Subject : Data Structures AdmittedBatch : 2018

OUESTION BANK

UNIT-I: ARRAYS

1. A) Define data structure. Discuss different types of data structure their Implementations applications. [5 M]
B) What is an array? Discuss different types of array with examples. [5 M]
2. A) Explain how to implement polynomial ADT using array. Discuss its Advantages And Disadvantages. [5 M]
B) Explain polynomial addition using arrays [5 M]
3. A) Explain sparse matrix representation using array with an example. Discuss the Advantage and disadvantages of this method. [5 M]
B) Discuss matrix multiplication with an example [5 M]
4. A) Explain in detail about transpose of matrix with example? [5 M]
B) illustrate about polynomial representation along with ADT? [5 M]

UNIT-II: STACKS AND OUEUES

1. A) Write an algorithm to insert and delete a key from circular queue.
B) Explain the procedure to convert infix expression to postfix expression with the

Following expression: $((\mathrm{A}-(\mathrm{B}+\mathrm{C}) * \mathrm{D})(\mathrm{E}+\mathrm{F}))$
2. A) Explain the evaluation of prefix expression. Find the equivalent prefix of :863+

$$
\text { * } 123 \text {-/- }
$$

B) Explain basic operations of queue. List the steps to implement queue using stack. [5 M]
3. A) Explain the operations performed on simple queue with an example. [5 M]
B) Convert following expression $\mathrm{X}+(\mathrm{Y} * \mathrm{Z})-\left(\left(\mathrm{N}^{*} \mathrm{M}+\mathrm{O}\right) / \mathrm{P}\right)$ in to post form. [5 M]
4. A) Write an algorithm for basic operations of stack. [5 M]
B) Explain the procedure to evaluate postfix expression. Evaluate the following

Postfix expression $734+-245 /+* 6 / 7+$?

UNIT-III: LINKED LISTS

1. A) Write recursive algorithm for lists.
B) Explain the procedure to insert and delete element from sparse matrix.
B) Discuss sparse matrix representation using linked list.
B) Write applications of single linked list to represent polynomial expressions

- RirstRanker.com
B) Show how to reverse a single linked list.

UNIT-IV: TREES

1. A) Explain binary tree ADT. [4 M]
B) Discuss representation of binary tree using arrays and linked list. [6 M]
2. A) What operations can be performed on binary trees? Discuss. [4 M]
B) Write in-order, pre-order and post-order traversal of a binary tree. [6 M]
3. A) Construct max heap for the following: [5 M] $140,80,30,20,10,40,30,60,100,70,160,50,130,110,120$
B) Explain in-order traversal of threaded binary tree with an example.
[5 M]
4. A) Define binary search tree. Show how to insert and delete an element from binary
Search tree with an example?
[6 M]
B) Write algorithm to insert and delete an element from binary search tree. [4 M]

UNIT-V: GRAPHS

1. A) What is a graph? Explain the properties of graphs. [4 M]
B) Write breadth first traversal algorithm. Explain with an example [6 M]
2. A) What are connected components of graph? Is there a method to find out all the
Connected components of graph? Explain.
[4 M]
B) Explain Prim's algorithm with an example. [6 M]
3. A) Discuss kruskal's algorithm with an example. [6 M]
B) Explain how to represent a graphs. [4 M]
4. A) Explain Warshall's algorithm to find transitive closure of a graph with a suitable
Example.
[5 M]
B) Explain All pairs shortest path with example? [5 M]

UNIT-VI: SORTING

1. A) Write algorithm for merge sort.
B) Discuss how to sort elements using merge sort with suitable example.
2. A) Rearrange following numbers using quick sort:
[5 M] $10,6,3,7,17,26,56,32,72$
B) Write a program to sort the elements using radix sort.
A) State and explain insertion sort with example.
A) State and explain heap sort with example.
3. B) Evaluate time complexity and space complexity of an algorithm.
