F.T.ie, spectrum.

In f_{q} domain, that part b o the signal will overlap with the periodic signals. next to it. In this overlap the values of the $f q$ will be added. together and the shape of the signals spectrum all be unwantingly allered. This overlapping, or alianing, maker it impossible to core. -ctly, determine the correct strength of that $f \varepsilon$.

Aliasing: When the high $f \varepsilon$ interferes with low $f_{\varepsilon} x$ appears as low f_{ε}, then the phenomenon is called alioning.

FirstRanker.dcomg
Firstander's choice
www.FirstRanker.com
i) Since high a low if
other, distortion is generated
2) The data is tod and it cannot be secern. *.afferent way to avoid dosing
Attorning can be avoided by two method,

1) Sampling rale $f_{S} \geqslant 2 \omega$
2) strictly band hemin the signal, to w.
3) Sampling rate is $\geqslant 2 L$

When the sampling rale is mode higher than 2ω, then the spectrum will not onelop \& there will be sufficient gap blu the individual spect-sumn,

2) Bandhaviting the signal:

The sampling rate is $f_{5}=2 w$. The ideally speaking there should be no aliaing. But there can be few components higher than 2 21. There components create alianing. Hence a LPF is wed before sampling the Seguah. Thun the op of Band haritcel 2 PF

EirstpRankerleghar than LS. Then there is

\rightarrow Nyquist Rate os Nyquist Juterval
Nyquist Rate:
When the sampling rate becomes exactly equal to 2 h samples/ sec, for a given bandwidth of $W \mathrm{~Hz}$, then it is called Nyquint rate.

$$
\text { Nyquist rate }=2 \omega \mathrm{HZ} \text {. }
$$

Nyquil interval: It is the time interval between any two adjacent samples aten sampling rale is Nyqistrate.

$$
\text { Ny quirt Interval }=\frac{1}{2 L W} \text { seconds. }
$$ $\xlongequal{\text { SIGNAL TRANSMISSION FirstRanker.com IHROUGH LINEAR SWW.FirstRanke }}$

System: A system is defined as set of rules that associates an $0 / p$ time function to every isp time function.
(O°)
A system is an interconnection of elements which produces expected $0 / p$ for available i / p.

\rightarrow System is an mathematical operator which maps isp into $\% / p$ classification of system.

1. Static \& Dynamic systems
2. Linear \& Non-Linear
3. Time invariant \& Time variant
4. Linear T\& LTIV
5. Stable system
6. casual Δ non-causal systems.
(i) continuous time systems
\rightarrow A continuous time system operates on a continuous time isp signal to produce a continuous time opsignal

(ii) Discrete time systems: produce a discrete time woupverigst Banker.com

classifications:

(i) Static and Dynamic Systems:
\rightarrow A static system or system is said to be static if its $\% / p$ at any instant depends only on present values of i / p.

$$
\begin{aligned}
\text { Ex: } y(t)=a x(t) & \text { (ii) } y(t)=a^{2} x(t) \\
\text { at } t=0 \quad y(0)=a x(0) & \text { at } t=0 \quad y(0)=a^{2} x(0) \\
\text { at } t=1 \quad y(1)=a x(1) & \text { at } t=1 \quad y(1)=a^{2} x(1)
\end{aligned}
$$

\rightarrow A system is said to be dynamic if its $0 / p$ depends on present \& past values of i / p.

$$
E_{x}: y(t)=x(t-1)+x(t-2)+x(t)
$$

at $t=2$

$$
y(2)=x(2-1)+x(2-2)+x(2)=\underset{\sim}{\left.L_{1}\right)+x(0)+x(2)}
$$

(ii) Linear and Non Linear Systems:
\rightarrow A system is said to be linear if its satisfies the superposition, principle.
\rightarrow It states that the response of the system to a weighted sum of signals be equal to the corresponding weighted sum of $\% / p$'s of the system to each of the individual isp signal.

$$
H\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} H\left[f_{1}(t)\right]+a_{2} H\left[f_{2}(t)\right]
$$

where a_{1}, a_{2} are weighted constants.

$$
\begin{aligned}
& a_{1} f_{1}(t) \xrightarrow{\text { Response }} a_{1} H\left[f_{1}(t)\right] \\
& a_{2} f_{2}(t) \xrightarrow{\text { Response }} a_{2} H\left[f_{2}(t)\right]
\end{aligned}
$$

Block diagram.
\rightarrow Any system which does not obey the above principle is called as non-linear systems.
check for Linearity:
Procedure:

1. Apply different isp's separately and get the $\% / p$.
d: Apply different isp's simultaneously and get the output.
2. If both outputs are same it is linear otherwise non-linear.

Ex:
(i) $y(t)=4 \sin t x(t)$

Step 1: $y_{1}(t)=4 \sin t x_{1}(t)$

$$
\begin{aligned}
& y_{2}(t)=4 \sin t x_{2}(t) \\
& y_{1}(t)+y_{2}(t)=4 \sin t\left[x_{1}(t)+x_{2}(t)\right]
\end{aligned}
$$

Step 2: $y(t)=4 \sin t\left[x_{1}(t)+x_{2}(t)\right]$

Sol $s_{1}: y_{1}(t)=a x_{1}(t)$

$$
y_{2}(t)=a x_{2}(t)
$$

$y(t)=a x_{1}(t)+a x_{2}(t)$

$$
y(t)=x_{1}^{2}(t)+x_{2}^{2}(t)
$$

$$
y(t)=a\left[x_{1}(t)+x_{2}(t)\right]
$$

S2: $y(t)=a\left[x_{1}(t)+x_{2}(t)\right]$

$$
s_{1}=s_{2} . \text { (Linear) }
$$

$$
\begin{gathered}
\text { Sol s1: } y_{1}(t)=e^{x_{1}(t)} \\
y_{2}(t)=e^{x_{2}(t)} \\
y(t)=e^{x_{1}(t)}+e^{x_{2}(t)} \\
\rho_{y(t)}^{y}=e^{\left[x_{1}(t)+x_{2}(t)\right]} \\
s 2: e^{x_{1}(t)} e^{x_{2}(t)} \\
s_{1} \neq s_{2} \text { (Non-Linear) }
\end{gathered}
$$

$$
\text { Sol si: } \begin{aligned}
y_{1}(t) & =x_{1}^{2}(t) \\
y_{2}(t) & =x_{2}^{2}(t)
\end{aligned}
$$

S2: $y(t)=\left[x_{1}(t)+x_{2}(t)\right]^{2} \rightarrow$
$S_{1} \neq S_{2}$. (Non-Linear)

$$
\text { (4) } y(t)=e^{x(t)}
$$

(5) $y(t)=t x(t)$
(11) $y(t)=x\left(t^{2}\right)$

Sol $y_{1}(t)=t x_{1}(t)$
sl:

$$
y_{2}(t)=t x_{2}(t)
$$

$$
\left.y(t)=t\left[x_{1}(t)+x_{2}(t)\right] \quad \text { si: } y(t)=x_{1}\left(t^{2}\right)+x x_{1}\right)
$$

s_{2} :

$$
y(t)=t\left[x_{1}(t)+x_{2}(t)\right] \quad \begin{aligned}
& S_{2}=S_{2} \\
& \text { (Lumier }
\end{aligned}
$$

$$
S_{1}=S_{2}(\text { Linear })
$$

(7) $y(t)=3 x(t+3)$ (62) $y(V)=A x(t)+B$

Sod S1: $y_{1}(t)=3 x_{1}(t+3) \stackrel{\text { Sol }}{=} \quad \begin{array}{ll}y_{1}(t)=A x_{1}(t)+B \\ & y_{2}(t)=A x_{2}(t)+B\end{array}$

$$
y_{2}(t)=3 x_{2}(t+3)
$$

$y(t)=3\left[x_{1}(t+3)+x_{2}(t+3)\right]$

(9) $y(t)=\cos [x(t)]$

Sol si: $y_{1}(t)=\cos \left[x_{1}(t)\right] ; y_{2}(t)=\cos \left[x_{2}(t)\right]$ $y(t)=\cos \left[x_{1}(t)\right]+\cos \left[x_{2}(t)\right]$
S2: $\cos \left[x_{1}(t)+x_{2}(t)\right]$

$$
S_{1} \neq S_{2} \quad \text { (Non-Linear) }
$$

(10) $y(t)=k \Delta x(t)$ where $\Delta x(t)=[x(t+1)-x(t)]$

Sol SI: $y_{1}(t)=k\left[x_{1}(t+1)-x_{1}(t)\right] ; y_{2}(t)=k \Delta x_{2}(t)$
$y(t)=\left[x_{1}(t+1)-x_{1}(t)+x_{2}(t+1)-x_{2}(t)\right] \cdot k$
s2: y $y(t)=k\left[x_{1}(t+1)-x_{1}(t)+x_{2}(t+1)-x_{2}(t)\right]$
anker.com $=s_{2}$ (Liniar)
\rightarrow A system is said to be time invariant if the system does not depend on time i.e system delay is not function of time. Ex:

$\rightarrow A$ time shift to in the input results in the same amount of tine shift in the o/p but the waveshape does not change.
i.e the i / p and/ to $\% / p$ characteristics does not change with time.
\rightarrow Any slfstem which doesnot obey the above principle is called as time varying system.
\rightarrow An electrical system is said to be time invariant if its component values (R, L, C) does not change with time.
check for time Invariant:

1. Shift the i / p only and get the o / p.
2. Shift the enterie system and get the $0 / p$.
3. If both steps are identical for $0 / p$ then it is time invariant system.

Ex!
(1) $y(t)=4 x(t)$
$\left.\begin{array}{r}\text { Sol } s_{1}: y(t)=4 x(t-1) \\ s_{2}: y(t-1)=4 x(t-1)\end{array}\right] \rightarrow \begin{aligned} & s_{1}=s_{2} \\ & (T I V)\end{aligned}$
(2) $y(t)=4 t x(t)$
sol S1: $y(t)=4 t x(t-1)$ $\left.s_{2}: y(t-1)=4(t-1)(z(t-1))\right] \rightarrow \begin{gathered}S_{1} \neq S_{2} \\ (T V)\end{gathered}$
(3) $y(t)=a x(t)$
$\left.\begin{array}{r}\text { Sol } s_{1}: y(t)=a x(t-1) \\ s_{2} y(t-1)=a x(t-1)\end{array}\right] \rightarrow \begin{aligned} & s_{1}=s_{2} \\ & (T 1 V)\end{aligned}$

$$
\begin{aligned}
& \text { (4) } y(t)=a x(t)+b \\
& \text { sol } \left.\begin{array}{rl}
s_{1}: y(t) & =a x(t-1)+b \\
s_{2}: y(t-1) & =a x(t-1)+b
\end{array}\right] \begin{array}{c}
s_{1}=s_{2} \\
(T W)
\end{array}
\end{aligned}
$$

(5) $y(t)=5 t[x(t)]^{2}$
sol $s_{1}: y(t)=5 t[x(t-1)]^{2}$
$\left.s_{2}: y(t-1)=5(t-1)[x(t-1)]^{2}\right]-s_{1} \neq s_{2}$
(Tv)
(6) $y(t)=x(t+1) e^{-t}$

Sol si: $y(t)=x(t+1-1) e^{-t}=x(t) e^{-t}$
s2: $y(t-1)=x(t+1-1) e^{-(t-1)}$

FirstRanker.com

Firstranker's choice

$y(t)=x(t+3)$

$$
\text { Sol } \begin{aligned}
s_{1:} y(t) & =x(t+3-1) \\
s_{2}: y(t-1) & =x(t+3-1)-S_{1}=s_{2} \\
& =x(t+2) \quad \text { (TIV) }
\end{aligned}
$$

Sol si: $y(t)=x^{2}(t-1)$
$S_{2}: y(t-1)=x^{2}(t-1)$
$\therefore S_{1}=S_{2}(T I V)$

Sol si: $y(t)=e^{x(t+1)}$
$s_{2}: y(t-1)=e^{x(t-1)}$ $S_{1}=S_{2}$ (TIV)

Linear Time Invariant System (LTI):
\rightarrow Any system which obeys the linearity and time in variant property is called as LTI system.

Linear Time Variant System (LTV):

\rightarrow Any system which obeys the linearity and does not obey time invariant property is called LTV system.

$$
\begin{equation*}
\text { Ex: } y(t)=a x(t) \tag{5}
\end{equation*}
$$

Linearity: $y_{1}(t)=a x_{1}(t) ; y_{2}(t)=a x_{2}(t)$

$$
\begin{aligned}
y(t) & =a x_{1}(t)+a x_{2}(t) \\
y(t) & =a\left[x_{1}(t)+x_{2}(t)\right] \\
s_{2}: y(t) & =a\left[x_{1}(t)+x_{2}(t)\right] . \\
\therefore s_{1} & =s_{2} .
\end{aligned}
$$

T. I:

$$
n^{\text {T. } I: ~} y(t)=a x(t)
$$

$$
\left.\begin{array}{l}
s_{1}: y(t)=a x(t-1) \\
s_{2}: y(t-1)=a x(t-1)
\end{array}\right] \rightarrow s_{1}=s_{2}(T \mid v)
$$

\therefore It is a linear tome invariant system (LTI)
$11^{24}:$
(2) $y(t)=t x(t) \rightarrow L T \boldsymbol{Y}$
(3) $y(t)=a x(t)+b \rightarrow N L T_{ \pm}$
(4) $y(t)=a x^{2}(t) \rightarrow N L T T$
(5) $y(t)=e^{x(t)}$

$$
\rightarrow N L T I
$$

(6) $y(t)=x\left(t-t_{0}\right) \rightarrow L T I$
\rightarrow System is absolutely integrable

$$
\int_{-\infty}^{\infty}|f(t)| d t<\infty
$$

Causal And Non Causal Systems:
$\rightarrow A$ system is said to we causal if $0 / p y\left(t_{0}\right)$ depends only on the values of $i / p x(t)$ at $t<t_{0} \quad\{$ present, i / p, past $i / p s$, past $0 / p s\}\{x(t)=0$, for $t<0$

$$
\text { Ex: } \begin{aligned}
y(t) & =4 x(t-1) \\
y(2) & =4 x(2-1) \Rightarrow 4 x(2) \\
y(t) & =4 x(t-1)+x(t) \\
y(2) & =4 x(1)+x(2)
\end{aligned}
$$

\rightarrow A system is said to be non-causal if the $\%$ depends on future values of isp ie future $i / p s q 0 / p s$.

Ex: $\quad y(t)=4 x(t+1)$

$$
y(2)=4 x(3)
$$

Examples whether it is causal \& Non Causal:
(i) $y(t)=k[x(t+1)-x(t)]$

$$
y(0)=k[x(1)-x(0)] \rightarrow \text { Noncausal }
$$

(2) $y(t)=3 x(t+3)$

$$
y(0)=3 x(3) \longrightarrow \text { Non causal }
$$

(3) $y(t)=(t+3) x(t-3)$

$$
\begin{aligned}
y(0) & =(0+3) x(0-3) \\
& =3 x(-3) \rightarrow \text { causal }
\end{aligned}
$$

(6) $y(t)=x(2 t) \rightarrow$ Non causal
(7) $y(t)=x(t)-x(t-1) \rightarrow$ causal
(8) $\begin{aligned} y(t) & =x(t)+\int_{0}^{t} x(\lambda) d \lambda \\ & =x(t)+z(\lambda)]_{0}^{t} \Rightarrow\end{aligned}$

At $t=0, t=1, t=2$
CausatirstRanker.com
(4) $y(t)=x(t)+3 x(t+4)$ when t $=0, y(0)=x(0)+3 x(4)$
when $t=1, y(1)=x(0)+3 x(5)$
So here response at $t=0, \underline{4}(0)$
depends on the present $1 / p$ \& future isp
here system is noncausal.
(5) $y(t)=x\left(t^{2}\right)$
$t=-1, y(-1)=x(1) \rightarrow$ future
$\because t=0, y(0)=x(0) \rightarrow$ present
$t=1, y(0)=x(1) \rightarrow$ present
$t=2, y(2)=x(4) \rightarrow$ futive

The response of a system for an impulse isp is called a impulse response of the system and it is denoted by $h(t)$

$$
\delta(t) \longrightarrow h(t)
$$

\rightarrow Every system is characterised by its impulse response.

$$
i / p \underset{f(t)}{\longrightarrow} \quad h(t) \quad 0 / p
$$

Response of a System for an arbitary isp:
Response of $\delta(t) \rightarrow h(t)$

$$
\begin{aligned}
& \delta\left(t-t_{0}\right) \rightarrow h\left(t-t_{0}\right) \\
& \delta(t)+\delta\left(t-t_{0}\right)=h(t)+h\left(t-t_{0}\right)
\end{aligned}
$$

The response of a system for a given $i / p f(t)$ is determined by using. superposition principle.
step 1: Resolve the i / p function interns of impulse functions.
step 2: Determine individually the response of LTI system for impulse function. step 3: Find the sum of individual responses which will become the overall response $r(t)$.

Representation of a function $f(t)$ in terms of an impulse function: Here the Junction $f(t)$ is a impulse train function.

The rectangular of width $\Delta t \&$ height $f(n \Delta t)$ and area under the rectangles is $\Delta t \cdot f(n \Delta t)$ and this $n^{\text {th }}$ element approached a delta function of strength $f(n \Delta t) \Delta t$ located at $t=n \Delta t$. and this delta function is represented as $f(n \Delta t) \Delta t \delta(t-n \Delta t)$

$$
f(t)=L_{\Delta t \rightarrow 0} \sum_{n=-\infty}^{\infty} f(n \Delta t) \cdot \Delta t \cdot \sigma(t-\Delta t) .
$$

As $n t \rightarrow 0$, the $n^{\text {th }}$ element may we considered.
2) Determination of $r(t)$ for the input $f(t)$:

Let $h(t)$ be the impulse response of the system.

$$
\delta(t) \longrightarrow \text { system } \longrightarrow h(t)
$$

then $\delta(t) \rightarrow h(t)$

$$
\delta(t-n \Delta t) \longrightarrow h(t-A \Delta t)
$$

$f(n \Delta t) \delta(t-n \Delta t) \longrightarrow f(n \Delta t) \cdot h(t-n \Delta t)$

$$
f(n \Delta t) \cdot \Delta t \delta(t-n \Delta t) \rightarrow f(n \Delta t) \cdot \Delta t h(t-n \Delta t)
$$

e $\quad \operatorname{Lt}_{\Delta t \rightarrow 0} \sum_{n=-\infty}^{\infty} f(n \Delta t) \cdot \Delta t \delta(t-n \Delta t) \longrightarrow \Delta t \rightarrow 0 \sum_{n=-\infty}^{\infty} f(n \Delta t) \cdot \Delta t h(t-n \Delta t)$

$$
\begin{gathered}
f(t) \longrightarrow \text { system } \longrightarrow r(t) \\
r(t)=L t \sum_{\Delta t \rightarrow 0}^{\infty} f(n \Delta t) \cdot \Delta t h(t-n \Delta t)
\end{gathered}
$$

$\Delta t \rightarrow 0$ means summation becomes integration.

$$
\begin{aligned}
& r(t)=\int_{-\infty}^{\infty} f(\gamma) \cdot h(t-\tau) d \gamma \\
& r(t-)=f(t) \otimes h(t)
\end{aligned}
$$

 then response to any other function
\rightarrow An unit impulse function is called as a Test function and it is used to characterise a system.

$$
r(t)=f(t) \otimes h(t)
$$

In frequency domain $\begin{aligned} & v(t) \stackrel{F T}{\longleftrightarrow} R(w) \\ & f(t) \stackrel{F T}{\longleftrightarrow} F(w) \\ & h(t) \stackrel{F T}{\longleftrightarrow} H(w)\end{aligned}$

$$
\begin{aligned}
& \text { Using convolution property } \\
& \qquad \begin{array}{r}
f(t) \otimes h(t)=F(\omega) \\
R(\omega)=F(\omega) \cdot H(\omega)
\end{array}
\end{aligned}
$$

$$
H(w)=\frac{R(w)}{F(w)}
$$

\rightarrow When $F(\omega)=1$; i.e isp is unit impulse $H(\omega)=R(\dot{\omega})$
\rightarrow Transfer function $H(\omega)$ of a system is defined as the transform of the response of a system where the i/p is unit urtpulse function.

$$
\begin{gathered}
H(\omega)=|H(\omega)| e^{j \theta(\omega)} \text { phase response of the system. } \\
\qquad \text { Amplitude response } \\
\text { of the system. }
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Ln}[H(\omega)]= & \operatorname{Ln}[|H(\omega)|]+j \theta(\omega) \\
& =L(\omega)+j \theta(\omega) \\
& \begin{array}{c}
\text { Gain of the } \\
\text { system }
\end{array} \text { phase shift introduced by }
\end{aligned}
$$

system.
Note: An impulse function contains all frequencies in equal amount so we can use it as a test function.

$$
\ell^{H(\omega)=\frac{R(\omega)}{F(\omega)} \rightarrow \text { Transfer in of LTI system. }}
$$

$$
\begin{aligned}
& =\frac{1}{\pi\left(t-t_{0}\right)}\left[\frac{e^{j 2 \pi B\left(t-t_{0}\right)}-e^{-j 2 \pi B\left(t-t_{0}\right)}}{2 j}\right] \\
& =\frac{1}{\pi\left(t-t_{0}\right)} \sin \left[2 \pi B\left(t-t_{0}\right)\right]
\end{aligned}
$$

Response

\rightarrow Figure shows that impulse response exists for negative values of ' t '. But actually unitumpulse is applied at $t=0$ always.
\rightarrow Practically it is impossible to implement such a system.
OTHER IDEAL FILTERS SUCH AS HPF, BPF etc.,
\rightarrow In realizability of ideal LPF its response begins, before uniput is applied and thence it is not physically realizable.
$\rightarrow \|^{l y}$ HPF,BPF ideal have frequency response as shown in figure

\rightarrow These have sharp transition in frequency response.
\rightarrow All ideal filters are physically not realizable since their umpulse response is non-causal.

$$
R(\omega)=F(\omega) \cdot H(\omega)
$$

\rightarrow The spectrum of $0 / P$ is $F(\omega) \cdot H(\omega)$ i.e the system acts as a kind of filter to various frequency components
\rightarrow Some frequency components are boosted in strength and some are attenuated and some remain unaffected.
$\rightarrow I^{l l} \mathrm{y}$ each freq, component undergoes a different amount of phase shift - i.e the modification is carried out according to $H(\omega)$.
\longrightarrow acts as waiting fo for two different frequencies.

DISTORTIONLESS TRANSMISSION THROUGH SYSTEM:

\rightarrow It means output signal is an exact replica of the i / p signal.

$$
i / p \longrightarrow 0 / p
$$

\rightarrow The difference between i / p and o / p of such system is that

1. Amplitude of the o/p signal may increase or decease by some factor $w . r$. to i / p
2. The $0 / p$ gl may be delayed in time ur. to i lp gl because of system delay
$\rightarrow \quad 0 / p$ sql $y(t)$ can de written in terms of $i / p x(t)$ as

$$
\begin{aligned}
& y(t)=k x\left(t-t_{0}\right) \\
& \downarrow \\
& \text { constant } \\
& \text { Represents change } \\
& \text { in amplitude }
\end{aligned} \quad \begin{aligned}
& \text { of signal through a system }
\end{aligned}
$$

By taking fourier transform

$$
y(f)=F[y(t)]=F\left\{k x\left(t-t_{0}\right)\right\}
$$

From time shifting property of FT
if, mumbis ar pouorradord an yprym

$$
\cdot Q_{\text {Q寸 }}
$$

9) (7) fio frus xoud :

$$
\left[(19-7)+\mu^{8}\right] 500=(77)^{h}
$$

so uromop ne!t um mubls an nont tol
əduroxa nduis bunmpicios $\mathrm{hg} \longleftarrow$
ungno ybnolyy bunssod umipards rsoud (q) umaroads promicluy (Q)

$$
\begin{aligned}
& f\left(0_{\mp}+\mu \tau\right)= \\
& 0_{\text {ff } \mu \tau-}=(f) 0
\end{aligned}
$$

¢ - Hiys aroyd
 - Frumbrey Po uupuradopur

\rightarrow This distortion occurs when $|H(\omega)|$ is not constant over frequency interest and the frequency components present in $1 / p \mathrm{sgl}$ àre transmitted with different gain and attenuation.

PHASE DISTORTION:

\rightarrow This distortion occurs when phase of $H(\omega)$ is not linearly charging with time and different frequency components in $1 / p$ are subjected to different time delays during transmission
SIGNAL BANDWIIDTH: The band of frequencies that contains moSt of signal energy \rightarrow It is the range of significant signal frequencies. which are present in the signal.
\rightarrow observe in the waveform $x(t)$ has significant frequencies from w_{1} to ω_{2}
\rightarrow The B.w of this signal is $w_{2}-w_{1}$

\rightarrow All the physically obtained signals have limited bandwidth.

SYSTEM BANDWIDTH

\rightarrow The B.W of a system is defined as
, range of frequencies over which $|H(\omega)|$ remains with in $1 / \sqrt{2}$ times of its mid-band
 value. for distortionless transmission the system must have infinite B.W but physical system are limited to finite BW.
\rightarrow So a system with finite BIN can provide distortionless transmission for a band limited signal if $|H(\omega)|$ remains constant over BW of the signal.
\rightarrow The range of frequencies for which magnitude $|H C j=\Omega|$ of the systems remains within $\frac{1}{\sqrt{2}}$ of its maximum value.
\rightarrow A system is said to be caus.FirstRankerteom if t <www. FirstRanker.com

$$
h\left(t-t_{0}\right)=0 ; t<t_{0}
$$

$i \cdot e$ if i / p is zero for $t<t_{0}$, then O / P is also zero for $t<t_{0}$.
\rightarrow Any systern which does not obey the above rule is non-causal system.
\rightarrow If two i / p to a causal system are equal upton some time 'to' then corresponding $0 / p$ must we equal upto that time instant.

POLY-VIIENER CRITERION
\rightarrow This gives the condition for causality in frequency domain (or) in other words the frequency domain equivalent of causal system ie $H(\omega)$.
\rightarrow Consider a system with transfer function $H(w)$, the necessary and sufficient condition ton $H(w)$. to be transfer function of causal f_{n} is

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{|\ln | H(j \omega)| |}{1+\omega^{* r}} d \omega<\infty \tag{1}
\end{equation*}
$$

provided $I H(j \omega)$ is square integral.

$$
\begin{equation*}
\int_{-\infty}^{\infty}|H(j \omega)|^{-} d \omega<\infty \tag{2}
\end{equation*}
$$

\rightarrow This is poly-wiener criteria. If condition (2) is not satisfied then the conclition (1) is neither necessary no, sufficient.

PHYSICAL REALIZABILITY:
\rightarrow A system is said to be physically realizable if it obeys the causal condition.

$$
\text { i.e } h(t)=0 \text { for } t<0 \text {. }
$$

Ex: $H(\omega)=\frac{1}{i+j \omega}$

$$
\begin{aligned}
h(t) & =e^{-t} u(t) \\
& =0 \quad \text { for } t<0
\end{aligned}
$$

So the above system for transter f_{n} is re alizable in freq. domain

Firstranker's choice physically realizable system may de zero for some discrete frequency but it can never be zero for a finite band of frequenuis
$\rightarrow H(W)$ for a realisable system cannot decay faster than a function of exponential order

Ex: A system with T.F $e^{-\omega}$ is realisable. where as $e^{-\omega^{2}}$ is not as it decay faster. RELATIONSHIP BETWEEN RISE TIME AND BANDWIDTH:
\rightarrow If a unit step $f_{n} u(t)$ is applied to an ideal LPF, the op will show a gradual rise untread of a sharp rise in the i / p.
\rightarrow The rise time $\left(t_{r}\right)$ is the time required by the ousponse to reachits final value from initial value.

Transfer function of ideal low pass filter is

$$
\begin{aligned}
H(\omega)= & |H(\omega)| e^{j \theta(\omega)} \\
= & G(\omega) e^{-j \omega t_{0}} \\
& \text { Rectangular pulse } \\
& \text { with magnilict } k . \\
& \text { for }-B<f \leqslant B \text { ie }-\omega_{m} \leqslant \omega \leqslant \omega_{m} \text { where } \omega_{m}=2 \pi B .
\end{aligned}
$$

and $\theta(w)=-2 \pi f t_{0}=-\omega t_{0}$.
\rightarrow Fourier transform of unit step in $u(t)$

$$
F T\{u(t)\} \Rightarrow u(\omega)=\pi \delta(\omega)+\frac{1}{j \omega}
$$

\rightarrow Fourier transform of response $R(\omega)$, input and $H(\omega)$ related as

$$
R(\omega)=\left[\Pi \delta(\omega)+\frac{1}{j \omega}\right] H(\omega)=\pi \delta(\omega) \cdot H(\omega)+\frac{1}{j \omega} H(\omega)
$$

$$
R(\omega)=\pi \delta(\omega)+\frac{1}{j \omega} H(\omega) .
$$

By taking IFT for above eqn

$$
\begin{aligned}
& \gamma(t)=I F t[R(\omega)]=I F T\left\{\pi \delta(\omega)+\frac{1}{j \omega} H(\omega)\right\} \\
& =I F T\left\{\pi \delta(\omega)+\frac{1}{j \omega} G(\omega) e^{-j \omega t_{0}}\right\} \quad\left(\because H\left(\omega=G(\omega) e^{-j \omega t_{0}}\right)\right.
\end{aligned}
$$

Inverse fourier transform of $\pi \delta(\omega)$ is $\frac{1}{2}$.

$$
\begin{aligned}
r(t) & =\frac{1}{2}+I F T\left\{\frac{1}{j \omega} G(\omega) e^{-j \omega t_{0}}\right\} \\
& =\frac{1}{2}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{j \omega} G(\omega) e^{-j \omega t_{0}} \cdot e^{j \omega t} d \omega
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\because 1 \rightarrow 2 \pi s(\omega) \\
1 / 2 \leftarrow \pi s(\omega)
\end{array}\right\}
$$

.we know $G(\omega)=1$ for $-\omega_{m} \leqslant \omega \leqslant \omega_{m}$

$$
s_{i}(-1)=-s i(x)
$$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}} \frac{e^{j \omega\left(t-t_{0}\right)}}{j \omega} d \omega \\
& =\frac{1}{2}+\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}} \frac{\cos \omega\left(t-t_{0}\right)+j \sin \omega\left(t-t_{0}\right)}{j \omega} d \omega \\
& =\frac{1}{2}+\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}} \frac{\cos \omega\left(t-t_{0}\right)}{j \omega} d \omega+\frac{1}{2 \pi} \int_{-\omega_{m}}^{\omega_{m}} \frac{\sin \omega\left(t-t_{0}\right)}{\omega} d \omega \\
& =\underbrace{\downarrow}_{\downarrow} \\
& \\
& \\
& \text { odd for its term. }
\end{aligned}
$$

$$
\gamma(t)=\frac{1}{2}+\frac{1}{2 \pi} x_{2} \int_{0}^{\omega_{m}} \frac{\sin \omega\left(t-t_{0}\right)}{\omega} d \omega=\frac{1}{2}+\frac{1}{\pi} \int_{0}^{\omega_{m}} \frac{\sin \omega\left(t-t_{0}\right)}{\omega} d \omega
$$

$$
=\frac{1}{2}+\frac{1}{\pi}\left[s i \omega\left(t-t_{0}\right)\right]_{0}^{\omega_{m}}
$$

$$
=\frac{1}{2}+\frac{1}{\pi} \operatorname{si} \omega_{m}\left(t-t_{0}\right) \longrightarrow \text { sine integral }
$$

The rise time is $g\left(v i n\right.$ as $t_{r}=\frac{2 \pi}{\omega_{m}}=\left.\frac{d}{B} \quad \frac{d g(t)}{d}\right|_{t=t_{0}}=\frac{1}{\pi} \cos \left[\omega_{m}\left(t-t_{0}\right)\right]$.
ω_{m}
$\frac{1}{t_{r}}-\frac{\omega_{m}}{\pi} \Rightarrow t_{r}=\frac{\omega_{m}}{\pi r}$

Note: \{Elements of block diagram)
(1) Adder:

which performs the addition of two signal sequences fo form sum
(2) Constant multiplier:

$$
\xrightarrow{x(t)} a \quad y(t)=a x(t)
$$

It represents applying a scale factor on $i / p x(t)$.
(3) Signal multiplier:

$$
\xrightarrow{x_{1}(t)} \underset{\uparrow}{x} \longrightarrow y(t)=x_{1}(t) \cdot x_{2}(t) .
$$

The multiplication of two signal to form product sequence.

$$
x_{2}(t)
$$

PROBLEMS:
(*)~~~~
(1) The impulse response of continuous time system is guin as

$$
n(t)=\frac{1}{R C} e^{-t / R C} \cdot u(t)
$$

Determine the frequency response \& plot the magnitude phase plots
Sol Take FT

$$
\begin{aligned}
& H(\omega)=\int_{-\infty}^{\infty} h(t) \cdot e^{-j \omega t} d t \\
&=\int_{-\infty}^{\infty} \frac{1}{R C} \cdot e^{-t / R c} \cdot u(t) e^{-j \omega t} d t \\
&=\frac{1}{R C} \int_{-\infty}^{\infty} e^{-t / R c} \cdot e^{-j \omega t} d t \quad(\because u(t)=1 \text { for } t \geqslant 0 \\
& 0 \text { otheriwers }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{R C} \int_{0}^{\infty} e^{-t\left(j \omega+\frac{1}{R C}\right)} d t \\
& =\frac{1}{R C}\left(-\frac{1}{j \omega+\frac{1}{R C}}\right)\left[e^{-t}(j \omega+1 / R C)\right]_{0}^{\infty} \\
H(\omega) & =\frac{1 / R C}{j \omega+1 / R C}=\frac{1}{1+j \omega R C} .
\end{aligned}
$$

Magnitude ε_{1} phase

$$
\begin{aligned}
H(\omega) & =\frac{1}{1+j \omega R C} \times \frac{1-j \omega R C}{1-j \omega R C}=\frac{1-j \omega R C}{1+(\omega R C)^{2}} \\
& =\frac{1}{1+(\omega R C)^{2}}+j \frac{-\omega R C}{1+(\omega R C)^{2}} \\
|H(\omega)| & =\left\{\frac{1}{\left[1+(\omega R C)^{2}\right]^{2}}+\frac{(\omega R C)^{2}}{\left[1+(\omega R C)^{2}\right]^{2}}\right\}^{1 / 2} \\
& =\frac{1}{\sqrt{1+(\omega R C)^{2}}} \\
L H(\omega) & =\tan ^{-1}\left\{(-\omega R C) / 1+(\omega R C)^{2}\right]=-\tan ^{-1}(\omega R C)
\end{aligned}
$$

$$
\text { If } R C=1,|H(\omega)|=\frac{1}{\sqrt{1+\omega^{2}}} ; H(\omega)=-\tan ^{-1}(\omega) \text {. }
$$

$\left|H\left(\dot{S}^{\prime}\right)\right|$

For the system shown find the $T \cdot T \&$ impulse response of the system.

$$
f(t)=e^{-a t} \quad t>0 \quad ; \quad y(\omega)=\frac{1}{\alpha+j \omega}
$$

Sol

$$
H(\omega)=\frac{R(\omega)}{F(\omega)}
$$

$$
F(t)=e^{-a t}
$$

$$
\begin{aligned}
& F(\omega)=\frac{1}{a+j \omega} ; y(\omega)=\frac{1}{\alpha+j \omega} \\
& H(\omega)=\frac{1 / \alpha+j \omega}{1 / a+j \omega}=\frac{a+j \omega}{\alpha+j \omega} \\
& F^{-1}\left[\frac{a+j \omega}{\alpha+j \omega}\right] \Rightarrow \frac{a+\alpha-\alpha+j \omega}{\alpha+j \omega}=\frac{a-\alpha}{\alpha+j \omega}+\frac{\alpha+j \omega}{\alpha+j \omega} \\
&=\frac{a-\alpha}{\alpha+j \omega}+1 \\
& h(t)=(a-\alpha) e^{-\alpha t} u(t)+\delta(t)
\end{aligned}
$$

(3) The linear system um pulse response is $\left[e^{-2 t}+e^{-3 t}\right] u(t)$ find the excitation to produce an $0 / p$ of $t \cdot e^{-2 t} u(t)$?
$C_{\text {sol }}^{=}$

$$
\begin{aligned}
h(t) & =\left[e^{-2 t}+e^{-3 t}\right] u(t) \\
r(t) & =t \cdot e^{-2 t} u(t) \\
H(\omega) & =\frac{R(\omega)}{F(\omega)} \\
F(\omega) & =\frac{R(\omega)}{H(\omega)} \\
\gamma(t) & =t \cdot e^{-2 t} u(t)<{ }^{F T} \\
R & \frac{1}{(2+j \omega)^{2}} \\
R(\omega) & =\frac{1}{(2+j \omega)^{2}}
\end{aligned}
$$

$$
H(\omega)=\frac{1}{2+j \omega}+\frac{1}{3+j \omega}
$$

$$
R(\omega)=\frac{1 /(2+j \omega)^{\psi}}{\frac{3+j \omega+2+j \omega}{(2+j \omega)(3+j \omega)}}=\frac{1}{2+j \omega} \times \frac{3+j \omega}{5+2 j \omega}
$$

$$
\begin{aligned}
& \frac{3+j \omega}{(2+j \omega)(5+2 j \omega)}=\frac{A}{2+j \omega}+\frac{B}{5+2 j \omega} \\
& 3+j \omega=A(5+2 j \omega)+B(2+j \omega) \\
& \text { put } 3+j \omega=5 A+2 B+j \omega(2 A+B) \\
& \text { put j } \omega=0 \quad ; \quad \text { put } j \omega(-2) \\
&13=5 A+2 B) \times 1 \\
&(1=2 A+B) \times 2 \\
& A=1, B=-1 \\
& R(\omega)= \frac{1}{2+j \omega}-\frac{1}{5+2 j \omega}=\frac{1}{2+j \omega}-\frac{1}{2[5 / 2+j \omega]} \\
&\left(r(t)=e^{-2 t} u(t)-\frac{1}{2} e^{-5 / 2 t} u(t)\right]
\end{aligned}
$$

DIFFERENTIAL EQUATION:
~M~~~~~
\rightarrow To obtain frequency response \& impulse response.

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{k=0}^{M} b_{k} \frac{d^{k}}{d t^{k}} \alpha(t) .
$$

differentiation property of $F T$ is

$$
\frac{d}{d t} x(t) \stackrel{F T}{\longleftrightarrow} j \omega \times(\omega) .
$$

$$
\sum_{k=0}^{N} a_{k}(j \omega)^{k} y(\omega)=\sum_{k=0}^{w w w . \text { FirstRanker.com }} b_{k}(j \omega)^{k} \times(j \omega)
$$

$$
\underset{\operatorname{cim}_{\text {ser }}(n)}{\ell} H(\omega)=\frac{y(\omega)}{x(\omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}} .
$$

PROBLEMS:

(1) The differential equation of system is gwen as $\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+b y(t)=-\frac{d x(t)}{d t}$ Determine the frequency response \& impulse response.

Sol

$$
\begin{aligned}
& \frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=-\frac{d x(t)}{d t} \\
& \text { Taking F-T } \\
& (j \omega)^{2} y(\omega)+5(j \omega) y(\omega)+6 y(\omega)=-j \omega x(\omega) \\
& y(\omega)\left[(j \omega)^{2}+5 j \omega+6\right\}=-j \omega x(\omega) \\
& H(\omega)=\frac{y(\omega)}{x(\omega)}=\frac{-j \omega}{(j \omega)^{2}+5 j \omega+6} \\
& H(\omega)=\frac{-j \omega}{(j \omega+2)(j \omega+3)}=\frac{A}{j \omega+2}+\frac{B}{j \omega+3} \\
& =\frac{2}{j \omega+2}-\frac{3}{j \omega+3} \\
& h(t)=\left[2 \cdot e^{-2 t}-3 e^{-3 t}\right] u(t) \\
& \downarrow \\
& \left\{\because e^{-a t} u(t) \stackrel{F T}{\longleftrightarrow} \frac{1}{a+j \omega}\right\}
\end{aligned}
$$

FirstRanker.com

 www.FirstRanker.com impulse response of this circuit is given by $h(t)=\frac{1}{R C} e^{-t / R C_{u}} u(t)$. Find output $y(t)$

$$
\begin{aligned}
& \text { output } y(t)=x(t) * h(t) \\
& \text { In frequency domain } \\
& y(\omega)=x(\omega) H(\omega) \\
& \text { and } H(\omega)=F[h(t)] \\
& H(\omega)=F\left\{\frac{1}{R C} e^{-t / R C} \cdot u(t)\right\} \\
& =\frac{1}{R C} \cdot \frac{1}{\frac{1}{R C}+j \omega}=\frac{1}{1+j \omega R C} \\
& x(\omega)=F\left[t \cdot e^{-t / R C} u(t)\right]
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} t \cdot e^{-t / R C} e^{-j \omega t} d t=\frac{1}{\left(\frac{1}{R C}+j \omega\right)^{2}}=\frac{(R C)^{2}}{(1+j \omega R C)^{2}}
$$

$$
\left[\because t e^{-a t} u(t) \longleftrightarrow F^{\top}\left(\frac{1}{a+j \omega}\right)^{2}\right]
$$

$$
y(\omega)=x(\omega) \cdot H(\omega)
$$

$$
=\frac{(R C)^{2}}{(1+j \omega R C)^{2}} \cdot \frac{1}{(1+j \omega R C)}=\frac{(R C)^{2}}{(1+j \omega R C)^{2}}
$$

$$
y(t)=F^{-1}\{y(\omega)\}=F^{-1}\left\{\frac{(R C)^{2}}{(1+j \omega R C)^{3}}\right\}=F^{-1}\left\{\frac{\left(R C C^{2}\right.}{(R C)^{2}\left(\frac{1}{R C}+\right.}\right.
$$

$$
y(t)=\frac{1}{R C} \cdot \frac{\left.t^{2} \cdot \frac{e^{-t / R C}}{2} u(t)\right]}{}
$$

(') $f^{\wedge(t)}=e^{-5 / t t}$
For stability

FR FirstRanker.com
Firsfortfeter untie of LPF is quin dy
www. Firstiank

$$
H(\omega)=\left\{\begin{array}{cl}
(1+k \cos \omega T) e^{-j \omega T} & ;|\omega|<2 \pi B \\
0 & ;|\omega|>2 \pi B .
\end{array}\right.
$$

Determine the output $y(t)$ when a pulse $x(t)$ bandlimited in B is applied at the input.

SO)

$$
\begin{aligned}
y(\omega) & =x(\omega) H(\omega) \\
& =x(\omega)[1+k \cos \omega \tau] e^{-j \omega \tau} \\
& =x(\omega) e^{-j \omega \tau}+k x(\omega) \cos \omega \tau e^{-j \omega \tau}
\end{aligned}
$$

we know

$$
\begin{aligned}
& x(t-\tau)+x(t+\tau) \longleftrightarrow 2 x(\omega) \cos \omega \tau \\
& x(t-T) \longleftrightarrow x(\omega) e^{-j \omega \tau} \\
& y(t)=F^{-1}[y(\omega)] \\
&=F^{-1}\left[x(\omega) e^{-j \omega \tau}+K x(\omega) e^{-j \omega \tau} \cos \omega \tau\right] \\
&=x(t-T)+\frac{k}{2}[x(t-\tau-T)+x(t-T+T)] \\
& y(t)=x(t)+\frac{k}{2}[x(t-T)+x(t+T)]
\end{aligned}
$$

delayed by τ.
2) Determine the maximum bandwidth of signals that can be transmitted through low pass RC Jitter as shown in figure, if over this bandwidth, the g ain variation is to be 10% and the phase variation is to be within 7% of ideal characteristics.
P. FirstRanker.com

www.FirstRanker.com

501
RC network transformed unito s-domain representation.

$$
\begin{aligned}
H(S) & =\frac{V_{0}(S)}{V_{i}(S)} \\
& =\frac{[R \|(1 / C s)]}{([R U(1 / C S)]+R]} \\
& =\frac{(R / C S) /[R+1 / C s]}{[R / C s] \mid[[R+1 /(s)]+R} \\
& =\frac{R /(1+S C R)}{[R /(1+S C R)]+R}=\frac{R}{R+R(1+S C R)}=\frac{R}{R(1+1+L R)} \\
H(S) & =\frac{1}{2+S C R} .
\end{aligned}
$$

But given $R=20 \mathrm{k} \Omega$

$$
\left.\begin{array}{c}
C=10 \mathrm{nF} \\
H(S)=\frac{1}{2+S\left(10 \times 10^{-9} \times 20 \times 10^{3}\right)}=\frac{1}{2+\left(25 / 10^{4}\right)} \\
2 \times 10^{4}+2 S
\end{array}=\frac{1}{2+S\left(2 \times 10^{-3}\right.}\right)
$$

$$
\begin{aligned}
1 H(\omega) \mid & =\frac{5000}{\sqrt{\omega^{2}+10000}} \\
\phi(\omega) & =-\tan ^{-1}\left(\frac{\omega}{10000}\right) .
\end{aligned}
$$

At $\omega=0,|H(\omega)|_{\dot{\omega}=0}=\frac{5000}{10000}=0,5$.
But. there is 10% variation in gain over bandwidth B.

$$
\begin{aligned}
& H(\omega)=0.5-0.5 \times 10 \%=0.45 \\
&|H(\omega)|=\frac{5000}{\sqrt{B^{2}+10^{8}}} \\
& B^{2}+10^{8}=\left(\frac{5000}{0.45}\right)^{2} \Rightarrow B^{2}=23.46 \times 10^{6} \\
& B=4.84 \mathrm{kHZ}
\end{aligned}
$$

But $B=2 \pi f$

$$
f=\frac{B}{2 \pi}=\frac{4.84 \times 10^{3}}{2 \pi}=770.8 \mathrm{HZ}
$$

$$
\text { phase at frequency, } f=770.8 \mathrm{HZ}
$$

$$
\phi(\omega)=-\tan ^{-1}\left(\frac{4.84}{10}\right)=-25.83 \%
$$

(2). There are several possible ways of estimating an essential band of non-bandlimited signal. For a low pass signal, for example, the essential bow may

CONVOLUTION AND CORRELATION OF SIgnals:

\rightarrow Convolution is used to find common area between two signals or two frs. The convolution $f(t)$ of two time functions $f_{1}(t)$ and $f_{2}(t)$ is designed or defined as

$$
\begin{aligned}
f(t) & =f_{1}(t) \otimes f_{2}(t) \\
& =\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} f_{2}(\gamma) f_{1}(t-\tau) d \tau
\end{aligned}
$$

\rightarrow Convolution is a mathematical operation and multiplication is one of the form of convolution.

> In convolution method

Ex: 25

$$
\begin{array}{rrr}
\frac{25}{625} & \text { (i) } \left.\left.\begin{array}{rl}
f_{1}(\gamma) & \& f_{2}(\gamma) \\
& \downarrow \\
25 & \downarrow \\
& 25
\end{array}\right) . \begin{array}{ll}
& \\
\hline
\end{array}\right)
\end{array}
$$

$$
\text { (ii) } \begin{aligned}
& f_{2}(-\tau) \\
& \Rightarrow 52
\end{aligned}
$$

(iii) $f_{2}(t-\tau)$
$f_{2}(-\tau)$ shifted to right side by t seconds.
\rightarrow Here ' t ' is varied from $-\infty$ to ∞
step 1: $f_{1}(t) \otimes f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\gamma) d \tau$
Here the independent variable convolution integral is τ, so replace t dey τ to get $f_{1}(\tau)$ \& $f_{2}(\tau)$
step 2: $f_{1}(\gamma)$ is first function and $f_{2}(\gamma)$ is the $2^{\text {nd }}$ function. $\left.f_{2} L-\gamma\right)$ is the mirror image of the $f_{2}(\gamma)$
step 3: $f(t-\tau)$ represents the function $f_{2}(-\tau)$ shifted to right side by $t \mathrm{sec}$. ' t ' is varied from $-\infty$ to ∞ and find common area between two functions.
\rightarrow The value of convolution obtained at different values of ' t ' and may be plotted on a graph.
(1) Find the F.T of

Sol step 1:
(\times

$$
\begin{aligned}
& f_{1}(t)=A G_{10}(t) \longrightarrow f_{1}(\tau)=A G_{10}(\tau) \\
& f_{2}(t)=A G_{10}(t) \longrightarrow f_{2}(\tau)=A G_{10}\left(\tau^{\prime}\right)
\end{aligned}
$$

step 2:

$$
\begin{aligned}
& -10+5=-5 \\
& -10-5=-15
\end{aligned}
$$

(3) at $t=-9$

$$
\begin{aligned}
&-9-5=-14 \\
&-9+5=-4 \\
& \Rightarrow \int_{-5}^{-4} A \cdot A d \gamma^{\prime}=A^{2}\left[\gamma^{2}\right]_{-5}^{-4} \\
&=A^{2}[-4+5]
\end{aligned}
$$

(4) at $t=-8$

$$
=\Lambda^{2}
$$

(5) at $t=-7$

$$
\begin{aligned}
&-7+5=-2 \\
&-7 \cdot-5=-12 \\
& \Rightarrow \int_{-5}^{-2} A \cdot A d \gamma=A^{2}[\gamma]_{-5}^{-2} \\
&=A^{2}[-2+5]=3 A^{2} .
\end{aligned}
$$

(6) at $t=-6$

$$
\begin{aligned}
& -6+5=-1 \\
& -6-5=-11
\end{aligned}
$$

$$
\Rightarrow \int_{-5}^{-1} A \cdot A d \tau \Rightarrow A^{2}[-1+5]=4 A^{2}
$$

$$
-5
$$

afirstRanker.com

$$
\int_{-5}^{0} A \cdot A d \tau \Rightarrow A^{2} \cdot[\tau]_{5}^{0}=A^{2} \cdot 5
$$

(8) at $t=-4$

$$
\begin{aligned}
& -4+5=1 \\
& -4-5=-9
\end{aligned}
$$

$$
\int_{-5}^{1} A \cdot A d \tau \Rightarrow A^{2}[\tau]_{-5}^{1}=6 A^{2}
$$

(9) at $t=-3$

$$
\begin{aligned}
& -3+5=+2 \\
& -3-5=-8
\end{aligned}
$$

$$
\begin{aligned}
\int_{-5}^{2} A \cdot A d \gamma & \Rightarrow A^{2}[\tau]_{-5}^{2} \\
& \Rightarrow A^{2}[2+5]=7 A^{2}
\end{aligned}
$$

(10) at $t=-2$

$$
\begin{aligned}
& -2+5=+3 \\
& -2-5=-7
\end{aligned}
$$

$\int_{-5}^{3} A \cdot A d T \Rightarrow A^{2}[\tau]_{-5}^{3}=A^{2}[3+5]=8 A^{2}$
(11) at $t=-1$

$$
\begin{aligned}
& -1+5=4 \\
& -1-5=-6
\end{aligned}
$$

(12) at $t=0$

$$
-5+1=-4
$$

$$
+5+1=6
$$

$$
\int_{-4}^{5} A \cdot A d \gamma \Rightarrow A^{N}[\tau]_{4}^{5}
$$

(14) at $t=2$

$$
\Rightarrow A^{2}[5+4]=9 A^{2} .
$$

$$
\begin{aligned}
\int_{-3}^{5} A \cdot A d \gamma & =A^{2}[\gamma]_{-3}^{5} \\
& =8 A^{2}
\end{aligned}
$$

(c) (15) at $t=3$

$$
\int_{-2}^{5} A \cdot A d \gamma \Rightarrow A^{2}[5+2]=7 A^{2}
$$

(16) $\quad t=4$

(17) $t=5$

(18)

$$
t=6
$$

$$
\int_{1}^{5} A \cdot A d \tau \Rightarrow A^{2}[T]^{5}=A^{2}[4]
$$

$$
\begin{aligned}
& t=C \Rightarrow 2 A^{2} \\
& t=9 \Rightarrow 1 A^{2} \\
& t=10 \Rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& t=-10 ; 10=0 \\
& t=-9 ; 9=1 A^{2} \\
& t=-8 ; 8=2 A^{2} \\
& t=-7 ; 7=3 A^{2} \\
& t=-6 ; 6=4 A^{2} \\
& t=-5 ; 5=5 A^{2} \\
& t=-4 ; 4=6 A^{2} \\
& t=-3 ; 3=7 A^{2} \\
& t=-2 ; 2=8 A^{2} \\
& t=-1 ; 1=9 A^{2} \\
& t=0 \Rightarrow 10 A^{2}
\end{aligned}
$$

www.FirstRanker.com
Convolution: Mathematical way of combining two signals to form a third signal. ie input signal, output signal and impulse response.
\rightarrow It is used to express the input and output relationship of a LTI systion
\rightarrow If two functions $x(t)$ and $y(t)$ in time domain are defined then convolution $z(t)$ is

$$
z(t)=x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau
$$

(or)
$x(t) \otimes y(t)$.
\longrightarrow Read as $x(t)$ convolved with $y(t)$.

Convolution in time domain:
\rightarrow The convolution in time domain is equivalent to multiplication of their spectra in frequency domain i.e $x(t) \longleftrightarrow x(\omega)$ and $y(t) \longleftrightarrow y(\omega)$ then

$$
x(t) * y(t) \longleftrightarrow x(\omega) \cdot y(\omega) .
$$

proof $x(t)$ fourier transform is given by

$$
\begin{aligned}
& F\{x(t)\}=x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& F\{x(t) * y(t)]=\int_{-\infty}^{\infty}[x(t) * y(t)] e^{-j \omega t} d t \\
& \text { But } x(t) * y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\gamma) d \tau \\
& \therefore F\{x(t) * y(t)\}=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau\right] e^{-j \omega t} d t
\end{aligned}
$$

Inter changing the order of integration, we get

$$
F\{x(t)-x y(t)\}=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(t-\tau) e^{-j \omega t} d t\right] d \tau
$$

Using time shifting property, we get
\qquad

FirstRanker.com
Firstranker's choice

$$
\begin{aligned}
& \text { ice } \begin{aligned}
& F\left[x(t) * y(v)^{w}\right] \text { Firs } \int_{-\infty}^{\infty} \text { Ranker.can } e^{-j \omega \tau} d \omega \psi w . \text { FirstRanker.com } \\
&=y(\omega) \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau=y(\omega) x(\omega) . \\
& x(t) * y(-t) \longleftrightarrow x(\omega) y(\omega)
\end{aligned}
\end{aligned}
$$

$$
\downarrow
$$

This is time convolution theorem. Convolution in frequency domain:
\rightarrow Multiplication of two functions in time domain is equivalent to convolution of their spectra in frequency domain.

$$
\begin{aligned}
& x(t) \longleftrightarrow x(\omega) \text { and } y(t) \longleftrightarrow y(\omega) \text { then } 2 \pi x(t) y(t) \longleftrightarrow x(\omega) * y(\omega) \text { (or) } \\
& x(t) y(t) \longleftrightarrow x(f) * y(t) .
\end{aligned}
$$

proof

$$
\begin{aligned}
& x(\omega)=F\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& x(t)=F^{-1}\{x(\omega)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega \\
& F\{x(t) y(t)\}=\int_{-\infty}^{\infty} x(t) y(t) e^{-j \omega t} d t \\
&=\int_{-\infty}^{\infty}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\infty) e^{j \omega t} d \lambda\right] y(t) e^{-j \omega t} d t
\end{aligned}
$$

Interchanging the order of integration we get

$$
\begin{aligned}
F\{x(t) y(t)\} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\lambda)\left[\int_{-\infty}^{\infty} y(t) \cdot e^{-j \omega t} e^{j \lambda t} d t\right] d \lambda \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\lambda)\left[\int_{-\infty}^{\infty} y(t) \cdot e^{-j(\omega-\lambda) t} d t\right] d \lambda \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\lambda) y(\omega-\lambda) d \lambda=\frac{1}{2 \pi}[x(\omega) * y(\omega)] \\
& \begin{array}{ll}
x(t) y(t) \longleftrightarrow \frac{1}{2 \pi} x(\omega) * y(\omega)
\end{array} \\
&
\end{aligned}
$$

\rightarrow The convolution by inspection provides the information needed without complicated calculations. This convolution by inspection procedure is called graphical convolution.

Procedure:

(1) $x(\gamma)$ is the first function, where an independent variable ' t ' is replaced by dummy variable ' γ '.
(2) $y(-\tau)$ is the mirror image of $y(\tau)$ i.e $y(\tau)$ is flipped.
(3) $y(t-7)$ represents the function $y(-7)$ shifted to right by t seconds.
(4) For a particular value of $t=a$, integration of product $x(r) y(a-r)$ represents the area under the (common area) product movie.

$$
\int_{-\infty}^{\infty} x(q) y(a-\tau) d \tau=[x(t) * y(t)]_{t=a}
$$

(5) The procedure is repeated for different values of t. For negative value of t, the function $y(-\gamma)$ is shifted left by t seconds.
6) The value of convolution obtained at different values of 't' (ie $+v e,-v e$).

Co Find the convolution of the functions $x_{1}(t)$ and $x_{2}(t)$

So)

$\left[x_{1}(t) * x_{2}(t)\right] a=0$

2) Determine the response of LTI system whose input $x(n)$ and impulse response $h(n)$ are gwen by $x(n)=\{1,2,3,1\}$ and $h(n)=\{1,2,1,-1\}$
Sol The input sequence starts at $n=0$ and impulse response starts at $n=-1$. $0 / p$ sequence starts at $n=0+(-1)=-1$
$\rightarrow \quad i / p \varepsilon$ inipulse response consists of 4 samples, so $0 / p$ consists of $4+4-1=2 \mathrm{san}$

$$
y(n)=\sum_{m=-\infty}^{\infty} x(m) h(n-m) .
$$

$$
\text { when } n=-1 ; \quad y(-1)=\sum_{m=-\infty}^{\infty} x(m) h(-1-m)
$$

$$
y(0)=2+2=4
$$

when $n=1, y(1)=\sum_{m=-\infty}^{\infty} x(m) h(1-m)$

$$
y(1)=1+4+3=8
$$

when $n=2, y(2)$

when $n=3, y(3)$

\Rightarrow

$y(3)=-2+3+2=3$
when $n=4, y(4)$

FirstRanker.com
Furstranke ${ }^{5}$ s choice
www.FirstRanker.com
www First ${ }^{(n)}$

$$
y(5)=-1
$$

Output sequence $y(n)=\left\{\begin{array}{c}1,4,8,8,3,-2,-1\} \\ \uparrow\end{array}\right.$
(3) Find the convolution of $x(t)=u(t+1)$ and $h(t)=u(t-2)$
sol

$$
\begin{aligned}
y(1) & =\text { no overlap } \\
& =0
\end{aligned}
$$

$$
y(3)=\int_{-1}^{1} 1 \cdot d \tau=[1-(-1)]=2
$$

$$
\therefore \quad y(t)=
$$

condition

$$
y(t)=0 \text { for } t \leqslant 0
$$

$$
y(4)=\int_{-1}^{2} 1 \cdot d \tau=[2-(-1)]=3
$$

(4) Find the convolution of $x(t)$ and $h(t)$

$$
\begin{array}{rlrl}
x(t) & =1 & 0 \leqslant t<2 \\
& =0 & & \text { otherwise } \\
h(t) & =1 & & 0 \leqslant t \leqslant 3 \\
& =0 & & \text { othewise }
\end{array}
$$

No overlap. $y(t)=0$
$t=1$

for $0<t \leq 1$

$$
y(1)=\int_{0}^{1} 1 \cdot d \tau=[\tau]_{0}^{1}=1
$$

for $0<t \leqslant 2$
$y(2)=\int_{0}^{2} 1 \cdot d \tau=[\gamma]_{0}^{2}=2$.

$$
y(5)=0 .
$$

$$
y(4)=\int_{1}^{2} d \gamma=[2-1]=1
$$

$\rightarrow(5)$ Find. the linear convolution $x(n)=\{1,0.5\}, h(n)=\{1\}$
sol $n_{1}=0, n_{2}=0$, so sequence starts at 0

$$
N_{1}=2, \quad N_{2}=1, \quad N_{1}+N_{2}-1=2+1-1=2
$$

$$
\begin{aligned}
& y(1)=0+0.5 \times 1=0.5 \\
& y(2)=0 \\
& ?_{0}^{y(t)}
\end{aligned}
$$

Perform the clirear convolution of $x(n)=\{1,-1,2,-2,3,-3,4,-4\} \quad h(n)=\{-1,1\}$
SO

$n_{1}=0, n_{2}=0$ D/p sequence starts from 0
$N_{1}=8, \quad N_{2}=2, \quad N_{1}+N_{2}-1=8+2-1=9$
$y(n)=\{-1,2,-3,4,-5,6,-7,8,4\}$
(T) Find the convolution of $x(t)$ www.FirstRanker.com

Sol

no overlap.
e $\quad y(-1) \Rightarrow 0$

$\Rightarrow \int_{0}^{1} 2.1 d t=2$.
$y(0)$

$$
\Rightarrow \int_{0}^{2} 21 d t=2[2-0]=4
$$

$y(1)=$

$\Rightarrow \int_{0}^{2} 2.1 d t=2[2-0]=4$
c.

Let us consider two signals $x_{1}(t)$ and $x_{2}(t)$. The convolution of two signals is given by equation.

$$
x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau
$$

1. Commutative Property:

Convolution obeys commutative property.

$$
x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t) .
$$

proof
(c) $\frac{B}{-P}$

$$
\begin{equation*}
x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Let } \psi-\tau=p \Rightarrow \tau=t-p \\
&-d \tau=d p \text { when } \tau=-\infty, p=t+\infty=\infty \\
& \text { when } \tau=\infty, p=t-\infty=-\infty
\end{aligned}
$$

Substituting in eq, (1) we get

$$
\begin{aligned}
x_{1}(t) * x_{2}(t) & =-\int_{+\infty}^{-\infty} x_{1}(t-p) x_{2}(p) d p \\
& =\int_{-\infty}^{\infty} x_{2}(p) x_{1}(t-p) d p \\
& =x_{2}(t) * x_{1}(t)
\end{aligned}
$$

2. Distributive Properly:

$$
x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right]=x_{1}(t) * x_{2}(t)+x_{1}(t) * x_{3}(t) .
$$

Proof

$$
\begin{aligned}
& =x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right] \\
& =x_{1}(t) * x_{4}(t) \\
& =\int_{-\infty}^{\infty} x_{1}(\tau) x_{4}(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} x_{1}(\tau)\left[x_{2}(t-\tau)+x_{3}(t-\tau)\right] d \tau \\
& =\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau+\int_{-\infty}^{\infty} x_{1}(\tau) x_{3}(t-\gamma) d \tau \\
& =\left[x_{1}(t) * x_{2}(t)\right]+\left[\begin{array}{l}
x_{1}(t) * x^{*}(t) \\
\text { ww }
\end{array}\right.
\end{aligned}
$$

$$
\left\{\text { considering } x_{4}(t)=x_{2}(t)+x_{3}(t)\right\}
$$

$$
x_{1}(t) *\left[x_{2}(t) * x_{3}(t)\right]=\left[\begin{array}{c}
\text { www.FirstRanker.con } \\
\left.x_{1}(t) * x_{2}(t)\right] * x_{3}(t)
\end{array}\right]
$$

Proof
Let of $_{1}(t)=x_{1}(t) * x_{2}(t)$

$$
\left[x_{1}(n) * x_{2}(n)\right] * x_{3}(n)
$$

Let $y_{2}(t)=x_{2}(t) \neq x_{3}(t)$
$y_{2}(t)=\sum_{q=-\infty}^{\infty} x_{1}(q) x_{2}(t-q)$
$y_{2}(t-m)=\sum_{q=-\infty}^{\infty} x_{1}(q) x_{2}(t-m-q)$
Let us replace by' p '
$\begin{aligned} y_{1}(f) & =x_{1}(b) * x_{2}(b) \\ & =\sum_{m=-\infty}^{\infty} x_{1}(m) \times(k-m)\end{aligned}$
where p, n, and q are dummy variables ;

$$
\left[x_{1}(t) * x_{2}(t)\right] * x_{3}(t)
$$

$$
\begin{aligned}
& \stackrel{\text { LH }}{=}\left[x_{1}(n) * x_{2}(n)\right] * x_{3}(n) \\
& =y_{1}(n) * x_{3}(n) \\
& =\sum_{p=-\infty}^{\infty} y_{1}(p) x_{3}(n-p)
\end{aligned}
$$

$$
=\sum_{\rho=-0}^{\infty} \sum_{m=-\infty}^{\infty} x_{1}(m) x_{2}(\rho-m) x_{3}(n-p)
$$

$$
=\sum_{m=-\infty}^{\infty} x_{1}(m) \sum_{p=-\infty}^{\infty} x_{2}(p-m) x_{3}(n-p) .
$$

$$
\left.\begin{aligned}
& \text { Let } p-m=q \\
& \therefore p=m+q
\end{aligned}\right|_{\text {when } p=+\infty} \begin{gathered}
\text { when } p=-\infty, c-m \\
=-\infty-m=-\infty
\end{gathered}
$$

On replacing $(p-m)$ by ' q ' and ' p ' by $\dot{q}+m$.

$$
\begin{aligned}
& =\sum_{m=-\infty}^{\infty} x_{1}(m) \sum_{q=-\infty}^{\infty} x_{2}(q) x_{3}(n-q-m) \\
& =\sum_{m=-\infty}^{\infty} x_{1}(m) y_{2}(n-m) \\
& =x_{1}(n) * y_{2}(n) \\
& =x_{1}(n) *\left[x_{2}(n) * x_{3}(n)\right] \\
& =\text { RHS }
\end{aligned}
$$

(4) Shift property:

If $x_{1}(t) * x_{2}(t)=z(t)$ then $x_{1}(t) * x_{2}(t-T)=z(t-T)$
proof

$$
\left.\begin{array}{rl}
x_{1}(t) * x_{2}(t-T) & \left.=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-T)-\tau\right) d \tau \\
& =z(t-T)
\end{array}\right\}
$$

(5) Convolution with impulse:

Convolution of a signal $x(t)$ with unit impulse is the signal $x(t)$ itself. $x(t) * \delta(t)=x(t)$.
e.

$$
\begin{aligned}
& x(t) * \delta(t)=\int_{-\infty}^{\infty} x(t) \delta(t-T) d T \\
& =x(t) \\
& \left\{\begin{aligned}
\delta(t-T) & =1 \text { for } t=\tau \\
& =0 \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

(b) Convolution with shifted impulse:

Convolution of a signal $x(t)$ with shifted impulse $\delta\left(t-t_{0}\right)$ is equal to $x\left(t-t_{0}\right)$

$$
x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)
$$

$$
\begin{aligned}
x(t) * \delta\left(t-t_{0}\right) & =\int_{-\infty}^{\infty} x(\tau) \delta\left(t-\tau-t_{0}\right) d \tau \\
& =\left.x(\tau)\right|_{\tau=t-t_{0}}=x\left(t-t_{0}\right) .
\end{aligned}
$$

(7) Convolution with unit step:

Convolution of a signal $x(t)$ with unit step signal $u(t)$ is given by

$$
x(t) * u(t)=\int_{-\infty}^{t} x(\gamma) d \gamma
$$

prot

$$
\begin{aligned}
x(t) * u(t) & =\int_{-\infty}^{\infty} x(\tau) u(t-\tau) d \tau \\
& =\int_{-\infty}^{t} x(\tau) d \tau \quad
\end{aligned}
$$

\rightarrow Correlation is basically used to compare two signals or it is a measure of the degree to which two signals are similar．

\rightarrow Two types

（1）Goss－correlation
（2）Auto－corvelation．
Cross Correlation：
The cross correlation between a pair of signals $x_{1}(t)$ and $y(t)$ is given by

$$
\begin{gathered}
\partial_{x y}(\tau)=\int_{-\infty}^{\infty} x(t) y^{*}(t-\gamma) d t / \nabla_{x y}(t)=\sum_{n=-\infty}^{\infty} x(n) y(n-l) \text { where } l=0, \pm 1, \pm 2, \cdots{ }_{l}, \quad \rightarrow(1)
\end{gathered}
$$

$$
=\int_{-\infty}^{-\infty} x(t+\tau) y^{*}(t) d t \text { shift lag parameter. }
$$

\rightarrow The subscript $x y$ indicates that $x(n)$ is the reference sequence that remains unshifled in time and $y(n)$ is shifted＇L＇units in time w．r．to $x(n)$ ．
\rightarrow If we want to fix $y(n)$ and shift $x(n)$ then

$$
\begin{aligned}
\gamma_{y x}(l) & =\sum_{m=-\infty}^{\infty} y(n) x(n-l) \\
& =\sum_{n=-\infty}^{\infty} y(n+l) x(m) \rightarrow \text { (2) }
\end{aligned}
$$

$\rightarrow \quad$ If time shift $l=0$ then we get

$$
\nu_{x y}(0)=\eta_{y x}(0)=\sum_{n=-\infty}^{\infty} x(n) y(n)
$$

Comparing eq（1）with eq（ 2 ，we find that

$$
\begin{aligned}
\gamma_{x y}(l)= & \gamma_{y x}(-l) \\
& \longrightarrow \text { folded version of } \gamma_{x y}(l) \text { abt } l=0
\end{aligned}
$$

We can rewrite the eq（12 as

$$
\begin{aligned}
\partial_{x y}(l) & =\sum_{n=-\infty}^{\infty} x(n) y[-(l-n)] \\
& =x(l) * y(-l)
\end{aligned}
$$

Auto Correlation:

It is the correlation of a sequence within itself

$$
\begin{aligned}
& \partial_{x x}(l)=\sum_{n=-\infty}^{\infty} x(n) x(n-l) \\
& \text { (or) } \\
& \gamma_{x x}(l)=\sum_{n=-\infty}^{\infty} x(n+l) x(n) .
\end{aligned}
$$

If time shift $l=0$, then

$$
\partial_{x x}(0)=\sum_{n=-\infty}^{\infty} x^{2}(n)
$$

Auto Correlation Signal:

$$
\begin{aligned}
& R_{x x}(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t \\
&=\int_{-\infty}^{\infty} x(t+\tau) x^{*}(t) d t \\
& \text { For real values } \\
& R_{x x}(\mathbb{I}=\int_{-\infty}^{\infty} x(t) x(t-\tau) d t \\
&=\int_{-\infty}^{\infty} x(t+\tau) x(t) d t
\end{aligned}
$$

- Properties of Gross Correlation function for energy signals.

1. For a real valued signals

$$
R_{y x}(\tau)=R_{x y}(-\tau)
$$

Proof

$$
\begin{aligned}
R_{x y}(\tau) & =\int_{-\infty}^{\infty} x(t+\tau) y(t) d t \\
R_{y x}(\tau) & =\int_{-\infty}^{\infty} y(t+\tau) x(t) d t=\int_{-\infty}^{\infty} y(t) x(t-\tau) d t \\
& =\int_{-\infty}^{\infty} x(t-\tau) y(t) d t=R_{x y}(-\tau)
\end{aligned}
$$

For complex valued signals $R_{y x}(\tau)=R_{x y}^{x}(-\tau)$
 orthogonal over the entire time interval.

Gross correlation of periodic signals:

The cross correlation between two periodic signals $x(t)$ and $y(t)$ is given by

$$
\begin{aligned}
R_{x y}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) y^{*}(t-\tau) d t \quad \text { or } \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) y^{*}(t-T) d t . \\
\text { 11 }^{\text {wy }} \quad R_{y x}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} y(t) x^{*}(t-\tau) d t
\end{aligned}
$$

Properties: for periodic signals:
property !: The fourier transform of cross correlation is equal to multiplication of tour transform of one signal and complex conjugate of F.T of other signal

$$
R_{x y}(\gamma) \leftrightarrow \frac{1}{T_{0}^{2}} \sum_{k=-\infty}^{\infty} x_{1}\left(k f_{0}\right) x_{2}^{*}\left(k f_{0}\right) \delta\left(f-k f_{0}\right) .
$$

2: If cross correlation is executed at origin $(\tau=0)$

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) \operatorname{tg}_{2}^{*}(t) d i \cdot e R_{x y}(0)=0 \text {. then sols are }
$$

said to be orthogonal
3: Gross correlation exhibits conjugate symmetry

$$
R_{x y}(\tau)=R_{y x}^{*}(-\tau)
$$

4. The cross correlation is not commutative

$$
R_{x y}(\tau) \neq R_{y x}(\tau)
$$

bro -
property 1: The autocorrelation is an even f_{n} of r. That is $R_{x}(r)=R_{x}(-\tau)$
If $x(t)$ is real valued \rightarrow It has evensymmetring
Otherwise
$\overline{R_{x x}(\gamma)}=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t$
$R_{x x}^{*}(\gamma)=\int_{-\infty}^{\infty} x^{*}(t) x^{*}(\operatorname{top} \tau) d t$
$\therefore R_{x x}^{*}(-\tau)=\int_{-\infty}^{\infty} x^{*}(t) x(t+\tau) d t$
For complex, \rightarrow It has hermitian symmetry. changing the

$$
=R_{x x}(\tau) .
$$

$$
\begin{aligned}
R_{x x}(\tau) & =\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t & & =\int_{-\infty}^{0} f_{1}(t-T) f_{1}(t) d t \\
& =\int_{-\infty}^{\infty} x(t+\tau) x^{*}(t) d t & & =\phi_{11}(T)
\end{aligned}
$$

$$
\text { ie } R_{x x}(-\tau)=R_{x x}^{*}(\tau) \text {. }
$$

Property 2:

The autocorrelation f_{n} is bounded by its value at the origin That is

$$
R_{x}(0) \geqslant\left[R_{x}\left(\gamma^{\prime}\right)\right] \text { for any T }
$$

\rightarrow The largest value occurs at $\tau=0$ of autocorrelation i_{n}.
proof Consider a finite energy signal $x(t)$.
other method:

$$
y(t)=\int_{-\infty}^{\infty}|x(t+\tau)-a x(t)|^{2} d t \text {. Obviously }|y(t)|>0
$$

Cons ides the $\operatorname{tn} x(t)\{x(t-1)$

$$
y(t)=\int_{-\infty}^{\infty}|x(t+\tau)-a x(t)|^{2} d t
$$

$x^{2}(t)+x^{2}(t+1) \pm 2 x(t) x(t+r) \geqslant 0$

$$
\left.=\int_{-\infty}^{\infty}|x(t+\gamma)|^{2} d t+|a|^{2} \int_{-\infty}^{\infty}|x(t)|^{2} d t-2 \mid a\right)\left|\int_{-\infty}^{\infty} x\left(t+\gamma^{2}\right) x(t)\right| d t
$$

Integrating on $b \cdot s$.
$\begin{array}{ll}\left.\therefore \int_{-\infty}^{\infty} \mid x(t)\right)^{2} d t+\int_{-\infty}^{\infty}|x(t+\tau)|^{2} d r \\ \geqslant 2 \int_{x x}^{\infty} x(t) & \left.=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} \mid x(t+\tau) d t r\right)\left.\right|^{2} d t\end{array}$

$$
y(t) \geqslant\left[1+|a|^{2}\right] R_{x x}(0)-2|a|\left|R_{x x}(7)\right|
$$

For $|a|=1$

$$
2 R_{x x}(0) \geqslant 2\left|R_{x}(\tau)\right| \sin _{x \in}|y(t)|>0 .
$$

$$
\begin{aligned}
& \left.R_{x x}(\tau)=\int_{-\infty}^{\infty} x(t) x(t-\tau) d t \rightarrow-R_{x}(\tau)\right)_{-\infty}^{\infty} x(t) x(t+\tau) d t \\
& =\int_{-\infty}^{\infty} x(t+\tau) x(t) d t \Rightarrow \begin{array}{r}
t+T=x \Rightarrow d t=d x . \\
=\int_{-\infty}^{\infty} \Re_{1}^{\infty}(x-T)
\end{array}
\end{aligned}
$$

The value of auto correlation fr at $\gamma=0$ is equal to energy of the signal

$$
E=R_{x x}(0)=\int_{-\infty}^{\infty}|x(t)|^{\gamma} d t
$$

proof

$$
\begin{aligned}
R_{x x}(\gamma) & =\int_{-\infty}^{\infty}|x(t)|^{2} d t \\
& =\int_{-\infty}^{\infty} x(t) x^{*}(t-\gamma) d t \\
R_{x x}(0) & =\int_{-\infty}^{\infty} x(t) \cdot x^{*}(t) d t \Rightarrow \int_{-\infty}^{\infty}|x(t)|^{2} d t=E
\end{aligned}
$$

Autocorrelation of power signals:

$$
\begin{aligned}
R_{x x}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x^{*}(t-T) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t+T) x^{*}(t) d t
\end{aligned}
$$

by putting $\tau=0$

$$
\begin{gathered}
R_{x x}(0)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t \\
R_{x \times}(0)=P
\end{gathered}
$$

\therefore The autocorrelation f_{n} at origin is equal to average power of the signal.

For periodic signals:

(1) If $R_{x x}(\tau)$ and $R_{x x}^{*}(-\tau)$ are complex conjugate of each other then $R(\tau)=R^{x}(-\tau)$ called as conjugate property.
\rightarrow correlation means comparison
There are two types of correlations
(1) cross correlation
(2) Auto correlation.

Cross correlation: It is the measure of similarity between one waveform and time delayed version of the another waveform.

Equation of cross correlation is

$$
R_{12}(\Upsilon)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}^{*}(t-\tau) d t
$$

Auto correlation: It is the measure of similarity between one waveform and time delayed version of the same waveform.

Ex:

Equation of auto correlation is

$$
R_{11}(\tau)=\int_{-\infty}^{\infty} f_{1}(t) f_{1}^{*}(t-\tau) d t
$$

APPLICATION OF CORRELATION:
\rightarrow It is used in the determination of signal that are contaminated with noise.
www.FirstRanker.com

$$
E=\int_{-\infty}^{\infty} f^{v}(t) d t \rightarrow \text { cross } \rightarrow \text { two fins }
$$

Let $f_{1}(t) \xi_{2}(t)$ be two energy signals then ross corelation b/w them is defined as

$$
\begin{aligned}
& R_{12}(\tau)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}^{*}(t-\gamma) d t \\
& R_{12}(\gamma)=\int_{-\infty}^{\infty} f_{1}(t \neq \tau) f_{2}^{*}(t) d t
\end{aligned}
$$

Here τ is delay parameter or scanning parameter on scaling parameter \rightarrow From the above two eqns cross correlation function obtained by shifting $f_{2}(t)$ in trove direction by an amount γ is equal to the cross correlation function obtained by shifting $f_{1}(t)$ in -ve direction by an amount τ.

$$
\begin{aligned}
& R_{21}(\tau)=\int_{-\infty}^{\infty} f_{2}(t) f_{1}^{*}(t-\tau) d t \\
& R_{21}(\tau)=+\int_{-\infty}^{\infty} f_{2}(t+\tau) f_{1}^{*}(t) d t
\end{aligned}
$$

By comparing with the convolution integral we can define ers correlation function of $f_{1}(t) \& f_{2}(t)$ as

$$
R_{12}(\varphi)=f_{1}(t) \otimes f_{2}(-t)
$$

\rightarrow If $f(t) \& f_{2}(t)$ are even frs then cross correlation function becomes equal to convolution.

Differences between convolution \& correlation

$$
\begin{aligned}
\rightarrow F_{1}(t) \otimes f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\gamma) F_{2}(t-\gamma) d \tau & \overbrace{12}(\tau)
\end{aligned}=\int_{-\infty}^{\text {convelutution }} f_{1}(t) F_{2}^{*}(t-\gamma) d t .
$$

\rightarrow convolution is a fro of physical time ' t '
\rightarrow function of τ
\rightarrow It obeys commutation Law $f_{1}(t) \otimes f_{2}(t)=f_{2}(t) \otimes f_{1}(t)$
\rightarrow It is used to evaluate the response \rightarrow It is used to eliminate noise
of the system for arbitary ip
of cirgetspanalerocompu:
cross correlation function of two signal is equal
to product of FT of one signal wand complex conjugate F.T wop BAkst Bignkedr:com

$$
\begin{equation*}
F\left[R_{12}(r)\right]=x_{1}(f) x_{2}^{*}(f) \tag{1}
\end{equation*}
$$

Proof

Applying conjugate on both sides

$$
\begin{equation*}
x_{2}^{*}(t)=\int_{-\infty}^{\infty} x_{2}^{*}(t-r) e^{j 2 \pi f t} \cdot e^{-j 2 \pi f r} d \tau \tag{3}
\end{equation*}
$$

Now multiplying the eq(1) \& 3) we get

$$
\begin{aligned}
& \begin{aligned}
x_{1}(f) x_{2}^{*}(f) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}(t) x_{2}^{*}(t-\gamma) e^{-j 2 \pi / \tau} d t d \tau \\
& =\int_{-\infty}^{\infty} R_{12}(\tau) e^{-j 2 \pi f \tau} d \tau \quad\left[\because R_{12}=\int_{-\infty}^{\infty} x_{1}(f) x_{2}^{*}(t-\tau) d t\right] \\
x_{1}(f) x_{2}^{*}(f) & =F\left[R_{12}(\gamma)\right] \quad
\end{aligned}>.
\end{aligned}
$$

(2) The cross correlation on is zero at origin i.e at $T=0$,

$$
R_{12}(\gamma)=R_{12}(0)=0
$$

poof: Consider $R_{12}(T)=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{1}(t) x_{2}^{*}(t-\tau) d t$

$$
\begin{aligned}
& R_{12}(\tau)=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{1}(t) x_{2}^{*}(t-\tau) d t \rightarrow \text { (1) } \\
& R_{21}(\tau)=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{2}(t) x_{1}^{*}(t-\tau) d t \rightarrow(2) \\
& \text { putting } \\
& R_{21}(-\tau)=\int_{T \rightarrow \infty}^{T=-\tau} \frac{1}{2 T} \int_{-T}^{T} x_{2}(t) x_{1}^{*}(t+\tau) d t ?
\end{aligned}
$$

Applying conjugate on both sides, we get

$$
\begin{aligned}
& R_{21}^{\alpha}(-\gamma)=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{2}^{*}(t) x_{1}(t+\tau) d t \\
& \{\text { Now puts } t=t-T \text {. } \\
& d t=d t 3 \\
& =\operatorname{Lt}_{T \rightarrow 0^{2 T}} \frac{1}{-T} \int_{-T}^{T} x_{2}^{*}(t-\tau) x_{1}(t) d t \\
& =\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{1}(t) x_{2}^{*}(t-\tau) d t \\
& =R_{L_{2}(\gamma)} \\
& \therefore R_{21}^{*}(-1)=R_{12}(\tau)
\end{aligned}
$$

(4) The cos correlation f_{n} does not satisfy commutative property i.e $R_{12}(\gamma) \neq R_{21}(\tau)$
proof $R_{12}(\gamma)=L_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T_{T}}^{T} x_{1}(t) x_{2}^{*}(t-\gamma) d t$

$$
R_{21}(\tau)=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{2}(t) x_{1}^{*}(t-\tau) d t
$$

As above egg are not same

$$
R_{12}(\tau) \neq R_{21}(T)
$$

(5) The woos correlation for energy signals is given by
$R_{12}(\gamma)=\int_{-\infty}^{\infty} x_{1}(t) x_{2}^{*}(t-\tau) d t$
(on)
$R_{21}(\tau)=\int_{-\infty}^{\infty} x_{2}(t) x_{1}^{*}(t-\tau) d t$
assoc l!2yt s!

(1) Determine the cross correlation $f_{n} \overrightarrow{R_{x y}} \overrightarrow{(x)} \rightarrow R_{12}(x)$ of two signal $g_{1}(t)$ and $g_{2}(t)$ defined by

$$
g_{1}(t)=\left\{\begin{array}{cc}
A \cos \left(2 \pi f_{1} t+\theta_{1}\right) & 0 \leqslant t \leqslant T \\
0 & \text { elsewhere }
\end{array} \quad g_{2}(t)=\left\{\begin{array}{cl}
A \cos \left(2 \pi f_{2} t+\theta_{2}\right) & 0 \leqslant t<\tau \\
0 & \text { elsewhere }
\end{array}\right.\right.
$$

How does varying the frequency difference $\left|f_{1}-f_{2}\right|$ affect this cross correlation f_{n}.

Cross correlation is gwen as

$$
R_{12}(\tau)=\int_{-\infty}^{\infty} x_{1}(t) x_{2}^{*}(t-\tau) d t
$$

or

$$
R_{12}(\tau)=\int_{-\infty}^{\infty} g_{1}(t) g_{2}^{*}(t-A) d t
$$

$$
=\int_{0}^{T} A \cos \left(2 \pi f_{1} t+\theta_{1}\right) \cdot A \cos \left(2 \pi f_{2}(t-\lambda)+\theta_{2}\right) d t
$$

$$
\begin{aligned}
& =\int_{0}^{T} A \cos \left(2 \pi f_{1} t+\theta_{1}\right) \cdot A \cos \left(2 \pi f_{2} t-2 \pi f_{2} \lambda+\theta_{2}\right) d t \\
& \{\because \cos (A-B)+\cos (A+B)]
\end{aligned}
$$

$$
\begin{aligned}
=\frac{A^{2}}{2} \int_{0}^{T}\left\{\cos \left(2 \pi f_{1} t+\theta_{1}-2 \pi f_{2} t-\theta_{2}+2 \pi f_{2} x\right)+\right. & \cos \left(2 \pi f_{1} t+\theta_{1}\right. \\
& \left.+2 \pi f_{2} t-2 \pi f_{2} \lambda+\theta_{)}\right)
\end{aligned}
$$

$$
\left.=\frac{A^{2}}{2}\left\{\frac{\sin \left(2 \pi f_{1} t+\theta_{1}-2 \pi f_{2} t-\theta_{2}+2 \pi f_{2} x\right)}{2 \pi\left(f_{1}-f_{2}\right)}\right]_{0}^{T}+\frac{\sin \left[2 \pi\left(f_{1}+f_{2}\right) t+\theta_{1}+\theta_{2}-2 \pi f_{2} \lambda t\right.}{2 \pi\left(f_{1}+f_{2}\right)}\right]_{0}^{d t}
$$

$$
\begin{aligned}
& \frac{A^{2}}{2}\left[\frac{\left.\sin \left(2 \pi\left(f_{1}-f_{2}\right) \pi+\theta_{1}-\theta_{2}+2 \pi f_{2} \lambda\right)-\sin \left[\theta_{1}-\theta_{2}+2 \pi f_{2} \lambda\right)\right]}{2 \pi\left(f_{1}-f_{2}\right) .}\right. \\
& \left.+\frac{\sin \left[\left(2 \pi\left(f_{1}+f_{2}\right) \tau+\theta_{1}+\theta_{2}-2 \pi f_{2} \lambda\right)-\sin \left[\theta_{1}+\theta_{2}-2 \pi f_{2} \lambda\right]\right.}{2 \pi\left(f_{1}+f_{2}\right)}\right]
\end{aligned}
$$

Ehtranier choice

$$
\begin{aligned}
& \quad x_{1}(t) \quad\left(x_{1}, y_{1}\right)=(-1,0),\left(x_{2}, y_{2}\right)=(0,1) \\
& y=x_{1}(t), x t \\
& y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
& x_{1}(t)=t+1 \\
& x_{1}(t)= \begin{cases}1+t \text { for }-1 \leqslant t \leqslant 0 & x_{2}(t)=1 \text { for }-1 \leqslant t \leqslant 1 \\
1-t \text { for } 0 \leqslant t \leqslant 1 & x_{2}(t-\tau)=1 \text { for }-1 \leqslant t-\tau \leqslant 1\end{cases} \\
& R_{12}(\tau)=\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t-\tau) d t .
\end{aligned}
$$

Case i; $\tau<-2$
There is no overlap b/w $x_{1}(t)$ and $x_{2}(t) \therefore R_{12}(\tau)=$

Case (ii) $-2 \leqslant T \leqslant-1$

$$
R_{12}(\tau)=\int_{-1}^{0}(t t v) d t
$$

$$
=\frac{x}{2}+\frac{b}{0} x^{0}
$$

$$
\frac{b h}{2} \Rightarrow \frac{1}{2} \times 1 \times 1=0.5
$$

between -1 to 0 .

case (iii)

$$
\begin{array}{r}
R_{12}(\gamma)=\frac{1}{2} \times 1 \times 1+ \\
\frac{1}{2} \times 1 \times 1=1
\end{array}
$$

$\operatorname{Case}(\dot{V})=\frac{1}{2} \times 1 \times 1$

Spectral density: It is the distribution of power or energy of a signal per unit bandwidth as a function of frequency.

Energy and power signals:
\rightarrow Signals with finite energy i.e $0<E<\infty$ and $p=0$ are called energy signals. e.g: aperiodic signals like pulse
\rightarrow signals with finite average power ie $0<P<\infty$ and $E=\infty$ are called powersgls ie periodic signals.
The energy of a signal $x(t)$ is defined as

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

Parseval's Theorem for energy signal: Rayleigh energy theoum: It defines the energy of a signal in toms of fourier transform.

$$
\text { i.e } E=\int_{-\infty}^{\infty}|x(f)|^{2} d f \text {. }
$$

Proof $x(t) \longleftrightarrow x(f)$. Let $x^{*}(t)$ be conjugate of $x(t)$ such that

$$
x^{*}(t) \longleftrightarrow \dot{x}^{*}(-f)
$$

Energy of the signal $x(t)$ is given by

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} x(t) x^{*}(t) d t=\int_{-\infty}^{\infty} x^{*}(t) x(t) d t
$$

Replacing $x(t)$ in tams of inverse fourier transform $x(f)$

$$
E=\int_{-\infty}^{\infty} x^{*}(t)\left\{\int_{-\infty}^{\infty} x(f) e^{j \omega t} d f\right\} d t
$$

Interchanging the order of integration.

$$
E=\int_{-\infty}^{\infty} x(f)\left\{\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega t} d t\right\} d f
$$

\$postroake delerabitijce It is the distribution of energy of signal in www.FirstRanker.com www.FirstRanker.ESM or ED)
silty spectrum frequency domain. which is also called as energy density spectrum (ESD or ED) given by

$$
\begin{equation*}
\psi(f)=|x(f)|^{2} \tag{i}
\end{equation*}
$$

Let $x(t)$ and $y(t)$ be the input and output of a linear system. ie $x(t) \leftrightarrow x(t)$ and $y(t) \longleftrightarrow y(t)$ and $H(t)$ be system transfer function.

$$
\begin{equation*}
y(f)=H(f) \times(f) \tag{2}
\end{equation*}
$$

Using Eq (1) we can write as

$$
\begin{gathered}
\psi_{x}(f)=|x(f)|^{2} \\
\psi_{y}(f)=|y(f)|^{2} . \\
\psi_{y}(f)=|y(f)|^{2}=|H(f)|^{2}|x(f)|^{2}=|H(f)|^{2} \psi_{x}(f) . \\
\psi_{y}(f)=|H(f)|^{2} \psi_{x}(f)
\end{gathered}
$$

ESD of the output is the product of ESD of input and square of the magnitude of transfer function.
Power Density Spectrum:
Average power is defined as

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

But power P is defined as

$$
P=\overline{x^{2}(t)}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

Parseval's Power Theorem: It defines the power of a signals in terms of its fourier series coefficients.

$$
P=\sum_{n=-\infty}^{\infty}|F n|^{2}
$$

$$
\begin{equation*}
|x(t)|^{2}=x(t) x^{*}(t) \tag{1}
\end{equation*}
$$

Average power of $x(t)$ for one cycle is

$$
\begin{equation*}
P=\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\frac{1}{7} \int_{-T / 2}^{T / 2} x(t) x^{*}(t) d t \tag{2}
\end{equation*}
$$

we have exponential Fourier series

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} \tag{3}
\end{equation*}
$$

Replacing $x(t)$ of eq (2) by eq (3) we get

$$
\begin{aligned}
& P=\frac{1}{T} \int_{-T / 2}^{T / 2} \sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} x^{*}(t) d t \\
&=\frac{1}{T} \sum_{n=-\infty}^{\infty} F_{n} \int_{-T / 2}^{T / 2} x^{*}(t) e^{j n \omega_{0} t} d t=\sum_{n=-\infty}^{\infty} F_{n} \cdot \frac{1}{T} \int_{-T / 2}^{T / 2} x^{*}(t) e^{j n \omega_{0} t} d t \\
&=\sum_{n=-\infty}^{\infty} F_{n} \cdot F_{n}^{*}=\sum_{n=-\infty}^{\infty}\left|F_{n}\right|^{2}=P . \\
& \longrightarrow \text { parsevals power theorem } .
\end{aligned}
$$

Power Spectral Density (PSD):
The distribution of average power of the signal in frequency domain is called power spectral density or power density spectrum (PSD or PD)

Let us assume that signal is zero outside the inelerval $1 \pi / 2$).

$$
x(t)=\left\{\begin{array}{cc}
x(t) & |t|<T / 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Firstranker's choice finite womp.firstkank and hence it energy signal The signal $x_{r}(t)$ is of finite www.FirstRanker.com www.FirstRanker.com with energy E given by

$$
E=\int_{-\infty}^{\infty}\left|x_{\gamma}(t)\right|^{v} d t=\int_{-\infty}^{\infty}\left|x_{\gamma}(f)\right|^{2} d f
$$

where $x_{p}(t) \longleftrightarrow x_{\eta}(t)$.
As $x(t)$ over interval $(\pi / 2, \gamma / 2)$ is same as $x_{\gamma}(t)$ over the interval $(-\infty, \infty)$

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|x_{\gamma}(t)\right|^{v} d t=\int_{-T / 2}^{\pi / 2}|x(t)|^{v} d t \\
& \therefore \frac{1}{\tau} \int_{-\tau / 2}^{\tau / 2}|x(t)|^{\nu}=\frac{1}{\tau} \int_{-\infty}^{\infty}\left|x_{\tau}(f)\right|^{\gamma} d t \tag{1}
\end{align*}
$$

If $T \rightarrow \infty$, the left hand side of eq(1) represents average power P

$$
P=\int_{-\infty}^{\infty} \lim _{\tau \rightarrow \infty} \frac{\left|x_{\gamma}(f)\right|^{\gamma}}{\tau} d f
$$

If $T \rightarrow \infty, \left\lvert\, \frac{\left.x_{\tau}(f)\right|^{v}}{\tau}\right.$ approaches finite value denoted by $s(f)$ or $s(\omega)$

$$
S(f)=\lim _{T \rightarrow \infty} \frac{\left|x_{\gamma}(f)\right|^{v}}{\tau}
$$

Average power

$$
P=\overline{x^{2}(t)}=\int_{-\infty}^{\infty} s(f) d f=\frac{1}{2 \pi} \int_{-\infty}^{\infty} s(w) d w
$$

\rightarrow The PSD of periodic function is given by

$$
\begin{aligned}
& s(t)=\sum_{n=-\infty}^{\infty}\left|F_{n}\right|^{2} \delta\left(t-n t_{0}\right) \\
& \text { lyly } s(\omega)=2 \pi \sum_{n=-\infty}^{\infty}\left|F_{n}\right|^{2} \delta\left(\omega-n \omega_{0}\right) .
\end{aligned}
$$

I/P and σ / p relation of linear system in terms of PSD is gwen by

$$
S_{y}(f)=|H(f)|^{2} \cdot S_{x}(f)
$$

(1) It gives the distribution of energy of a signal in frequency
(2) It is given by

$$
\psi(f)=|x(f)|^{2}
$$

Total energy is given by

$$
E=\int_{-\infty}^{\infty} \psi \psi(t) d t
$$

(4) The auto correlation for an energy signal and its ESD form a Fourier transform pair

$$
R(\gamma) \longleftrightarrow \psi(f)
$$

(1) It gives the distribution of power of signal in trequencydoman
(2) It is given by

$$
s(f)=\lim _{\tau \rightarrow \infty} \frac{\left|x_{\gamma}(f)\right|^{2}}{\tau}
$$

(3) Total power is given by $P=\int_{-\infty}^{\infty} s(f) d f$
(4) The autocorrelation for a power signal and its PSD form a Fourier transform pair.
$R(\tau) \longleftrightarrow S(F)$

RELATION BETWEEN AUTOCORRELATION AND SPECTRAL DENSITIES
. 1. The autocorrelation function $R(\tau)$ of an energy signal and its energy spectral density (ESD), $\psi(f)$ forms a fourier transform pair,

$$
R(\tau) \longleftrightarrow \psi(f)
$$

proof: Cross correlation of two energy signals $x(t)$ and $y(t)$ is given as

$$
R_{x y}(\tau)=\int_{-\infty}^{\infty} x(f) y^{*}(f) e^{j \omega \tau} d f
$$

If both functions are same, then auto correlation is given by

$$
\begin{aligned}
& R(\tau)=\int_{-\infty}^{\infty} x(f) x^{*}(f) e^{j \omega \tau} d f=\int_{-\infty}^{\infty}|x(f)|^{\sim} e^{j \omega \tau} d f \\
& =F^{-1}\left[|F(f)|^{\nu}\right] \\
& \text { But }|F(f)|^{\nu}=\psi(f) \\
& \therefore R(\tau)=F^{-1}[\psi(f)] \Rightarrow F[R(\tau)]=\psi(f) \\
& R(\tau) \longleftrightarrow \psi(f)
\end{aligned}
$$ a power signal form a fourier transform pair. www.FirstRanker.com

$$
R(\tau) \longleftrightarrow S(f)
$$

proof
Autocorrelation function of power $x(t)$ in terms of fourier series coefficients is given as

$$
R(\tau)=\sum_{n=-\infty}^{\infty} x_{\substack{\sum_{n} \\ \text { exponential four }}}^{x_{-n} e^{j n \omega_{0}} v}
$$

exponential fourier series coefficients

$$
R(Y)=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{v} e^{j n \omega_{0} \tau}
$$

Taking Fourier transform.

$$
F[R(\tau)]=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{v} e^{j n \omega_{0} \tau}\right] e^{-j \omega \tau} d \tau
$$

Interchanging the order of integration \& summation, we get

$$
\begin{aligned}
F[R(\tau)] & =\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2} \int_{-\infty}^{\infty} e^{-j \gamma\left(\omega-n \omega_{0}\right)} d \tau \\
& =2 \pi \sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2} \cdot \delta\left(\omega-n \omega_{0}\right)=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2} \delta\left(f-n f_{0}\right) .
\end{aligned}
$$

The RHS is the PSD $S(\omega)$ or $S(f)$ of periodic function $x(t)$

$$
\begin{aligned}
\therefore & F[R(\gamma)]=S(f) \\
& R(\tau)=F^{-1}[S(f)] \\
& \therefore R(\tau) \longleftrightarrow S(f) .
\end{aligned}
$$

RELATION BETWEEN CONVOLUTION AND CORRELATION:
(1) In correlation, physical time 't 'plays the role of dummy variable $\&$ it appears after solving the integral but in convolution delay parameter y plays the role of chummy variable.
(2) Correlation $R_{x y}(\tau)$ is a function of delay parameter τ, whereas convdution is a function of time.
3) Correlation can be obtained by convolving $x(t) \& y^{*}(t)$
4) Convolution does not depend on which function is being shifted whereas correlation does ie convolution is Commutative.
www. FirstRanker.com

Proot For two signals $x_{1}(t)$ and $x_{2}(t)$
The definction for wrrelation is given by

$$
\begin{align*}
R_{12} & =\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t-\tau) d t \tag{1}\\
R_{21} & =\int_{-\infty}^{\infty} x_{2}(t) x_{1}(t-\tau) d t \tag{2}
\end{align*}
$$

The definition for convolution

$$
\begin{align*}
x_{1}(t) * x_{2}(t) & =\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau \tag{3}\\
& =\int_{-\infty}^{\infty} x_{2}(\tau) x_{1}(t-\tau) d \tau \tag{4}
\end{align*}
$$

Taking eq (1) Evoop (3)

$$
R_{12}=\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t-\tau) d t
$$

Replaing dunmy variable ' t ' by ' p ' we get

$$
=\int_{-\infty}^{\infty} x_{1}(p) x_{2}(p-\tau) d p
$$

Since it is a even signal i.e $x(t)=x(-t)$

$$
\begin{gathered}
=\int_{-\infty}^{\infty} x(p) x_{2}(-(\tau-p)) d p=S \\
s=\int_{-\infty}^{\infty} x_{1}(p) x_{2}(\tau-p) d p
\end{gathered}
$$

Replace dumny variable τ by t

$$
J=\int_{-\infty}^{\infty} x_{1}(p) x_{2}(t-p) d p
$$

Again replaing the varialle p by τ

$$
S=\int_{-\infty}^{\infty} x(\tau) x_{2}(t-\pi) d \tau
$$

spectre of $f_{1}(t) \quad|A(\omega)|^{2}=\int_{-\infty}^{\infty} R_{11}(T) e^{-j \omega t} d T=\pi \delta_{1}(\omega)$
prot
From definition of $F T$, FT of $R_{11}(T)$ is

$$
\begin{aligned}
\int_{-\infty}^{\infty} R_{11}(T) e^{-j \omega T} d T= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{1}(t) \cdot f_{1}(t-T) e^{-j \omega T} d t d T \\
= & \int_{-\infty}^{\infty} f_{1}(t) e^{-j \omega t} d t \int_{-\infty}^{\infty} f_{1}(t-T) e^{j \omega(t-T)} d T \\
& \text { putting } t-T=-x \Rightarrow d T=d x \\
= & F_{1}(\omega) \int_{-\infty}^{\infty} f_{1}(-x) e^{-j \omega x} d x \\
= & F_{1}(\omega) F_{1}(-\omega) \\
= & \left|F_{1}(\omega)\right|^{2}=\pi S_{1}(\omega) .
\end{aligned}
$$

(5) Fourier transform of R_{12} cross correlation $\left.f_{n}\right)$ is $F_{1}(\omega) F_{2}(-\omega) \leftrightarrow F_{1}(\omega) F_{2}(-\omega)$ proof Fourier transform of $f_{1}(t) \xi f_{2}(t)$ are

$$
\begin{aligned}
& \quad f_{1}(t) \leftrightarrow F_{1}(\omega), f_{2}(t) \leftrightarrow F_{2}(\omega) 1^{l y} f_{1}(-t) \leftrightarrow F_{1}(-\omega) \varepsilon_{1} f_{2}(-t) \leftrightarrow F_{2}(-\omega) \\
& R_{12}(T)=f_{1}(t) * f_{2}(-t) .
\end{aligned}
$$

\therefore Fourier transform of $f_{1}(t) * F_{2}(-t)$ is $F_{1}(\omega) F_{2}(-\omega)$.

$$
\therefore \quad R_{12}(\tau)=F_{1}(t) * F_{2}(-t) \longleftrightarrow F_{1}(\omega) \cdot F_{2}(-\omega) .
$$

(6) Graphically $R_{12}(T)$ is same as $R_{21}(T)$ where it is folded back about the vertical axis at $T=0$. $R_{12}(T)=\not R_{21}(T)$.
prot

$$
\begin{aligned}
& R_{12}(T)=\int_{-\infty}^{\infty} f_{1}(t) \cdot f_{2}(t-T) d t=\int_{-\infty}^{\infty} f_{1}(t+T) f_{2}(t) d t \\
& R_{21}(T)=\int_{-\infty}^{\infty} f_{2}(t) \cdot f_{1}(t-T) d t \\
& R_{21}(-T)=\int_{-\infty}^{\infty} f_{2}(t) f_{1}(t-(t-T)) d t=\int_{-\infty}^{\infty} f_{2}(t) f_{1}(t+T) d t=R_{12}(T) \\
& \text { www.FirstRanker.com }
\end{aligned}
$$

\rightarrow Gives the distribution of energy of the signal in the frequency domain.

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega
$$

we know

$$
\begin{aligned}
& \omega=2 \pi f \\
& d \omega=2 \pi d f \\
& \therefore E=\frac{1}{2} \pi \int_{-\infty}^{\infty}|x(f)|^{2} \cdot 2 \pi d f=\int_{-\infty}^{\infty}|x(f)|^{2} d f \quad \operatorname{coz} \quad|x(2 \pi f)| \text { is } \\
& \text { written as } x(f) .
\end{aligned}
$$

where $|x(f)| \rightarrow$ amplitude spectrum.
If we denote $|x(f)|^{2}$ by $\psi(f)$

$$
\begin{equation*}
\therefore \text { ESD : } \psi(f)=|x(f)|^{2} \tag{2}
\end{equation*}
$$

putting (2) in eq (1)

$$
\begin{aligned}
& E=\int_{-\infty}^{\infty} \psi(f) d f . \\
& \text { totalenergy } \\
& \text { of the sql. }
\end{aligned}
$$

$\rightarrow \psi(f)$ represents \rightarrow Energy spectral density of $s g l x(t)$ in joules per hertz.

Effect of Systems on ESD
Let the ESD of $x(t)$ be $\psi_{x}(f)$ and $y(t)$ be $\psi_{y}(f)$. The signal $x(t)$ is applied at the input of LTI system and $y(t)$ is obtained at the output.
\rightarrow Let LTI system to be an ideal filter which has pass band from f_{L} to f_{H}. ie only signal will be passed without any effect from f_{L} to f_{H}. www. FirstRanker.com

Energy at the output will be

$$
E_{y}=\int_{-\infty}^{\infty} f_{y}(f) d f
$$

\rightarrow If $\varphi_{y}(t)$ is symmetric for positive \& negatwie values of ' f ', then

$$
\begin{aligned}
E_{y} & =2 \int_{0}^{\infty} \psi_{y}(f) d f \\
E_{y} & =2 \int_{f_{L}}^{f_{H}} \psi_{y}(f) d f \\
& =2 \int_{f_{L}}^{f_{H}}|Y(f)|^{2} d f .
\end{aligned}
$$

we know $y(\omega)=H(\omega) x(\omega)$.

$$
\begin{aligned}
E_{y} & =2 \int_{f_{L}}^{f_{H}}\left(H(f) \|\left.(f)\right|^{2} d f\right. \\
& =2 \int_{f_{L}}^{f_{H}}|H(f)|^{2}|x(f)|^{2} d f \\
& =2 \int_{f_{L}}^{f_{H}}|f H(f)|^{2} \psi_{x}(f) d f
\end{aligned}
$$

\rightarrow The filter passes all the frequencies $b / w f_{L} \xi_{H} f_{H}$ ie $H(f)=1$
for $f_{L} \leqslant f \leqslant f_{H}$.

$$
E_{y}=2 \int_{f_{L}}^{f_{H}} \psi_{x}(f) d f
$$

energy of in terms of EGD of $i / p \mathrm{sgl}$. the op sal.

The convolution of $f_{1}(t)$ and $f_{2}(-t)$ by $\rho_{12}(t)$, we have

$$
\begin{aligned}
S_{12}(t) & =f_{1}(t) * f_{2}(-t) \\
& =\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(\tau-t) d \tau
\end{aligned}
$$

The dummy variable τ in the above integral may be replaced by another variable x.

$$
\rho_{12}(t)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x-t) d x .
$$

changing the variable from to i, we get

$$
\begin{aligned}
\rho_{12}(t) & =\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x-\gamma) d x \\
& =\phi_{12}(\gamma)
\end{aligned}
$$

$$
\text { Hence } \quad \phi_{12}(\gamma)=\left.f_{1}(t) * f_{2}(-t)\right|_{t=1}=\rho_{12}(\tau)
$$

$$
11^{l y} \quad \phi_{21}(\tau)=\left.f_{1}(-t) * f_{2}(t)\right|_{t=\tau}=\rho_{21}(\tau) \text {. }
$$

and

$$
\phi_{11}(\gamma)=\left.f_{1}(t) * f_{1}(-t)\right|_{t=\tau}=\rho_{11}(\tau)
$$

DETECTION OF PERIODIC SIGNALS IN THE PRESENCE OF NOISE BY CORRELATION:
\rightarrow Now we consider that periodic signals are affected by nose that finds the applications in the detection of radar and sonar signals, periodic component in drain waves and cyclical component in ocean wave analyses.
\rightarrow If $s(t)$ is periodic signal and $n(t)$ represents the noise signal, then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} s(t) n(t-\gamma) d t=0 \text { for all } \tau
$$

$$
\varnothing_{s n}(\gamma)=0
$$

Detection by Autocorrelation:
www.FirstRanker.com
www.FirstRanker.com
Let $s(t)$ be a periodic signal mixed with noise signal $n(t)$. Then the received $s g \mid f(t)$ is $[s(t)+n(t)]$.
\rightarrow Let $\bar{\varphi}_{f f}(\gamma), \bar{\varphi}_{f S}(\tau), \bar{\varphi}_{n n}(\tau)$ denote the autocorrelation functions of $f(t), S(t)$ and $n(t)$ respectively.

$$
\begin{aligned}
\bar{\phi}_{f f}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} f(t) f(t-\tau) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}[s(t)+n(t)][s(t-\tau)+n(t-\tau)] d t \\
& =\bar{\phi}_{s s}(\tau)+\bar{\varphi}_{n n}(\tau)+\bar{\phi}_{s n}(\tau)+\bar{\varphi}_{n s}(\tau)
\end{aligned}
$$

$(\because s(t) \& n(t)$ are uncorrelated)

$$
\begin{gathered}
\bar{\psi}_{s n}(\tau)=\bar{\varphi}_{n s}(\tau)=0 \\
\therefore \quad \bar{\phi}_{f f}(\tau)=\bar{\phi}_{s s}(\tau)+\bar{\phi}_{n n}(\tau)
\end{gathered}
$$

\downarrow
exhibit a periodic nature at larger values of τ.

\rightarrow It follows that $f(t)$ contains a periodic signal of frequency displayed dey $\bar{\phi}_{f f}(\gamma)$.
\rightarrow If $\bar{\phi}_{f f}(\tau)$ does exhibit such a periodic nature it is possible to separate $\overline{\phi_{s s}}(\tau)$ and $\bar{\phi}_{n n}(\tau)$ \{non periodic component \} . ~

EXTRACTION OF SIGNAL FROM FirstRankegyomiliteriwanw: FirstRanker.com
\rightarrow A signal masked by noise can be detected either by correlation techniques or fitting.
\rightarrow Correlation technique in terrie domain and filtering in frequency domain.

Fig: Gosscorrelation in time \& frequency domain.
The impulse response $h(t)$ of a system with a transfer function $F_{2}(-\omega)$ is given by

$$
\begin{aligned}
& h(t)=F^{-1}\left[F_{2}(-\omega)\right] \\
& \text { But } F_{2}(t) \longleftrightarrow F_{2}(\omega) \\
& \text { and } f_{2}(-t) \longleftrightarrow F_{2}(-\omega)
\end{aligned}
$$

\therefore hence $h(t)=f_{2}(-t)$.
\longrightarrow The revived signal $f(t)$ is

$$
f(t)=s(t)+n(t)
$$

\longrightarrow We are filtering out all of the noise signal and extracting the desired periodic signal $s(t)$ by a fitter which allows only the frequency components present in $S(t)$ to pass through.

Topic 12 Notes
Jeremy Orloff

12 Laplace transform

12.1 Introduction

The Laplace transform takes a function of time and transforms it to a function of a complex variable s. Because the transform is invertible, no information is lost and it is reasonable to think of a function $f(t)$ and its Laplace transform $F(s)$ as two views of the same phenomenon. Each view has its uses and some features of the phenomenon are easier to understand in one view or the other.

We can use the Laplace transform to transform a linear time invariant system from the time domain to the s-domain. This leads to the system function $G(s)$ for the system -this is the same system function used in the Nyquist criterion for stability.

One important feature of the Laplace transform is that it can transform analytic problems to algebraic problems. We will see examples of this for differential equations.

12.2 A brief introduction to linear time invariant systems

Let's start by defining our terms.
Signal. A signal is any function of time.
System. A system is some machine or procedure that takes one signal as input does something with it and produces another signal as output.
Linear system. A linear system is one that acts linearly on inputs. That is, $f_{1}(t)$ and $f_{2}(t)$ are inputs to the system with outputs $y_{1}(t)$ and $y_{2}(t)$ respectively, then the input $f_{1}+f_{2}$ produces the output $y_{1}+y_{2}$ and, for any constant c, the input $c f_{1}$ produces output $c y_{1}$.
This is often phrased in one sentence as input $c_{1} f_{1}+c_{2} f_{2}$ produces output $c_{1} y_{1}+c_{2} y_{2}$, i.e. linear combinations of inputs produces a linear combination of the corresponding outputs.

Time invariance. Suppose a system takes input signal $f(t)$ and produces output signal $y(t)$. The system is called time invariant if the input signal $g(t)=f(t-a)$ produces output signal $y(t-a)$.

LTI. We will call a linear time invariant system an LTI system.
Example 12.1. Consider the constant coefficient differential equation

$$
3 y^{\prime \prime}+8 y^{\prime}+7 y=f(t)
$$

This equation models a damped harmonic oscillator, say a mass on a spring with a damper, where $f(t)$ is the force on the mass and $y(t)$ is its displacement from equilibrium. If we consider f to be the input and y the output, then this is a linear time invariant (LTI) system.
Example 12.2. There are many variations on this theme. For example, we might have the LTI system

$$
3 y^{\prime \prime}+8 y^{\prime}+7 y=f^{\prime}(t)
$$

where we call $f(t)$ the input signal and $y(t)$ the output signal.

12.3 Laplace transform

Definition. The Laplace transform of a function $f(t)$ is defined by the integral

$$
\mathcal{L}(f ; s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t
$$

for those s where the integral converges. Here s is allowed to take complex values.
Important note. The Laplace transform is only concerned with $f(t)$ for $t \geq 0$. Generally, speaking we can require $f(t)=0$ for $t<0$.
Standard notation. Where the notation is clear, we will use an upper case letter to indicate the Laplace transform, e.g, $\mathcal{L}(f ; s)=F(s)$.
The Laplace transform we defined is sometimes called the one-sided Laplace transform. There is a two-sided version where the integral goes from $-\infty$ to ∞.

12.3.1 First examples

Let's compute a few examples. We will also put these results in the Laplace transform table at the end of these notes.
Example 12.3. Let $f(t)=\mathrm{e}^{a t}$. Compute $F(s)=\mathcal{L}(f ; s)$ directly. Give the region in the complex s-plane where the integral converges.

$$
\begin{aligned}
\mathcal{L}\left(\mathrm{e}^{a t} ; s\right) & =\int_{0}^{\infty} \mathrm{e}^{a t} \mathrm{e}^{-s t} d t=\int_{0}^{\infty} \mathrm{e}^{(a-s) t} d t=\left.\frac{\mathrm{e}^{(a-s) t}}{a-s}\right|_{0} ^{\infty} \\
& = \begin{cases}\frac{1}{s-a} & \text { if } \operatorname{Re}(s)>\operatorname{Re}(a) \\
\text { divergent } & \text { otherwise }\end{cases}
\end{aligned}
$$

The last formula comes from plugging ∞ into the exponential. This is 0 if $\operatorname{Re}(a-s)<0$ and undefined otherwise.

Example 12.4. Let $f(t)=b$. Compute $F(s)=\mathcal{L}(f ; s)$ directly. Give the region in the complex s-plane where the integral converges.

$$
\begin{aligned}
\mathcal{L}(b ; s) & =\int_{0}^{\infty} b \mathrm{e}^{-s t} d t=\left.\frac{b \mathrm{e}^{-s t}}{-s}\right|_{0} ^{\infty} \\
& = \begin{cases}\frac{b}{s} & \text { if } \operatorname{Re}(s)>0 \\
\text { divergent } & \text { otherwise }\end{cases}
\end{aligned}
$$

The last formula comes from plugging ∞ into the exponential. This is 0 if $\operatorname{Re}(-s)<0$ and undefined otherwise.
Example 12.5. Let $f(t)=t$. Compute $F(s)=\mathcal{L}(f ; s)$ directly. Give the region in the
complex s-plane where the integral converges.

$$
\begin{aligned}
\mathcal{L}(t ; s) & =\int_{0}^{\infty} t \mathrm{e}^{-s t} d t=\frac{t \mathrm{e}^{-s t}}{-s}-\left.\frac{\mathrm{e}^{-s t}}{s^{2}}\right|_{0} ^{\infty} \\
& = \begin{cases}\frac{1}{s^{2}} & \text { if } \operatorname{Re}(s)>0 \\
\text { divergent } & \text { otherwise }\end{cases}
\end{aligned}
$$

Example 12.6. Compute $\mathcal{L}(\cos (\omega t))$

$$
\mathcal{L}(\cos (\omega t) ; s)=\frac{1 /(s-i \omega)+1 /(s+i \omega)}{2}=\frac{s}{s^{2}+\omega^{2}}
$$

12.3.2 Connection to Fourier transform

The Laplace and Fourier transforms are intimately connected. In fact, the Laplace transform is often called the Fourier-Laplace transform. To see the connection we'll start with the Fourier transform of a function $f(t) . \hat{f}(\omega)=\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-i \omega t} d t$. If we assume $f(t)=0$ for $t<0$, this becomes

$$
\begin{equation*}
\hat{f}(\omega)=\int_{0}^{\infty} f(t) \mathrm{e}^{-i \omega t} d t \tag{1}
\end{equation*}
$$

Now if $s=i \omega$ then the Laplace transform is

$$
\begin{equation*}
\mathcal{L}(f ; s)=\mathcal{L}(f ; i \omega)=\int_{0}^{\infty} f(t) \mathrm{e}^{-i \omega t} d t \tag{2}
\end{equation*}
$$

Comparing these two equations we see that $\hat{f}(\omega)=\mathcal{L}(f ; i \omega)$. We see the transforms are basically the same things using different-notation -at least for functions that are 0 for $t<0$.

12.4 Exponential type

The Laplace transform is defined when the integral for it converges. Functions of exponential type are a class of functions for which the integral converges for all s with $\operatorname{Re}(s)$ large enough.

Definition. We say that $f(t)$ has exponential type a if there exists an M such that $|f(t)|<M \mathrm{e}^{a t}$ for all $t \geq 0$.
Note. As we've defined it, the exponential type of a function is not unique. For example, a function of exponential type 2 is clearly also of exponential type 3. It's nice, but not always necessary, to find the smallest exponential type for a function.
Theorem. If f has exponential type a then $\mathcal{L}(f)$ converges absolutely for $\operatorname{Re}(s)>a$.
Proof. We prove absolute convergence by bounding $\left|f(t) \mathrm{e}^{-s t}\right|$. The key here is that $\operatorname{Re}(s)>a$ implies $\operatorname{Re}(a-s)<0$. So, we can write

$$
\int_{0}^{\infty}\left|f(t) \mathrm{e}^{-s t}\right| d t \leq \int_{0}^{\infty}\left|M \mathrm{e}^{(a-s) t}\right| d t=\int_{0}^{\infty} M \mathrm{e}^{\operatorname{Re}(a-s) t} d t
$$

The last integral clearly converges when $\operatorname{Re}(a-s)<0$. QED
Example 12.7. Here is a list of some functions of exponential type.

$$
\begin{array}{rll}
f(t)=\mathrm{e}^{a t}: & |f(t)|<2 \mathrm{e}^{\operatorname{Re}(a) t} & (\text { exponential type } \operatorname{Re}(a)) \\
f(t)=1: & |f(t)|<2=2 \mathrm{e}^{0 \cdot t} & (\text { exponential type } 0) \\
f(t)=\cos (\omega t): & |f(t)| \leq 1 & (\text { exponential type } 0)
\end{array}
$$

In the above, all of the inequalities are for $t \geq 0$.
For $f(t)=t$, it is clear that for any $a>0$ there is an M depending on a such that $|f(t)| \leq M \mathrm{e}^{a t}$ for $t \geq 0$. In fact, it is a simple calculus exercise to show $M=1 /(a e)$ works. So, $f(t)=t$ has exponential type a for any $a>0$.
The same is true of t^{n}. It's worth pointing out that this follows because, if f has exponential type a and g has exponential type b then $f g$ has exponential type $a+b$. So, if t has exponential type a then t^{n} has exponential type $n a$.

12.5 Properties of Laplace transform

We have already used the linearity of Laplace transform when we computed $\mathcal{L}(\cos (\omega t))$. Let's officially record it as a property.
Property 1. The Laplace transform is linear. That is, if a and b are constants and f and g are functions then

$$
\begin{equation*}
\mathcal{L}(a f+b g)=a \mathcal{L}(f)+b \mathcal{L}(g) . \tag{3}
\end{equation*}
$$

(The proof is trivial -integration is linear.)
Property 2. A key property of the Laplace transform is that, with some technical details,
Laplace transform transforms derivatives in t to multiplication by s (plus some details).
This is proved in the following theorem.
Theorem. If $f(t)$ has exponential type a and Laplace transform $F(s)$ then

$$
\begin{equation*}
\mathcal{L}\left(f^{\prime}(t) ; s\right)=s F(s)-f(0), \text { valid for } \operatorname{Re}(s)>a \text {. } \tag{4}
\end{equation*}
$$

Proof. We prove this using integration by parts.

$$
\mathcal{L}\left(f^{\prime} ; s\right)=\int_{0}^{\infty} f^{\prime}(t) \mathrm{e}^{-s t} d t=\left.f(t) \mathrm{e}^{-s t}\right|_{0} ^{\infty}+\int_{0}^{\infty} s f(t) \mathrm{e}^{-s t} d t=-f(0)+s F(s) .
$$

In the last step we used the fact that at $t=\infty, f(t) \mathrm{e}^{-s t}=0$, which follows from the assumption about exponential type.

Equation 4 gives us formulas for all derivatives of f.

$$
\begin{align*}
& \mathcal{L}\left(f^{\prime \prime} ; s\right)=s^{2} F(s)-s f(0)-f^{\prime}(0) \tag{5}\\
& \mathcal{L}\left(f^{\prime \prime \prime} ; s\right)=s^{3} F(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0) \tag{6}
\end{align*}
$$

Proof. For Equation 5:
$\mathcal{L}\left(f^{\prime \prime} ; s\right)=\mathcal{L}\left(\left(f^{\prime}\right)^{\prime} ; s\right)=s \mathcal{L}\left(f^{\prime} ; s\right)-f^{\prime}(0)=s(s F(s)-f(0))-f^{\prime}(0)=s^{2} F(s)-s f(0)-f^{\prime}(0)$. QED
The proof Equation 6 is similar. Also, similar statements hold for higher order derivatives.
Note. There is a further complication if we want to consider functions that are discontinuous at the origin or if we want to allow $f(t)$ to be a generalized function like $\delta(t)$. In these cases $f(0)$ is not defined, so our formulas are undefined. The technical fix is to replace 0 by 0^{-}in the definition and all of the formulas for Laplace transform. You can learn more about this by taking 18.031.
Property 3. Theorem. If $f(t)$ has exponential type a, then $F(s)$ is an analytic function for $\operatorname{Re}(s)>a$ and

$$
\begin{equation*}
F^{\prime}(s)=-\mathcal{L}(t f(t) ; s) . \tag{7}
\end{equation*}
$$

Proof. We take the derivative of $F(s)$. The absolute convergence for $\operatorname{Re}(s)$ large guarantees that we can interchange the order of integration and taking the derivative.

$$
F^{\prime}(s)=\frac{d}{d s} \int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t=\int_{0}^{\infty}-t f(t) \mathrm{e}^{-s t} d t=\mathcal{L}(-t f(t) ; s) .
$$

This proves Equation 7.
Equation 7 is called the s-derivative rule. We can extend it to more derivatives in s : Suppose $\mathcal{L}(f ; s)=F(s)$. Then,

$$
\begin{align*}
\mathcal{L}(t f(t) ; s) & =-F^{\prime}(s) \tag{8}\\
\mathcal{L}\left(t^{n} f(t) ; s\right) & =(-1)^{n} F^{(n)}(s) \tag{9}
\end{align*}
$$

Equation 8 is the same as Equation 7 above. Equation 9 follows from this.
Example 12.8. Use the s-derivative rule and the formula $\mathcal{L}(1 ; s)=1 / s$ to compute the Laplace transform of t^{n} for n a positive integer.
answer: Let $f(t)=1$ and $F(s)=\mathcal{L}(f ; s)$. Using the s-derivative rule we get

$$
\begin{aligned}
\mathcal{L}(t ; s) & =\mathcal{L}(t f ; s)=-F^{\prime}(s)=\frac{1}{s^{2}} \\
\mathcal{L}\left(t^{2} ; s\right) & =\mathcal{L}\left(t^{2} f ; s\right)=(-1)^{2} F^{\prime \prime}(s)=\frac{2}{s^{3}} \\
\mathcal{L}\left(t^{n} ; s\right) & =\mathcal{L}\left(t^{n} f ; s\right)=(-1)^{n} F^{n}(s)=\frac{n!}{s^{n+1}}
\end{aligned}
$$

Property 4. t-shift rule. As usual, assume $f(t)=0$ for $t<0$. Suppose $a>0$. Then,

$$
\begin{equation*}
\mathcal{L}(f(t-a) ; s)=\mathrm{e}^{-a s} F(s) \tag{10}
\end{equation*}
$$

Proof. We go back to the definition of the Laplace transform and make the change of variables $\tau=t-a$.

$$
\begin{aligned}
\mathcal{L}(f(t-a) ; s) & =\int_{0}^{\infty} f(t-a) \mathrm{e}^{-s t} d t=\int_{a}^{\infty} f(t-a) \mathrm{e}^{-s t} d t \\
& =\int_{0}^{\infty} f(\tau) \mathrm{e}^{-s(\tau+a)} d \tau=\mathrm{e}^{-s a} \int_{0}^{\infty} f(\tau) \mathrm{e}^{-s \tau} d \tau=\mathrm{e}^{-s a} F(s) .
\end{aligned}
$$

The properties in Equations 3-10 will be used in examples below. They are also in the table at the end of these notes.

12.6 Differential equations

Coverup method. We are going to use partial fractions and the coverup method. We will assume you have seen partial fractions. If you don't remember them well or have never seen the coverup method, you should read the note Partial fractions and the coverup method posted with the class notes.
Example 12.9. Solve $y^{\prime \prime}-y=\mathrm{e}^{2 t}, y(0)=1, y^{\prime}(0)=1$ using Laplace transform.
answer: Call $\mathcal{L}(y)=Y$. Apply the Laplace transform to the equation:

$$
\left(s^{2} Y-s y(0)-y^{\prime}(0)\right)-Y=\frac{1}{s-2}
$$

Algebra: $\left(s^{2}-1\right) Y=\frac{1}{s-2}+s+1$, so

$$
Y=\frac{1}{(s-2)\left(s^{2}-1\right)}+\frac{s+1}{s^{2}-1}=\frac{1}{(s-2)\left(s^{2}-1\right)}+\frac{1}{s-1}
$$

Use partial fractions to write

$$
Y=\frac{A}{s-2}+\frac{B}{s-1}+\frac{C}{s+1}+\frac{1}{s-1} .
$$

The coverup method gives $A=1 / 3, B=-1 / 2, C=1 / 6$.
We recognize $\frac{1}{s-a}$ as the Laplace transform of eat so

$$
y(t)=A \mathrm{e}^{2 t}+B \mathrm{e}^{t}+C \mathrm{e}^{-t} f \mathrm{e}^{t}=\frac{1}{3} \mathrm{e}^{2 t}-\frac{1}{2} \mathrm{e}^{t}+\frac{1}{6} \mathrm{e}^{-t}+\mathrm{e}^{t}
$$

Example 12.10. Solve $y^{\prime \prime}-y=1, y(\theta)=0, y^{\prime}(0)=0$.
answer: The rest (zero) initial conditions are nice because they will not add any terms to the algebra. As in the previous example we apply the Laplace transform to the entire equation.

$$
s^{2} Y-Y=\frac{1}{s}, \text { so } Y=\frac{1}{s\left(s^{2}-1\right)}=\frac{1}{s(s-1)(s+1)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s+1}
$$

The coverup method gives $A=-1, B=1 / 2, C=1 / 2$. So,

$$
y=A+B \mathrm{e}^{t}+C \mathrm{e}^{-t}=-1+\frac{1}{2} \mathrm{e}^{t}+\frac{1}{2} \mathrm{e}^{-t} .
$$

12.7 System functions and the Laplace transform

When we introduced the Nyquist criterion for stability we stated without any justification that the system was stable if all the poles of the system function $G(s)$ were in the left halfplane. We also asserted that the poles corresponded to exponential modes of the system. In this section we'll use the Laplace transform to more fully develop these ideas for differential equations.

12.7.1 Lightning review of 18.03

Definitions.

1. $D=\frac{d}{d t}$ is called a differential operator. Applied to a function $f(t)$ we have $D f=\frac{d f}{d t}$.

We read $D f$ as ' D applied to f.'
Example 12.11. If $f(t)=t^{3}+2$ then $D f=3 t^{2}, D^{2} f=6 t$.
2. If $P(s)$ is a polynomial then $P(D)$ is called a polynomial differential operator.

Example 12.12. Suppose $P(s)=s^{2}+8 s+7$. What is $P(D)$? Compute $P(D)$ applied to $f(t)=t^{3}+2 t+5$. Compute $P(D)$ applied to $g(t)=\mathrm{e}^{2 t}$.
answer: $P(D)=D^{2}+8 D+7 I$. (The I in $7 I$ is the identity operator.) To compute $P(D) f$ we do the following.

$$
\begin{aligned}
f(t) & =t^{3}+2 t+5 \\
D f(t) & =3 t^{2}+2 \\
D^{2} f(t) & =6 t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(D^{2}+8 D+7 I\right) f & =6 t+8\left(3 t^{2}+2\right)+7\left(t^{3}+2 t+5\right)=7 t^{3}+24 t^{2}+20 t+51 \\
g(t) & =\mathrm{e}^{2 t} \\
D g(t) & =2 \mathrm{e}^{2 t} \\
D^{2} g(t) & =4 \mathrm{e}^{2 t}
\end{aligned}
$$

Therefore,

$$
\left(D^{2}+8 D+7 I\right) g=4 \mathrm{e}^{2 t}+8(2) \mathrm{e}^{2 t}+7 \mathrm{e}^{2 t}=(4+16+7) \mathrm{e}^{2 t}=P(2) \mathrm{e}^{2 t} .
$$

The substitution rule is a straightforward statement about the derivatives of exponentials. Substitution rule:

$$
\begin{equation*}
P(D) \mathrm{e}^{s t}=P(s) \mathrm{e}^{s t} . \tag{11}
\end{equation*}
$$

Proof. This is obvious. We 'prove it' by example. Let $P(D)=D^{2}+8 D+7 I$. Then

$$
P(D) e^{a t}=a^{2} \mathrm{e}^{a t}+8 a \mathrm{e}^{a t}+7 \mathrm{e}^{a t}=\left(a^{2}+8 a+7\right) \mathrm{e}^{a t}=P(a) \mathrm{e}^{a t} .
$$

Let's continue to work from this specific example. From it we'll be able to remind you of the general approach to solving constant coefficient differential equations.
Example 12.13. Suppose $P(s)=s^{2}+8 s+7$. Find the exponential modes of the equation $P(D) y=0$.
answer: The exponential modes are solutions of the form $y(t)=\mathrm{e}^{s_{0} t}$. Using the substititution rule

$$
P(D) \mathrm{e}^{s_{0} t}=0 \Leftrightarrow P\left(s_{0}\right)=0 .
$$

That is, $y(t)=\mathrm{e}^{s_{0} t}$ is a mode exactly when s_{0} is a root of $P(s)$. The roots of $P(s)$ are $-1,-7$. So the modal solutions are $y_{1}(t)=\mathrm{e}^{-t}$ and $y_{2}(t)=\mathrm{e}^{-7 t}$.
Example 12.14. Redo the previous example using the Laplace transform.
answer: For this we solve the differential equation with arbitrary initial conditions:

$$
P(D) y=y^{\prime \prime}+8 y^{\prime}+7 y=0 ; \quad y(0)=c_{1}, y^{\prime}(0)=c_{2} .
$$

Let $Y(s)=\mathcal{L}(y ; s)$. Applying the Laplace transform to the equation we get

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+8(s Y(s)-y(0))+7 Y(s)=0
$$

Algebra:

$$
\left(s^{2}+8 s+7\right) Y(s)-s c_{1}-c_{2}-8 c_{1}=0 \Leftrightarrow Y=\frac{s c_{1}+8 c_{1}+c_{2}}{s^{2}+8 s+7}
$$

Factoring the denominator and using partial fractions, we get

$$
Y(s)=\frac{s c_{1}+8 c_{1}+c_{2}}{s^{2}+8 s+7}=\frac{s c_{1}+8 c_{1}+c_{2}}{(s+1)(s+7)}=\frac{A}{s+1}+\frac{B}{s+7} .
$$

We are unconcerned with the exact values of A and B. Taking the Laplace inverse we get

$$
y(t)=A \mathrm{e}^{-t}+B \mathrm{e}^{-7 t} .
$$

That is, $y(t)$ is a linear combination of the exponential modes.
You should notice that the denominator in the expression for $Y(s)$ is none other than the characteristic polynomial $P(s)$.

12.7.2 The system function

Example 12.15. With the same $P\left(s^{2}\right.$ as in Example 12.12 solve the inhomogeneous DE with rest initial conditions: $P(D) y^{\prime}=f(t), \quad y(0)=0, y^{\prime}(0)=0$.
answer: Taking the Laplace transform of the equation we get

$$
P(s) Y(s)=F(s)
$$

Therefore

$$
Y(s)=\frac{1}{P(s)} F(s)
$$

We can't find $y(t)$ explicitly because $f(t)$ isn't specified.
But, we can make the following definitions and observations. Let $G(s)=1 / P(s)$. If we declare f to be the input and y the output of this linear time invariant system, then $G(s)$ is called the system function. So, we have

$$
\begin{equation*}
Y(s)=G(s) \cdot F(s) . \tag{12}
\end{equation*}
$$

The formula $Y=G \cdot F$ can be phrased as

$$
\text { output }=\text { system function } \times \text { input. }
$$

Note well, the roots of $P(s)$ correspond to the exponential modes of the system, i.e. the poles of $G(s)$ correspond to the exponential modes.
The system is called stable if the modes all decay to 0 as t goes to infinity. That is, if all the poles have negative real part.
Example 12.16. This example is to emphasize that not all system functions are of the form $1 / P(s)$. Consider the system modeled by the differential equation

$$
P(D) x=Q(D) f
$$

where P and Q are polynomials. Suppose we consider f to be the input and x to be the ouput. Find the system function.
answer: If we start with rest initial conditions for x and f then the Laplace transform gives $P(s) X(s)=Q(s) F(s)$ or

$$
X(s)=\frac{Q(s)}{P(s)} \cdot F(s)
$$

Using the formulation

$$
\text { output }=\text { system function } \times \text { input, }
$$

we see that the system function is $G(s)=\frac{Q(s)}{P(s)}$.
Note that when $f(t)=0$ the differential equation becomes $P(D) x=0$. If we make the assumption that the $Q(s) / P(s)$ is in reduced form, i.e. P and Q have no common zeros, then the modes of the system (which correspond to the roots of $P(s)$) are still the poles of the system function.
Comments. All LTI systems have system functions. They are not even all of the form $Q(s) / P(s)$. But, in the s-domain, the output is always the system function times the input. If the system function is not rational then it may have an infinite number of poles. Stability is harder to characterize, but under some reasonable assumptions the system will be stable if all the poles are in the left half-planes
The system function is also called the transfer function. You can think of it as describing how the system transfers the input to the output.

12.8 Laplace inverse

Up to now we have computed the inverse Laplace transform by table lookup. For example, $\mathcal{L}^{-1}(1 /(s-a))=\mathrm{e}^{a t}$. To do this properly we should first check that the Laplace transform has an inverse.

We start with the bad news: Unfortunately this is not strictly true. There are many functions with the same Laplace transform. We list some of the ways this can happen.

1. If $f(t)=g(t)$ for $t \geq 0$, then clearly $F(s)=G(s)$. Since the Laplace transform only concerns $t \geq 0$, the functions can differ completely for $t<0$.
2. Suppose $f(t)=\mathrm{e}^{a t}$ and

$$
g(t)= \begin{cases}f(t) & \text { for } t \neq 1 \\ 0 & \text { for } t=1\end{cases}
$$

That is, f and g are the same except we arbitrarily assigned them different values at $t=1$. Then, since the integrals won't notice the difference at one point, $F(s)=G(s)=1 /(s-a)$. In this sense it is impossible to define $\mathcal{L}^{-1}(F)$ uniquely.
The good news is that the inverse exists as long as we consider two functions that only differ on a negligible set of points the same. In particular, we can make the following claim.
Theorem. Suppose f and g are continuous and $F(s)=G(s)$ for all s with $\operatorname{Re}(s)>a$ for some a. Then $f(t)=g(t)$ for $t \geq 0$.
This theorem can be stated in a way that includes piecewise continuous functions. Such a statement takes more care, which would obscure the basic point that the Laplace transform has a unique inverse up to some, for us, trivial differences.
We start with a few examples that we can compute directly.
Example 12.17. Let $f(t)=\mathrm{e}^{a t}$. So, $F(s)=\frac{1}{s-a}$. Show

$$
\begin{align*}
& f(t)=\sum \operatorname{Res}\left(F(s) \mathrm{e}^{s t}\right) \tag{13}\\
& f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \mathrm{e}^{s t} d s \tag{14}
\end{align*}
$$

The sum is over all poles of $\mathrm{e}^{s t} /(s-a)$. As usual, we only consider $t>0$.
Here, $c>\operatorname{Re}(a)$ and the integral means the path integral along the vertical line $x=c$.
answer: Proving Equation 13 is straightforward: It is clear that $\frac{\mathrm{e}^{s t}}{s-a}$ has only one pole which is at $s=a$. Since, $\sum \operatorname{Res}\left(\frac{\mathrm{e}^{s t}}{s-a}, a\right)=\mathrm{e}^{a t}$ we have proved Equation 13.
Proving Equation 14 is more involved. We should first check the convergence of the integral. In this case, $s=c+i y$, so the integral is

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \mathrm{e}^{s t} d s=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{(c+i y) t}}{c+i y-a} i d y=\frac{\mathrm{e}^{c t}}{2 \pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{i y t}}{c+i y-a} d y .
$$

The (conditional) convergence of this integral follows using exactly the same argument as in the example near the end of Topic 9 on the Fourier inversion formula for $f(t)=\mathrm{e}^{a t}$. That is, the integrand is a decaying oscillation, around 0 , so its integral is also a decaying oscillation around some limiting value.
Now we use the contour shown below.

We will let R go to infinity and use the following steps to prove Equation 14.

1. The residue theorem guarantees that if the curve is large enough to contain a then

$$
\frac{1}{2 \pi i} \int_{C_{1}-C_{2}-C_{3}+C_{4}} \frac{\mathrm{e}^{s t}}{s-a} d s=\sum \operatorname{Res}\left(\frac{\mathrm{e}^{s t}}{s-a}, a\right)=\mathrm{e}^{a t} .
$$

2. In a moment we will show that the integrals over C_{2}, C_{3}, C_{4} all go to 0 as $R \rightarrow \infty$.
3. Clearly as R goes to infinity, the integral over C_{1} goes to the integral in Equation 14

Putting these steps together we have

$$
\mathrm{e}^{a t}=\lim _{R \rightarrow \infty} \int_{C_{1}-C_{2}-C_{3}+C_{4}} \frac{\mathrm{e}^{s t}}{s-a} d s=\int_{c-i \infty}^{c+i \infty} \frac{\mathrm{e}^{s t}}{s-a} d s
$$

Except for proving the claims in step 2, this proves Equation 14.
To verify step 2 we look at one side at a time.
C_{2} : $\quad C_{2}$ is parametrized by $s=\gamma(u)=u+i R$, with $-R \leq u \leq c$. So,

$$
\left|\int_{C_{2}} \frac{\mathrm{e}^{s t}}{s-a} d s\right|=\int_{-R}^{c}\left|\frac{\mathrm{e}^{(u+i R) t}}{u+i R-a}\right| \leq \int_{-R}^{c} \frac{\mathrm{e}^{u t}}{R} d u=\frac{\mathrm{e}^{c t}-\mathrm{e}^{-R t}}{t R} .
$$

Since c and t are fixed, it's clear this goes to 0 as R goes to infinity.
The bottom C_{4} is handled in exactly the same manner as the top C_{2}.
$C_{3}: \quad C_{3}$ is parametrized by $s=\gamma(u)=-R+i u$, with $-R \leq u \leq R$. So,

$$
\left|\int_{C_{3}} \frac{\mathrm{e}^{s t}}{s-a} d s\right|=\int_{-R}^{R}\left|\frac{\mathrm{e}^{(-R+i u) t}}{-R+i u-a}\right| \leq \int_{-R}^{R} \frac{\mathrm{e}^{-R t}}{R+a} d u=\frac{\mathrm{e}^{-R t}}{R+a} \int_{-R}^{R} d u=\frac{2 R \mathrm{e}^{-R t}}{R+a} .
$$

Since a and $t>0$ are fixed, it's clear this goes to 0 as R goes to infinity.
Example 12.18. Repeat the previous example with $f(t)=t$ for $t>0, F(s)=1 / s^{2}$.
This is similar to the previous exâmple. Since F decays like $1 / s^{2}$ we can actually allow $t \geq 0$
Theorem 12.19. Laplace inversion 1. Assume f is continuous and of exponential type a. Then for $c>a$ we have

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \mathrm{e}^{s t} d s \tag{15}
\end{equation*}
$$

As usual, this formula holds for $t>0$.
Proof. The proof uses the Fourier inversion formula. We will just accept this theorem for now. Example 12.17 above illustrates the theorem.
Theorem 12.20. Laplace inversion 2. Suppose $F(s)$ has a finite number of poles and decays like $1 / s$ (or faster). Define

$$
\begin{equation*}
f(t)=\sum \operatorname{Res}\left(F(s) \mathrm{e}^{s t}, p_{k}\right) \text {, where the sum is over all the poles } p_{k} \text {. } \tag{16}
\end{equation*}
$$

Then $\mathcal{L}(f ; s)=F(s)$

Proof. Proof to be added. The basic ideas are present in the examples above, though it requires a fairly clever choice of contours.

The integral inversion formula in Equation 15 can be viewed as writing $f(t)$ as a 'sum' of exponentials. This is extremely useful. For example, for a linear system if we know how the system responds to input $f(t)=\mathrm{e}^{a t}$ for all a, then we know how it responds to any input by writing it as a 'sum' of exponentials.

12.9 Delay and feedback.

Let $f(t)=0$ for $t<0$. Fix $a>0$ and let $h(t)=f(t-a)$. So, $h(t)$ is a delayed version of the signal $f(t)$. The Laplace property Equation 10 says $H(s)=\mathrm{e}^{-a s} F(s)$, where H and F are the Laplace transforms of h and f respectively.

Now, suppose we have a system with system function $G(s)$. (Again, called the open loop system.) As before, can feed the output back through the system. But, instead of just multiplying the output by a scalar we can delay it also. This is captured by the feedback factor $k \mathrm{e}^{-a s}$.

The system function for the closed loop system is

$$
G_{C L}(s)=\frac{G}{1+k \mathrm{e}^{-a s} G}
$$

Note even if you start with a rational function the system function of the closed loop with delay is not rational. Usually it has an infinite number of poles.
Example 12.21. Suppose $G(s)=1, a=1$ and $k=1$ find the poles of $G_{C L}(s)$.
answer: $G_{C L}(s)=\frac{1}{1+\mathrm{e}^{-s}}$. So the poles occur where $\mathrm{e}^{-s}=-1$, i.e. at $i n \pi$, where n is an odd integer. There are an infinite number of poles on the imaginary axis.
Example 12.22. Suppose $G(s)=1, a=1$ and $k=1 / 2$ find the poles of $G_{C L}(s)$. Is the closed loop system stable?
answer: $G_{C L}(s)=\frac{1}{1+\mathrm{e}^{-s} / 2}$. So the poles occur where $\mathrm{e}^{-s}=-2$, i.e. at $-\log (2)+i n \pi$, where n is an odd integer. Since - $\log (2)<0$, there are an infinite number of poles in the left half-plane. With all poles in the left half-plane, the system is stable.
Example 12.23. Suppose $G(s)=1, a=1$ and $k=2$ find the poles of $G_{C L}(s)$. Is the closed loop system stable?
answer: $G_{C L}(s)=\frac{1}{1+2 \mathrm{e}^{-s}}$. So the poles occur where $\mathrm{e}^{-s}=-1 / 2$, i.e. at $\log (2)+i n \pi$, where n is an odd integer. Since $\log (2)>0$, there are an infinite number of poles in the right half-plane. With poles in the right half-plane, the system is not stable.
Remark. If $\operatorname{Re}(s)$ is large enough we can express the system function $G(s)=\frac{1}{1+k \mathrm{e}^{-a s}}$ as a geometric series

$$
\frac{1}{1+k \mathrm{e}^{-a s}}=1-k \mathrm{e}^{-a s}+k^{2} \mathrm{e}^{-2 a s}-k^{3} \mathrm{e}^{-3 a s}+\ldots
$$

So, for input $F(s)$, we have output

$$
X(s)=G(s) F(s)=F(s)-k \mathrm{e}^{-a s} F(s)+k^{2} \mathrm{e}^{-2 a s} F(s)-k^{3} \mathrm{e}^{-3 a s} F(s)+\ldots
$$

Using the shift formula Equation 10, we have

$$
x(t)=f(t)-k f(t-a)+k^{2} f(t-2 a)-k^{3} f(t-3 a)+\ldots
$$

(This is not really an infinite series because $f(t)=0$ for $t<0$.) If the input is bounded and $k<1$ then even for large t the series is bounded. So bounded input produces bounded output -this is also what is meant by stability. On the other hand if $k>1$, then bounded input can lead to unbounded output -this is instability.

12.10 Table of Laplace transforms

Properties and Rules

We assume that $f(t)=0$ for $t<0$.

Function

$f(t)$
$a f(t)+b g(t)$
$\mathrm{e}^{a t} f(t)$
$f^{\prime}(t)$
$f^{\prime \prime}(t)$
$f^{(n)}(t)$
$t f(t)$
$t^{n} f(t)$
$f(t-a)$
$\int_{0}^{t} f(\tau) d \tau$
$\frac{f(t)}{t}$

Transform

$F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t \quad$ (Definition)
$a F(s)+b G(s) \quad$ (Linearity)
$F(s-a) \quad(s$-shift $)$
$s F(s)-f(0)$
$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$s^{n} F(s)-s^{n-1} f(0)-\ldots f^{(n-1)}(0)$
$-F^{\prime}(s)$
$(-1)^{n} F^{(n)}(s)$
$\mathrm{e}^{-a s} F(s) \quad(t$-translation or t-shift)
$\frac{F(s)}{s}$ (integration rule)

Function Table

Function	Transform	Region of convergence
1	$1 / \mathrm{s}$	$\operatorname{Re}(s)>0$
$\mathrm{e}^{a t}$	$1 /(s-a)$	$\operatorname{Re}(s)>\operatorname{Re}(a)$
t	$1 / s^{2}$	$\operatorname{Re}(s)>0$
t^{n}	$n!/ s^{n+1}$	$\operatorname{Re}(s)>0$
$\cos (\omega t)$	$s /\left(s^{2}+\omega^{2}\right)$	$\operatorname{Re}(s)>0$
$\sin (\omega t)$	$\omega /\left(s^{2}+\omega^{2}\right)$	$\operatorname{Re}(s)>0$
$\mathrm{e}^{a t} \cos (\omega t)$	$(s-a) /\left((s-a)^{2}+\omega^{2}\right)$	$\operatorname{Re}(s)>\operatorname{Re}(a)$
$\mathrm{e}^{a t} \sin (\omega t)$	$\omega /\left((s-a)^{2}+\omega^{2}\right)$	$\operatorname{Re}(s)>\operatorname{Re}(a)$
$\delta(t)$	1	all s
$\delta(t-a)$	$\mathrm{e}^{-a s}$	all s
$\cosh (k t)=\frac{\mathrm{e}^{k t}+\mathrm{e}^{-k t}}{2}$	$s /\left(s^{2}-k^{2}\right)$	$\operatorname{Re}(s)>k$
$\sinh (k t)=\frac{\mathrm{e}^{k t}-\mathrm{e}^{-k t}}{2}$	$k /\left(s^{2}-k^{2}\right)$	$\operatorname{Re}(s)>k$
$\frac{1}{2 \omega^{3}}(\sin (\omega t)-\omega t \cos (\omega t))$	$\frac{1}{\left(s^{2}+\omega^{2}\right)^{2}}$	$\operatorname{Re}(s)>0$
$\frac{t}{2 \omega} \sin (\omega t)$	$\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}$	$\operatorname{Re}(s)>0$
$\frac{1}{2 \omega}(\sin (\omega t)+\omega t \cos (\omega t))$	$\frac{s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$	$\operatorname{Re}(s)>0$
$t^{n} \mathrm{e}^{a t}$	$\left.n!/(s-a)^{n+1}\right)^{\prime}$	$\operatorname{Re}(s)>\operatorname{Re}(a)$
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}, 5$	$\operatorname{Re}(s)>0$
t^{a}	$\frac{\Gamma(a+1)}{\frac{s^{a+1}}{s}}$	$\operatorname{Re}(s)>0$

UNIT-6

Z-Transform

Introduction

A linear system can be represented in the complex frequency domain (sdomain here $s=\sigma+j \omega$) using the LaPlace Transform.

Where the direct transform is:
$L\{x(t)\}=X(s)=\int_{t=0}^{\infty} x(t) \varepsilon^{-s t} d t$
And $x(t)$ is assumed zero for $t \leq 0$. The Inversion integral is a contour integral in the complex plane (seldom used, tables are used instead)

$$
L^{-1}\{X(s)\}=x(t)=\frac{1}{2 \pi j} \int_{s=\sigma-j \infty}^{\sigma+j \infty} X(s) \varepsilon^{s t} d s
$$

Where σ is chosen such that the contour integral converges. If we now assume that $\mathrm{x}(\mathrm{t})$ is ideally sampled as in:

Where: $x_{n}=x\left(n * T_{s}\right)=\left.x(t)\right|_{t=n * T} \quad y_{n}=y\left(n * T_{s}\right)=\left.y(t)\right|_{\text {mand }}$
Analyzing this equivalent system using standard analog tools will establish the z-Transform.

Sampling

Substituting the Sampled version of $x(t)$ into the definition of the LaPlace Transform we get
$L\left\{x\left(t, T_{s}\right)\right\}=X_{T}(s)=\int_{t=0}^{\infty} x\left(t, T_{s}\right) \varepsilon^{-s t} d t$
But
$x\left(t, T_{s}\right)=\sum_{n=0}^{\infty} x(t) * p\left(t-n * T_{s}\right)$
$($ For $\mathrm{x}(\mathrm{t})=0$ when $\mathrm{t}<0)$

Therefore
$X(s)=\int_{t=0}^{\infty}\left[\sum_{n=0}^{\infty} x(n * T) * \delta(t-n * T)\right\rceil \varepsilon^{-s t} d t$
Now interchanging the order of integration and summation and using the sifting property of δ-functions
$X_{T}(s)=\sum_{n=0}^{\infty} x\left(n * T_{s} f_{t=0}^{\infty} \delta\left(t-n * T_{s}\right) \varepsilon^{-s t} d t\right.$
$X_{T}(s)=\sum_{n=0}^{\infty} x\left(n * T_{s}\right) \varepsilon^{-n T_{s} s}$
(We are assuming that the first sample occurs at
$\mathrm{t}=0+$)
if we now adjust our nomenclature by letting:
$\mathrm{z}=\varepsilon^{\mathrm{sT}}, \mathrm{x}\left(\mathrm{n}^{*} \mathrm{Ts}\right)=\mathrm{x}_{\mathrm{n}}$, and $X(z)=\left.X_{T}(s)\right|_{z=\delta^{s T}}$
$X(z)=\sum_{n=0}^{\infty} x_{n} z^{-n}$
Which is the direct z-transform (one-sided; it assumes $\mathbf{x}_{\mathbf{n}}=\mathbf{0}$ for $\mathbf{n}<0$).
The inversion integral is:
$x_{n}=\frac{1}{2 \pi j}{ }_{0}{ }_{c} X(z) z^{n-1} d z$
(This is a contour integral in the complex z-plane)
(The use of this integral can be avoided as tables can be used to invert the transform.)

To prove that these form a transform pair we can substitute one into the other.

$$
\left.{ }_{k}^{x=} \int_{2 \pi j} \int_{c}^{\lceil } \sum_{n=0}^{\infty} x_{n} z^{-n}\right\rceil z^{k-1} d z
$$

Now interchanging the order of summation and integration (valid if the contour followed stays in the region of convergence):

$$
x_{k}=\frac{1}{2 \pi j} \sum_{n=0}^{\infty} x_{n} \oint_{c} z^{k-n-1} d z
$$

If "C" encloses the origin (that"s where the pole is), the Cauchy Integral theorem says:
www.FirstRanker.com
$\oint z^{k-n-1} d z={ }^{o} \quad \begin{gathered}\text { for } n \neq k \\ 2 \pi j \\ \text { for } n=k\end{gathered}$

Properties of the z transform

For the following

$$
Z\{f[n]\}=\sum_{n=0}^{n=\infty} f[n] z^{-n}=F(z) Z\left\{g_{n}\right\}=\sum g_{n=0}^{n=\infty} z^{-n}=G(z)
$$

- Linearity:
$Z\left\{a f_{n}+b g_{n}\right\}=a F(z)+b G(z)$. and ROC is $R_{f} \cap R_{g}$
which follows from definition of z-transform.

- Time Shifting

If we have $f[n] \Leftrightarrow F(z)$ then $f\left[n-n{ }_{0}\right] \Leftrightarrow z^{-n \rho} F(z)$
The ROC of $Y(z)$ is the same as $F(z)$ except that there are possible pole additions or deletions at $z=0$ or $z=\infty$.

Proof:

Let $y[n]=f\left[n-n_{0}\right]$ then
$Y(z)=\sum_{n=-\infty}^{\infty} f\left[n-n_{0}\right] z^{-n}$
Assume $k=n-n_{0}$ then $n=k+n_{0}$, substituting in the above equation we have:
$Y(z)=\sum_{k=-\infty}^{\infty} f[k] z^{-k-m}=z-z^{-\infty} F[z]$

- Multiplication by an Exponential Sequence

Let $y[n]=z_{0}^{n} f[n]$ then $Y(z)=X \mid(\bar{z} \mid$
The consequence is pole and zero locations are scaled by z_{0}. If the ROC of $F X(z)$ is $r_{R}<|z|<r_{L}$, then the ROC of $Y(z)$ is
$r_{R}<\left|z / z_{0}\right|<r_{L}$, i.e., $\left|z_{0}\right| r_{R}<|z|<\left|z_{0}\right| r \mathrm{~L}$

Proof:

$$
Y(z)=\sum_{n=-\infty}^{\infty} z^{n} x[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n]\left(\begin{array}{c}
z \\
\frac{z}{2} \\
0
\end{array}\right)^{-n}=X\left(\begin{array}{c}
z \\
z \\
\text { z }
\end{array}\right)
$$

The consequence is pole and zero locations are scaled by z_{0}. If the ROC of $X(z)$ is $r R<|z|<r L$, then the ROC of $Y(z)$ is $r R<\left|z / z_{0}\right|<r L$, i.e., $\left|z_{0}\right| r R<|z|<\left|z_{0}\right| r L$

- Differentiation of $X(z)$

If we have $f[n] \Leftrightarrow F(z)$ then $n f[n] \stackrel{z}{\longleftrightarrow}-z \frac{d F(z)}{}$ and ROC $=R_{f}$

Proof:

$$
\begin{aligned}
& F(z)=\sum_{n=-\infty}^{\infty} f[n] z^{-n} \\
& -z \frac{d F(z)}{d z}=-z \sum_{n=-\infty}^{\infty}-n f[n] z^{-n-1}=\sum_{n=-\infty}^{\infty}-n f[n] z^{-n} \\
& -z \frac{d F(z)}{d z} \longleftrightarrow n f[n]
\end{aligned}
$$

- Conjugation of a Complex Sequence

If we have $f[n] \Leftrightarrow F(z)$ then $f^{*}[n] \longleftrightarrow F^{*}\left(z^{*}\right)$ and ROC $=R_{f}$

Proof:

Let $y[n]=f^{*}[n]$, then
$\left.\left.Y Z=\sum_{n=-\infty}^{\infty} f_{n}^{*}[]^{-n}=\left(\sum_{n=-\infty}^{\infty} f n z\right]^{*}\right]^{n}\right)^{*}=F^{*}\left(z^{*}\right)$

- Time Reversal

If we have $f[n] \Leftrightarrow F(z)$ then $f^{*}[-n] \longleftrightarrow F^{*}\left(1 / z^{*}\right)$
Let $y[n]=f^{*}[-n]$, then
 the ROC of $F(z)$ is $r_{R}<|z|<r_{L}$, then the ROC of $Y(z)$ is

$$
r_{R}<\left|1 / z^{*}\right|<r_{L} \text { ie., } \quad \frac{1}{r_{R}}>|z|>\frac{1}{r_{L}}
$$

When the time reversal is without conjugation, it is easy to show
$f[-n] \longleftrightarrow F(1 / z) \quad$ and ROC is $\underset{r_{R}}{\stackrel{1}{\longleftrightarrow}} \not \psi^{1}-$

A comprehensive summery for the z-transform properties is shown in Table 2

Table 2 Summery of z-transform properties

Property	Sequence	z-Transform	Region of Convergence
Linearity	$a x(n)+b y(n)$	$a X(z)+b Y(z)$	Contains $R_{x} \cap R_{y}$
Shift	$x\left(n-n_{0}\right)$	$z^{-n_{0}} X(z)$	R_{x}
Time reversal	$x(-n)$	$X\left(z^{-1}\right)$	$1 / R_{x}$
Exponentiation	$\alpha^{n} x(n)$	$X\left(\alpha^{-1} z\right)$	$\|\alpha\| R_{x}$
Convolution	$x(n) * y(n)$	$X(z) Y(z)$	Contains $R_{x} \cap R_{y}$
Conjugation	$x^{*}(n)$	$X^{*}\left(z^{*}\right)$	R_{x}
Derivative	$n x(n)$	$-z \frac{d X(z)}{d z}$	R_{x}

Note: Given the z-transforms $X(z)$ and $Y(z)$ of $x(n)$ and $y(n)$, with regions of convergence R_{x} and R_{y}, respectively, this table lists the z-transforms of sequences that are formed from $x(n)$ and $y(n)$.

Example 3: Find the z transform of $3 n+2 \times 3^{n}$.

SolutionFrom the linearity property
$Z\left\{3 n+2 \times 3^{n}\right\}=3 Z\{n\}+2 Z\left\{3^{n}\right\}$
and from the Table 1
$Z\{n\}=\frac{z}{(z-1)^{2}}$ and $\left.Z\left\{3^{n}\right\}=\underset{(z-3}{z}\right)$
(r^{n} with $r=3$). Therefore
$Z\left\{3 n+2 \times 3^{n}\right\}=\frac{3 z 2^{2}}{(z-1)}+(2 z)$
Example 4: Find the z-transform of each of the following sequences:
(a) $x(n)=2^{n} u(n)+3(1 / 2)^{n} u(n)$
(b) $x(n)=\cos \left(n \omega_{0}\right) u(n)$.

Solution:

(a) Because $x(n)$ is a sum of two sequences of the form $\alpha^{n} u(n)$, using the linearity property of the z -transform, and referring to Table 1 , the z transform pair

$$
X(z)=\frac{1}{1-2 z^{-1}+\frac{3}{1-\frac{1}{2}} z^{-1}=(1-2 z)\binom{4-\frac{13}{2} z^{-1}}{\frac{2}{2}}}
$$

(b) For this sequence we write
$x(n)=\cos \left(n \omega_{0}\right) u(n)-1 / 2\left(e^{j n \omega 0}+e^{-j n \omega 0}\right) u(n)$

Therefore, the z-transform is

$$
X(z)=\frac{1}{2} \frac{1}{1-e^{j n \omega 0} z^{-1}}+\frac{1}{2} \frac{1}{1-e^{-j n \omega_{0}} z^{-1}}
$$

with a region of convergence $|z|>1$. Combining the two terms together, we have
www.FirstRanker.com
$X z=\frac{1-\left(\cos \omega_{0}\right) z^{-1}}{1-2\left(\cos \omega^{0}\right) z^{-1}+z^{-2}}$

The Inverse \boldsymbol{z}-Transform

The z-transform is a useful tool in linear systems analysis. However, just as important as techniques for finding the z -transform of a sequence are methods that may be used to invert the z-transform and recover the sequence $\boldsymbol{x}(\boldsymbol{n})$ from $\boldsymbol{X}(z)$. Three possible approaches are described below.

- Partial Fraction Expansion

For z-transforms that are rational functions of z,

$$
X(z)=\frac{\sum_{k=0}^{q} b(k) z^{-k}}{\sum_{k=0}^{p} a(k) z^{-k}}=C \frac{\prod_{k=1}^{q}\left(1-\beta_{k} z^{-1}\right)}{\prod_{k=1}^{p}\left(1-\alpha_{k} z^{-1}\right)}
$$

a simple and straightforward approach to find the inverse z-transform is to perform a partial fraction expansion of $X(z)$. Assuming that $\mathrm{p}>q$, and that all of the roots in the denominator are simple, $\alpha_{i \neq} \alpha_{k}$ for $i \neq k, X(z)$ may be expanded as follows:

$$
\begin{equation*}
X(z)=\sum_{k=1}^{p} \frac{A_{k}}{1-\alpha_{k} z^{-1}} \tag{3}
\end{equation*}
$$

for some constants A_{k} for $k=1,2, \ldots, p$. The coefficients A_{k} may be found by multiplying both sides of Eq. (3) by $\left(1-\alpha_{k} z^{-1}\right)$ and setting $z=\alpha_{k}$. The result is

$$
A_{k}=\left[\left(1-\alpha_{k} z^{-1}\right) X(z)\right]_{z=\alpha_{k}}
$$

If $p \leq q$, the partial fraction expansion must include a polynomial in z^{-1} of order ($p-q$). The coefficients of this polynomial may be found by long division (i.e., by dividing the numerator polynomial by the denominator). For multiple-order poles, the expansion must be modified. For example, if $X(z)$ has a second-order pole at $\mathrm{z}=\alpha_{k}$, the expansion will include two terms,

$$
\frac{B_{1}}{1-\alpha_{k} z^{-1}}+\frac{B_{2}}{\left(1-\alpha_{k} z^{-1}\right)^{2}}
$$

where B_{1}, and B_{2} are given by

$$
\begin{aligned}
& B_{1}=\alpha_{k}\left[\frac{d}{d z}\left(1-\alpha_{k} z^{-1}\right)^{2} X(z)\right]_{z=\alpha_{k}} \\
& B_{2}=\left[\left(1-\alpha_{k} z^{-1}\right)^{2} X(z)\right]_{z=\alpha_{k}}
\end{aligned}
$$

Example 5: Suppose that a sequence $x(n)$ has a z-transform

$$
X(z)=\frac{4-\frac{7}{4} z^{-1}+\frac{1}{4} z^{-2}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}=\frac{4-\frac{7}{4} z^{-1}+\frac{1}{4} z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}
$$

Solution:

With a region of convergence $|z|>1 / 2$. Because $p=q=2$, and the two poles are simple, the partial fraction expansion has the form

$$
X(z)=C+\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-\frac{1}{4} z^{-1}}
$$

The constant C is found by long division:

$$
\begin{array}{r}
\frac{1}{8} z^{-2}-\frac{3}{4} z^{-1}+1 \begin{array}{r}
\frac{1}{4} z^{-2}-\frac{7}{4} z^{-1}+4 \\
\frac{\frac{1}{4} z^{-2}-\frac{3}{2} z^{-1}+2}{-\frac{1}{4} z^{-1}+2}
\end{array}
\end{array}
$$

Therefore, $C=2$ and we may write $X(z)$ as follows:

$$
X(z)=2+\frac{2-\frac{1}{4} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}
$$

Next, for the coefficients A_{1} and A_{2} we have
$A_{1}=\left[\left(1-\frac{1}{2} z^{-1}\right) X(z)\right]_{z^{-1}=2}=\left.\frac{4-\frac{7}{4} z^{-1}+\frac{1}{4} z^{-2}}{1-\frac{1}{4} z^{-1}}\right|_{z^{-1}=2}=3$
and

$$
A_{2}=\left[\left(1-\frac{1}{4} z^{-1}\right) X(z)\right]_{z^{-1}=4}=\left.\frac{4-\frac{7}{4} z^{-1}+\frac{1}{4} z^{-2}}{1-\frac{1}{2} z^{-1}}\right|_{z^{-1}=4}=-1
$$

Thus, the complete partial fraction expansion becomes

$$
X(z)=2+\frac{3}{1-\frac{1}{2} z^{-1}}-\frac{1}{1-\frac{1}{4} z^{-1}}
$$

Finally, because the region of convergence is the exterior of the circle $|z|>1$, $x(n)$ is the right-sided sequence

$$
x(n)=2 \delta(n)+3\left(\frac{1}{2}\right)^{n} u(n)-\left(\frac{1}{4}\right)^{n} u(n)
$$

- Power Series

The z-transform is a power series expansion,

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}=\cdots+x(-2) z^{2}+x(-1) z+x(0)+x(1) z^{-1}+x(2) z^{-2}+\cdots
$$

where the sequence values $x(n)$ are the coefficients of z^{-n} in the expansion. Therefore, if we can find the power series expansion for $X(z)$, the sequence values $x(n)$ may be found by simply picking off the coefficients of z^{-n}.

Example 6: Consider the z-transform

$$
X(z)=\log \left(1+a z^{-1}\right) \quad|z|>|a|
$$

Solution:

The power series expansion of this function is

$$
\log \left(1+a z^{-1}\right)=\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n+1} a^{n} z^{-n}
$$

Therefore, the sequence $x(n)$ having this z-transform is
$x(n)= \begin{cases}\frac{1}{n}(-1)^{n+1} a^{n} & n>0 \\ 0 & n \leq 0\end{cases}$

- Contour Integration

Another approach that may be used to find the inverse z-transform of $X(z)$ is to use contour integration. This procedure relies on Cauchy's integral theorem, which states that if C is a closed contour that encircles the origin in a counterclockwise direction,

$$
\frac{1}{2 \pi j} \oint_{C} z^{-k} d z= \begin{cases}1 & k=1 \\ 0 & k \neq 1\end{cases}
$$

With

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

Cauchy's integral theorem may be used to show that the coefficients $x(n)$ may be found from $X(z)$ as follows:

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

where C is a closed contour within the region of convergence of $X(z)$ that encircles the origin in a counterclockwise direction. Contour integrals of this form may often by evaluated with the help of Cauchy's residue theorem,

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z=\sum\left[\text { residues of } X(z) z^{n-1} \text { at the poles inside } C\right]
$$

If $X(z)$ is a rational function of z with a first-order pole at $z=\alpha_{k}$,

$$
\operatorname{Res}\left[X(z) z^{n-1} \text { at } z=\alpha_{k}\right]=\left[\left(1-\alpha_{k} z^{-1}\right) X(z) z^{n-1}\right]_{z=\alpha_{k}}
$$

Contour integration is particularly useful if only a few values of $\boldsymbol{x}(n)$ are needed.

Example 7:

Find the inverse of each of the following z-transforms:
(a) $X(z)=4+3\left(z^{2}+z^{-2}\right) \quad 0<|z|<\infty$
(b) $X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{3}{1-\frac{1}{3} z^{-1}} \quad|z|>\frac{1}{2}$
(c) $X(z)=\frac{1}{1+3 z^{-1}+2 z^{-2}} \quad|z|>2$
(d) $X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-z^{-2}\right)} \quad|z|>1$

Solution:

a) Because $X(z)$ is a finite-order polynomial, $x(n)$ is a finite-length sequence. Therefore, $x(n)$ is the coefficient that multiplies z^{-1} in $X(z)$. Thus, $x(0)=4$ and $x(2)=x(-2)=3$.
b) This z-transform is a sum of two first-order rational functions of z. Because the region of convergence of $X(z)$ is the exterior of a circle, $x(n)$ is a right-sided sequence. Using the z-transform pair for a right-sided exponential, we may invert $X(z)$ easily as follows:
$x(n)=\left(\frac{1}{2}\right)^{n} u(n)+3\left(\frac{1}{3}\right)^{n} u(n)$
c) Here we have a rational function of z with a denominator that is a quadratic in z. Before we can find the inverse z-transform, we need to factor the denominator and perform a partial fraction expansion:

$$
\begin{aligned}
X(z) & =\frac{1}{1+3 z^{-1}+2 z^{-2}}=\frac{1}{\left(1+2 z^{-1}\right)\left(1+z^{-1}\right)} \\
& =\frac{2}{1+2 z^{-1}}-\frac{1}{1+z^{-1}}
\end{aligned}
$$

Because $x(n)$ is right-sided, the inverse z-transform is
$x(n)=2(-2)^{n} u(n)-(-1)^{n} u(n)$
d) One way to invert this z-transform is to perform a partial fraction expansion. With

$$
\begin{aligned}
X(z) & =\frac{1}{\left(1-z^{-1}\right)\left(1-z^{-2}\right)}=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1+z^{-1}\right)} \\
& =\frac{A}{1+z^{-1}}+\frac{B_{1}}{1-z^{-1}}+\frac{B_{2}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

the constants A, B_{1}, and B_{2} are as follows:

$$
\begin{aligned}
A & =\left[\left(1+z^{-1}\right) X(z)\right]_{z=-1}=\frac{1}{4} \\
B_{1} & =\left[\frac{d}{d z}\left(1-z^{-1}\right)^{2} X(z)\right]_{z=1}=\left[\frac{z^{-2}}{\left(1+z^{-1}\right)^{2}}\right]_{z=1}=\frac{1}{4} \\
B_{2} & =\left[\left(1-z^{-1}\right)^{2} X(z)\right]_{z=1}=\frac{1}{2}
\end{aligned}
$$

Inverse transforming each term, we have

$$
x(n)=\frac{1}{4}\left[(-1)^{n}+1+2(n+1)\right] u(n)
$$

Example 7:

Find the inverse z-transform of the second-order system

$$
X(z)=\frac{1+\frac{1}{4} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}} \quad|z|>\frac{1}{2}
$$

Here we have a second-order pole at $z=1 / 2$. The partial fraction expansion for $X(z)$ is

$$
X(z)=\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}}
$$

The constant A_{1} is

$$
A_{1}=\frac{1}{2}\left[\frac{d}{d z}\left(1-\frac{1}{2} z^{-1}\right)^{2} X(z)\right]_{:=1 / 2}=\frac{1}{2}\left[-\frac{1}{4} z^{-2}\right]_{z=1 / 2}=-\frac{1}{2}
$$

and the constant A_{2} is

$$
A_{2}=\left[\left(1-\frac{1}{2} z^{-1}\right)^{2} X(z)\right]_{z=1 / 2}=\frac{3}{2}
$$

www.FirstRanker.com
Therefore,
$X(z)=-\frac{\frac{1}{2}}{1-\frac{1}{2} z^{-1}}+\frac{\frac{3}{2}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}}$
and

$$
x(n)=-\left(\frac{1}{2}\right)^{n+1} u(n)+3(n+1)\left(\frac{1}{2}\right)^{n+1} u(n)
$$

Example 8:

Find the inverse z-transform of $X(z)=\sin z$.

Solution

To find the inverse z-transform of $X(z)=\sin z$, we expand $X(z)$ in a Taylor series about $z=0$ as follows:

$$
\begin{aligned}
X(z) & =\left.X(z)\right|_{z=0}+\left.z \frac{d X(z)}{d z}\right|_{z=0}+\left.\frac{z^{2}}{2!} \frac{d^{2} X(z)}{d z^{2}}\right|_{z=0}+\cdots+\left.\frac{z^{n}}{n!} \frac{d^{n} X(z)}{d z^{n}}\right|_{z=0}+\cdots \\
& =z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Because

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

we may associate the coefficients in the Taylor series expansion with the sequence values $x(n)$. Thus, we have

$$
x(n)=(-1)^{n} \frac{1}{(2|n|+1)!} \quad n=-1,-3,-5, \ldots
$$

www.FirstRanker.com

Example 8:

Evaluate the following integral:

$$
\frac{1}{2 \pi j} \oint_{C} \frac{1+2 z^{-1}-z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{2}{3} z^{-1}\right)} z^{3} d z
$$

where the contour of integration C is the unit circle.

Solution:

Recall that for a sequence $x(n)$ that has a z-transform $X(z)$, the sequence may be recovered using contour integration as follows:

$$
x(n)=\frac{1}{2 \pi j} \oint_{c} X(z) z^{n-1} d z
$$

Therefore, the integral that is to be evaluated corresponds to the value of the sequence $x(n)$ at $n=4$ that has a z-transform

$$
X(z)=\frac{1+2 z^{-1}-z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{2}{3} z^{-1}\right)}
$$

Thus, we may find $x(n)$ using a partial fraction expansion of $X(z)$ and then evaluate the sequence at $n=4$. With this approach, however, we are finding the values of $x(n)$ for all n . Alternatively, we could perform long division and divide the numerator of $X(z)$ by the denominator. The coefficient multiplying z^{-4} would then be the value of $x(n) \mathrm{at} n=4$, and the value of the integral. However, because we are only interested in the value of the sequence at $n=4$, the easiest approach is to evaluate the integral directly using the Cauchy integral theorem. The value of the integral is equal to the sum of the residues of the poles of $X(z) z^{3}$ inside the unit circle. Because

$$
X(z) z^{3}=z^{3} \frac{z^{2}+2 z-1}{\left(z-\frac{1}{2}\right)\left(z-\frac{2}{3}\right)}
$$

has poles at $\mathrm{z}=1 / 2$ and $\mathrm{z}=2 / 3$,

$$
\operatorname{Res}\left[X(z) z^{3}\right]_{z=\frac{1}{2}}=\left[z^{3} \frac{z^{2}+2 z-1}{z-\frac{2}{3}}\right]_{z=\frac{1}{2}}=-\frac{3}{16}
$$

