ject : Mathematics-III Branch: ECE, EEE,Civil. (2018-2019)

UNIT -I

1(a) Solve the system of equations $20 x+y-2 z=17,3 x+20 y-z=$ $-18,2 x-3 y+20=25$ by Gauss Jacobi method
(b) Reduce the matrix A to normal form and hence find the rank of the matrix

$$
A=\begin{array}{cccc}
2 & -2 & 0 & 6 \\
4 & 2 & 0 & 2 \\
1 & -1 & 1 & 2
\end{array}
$$

2(a) Find the currents in the following circuits

(b) solve the system of equations $10 x+y+z=12,2 x+10 y+z=13$ and $2 x+2 y+10 z=14$ using Gauss-seidel method.

3(a) Find the non singular matrices P and Q such that the normal form of A is PAQ where
$A=\begin{array}{cccc}1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3\end{array}$. Hence find its rank. 5M
(b) Find the rank of $2 \quad 3 \quad-1 \quad-1$
$\begin{array}{lllll}1 & -1 & -2 & -4 & \text { after reducing it to Echelon form }\end{array}$

5M 31
3
-2
$\begin{array}{llll}6 & 3 & 0 & -7\end{array}$

4(a) Find the values of ' a ' and ' b ' for which equation $x+y+z=3 ; x+2 y+$ $2 z=6 ; x+$
$a y+3=b$ have unique solutions.

Subject : Mathematics-III Branch: ECE, EEE,Civil. (2018-2019)
(b) using Gauss-jordan method solve the system of equations $2 x+y+z=$ $10,3 x+2 y+3 z=18, x+4 y+9 z=16$.

5(a) Reduce the matrix A to normal form and hence find the rank of the matrix.

$$
A=\begin{array}{cccc}
2 & 1 & 3 & 4 \\
0 & 3 & 4 & 1 \\
2 & 3 & 7 & 5
\end{array}
$$

(b) prove that the following set of equations are consistent and solve them.
$2 x-y-z=2 ; x+2 y+z=2 ; 4 x-7 y-5 z=2 ;$.

UNIT - II:

$$
\begin{aligned}
& 6 \quad-2 \quad 2 \\
& \text { 1(a) Find Eigen values and Eigen vectors of }-2 \quad 3-1 \\
& 2 \begin{array}{lll}
2 & -1 & 3
\end{array}
\end{aligned}
$$

(b) Reduce the quadratic form $10 x^{2}+2 y^{2}+5 z^{2}-4 x y-10 x z+6 y z$ into canonical form and find the nature, rank, index and signature. 5M

2(a)Reduce the Quadratic form $3 x_{1}{ }^{2}+3 x_{2}{ }^{2}+3 x_{3}{ }^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ into sum of squares form by an orthogonal transformation and give the matrix transformation. 5M

123
(b)Find $A-1$ using Cayley-Hamilton theorem, where $A=2$
$5 M$
356
$\begin{array}{rll}1 & 1 & 3 \\ 3(a) \text { what is the nature of the quadratic form } X T A X & 5 & 1 \\ , \text { if } A=1 & & \end{array} \quad 5 \mathrm{M}$
(b)Prove that if τ is an Eigen value of a matrix A then τ^{-1} is an Eigen value of matrix A^{-1} if it exists.
4(a) If τ is an Eigen value of a non singular matrix A
then show that
matrix adjoint $A(\operatorname{adjA})$

6(a) Show that if λ is an eigen value of A, then prove that the eigen value of

$$
=a_{0} A^{2}+a_{1} A+a_{2} I \text { is } a_{0} \lambda^{2}+a_{1} \lambda+a_{2}
$$

$\underset{-2}{\text { (b) Is the matrix }} \begin{array}{rrc}3 & 10 & 5 \\ -3 & -4\end{array}$ diagonalizab
1(a) Evaluate ${ }_{y=0}^{2} \quad x=0$ xy $\quad d x d y$ 5M
(b) aluate ${ }_{0}^{a}{ }_{0}^{a 2 a-x}{ }_{a}^{2}-x y^{2} d y d x$ by changing the order of integration. 5M $\underset{x=0}{2(\text { a Evalua e e }}{ }_{j=0}^{b}\left(x^{2}+y^{2}\right) d y d x \quad 5 \mathrm{M}$

(b) By changing the order of integration, evaluate	0	1	${ }_{0}^{1-x}$

3(a) Find the moment of inertia about the initial line of the cardioid $=a(1$
$-\cos \theta)$.
(b) Evaluate $d x d y d z \mathrm{~V}$ is the finite region of space formed by the planes
$\mathrm{x}=\mathrm{y}=\mathrm{z}=0$ and $2 x+3 y+4 z=12$

4(a) Evaluate	2	2	$r d r d \theta$.	5 M

I B.TECH IISem Question Bank

Subject : Mathematics-III Branch: ECE, EEE,Civil. (2018-2019)
(b) Evaluate
${ }_{2}^{4} \frac{y}{4} \frac{y}{x^{2}+y}$
$x^{2}$$x d y \quad 5 \mathrm{M}$

5(a) Evaluate ${ }^{a}(x 2+y 2) d y d x$ by changing the order of integration. 5M $0 x$
(b) Evaluate $\quad x 2+y 2 \quad x d y$ in the positive quadrant for which $x+y \leq 1$. 5M

UNIT - IV:

1(a) Show that ${ }_{0}^{\infty} x e-x 3 d x=\frac{\pi}{3}-$
(b) Show
$\underline{\propto}_{1} \frac{x^{m}}{(a+b x)^{m+n}} d x=\frac{\beta(m, n)}{a^{n} b^{m}}$
that ${ }_{0}$

2(a) Prove that ГГ ГГ $n-\frac{7}{\sin n \pi}=\quad \pi 5 \mathrm{M}$
(b)Prove that $\begin{array}{cc}\frac{\pi}{t} & \overline{\cos x^{\frac{\pi}{4}} d x^{d x}} \begin{array}{c}2 \\ 0 \cos x\end{array}\end{array}$

3(a) $\frac{5)^{x^{4}(1+x}}{(1+x)^{15}} d x$
5M
Evaluate 0
(b) Evaluate ${ }_{5} \quad{ }^{7}(x-5) 6(7-x) 3 d x$ using β and ГГ functions. 5 M

4(a) Show thait $\Gamma\left({ }_{2}\right)=\pi \quad 5 \mathrm{M}$
(b) Show that $B m, n \frac{\Gamma \overline{\bar{\Gamma}}(m+n)}{\Gamma(m) \Gamma(n)}$ where $\mathrm{m}>0, \mathrm{n}>0$. 5 M

5(a) Evaluato ${ }^{2}{ }^{2} \sin 5 \theta \cos 72 \theta d \theta$. 5M
$\begin{array}{lll}\text { (b) Evaluate } \\ { }_{0}^{1} & \\ x 4 & \\ x_{x} & \log 13 d x & 5 M\end{array}$
6(a) Evaluate $\frac{1 x d x}{{ }_{0}}{ }_{1-x^{5}}$. $5 M$
(b) Evaluat ${ }_{\hat{\sigma}} \quad x 2 e-x 2 d x$.

Subject : Mathematics-III Branch: ECE, EEE,Civil. (2018-2019)

UNIT- V :

1 (a) Find unit normal vector to the surfaces $x^{2} y+2 x z^{2}=8$ at the point $(1,0,2) 5 \mathrm{M}(\mathrm{b})$ Prove that div. gradr $^{m}=+1 r^{m-2} \quad 5 \mathrm{M}$ 2(a)Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+$ $y^{2}-3$ at the point $(2,-1,2)$.
(b) If A is irrotational, evaluate $d i v A \times r$ where $r=x i+y j+z k$

5M 3(a) Find $\operatorname{div} F$, where $F=r^{n} r$. Find n if it is solenoidal.
5M
(b) Show thāt $F=y^{2}-z^{2}+3 y z-2 x i+(3 x z+2 x y)+3 x y-2 x z y+2 z k$ is both irrotational and Solenoidal . 5M

4(a) Find the directional derivative of $\varnothing=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of
$2 i-j-2 k$
(b) Show that the vector ${ }^{2}-y z i+y^{2}-z x j+\left(z^{2}-x y\right) k$ is irrotational and find its scalar potential. Ω^{5}
5(a) Show that $\nabla^{2} f r={ }^{d} 2^{f}+{ }^{2} r$ or $f^{I I} r+{ }^{2} f^{I} r w \square$ ere $r=|r|$.
(b) Prove that div $\times b=b$.curla $-a \quad$.curlb 5M

UNIT - VI

1(a) Use Greens theorem to evaluate $(2 x y-x 2) x+(x 2+y 2) \mathrm{dy}$, where c is theclosed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$. 5M
(b) State Gauss divergence theorem and verify $\quad=4 x z i-y^{2} j+z y k$ over the cube
$x=0 \quad=1, y=0 \quad y=1, z=0 z=1$.
2(a) Evaluate (ex $d x+2 y d y-d z)$ where c is the curve is the curve is the curve
$x^{2}+y^{2}=9, z=2$, by using Stoke's theorem.

I B.TECH IISem Question Bank

Subject : Mathematics-III Branch: ECE, EEE,Civil. (2018-2019)
\qquad

3(a) If $F=3 x 2+6-14 y z j+20 x z k$ then evaluate F. $d r$ from $(0,0,0)$ to $(1,1,1)$ along $x=t, y=t^{2}, z=t^{3}$.

5M
(b) Apply stoke's theorem to evaluate $y d x+z d y+x d z$ where c is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $x+z=a$.

5M
4(a) State stoke's theorem, and verify for $F=x+y i+(y+z) j$ $-x k$ and S is the Surface of the plan $2 x+y+z=2$ which is in the first octant.

5M
(b) Using divergence theorem to evaluate . $d s$ where $F=x 3 i+y 3 j$
$+z 3 k$ and S is surface of the sphere $x^{2}+y^{2}+z^{2}=r^{2}$.
5M
5(a)Verify Green's theorem in the plan for $x 2-x y 3 d x+(y 2-2 x y) d y$ where C is the square with vertices $0,0,2,0,2,2,(0,2) 5 \mathrm{M}$
(b) Evaluate by Green's theorem $y-\sin x d x+\cos x d y$ where C is the triangle enclosed by the lines $y=\frac{\pi}{=} 0, x=2, \pi y=2 x$. 5M

