Department of Basic Sciences Humanities

SUBJECT: MATHEMATICAL METHODS
YEAR /SEM : I/II
BRANCHS:
EEE/CIVIL

UNIT-I

1. a) Find the Real root of the equation $x^{2}-x-4=0$ using iteration method (5M)
b) Find the Real root of the equation $x^{4}-x-10=0$ using Newton Raphson method (5M)

2 (a) Using Newton-Raphson method find the root of the equation $\mathbf{x}+\log _{10} \mathbf{x}=\mathbf{3 . 3 7 5}$ correct to decimal places.
b) Find the Real root of the equation $3 x=e^{x}$ using Bisection method.

3 (a) Find the Real root of the equation $x^{3}=2 x+5$ using false position method (5M) (b)Solve $\mathbf{x}^{\mathbf{3}}-\mathbf{4 x}+\mathbf{1}=\mathbf{0}$ the equation by Bissection method

4 (a) Using Newton - Raphson method, find a root of the equation $\mathbf{2 x}-3 \boldsymbol{\operatorname { s i n }} \mathbf{x}=\mathbf{5}$ near $\mathbf{x}=3$ correct to three decimal places.
(b) Develop an Iterative formula to find $\frac{1}{N}$ using

Newton Raphson method
5(a) Using Regular-Falsi method,find the root of $\boldsymbol{x}^{\mathbf{3}}-\boldsymbol{x}-\mathbf{2}=\mathbf{0}$, over $(1,2)$
(b) By using Newton-Raphson method, find the root of $\boldsymbol{x}^{4}-\boldsymbol{x}-\mathbf{1 0}=\mathbf{0}$, correct to three decimal places.

UNIT-II

1(a) Using Lagrange's interpolation formulae find the value of y (12) from the data (5M)

x	0	2	3	6
y	648	704	729	792

(b) Determine the value of $f(x)$ at $x=25$ for the following data

x	20	24	28	32
$\mathrm{f}(\mathrm{x})$	24	32	35	40

2 (a) Find $f(142)$ using Newton's forward formula for the following table

x	140	150	160	170	180
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	3.685	4.854	6.302	8.076	10.225

(b) Calculate $f(3)$ from the following table.

X	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

3(a) Given that $\mathrm{f}(6500)=80.6223, \mathrm{f}(6510)=80.6846, \mathrm{f}(6520)=80.7456, \mathrm{f}(6530)=80.8084$,
Find $\mathrm{f}(6526)$ using Gauss backward interpolation formula.
(b) Using gauss forward difference formula, find $\mathrm{y}(12)$ from the given table

x	1	6	11	16	21	26
y	5	10	14	18	24	32

4 (a) Using Gauss Backward difference polynomial, find $y(5)$ given that

X	2	4	6	8	10
Y	5	11	13	15	17

(b) Use Gauss backward interpolation formula to find $\mathrm{f}(32)$ given that $f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$.
5(a) Prove that $(1+\Delta)(1-\nabla)=1$.
(b)Compute $\mathrm{f}(27)$ using Lagranges formula from the following table

X	14	17	31	35
$\mathrm{~F}(\mathrm{x})$	68.7	64	44	39.1

${ }_{(\text {frif }}$) Prove that (i) $\mu^{2}=1+\delta_{2}$
(6M)

UNIT-III

1(a) Using modified Euler method solve numerically $\frac{d y}{d x}=2+\sqrt[x]{y}$, with $y(1)=1 \quad$ to find the equation
$y(1.2)$.
(b)Using Euler's method, solve for y (0.6) from

$$
\begin{equation*}
\frac{d y}{d x}=-2 x y, y(0)=1 \text { using step size } 0.2 \tag{5M}
\end{equation*}
$$

2(a) Given $\frac{d y}{d x}=x+\sin y, y(0)=1$, compute $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ using Euler's modified method. (5M)
(b) A cu.rve is observed to pass through the points given in the following table 5 M

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	2	2.4	2.7	2.8	3	2.6	2.1

By using simpson's rule find the area bounded by the curve and x axis between $\mathrm{x}=1$ and $\mathrm{x}=4$

3(a) $y /=x 2 y+1, y(0)=1$ using Taylors method up to $3_{\text {rd }}$ degree term and compute $\mathrm{y}(0.1)$
(b) Solve, $y^{\prime}=y-x^{2} y 0=1$ using Picard's method up to $4^{\text {th }}$ approx. $\mathrm{y}(0.1) \cdot \mathrm{y}(0.2)$

4(a) Evaluate $\int_{0}^{1} \overline{1+x^{4}} d x$ by taking $\mathrm{h}=0.125$ using Simpson's $1 / 3$ rd $3 / 8$ thrule, .

5(a) Find y (0.1) using $4^{\text {th }}$ order Runge-Kutta method given that, $y^{\prime}=x+x^{2} y, y 0=1$. (5M)
(b) Use Runge-Kutta $4^{\text {th }}$ order to compute $\mathrm{y}(1.2)$ for the equation $y^{\prime}=\frac{x_{2}+y}{x}, y 1=2(5 \mathrm{M})$
6.. (a) Evaluate ${ }^{6}$

$$
{ }^{d x} \text { te } \begin{array}{ll}
d x & \text { by using Simpson's } 3 / 8^{\text {th }} \\
0 & \text { rule }
\end{array} \quad 5 \mathrm{M}
$$

(b) Evaluate $\frac{1 d x}{01+x}$

UNIT IV

1. (a) Obtain the Fourier series for $f x=e^{x}$ in the interval $0<x<2 \pi$.
(b) Find a Fourier series to represent the function $\mathrm{f}(\mathrm{x})=x-x^{2}$ from $x=-\pi$ to $x=\pi 5 \mathrm{M}$
2. (a) Expand $f x=x \sin x$ as a Fourier series in the interval $-\pi<x<\pi$.

And show that
(b) Find the Fourier series of $f x=\pi \quad \overline{4}, 0<x<\pi$
3. (a) Obtain the Fourier series to represent $f x=\underset{\underline{4}}{1} \pi-x^{2}, 0<x<2 \pi . \quad 5 \mathrm{M}$
(b) Find the Fourier series of the periodic function defined as f $x=\begin{array}{r}-\pi,-\pi<x<0 \\ x,\end{array}, 0<x<840$

$$
\text { Hence , deduce that }{ }_{1^{2}}^{1}+\frac{1}{3^{2}}+{ }_{5^{2}}^{1}+\ldots{ }_{8}={ }^{\pi} 2
$$

4. (a) Find half range cosine series of the function $f=x=e^{x}$ in $[0,1]$
(b) Find the half range sine series of $f=\begin{array}{ll}\pi \\ -_{2}, & 0<x<\frac{\pi}{2} \\ \pi-x\end{array}, \quad \begin{aligned} & \pi \\ & \pi-x<\pi\end{aligned}$
5. (a) Find the Fourier series of the function $f x=\begin{aligned} & 0,0<x<1 \\ & x^{2}, 1<x<2\end{aligned}$
(b) Find Fourier cosine series for $f x=x x-2$, in $0 \leq x \leq 2$ and hence find the sum of the series

$$
1_{1^{2}}^{1}-2^{2}+3_{3^{2}}^{1}-4^{2}+\cdots
$$

6. (a) Find the Fourier series of periodicity 2 for $f x=x+x^{2}$, in $0<x<2$
(b) Find the half range cosine series of $f x=\begin{array}{ll}1, & 0<x<\frac{\pi}{2} \\ -1, & 2_{2}^{-}<x<\pi\end{array}$

UNIT -V

1. (a) Using the method of separation of variables, solve $\frac{e^{\partial u}}{\partial x}=\frac{2^{\partial u}}{\partial t}+u w \square$ ere $u x, 0=6 e^{-3 x} \cdot 5 \mathrm{M}$
(b) Using the method of separation of variables, solve

$$
4{ }_{\partial x}^{\partial u}+\frac{\partial u}{\partial y}=3 u \text {, given } t \square \text { at } u(0, y)=3 e^{-y}-e^{-5 y}
$$

2. A tightly stretched string with fixed end points $\mathrm{x}=(0)$ and $\mathrm{x}=l$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from this position, find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t}) .10 \mathrm{M}$
3. Solve the equation ${ }^{\partial u}={ }^{2} 2^{u}$ wit \square boundary conditions $u x, 0=3 \sin n \pi x, u 0, t=0$ and $u l, t$ $0, w \square$ ere $0<x<l, t>0$. 10M
4. Solve the laplace equation ${ }_{\partial 2^{2}}{ }^{u}+{ }^{2} 2^{2}{ }_{\partial y}{ }^{u}=0$ subject to the conditions $u, y=u l, y=u x, 0=0$ and $u x$, $a=\sin n \pi x / l$. 10M
5. Find the solution of the wave equation $2^{\prime \prime}=a^{2} 2^{u}$, if the intial defiection is

$$
{ }^{2 k} x \text {, if } 0<x<1
$$

$$
f x={\underset{l}{2 k}}_{l}^{l-x, \text { if }} 2<x<l \quad \text { and intial velocity equal to } 0 \text {. }
$$

10M

UNIT VI

1. (a) Using Fourier integral, Show that ${ }_{0}^{\infty \cos \lambda} d \tau={ }_{2 a}^{\pi} e^{-a x} \quad, a>0, x \geq 0 . \quad 5 \mathrm{M}$

$$
\infty \cos \lambda
$$

(b) Find the Fourier transform of $f x=\begin{array}{lll}x & \text {, if } x \leq 1 \\ 0, & \text { if } x>1\end{array} \quad 5 \mathrm{M}$
2. (a) Find the Fourier transform of $\frac{1}{\bar{x}} \quad 5 \mathrm{M}$
(b) Find the Fourier sine transform of e^{-x}. 5 M
3. (a)If $F p \operatorname{orF}(s)$ is the complex fourier transform of $\mathrm{f}(\mathrm{x})$ then the complex fourier transform of

Then find the complex fourrier transform of $\mathrm{f}(\mathrm{x})=\cos a x \quad 5 \mathrm{M}$
(b) Find the Fourier sine and cosine transforms of $2 e^{-5 x} \mp 5 e^{-2 x} \quad 5 \mathrm{M}$
4. (a) Find the Fourier sine transform of $f x=e^{-a x}, a>0$ and deduce the inversion formula.5M
(b) Find the inverse Fourier sine transform of $f x$ of $\mathrm{F}(\mathrm{p})={ }^{p}$. 5 M

$$
s \quad \frac{}{1+p^{2}}
$$

5. (a) Find the Fourier Cosine transform of
(b) Find the inverse Fourier sine transform $f x$ of $\mathrm{F}(\mathrm{p})={ }^{e}-a p$; and show that $\mathrm{F}^{-1}(1 / \mathrm{p})=1.5 \mathrm{M}$
(a) Prove that $F x^{n} f(x)=(-i)^{n}$ \qquad $F p$.
(b) Prove that F $\square_{n} f(x)=-i{ }^{n} F p \cdot w \square$ ere $F f x=F(p)$. 5M ${ }^{d} n$
