

Department of Basic Sciences Humanities

SUBJECT: MATHEMATICAL METHODS	YEAR /SEM : I/II
EEE/CIVIL	BRANCHS:
<u>UNIT-I</u>	
1. a) Find the Real root of the equation $x^2 - x - 4 = 0$ using	g iteration method (5M)
b) Find the Real root of the equation $x^4 - x - 10 = 0$ using	Newton Raphson method (5M)
2 (a) Using Newton-Raphson method find the root of the equation decimal places.	on $x + \log_{10} x = 3.375$ correct to four (5M)
b) Find the Real root of the equation $3x = e$ using Bisection	on method. (5M)
3 (a) Find the Real root of the equation $x^3 = 2x + 5$ using for $(5M)$ (b)Solve $3 - 1 + 1 = 1$ the equation by Bissection me	alse position method ethod (5M)
(a) Using Newton – Raphson method, find a root of the equation 2x to three decimal places. (b) Develop an Iterative formula to find $\frac{1}{N}$ using	x- 3sinx =5 near x =3 correct (5M)
Newton Raphson method	(5M)
5(a) Using Regular-Falsi method, find the root of $\square^3 - \square - \square = \square$, (b) By using Newton-Raphson method, find the root of $\square^4 - \square - \square$	over $(1, 2)$ (5M) $\square = \square$, correct to three
decimal places.	(5M)

www.FirstRanker.com

UNIT-II

1(a) Using Lagrange's interpolation formulae find the value of y (12) from the data (5M)

X	0	2	3	6
У	648	704	729	792

(b) Determine the value of f(x) at x = 25 for the following data (5M)

X	20	24	28	32
f(x)	24	32	35	40

2 (a) Find f(142) using Newton's forward formula for the following table

X	140	150	160	170	180
Y=f(x)	3.685	4.854	6.302	8.076	10.225

(b) Calculate f(3) from the following table.

>	(0	1	2	4	5	6
f	(x)	1	14	15	5	6	19

3(a) Given that f(6500) = 80.6223, f(6510) = 80.6846, f(6520) = 80.7456, f(6530) = 80.8084,

Find f(6526) using Gauss backward interpolation formula.

(5M)

(5M)

(b) Using gauss forward difference formula, find y(12) from the given table (5M)

X	1	6	11,13	16	21	26
у	5	10	14	18	24	32

4 (a) Using Gauss Backward difference polynomial, find y(5) given that (5M)

X	2	4	6	8	10
Y	5	11	13	15	17

(b) Use Gauss backward interpolation formula to find f(32) given that

$$f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.$$

(5M)

5(a) Prove that $(1 + \Delta)(1 - \nabla) = 1$.

(3M)

(b)Compute f(27) using Lagranges formula from the following table

X	14	17	31	35
F(x)	68.7	64	44	39.1

(6M) Prove that (i) $\mu^2 = 1 + {}^{\delta}2$ (6M)

(b) If the interval of differencing is unity, with A in Ker.com

(4M)

www.FirstRanker.com

UNIT-III

1(a) Using modified Euler method solve numerically the equation

$$\frac{dy}{dx} = 2 + \sqrt[8]{y} \quad \text{, with y(1)=1} \quad \text{to find}$$

$$y(1.2)$$
. (5M)

(b) Using Euler's method, solve for y (0.6)
$$\frac{dy}{dx} = -2xy, y(0) = 1 \text{ using step size } 0.2. (5M)$$

2(a) Given
$$\frac{dy}{dx} = x + \sin y$$
, $y(0) = 1$, compute $y(0.2)$ and $y(0.4)$ using Euler's modified method. (5M) (b) A curve is

observed to pass through the points given in the following table 5M

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
У	2	2.4	2.7	2.8	3	2.6	2.1

By using simpson's rule find the area bounded by the curve and x axis between x=1 and x=4

3(a) y/=x2y+1, y(0)=1 using Taylors method up to 3_{rd} degree term and compute y(0.1)

(5M)

(b) Solve, $y' = y - x^2 y$ 0 = 1 using Picard's method up to 4th approx. y(0.1).y(0.2)

(5M)

4(a) Evaluate
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\boxed{1 + x^4}dx$ by taking h=0.125 using Simpson's 1/3rd 3/8 thrule,. (5M)

(b) Evaluate
$$\int_{0}^{x} \frac{\cos x}{1+x} d$$
 by (i) Trapezoidal rule (ii) Simpson's 3/8th Rule (5M)

5(a) Find y (0.1) using 4th order Runge-Kutta method given that ,
$$y' = x + x^2 y$$
, $y = 0 = 1$. (5M)

(b) Use Runge-Kutta 4th order to compute y(1.2) for the equation
$$y' = \frac{x_2^{+y}}{x}$$
, $y = 1 = 2$ (5M)

6.. (a) Evaluate
$$\frac{6}{1000}$$
 by using Simpson's $3/8^{th}$ rule by using Trapizoidal rule.

(b) Evaluate $\frac{1}{1000}$ by using Trapizoidal rule.

5M

5M

www.FirstRanker.com

<u>UNIT IV</u>

- = e^x in the interval $0 < x < 2\pi$. 1. (a) Obtain the Fourier series for
 - (b) Find a Fourier series to represent the function $f(x) = x x^2$ from $x = -\pi$ to $x = \pi$ 5M
- = $x \sin x$ as a Fourier series in the interval $-\pi < x < \pi$. 2. (a) Expand

And show that
$$-\frac{1}{1.3} + \frac{1}{5.} + \frac{1}{7} - \frac{1}{7} - \dots = \frac{\pi^{-2}}{4}$$

(b) Find the Fourier series of
$$f x = \pi$$

$$0, -\pi < x < 0$$

$$\frac{\pi}{4}, 0 < x < \pi$$

- (a) Obtain the Fourier series to represent $= \frac{1}{4} \pi x^2$, $0 < x < 2\pi$. 3. 5M
 - (b) Find the Fourier series of the periodic function defined as $f x = \begin{pmatrix} & -\pi & -\pi & x & < 0 \\ x & 0 & < x & < \end{pmatrix}$

Hence, deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi}{8}$$
 5M

(a) Find half range cosine series of the function $f(x) = e^x$ in [0,1] 4. 5M

(a) Find the half range sine series of the function
$$f(x) = \frac{\pi}{2}$$
, $0 < \frac{\pi}{2}$ 5M

(b) Find the half range sine series of $\frac{\pi}{2}$, $0 < \frac{\pi}{2}$ 5M

(a) Find the Fourier series of the function $f(x) = \frac{\pi}{2}$, $1 < \pi$ 5M

5. (a) Find the Fourier series of the function
$$f(x) = \begin{cases} 0, & 0 < x < 1 \\ x^2, & 1 < \infty 2 \end{cases}$$

(b) Find Fourier cosine series for f x = x x - 2, in $0 \le x \le 2$ and hence find the sum of the series

6. (a) Find the Fourier series of periodicity 2 for $f(x) = x + x^2$, in 0 < x < 25M

(b) Find the half range cosine series of
$$x = \begin{cases} 1, & 0 < \frac{\pi}{2} \\ -1, & \frac{\pi}{2} < x < \pi \end{cases}$$
 5M

www.FirstRanker.com

UNIT -V

- 1. (a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = \frac{2}{\partial t} + u \ w \square ere \ u \ x$, 0 = 6 e^{-3x} .5M
- (b) Using the method of separation of variables, solve

$$4 \frac{u}{\partial x} + \frac{\partial u}{\partial y} = 3u, \text{ given } t \square \text{ at } u(0, y) = 3 e^{-y} - e^{-5y}$$
5M

2. A tightly stretched string with fixed end points x=(0) and x=l is initially in a position given by

 $y = {}_{0}sin^{3} \frac{\pi x}{l}$. If it is released from this position, find the displacement y(x, t). 10M

3. Solve the equation $\partial u = \partial 2^u$ wit boundary conditions u = 0 boundary conditions u = 0 boundary u

 $0, w \underline{\qquad} ere \ 0 < x < \ , t > 0.$

4. Solve the laplace equation $\frac{\partial 2}{\partial x} \frac{u}{2} + \frac{\partial 2}{\partial y} \frac{u}{2} = 0$ subject to the conditions $u \ 0$, $y = u \ l$, $y = u \ x$, 0 = 0 and $u \ x$,

10M $= \sin n\pi x/l$.

6. Find the solution of the wave equation ${}^{\partial}2^{u} = a^{2} {}^{\partial}2^{u}$, if the intial defiection is

$$= \begin{cases} 2k & \text{if } 0 < x < l \\ & \frac{\partial t}{2} & \frac{\partial x}{2} \\ & \text{and intial velocity equal to } 0. \end{cases}$$

$$= \begin{cases} 2k & l \\ \frac{\partial t}{\partial x} & \frac{\partial x}{\partial x} & \frac{\partial$$

UNIT VI

1. (a) Using Fourier integral, Show that $\int_{0}^{\infty} \frac{\cos \lambda t}{\lambda^2 + a^2} d\tau = \int_{2a}^{\pi} e^{-ax}, \quad a > 0, \quad x \ge 0. \quad 5M$

(b) Find the Fourier transform of $= \begin{cases} x & \text{if } x \leq 1 \\ 0 & \text{if } r > 1 \end{cases}$ 5M

2. (a) Find the Fourier transform of $\frac{1}{x}$ 5M

(b) Find the Fourier sine transform of -x. 5M

3. (a) If $F p \ or F(s)$ is the complex fourier transform of f(x) then the complex fourier transform of

Then find the complex fourrier transform of $f(x) = \cos ax$ 5M

(b) Find the Fourier sine and cosine transforms of $2e^{-5x} + 5e^{-2x}$ 5M

4. (a) Find the Fourier sine transform of $f(x) = e^{-ax}$, a > 0 and deduce the inversion formula.5M (b) Find the inverse Fourier sine transform of $f(x) = e^{-ax}$, $f(x) = e^{-ax}$, f(x

5. (a) Find the Fourier Cosine transform $\frac{e^{-ax}}{x}$ 5M

(b) Find the inverse Fourier sine transform $f \times of F(p) = {e - a \over s}$; and show that $F^{-1}(1/p) = 1.5M$

6. (a) Prove that $F(x^n) = (-i)^n \frac{d}{-1} F(p)$.

5M

(b) Prove that $\frac{dn}{dx_n} f(x) = -ip^n F p \cdot w \square ere F f x = F(p)$. 5M