

www.FirstRanker.com

www.FirstRanker.com

Course: B.Tech. Branch: CSE-A& B Year/Semester: II/II

Academic Year: 2017-18

Subject: FLAT

Admitted Batch: 2017

QUESTION BANK

Unit I: Finite Automata

a. What is finite Automation and explain in detail about Acceptance of a String by a Finite Automation
 [4 M]
 b.Construct a DFA accepting the language [6 M]
 { W Î {a,b}* | W has neither aa nor bb as substring}

- 2. a. Construct a DFA to accept the language $L=\{w/w \text{ has both an even number of } 0\text{'s and even number of } 1\text{'s}\}.$ [5 M]
 - b. Construct a DFA equivalent to the NFA given below

- 3. a. Construct an NFA that accepts the set of all strings over {0,1} that start with 0 or 1 and end with 10 or 01. [5 M]
 - b. What is minimal DFA? Write the minimization Algorithm for DFA? [5 M]
- 4. a. Construct a Deterministic Finite State Automata equivalent to the NFA given below M={(q0,q1,q2,q3), {0,1} , \$,q0, { q3}} where is defined by the following transition table [6 M]

§	0	1
\mathbf{q}_0	$(\mathbf{q}_0, \mathbf{q}_1)$	(\mathbf{q}_0)
\mathbf{q}_1	(q_2)	(\mathbf{q}_1)
\mathbf{q}_2	(q_3)	(q_3)
q ₃	Null	(q ₂)

- b. Convert NFA to DFA with suitable example? [4 M]
- 5. a. Design a Moore machine that accepts all strings of 0's and 1's treated as binary integer number return a remainder 1 when divided by 3. [5 M]
 - b. Design a mealy machine to print out 1's complement of an input bit string? [5 M]
 - 6. a. Convert the following Mealy machine to an equivalent Moore machine [5 M]

b. Reduce the DFA given below

[5 M]

Unit II: Regular Expressions

- a. Construct an NFA equivalent to the regular expression 1*0+1101 and (0+1)*. [5 M]
 b. Convert the following regular expression into NFA with ∈ transition. [5 M]
 i) 1*0+1101 ii) (0+1)*
- 2. a. Write the steps to construct regular expression from given DFA? [4 M]
 b. Construct a regular expression corresponding to the DFA represented by the below transition table. q1 is both the initial state and final state. [6 M]

7	δ	0	1
	\mathbf{q}_1	q_1	\mathbf{q}_2
	\mathbf{q}_2	\mathbf{q}_3	\mathbf{q}_2
	q_3	q_1	\mathbf{q}_2

- 3. a. Construct the regular grammar to generate the following Language L={ anb | n,m >=1} [6 M]
 - b. Prove that regular sets are closed under union and complementation [4 M]
- 4. a. Define the DFA and regular expression. DFA accepts all strings corresponding to the expression 1*01(0+11)*. Also explain how to convert DFA to regular expression by eliminating states. [6 M]
 - b) Give an example to explain the Relation between Regular Grammar and Finite Automata?

 [4 M]
- 5. a. Construct a Non Deterministic Finite automaton (NDFA) with ∈-moves for the regular expression (10+11)*00. [5 M]
 - b. Give the properties of regular expressions and state and prove Arden"s theorem.

Unit III: Context Free Grammars

1.	context free la		[4 M]
	b. Simplify the	e following CFG and Convert it into CNF S -> AaB aaB	[6 M]
		A -> ε	
		B -> bbA ε	
2. a. Write the general procedure to transform a grammar to 0		eneral procedure to transform a grammar to Greibach Normal F [5 M]	orm?
	b. Prove that	S -> aSbS bSaS ε is ambiguous.	[5 M]
		Remove all ∈ and unit production rules from the following CFG S □AaA/ CA/ BaB A □aaBa/ CDA / aa / DC B □bB / bAB / bb/ aS C □Ca / bc / D D □bD / A	
	4.	a. Construct a Greibach Normal Form grammar equivalent to the following CFG[5 M] S□ AA / 0 A□SS / 1	ne
	b. Prove that	the following grammar of arithmetic expression is ambiguous.	[5 M]
		E = E + E / E*E / (E) / (id)	[]
	5.	a.Consider the CFG with the following production rules:	[5 M]
		S ∏aB/ bA	
		A ∏bAA / aS/ a	
		B∏aBB / bS/ b	
	Give the right	t most derivation and draw derivation tree for the string <i>abbaab</i>	
	b. Find a Gre	ibach normal form grammar equivalent to the following CFG.	[5 M]
		S∏ASB/ AB	
		A∏a	
		B□b	
	6.	a. Convert the following grammar into Chomsky Normal Form.S□aB/ bA	[6 M]
		A bAA / aS/ a	
		B □aBB / bS/ b	
	b. What is pu	imping lema and explain with proper example?	[4 M]
		<i>'</i> 20.	

Unit IV: Pushdown Automata

a. What is push down automata? Show how context free languages accepted by automata? [5 M]	y push down
b. Explain in detail about language acceptance of push down automata?	5 M]
	5 M]
b. Explain about two stack push down automata? [5	5 M]
3. a. Illustrate about non-deterministic pushdown automata with example?	6 M]
	4 M]
4. a. Explain about equivalence of pushdown automata and context free graexample?	ammar with

Unit V: Turning Machine

Man KirstRanker.com

1.	a. Define Turing Machine and explainwes first Ranakes contransition wing a first	Ranker.com
	b. Design a Turing Machine to accept the language L = {W W ^R W∈ (a+b) ² }	[6 M]
	2. a. Design a Turing Machine to recognize the language L={ 1 ⁿ 2 ⁿ 3 ⁿ n>=1}	[5
		M]
	b. Design a Turing Machine to compute Max(n ₁ , n ₂)?	[5 M]
3.	a. Design a Turing machine that accepts the language L ={ WW ^R / W∈ (0+1)*	and
	W ^R is reverse of W}	[5
	M]	
	b. Design a Turing machine to accept the set of all palindrome over {0,1}*. Dra	
	transition diagram for the Turing machine of the above.	[5 M]
4.	Design a Turing Machine which can multiply two positive integers	[10 M]
5.	Design a Turing Machine "Parity Counter" that outputs 0 or 1, depending on w	hether the
	number of 1"s in the input sequence is even or odd respectively.	[10 M]
	A. Explain about Universal Turing Machine?	[5 M]
	b. Differentiate Turing Machines and Real Machines?	[5 M]

Unit VI: Computability

1.	. a. What is Halting Problem of Turing Machine? Is it decidable or not? Explain?	[5 M]
	b. What is post correspondence problem? Explain with an example.	[5 M]
	a. Explain about classes of P and NP?	[5 M]

b. Explain about classes of NP-hard and NP-complete problems? [5 M] 3. a. Give examples of decidable and an un-decidable problem. [5 M]

www.FirstRanker.cof b. Explain about modified post correspondence problem? Explain with an example. [5 M]

Signature of the Faculty

Head Of The Department