QUESTION BANK

Subject: EMWTL

Year: II / IV, II-Semester

Regulation: R16

Branch: ECE

Academic Year: 2018-2019

UNIT - I: Electrostatics

1. a. Point charges 4 mc and -3 mc are located at $(2,1,-3)$ and $(-1,-2,4)$ respectively. Calculate the electric force on a 12 nc charge located at $(0,3,1)$ and the electric field intensity at that point.

5M

b. State the applications of Gauss Law with respect to a) Point charge b) Infinite line charge $\mathbf{5 M}$
2. a. Derive an expression for the electric field intensity due to a finite length line charge along the Z - axis at an arbitrary point $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. 5M
b. The finite sheet $0 \leq x \leq 1$ and $0 \leq y \leq 1$ on the $z=0$ plane has a charge density $\rho_{s}=x y\left(x^{2}+y^{2}+25\right)^{3 / 2}$ $\mathrm{nC} / \mathrm{m}^{2}$ Find

5M
i. The total charge on the sheet
ii. The electric field at $(0,0,5)$
iii. The force experienced by a $-1 n C$ charge located at $(0,0,5)$.

3a. Briefly explain Dielectric constant and its strength. $\mathbf{5 M}$
b. Explain about continuity equation and relaxation time. 5M
4. a. Explain about the parallel plate capacitor and coaxial capacitor with necessary equations. $\mathbf{5 M}$
b. With necessary equations explain poisson's and Laplace's equation.

5M
5. a. If $\mathrm{D}=2 \mathrm{x}^{2} \mathrm{a}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}}+2 \mathrm{z}^{2} \mathrm{pC} / \mathrm{m}^{2}$. Derive volume charge density. $\quad \mathbf{5 M}$
b. Give the Maxwell's equations for electrostatic fields. $\quad \mathbf{5 M}$
6. a. Explain about Electric flux density. Determine \mathbf{D} at $(4,0,3)$ if there is a point charge $-5 \Pi \mathrm{mC}$ at $(4,0,0)$ and a line charge at $3 \Pi \mathrm{mC} / \mathrm{m}$ along the y -axis. $\quad \mathbf{5 M}$
b. Write about convection current and conduction current.

5M

UNIT - II: Magnetostatics \& Maxwell's Equations for Time Varying Fields.

1. a. Derive expression for magnetic field at any point on the axis at a distance ' h ' from the centre of a circular loop of radius 'a' and carrying current ' I '.

5M
b. State and explain Biot - Savart's law. Give the expressions of Biot - Savart's law for line, surface and
volume currents.
$\mathbf{5 M}$
2. a. State Ampere's circuit law and explain. Give its applications. $\quad \mathbf{6 M}$
b. Explain about inconsistency in Ampere's Law. 4M
3. a . A circular loop located on $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ and $\mathrm{z}=0$ carries a direct current of 10 A along a_{ϕ}. Determine H at
$(0,0,4)$ and $(0,0,-4)$.
5M
b. With necessary equations explain about Magnetic scalar and Vector potential. $\mathbf{5 M}$
4. Explain about the following
i. Force on a charged particle. $\quad \mathbf{5 M}$
ii.Force on a current element. 5M
5. a. Write about the following Dielectric - Dielectric Boundary Condition and Conductor dielectric boundary condition.
b. State the Faraday's Law and explain briefly.

5M
6. a. State all Maxwell's equations in differential and integral form for time varying fields. $\mathbf{5 M}$
b. Explain the concept displacement current and derive its necessary equations. $\quad \mathbf{5 M}$

UNIT - III: EM Wave Characteristics - I

1. Define and explain the terms
$\begin{array}{ll}\text { i. Skin Depth } & \mathbf{4 M} \\ \text { ii. } \text { Intrinsic Impedance of free space } & \mathbf{3 M} \\ \text { iii. Phase Constant. } & \mathbf{3 M}\end{array}$
2. a. Derive the expression for attenuation and phase constants of uniform plane wave.5M
b. Prove that \mathbf{E} and \mathbf{H} are perpendicular to each other in uniform plane waves. $\mathbf{5 M}$
3. Derive the expression for wave equation in
i. Lossless Dielectric $4 \mathbf{4 M}$
ii. Good Conductors 3M
iii.Free Space 3M
4. A plane wave with $\mathrm{E}=2 \mathrm{~V} / \mathrm{m}$ and has a frequency of 300 MHz is moving in free space impinging on thick copper sheet located perpendicular to the direction of the propagation. Find
i. \mathbf{E} and \mathbf{H} at the plane surface $\quad 4 \mathbf{M}$
ii. Depth of penetration 3M
iii.Surface Impedance \quad 3M
5. a. In a lossless medium for which $\eta=60 \Pi, \mu_{r}=1$ and $\mathbf{H}=-0.1 \cos (\omega t-z) \mathrm{a}_{\mathrm{x}}+0.5 \sin (\omega t-z) \mathrm{a}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$. Calculate $\varepsilon_{\mathrm{r}}, \omega$ and \mathbf{E}.

5M
b. An elliptical polarized wave has an electric field of $\mathbf{E}=\sin (\omega t-\beta z) \mathrm{a}_{\mathrm{x}}+2 \sin \left(\omega \mathrm{t}-\beta \mathrm{z}+75^{\circ}\right) \mathrm{a}_{\mathrm{y}} \mathrm{V} / \mathrm{m}$.

Find the power per unit area conveyed by the wave in free space.
5M

UNIT-IV: EM Wave Characteristics - II

1. a. What is Brewster angle? Derive the expression for the same. $\mathbf{5 M}$
b. Discuss about power loss in plane conductor. $\quad \mathbf{5 M}$
2. a. State and prove the critical angle theorem.

5M
b. Derive anrexpression for reflection wherra wave is incident onradiefectric obliquely with paratlet
polarization.
3. a. State and prove Poynting theorem. 5M
b. For good dielectric derive the expression for α, β, v and η. 5M
4. a. Find the depth of penetration ${ }^{\delta}$ of an EM wave in copper at $\mathrm{f}=60 \mathrm{~Hz}$ and $\mathrm{f}=100 \mathrm{MHz}$. For copper $\sigma=5.8$ x $10^{7} \mathrm{mho} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1$ and $\mu_{\mathrm{r}}=1$. 5M
b. Prove that $\mathrm{E}_{\mathrm{i}}=-\mathrm{E}_{\mathrm{r}}$ when the wave is normal incidence on a perfect conductor. $\mathbf{5 M}$
5. a. A plane wave travelling in air is normally incident on a material with $\mu_{\mathrm{r}}=1$ and $\varepsilon_{\mathrm{r}}=4$. Find the reflection and transmission coefficient.

5M
b. Define and derive the transmission coefficient of a wave incidence in normal on dielectric. 5M

UNIT - V: Transmission Line - I

1. a. Derive the relationship between the primary constants and secondary constants in a transmission line.

5M

b. Derive the expression for the input impedance of a transmission line length L. $\quad \mathbf{5 M}$
2. a. Show that a transmission line will be distortion less free if $\mathrm{RC}=\mathrm{LG} \quad \mathbf{5 M}$
b. A high frequency line has the following primary constants $\mathrm{L}=1.2 \mathrm{mH} / \mathrm{Km}, \mathrm{C}=0.05 \mu \mathrm{~F} / \mathrm{Km}$.
$\mathrm{R}=\mathrm{G}=$ negligible. Determine the characteristics impedance and propagation constant of the line.
3. a. List out applications of smith's chart. How to measure them?
b. Give details about smith chart and write steps how to calculate impedance, reactance, and wavelength using this chart.
4. a. Define and explain both lossless and distortion less transmission lines in terms of transmission lines parameters.

5M
b. State the impedance relations, reflection coefficient and VSWR for

5M
i. Shorted line
ii. Open circuited transmission line.
5. a. A lossy cable which has $\mathrm{R}=2.25 \Omega / \mathrm{m}, \mathrm{L}=0.1 \mu \mathrm{H} / \mathrm{m}, \mathrm{C}=1 \mathrm{pF} / \mathrm{m}$ and $\mathrm{G}=0$ operates at $\mathrm{f}=0.5 \mathrm{GHz}$. Find the attenuation constant of the line.
b. Define the term characteristic impedance and derive the expression for it.

5M
6. a. A transmission line in which no distortion is present has the following parameters: $\mathrm{Z}_{0}=50 \Omega, \alpha=0.02 \mathrm{~m}^{-1}, \mathrm{v}=0.6 \mathrm{v}$. Determine $\mathrm{R}, \mathrm{L}, \mathrm{G}, \mathrm{C}$ and wavelength at 0.1 GHz .
b. List out types of transmission lines and draw their schematic diagrams

5M
7. a. Define phase \& group velocities in transmission line and derive the relation between them. $\mathbf{5 M}$
b. A lossless transmission line used in a TV receiver has a capacitance of $50 \mathrm{pF} / \mathrm{m}$ and an inductance of 200 nH / m. Find the characteristic impedance for section of a line 10 m long. $\mathbf{5 M}$

UNIT - VI: Transmission Line - II

1. a. Write short notes on stub matching technique.

5M
b. For a uniform transmission line, the open and short circuit impedances are given by $\mathrm{Z}_{\mathrm{oc}}=(50+\mathrm{j} 25) \Omega$ and $Z_{\mathrm{sc}}=(60-\mathrm{j} 20) \Omega$. Find Z_{0} of the line.
2. a. Define the reflection coefficient and derive the expression for the input impedance in terms of reflection coefficient. $\quad \mathbf{5 M}$
b. Explain with sketches how the input impedance varies with the frequency.

5M
3. a. List out types of transmission lines and draw their schematic diagrams $\quad \mathbf{5 M}$
b. A low transmission line of 100Ω characteristic impedance is connected to a load of 400Ω. Calculate the
b. What are the advantages and disadvantages of stub matching?
5. a. A transmission line in which no distortion is present has the following Parameters $Z_{0}=600 \mathrm{hms}, \alpha=$ $20 \mathrm{~m} \mathrm{~Np} / \mathrm{m}, \mathrm{v}=0.7 \mathrm{v}_{0}$. Determine R, L,G, C and wavelength at 0.1 GHz . 5M
b. Discuss the applications of smith chart. 5M
6. a. Write short notes on reflection coefficient and VSWR? Derive the relation between them. $\mathbf{5 M}$
b. Write short notes on different lengths of transmission lines with open end load.

5M

