

Academic Year	:2018-2019
Department	:EEE
Year/Semester	:IV YEAR- II SEMESTER
Subject	: DIGITAL CONTROL SYSTEMS

UNIT-1

1. A) What are the advantages of sampling process in control systems [4M] **B**) Give any one typical example of digital control system and explain its operation [6M]

2. A) What are the advantages and disadvantages of digital control systemB) Explain about frequency domain characteristics of zero order hold	
3. A) Write suitable block diagram and explain sample and hold circuitB) What are the different types of sampling operations	

- 4. A) State and explain the sampling theorem for data reconstruction [4M] **B**) Explain the principle of operation of Zero order hold [6M]
- 5. A) Define the following fundamentals parameters of sample and hold circuit a) Acquisition time b) Aperture time c) Droop rate [4M] B) What are the advantages of sampling process in control system. Give the mathematical description ter.com

of ideal sampling process

[6M]

UNIT-2

- 1. A) What is the property of linearity of Z-transform [4M] **B)** Define Z transform. Calculate Z transform of the system having transfer function F(s) subject to step input sampled at 3Hz. $F(s) = \frac{1}{(1+2s)} [6M]$
- 2. A) What are the limitations of Z transform [4M] x k + 2 + 5x k + 1 + 6x**B)** Solve the differential equation using Z transform method k = 0 where x = 0 and x = 1[6M]
- 3. A) State and explain shifting theorem of Z transform [4M] B) Obtain Z transform of $F(s) = \frac{s+1}{s^2(s^2+2s+3)}$ [6M]
- **4.** A) Obtain inverse Z transform of $F(Z) = \frac{Z}{(Z \pm 0.3Z \pm 0.02)}$ [4M]

www.FirstRanker.com

B) Solve for y(k) the equation is given by y k = r k - r k - 1 - y k - 1, k ≥ 0 and r k = 1; when k is even and r k = 0; when k is odd y -1 = r - 1 = 0[6M]

5. A) State initial and final value theorems of Z transform A) State initial and final value theorems of Z transform B) Obtain inverse Z transform of the following in closed form F Z = $\binom{37}{(7-2)} + 2Z+1$ [6M]

UNIT-3

1. A) What are the different ways of state space representation [4M] B) For a homogenous system given by $x + 1 = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(k)$ obtain the state transition matrix

(k)[6M]

2. A) Write the discrete time state equation of a pulse transfer function [4M] B) Find the state model for following difference equation and also find its state transition matrix y k + 2 + 3y k + 1 + 2y k = 2u k + 1 + u(k) assume initial conditions are zero [6M]

3. A) Explain the concepts of controllability and Observability	[4M]
B) Explain the computation of state transition matrix	[6M]

4. A) Write about Jordan canonical form [4M] **B)** A discrete time system is described by differential equation as y + 2 + 3y + 1 + 4yu k where y 0 = 1 and y 1 = 1 T = 0.8sec describe the state model in canonical k = er.co form

[6M]

FirstRanker.com

A) Write about observable canonical form [4M] B) Consider discrete control system represented by transfer function $G(Z) = \frac{Z_{-1}(1+Z_{-1})}{1+0.5Z^{-1}(1-0.5Z^{-1})}$ 5. A) Write about observable canonical form W.Firs [6M]

UNIT-4

- 1. A) Write about mapping of left half s plane into Z plane [4M] B) Explain about the relation between location of closed loop poles in the z-plane and system stability? [6M]
- 2. A) Determine the stability of the characteristic equations by using Jury's stability tests $5Z^2 2Z + 2 = 0$. [4M]

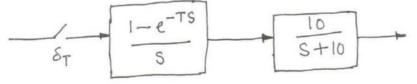
B) Construct jury stability test for the following characteristic equation $P Z = a_0 Z^4 + a_1 Z^3 + a_2 Z^2$ $+ a_3 Z + a_4$ where $a_0 > 0$ write the stability conditions [6**M**]

- 3. A) Using jury stability test determine the stability of following discrete time systems $Z^3 + 3.3Z^2 + 3.3Z^2$ 4Z + 0.8 = 0[4M] B) How do you map constant damping loci from s plane to Z plane [6M]
- **4.** A) Using jury stability test determine the stability of following discrete time systems $Z^3 1.1Z^2$ 0.1Z + 0.2 = 0[4M] **B)** Discuss the stability analysis of discrete control system using modified Routh stability [6M]
- 5. A) What are the conclusion from the general mapping between s and Z plane by Z transform

www.FirstRanker.com

[4M]

B) Determine F(Z) where $Z = e^{St}$ in terms of F(s) using this result explain the relationship between s plane and z plane


UNIT-5

1. A) What are the steady state specifications explain in brief [4M] find steady (Z+0.5) **B)** The closed loop transfer function for digital control system is given by c(Z) = C(Z)

[6M]

state errors and error constants due to step input [6M]

2. A) Write the design procedure of lead compensator in w plane [4M] **B)** Consider transfer function shown below the sampling period T is assumed to be 0.1 sec obtain G(w)

[6M]

 $3(Z^2 - Z + 0.5)$

R(Z)

- 3. A) Write the design procedure of lag compensator in w plane [4M] B) State the rules for the construction of root loci of a sampled data control system. [6M]
- 4. A) Write brief note on design procedure in w- plane [4M] B) The open loop transfer function of a unity feedback digital control system is given as $\frac{\kappa^{2+0.5}}{2}$ (Z+0.2) Sketch the root loci of the system for $0 < K < \infty$. [6M]
 - 5. A) What do you understand by primary and complementary strips [4M] B) Explain bounded - input, bounded - output stability of a system [6M]

UNIT-6

- JANN File 1. A) Explain the design steps for pole placement [4M] **B**) Discuss the necessary condition for design of state feedback controller through pole placement [6M]
- 2. A) Write sufficient condition for arbitrary pole placement **|4M|** 0 0 0 **B)** Consider the system defined by x = Ax + Bu where A =1 0 0 B = 0by using -1 - 5 - 61

state feedback control u=-Kx it is desired to have closed loop poles at $s=-2\pm i4$ and s=-10 determine the state feedback gain matrix K [6M]

3. A) What do you mean by state feedback controller [4M]

 $-1 \times k + 7u(k)$ design a state feedback control algorithm with u(k) = Kx(k) which places the closed loop characteristic root at $\pm j0.5$ www.FirstRanker.com

FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

- 4. A) State the necessary condition for the design of state feedback controller through pole placement $\begin{bmatrix} 4M \end{bmatrix}$
 - B) Consider a system defined by x = Ax + Bu and y=Cx where $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$

is desired to have eigen values at -3.0 and -5.0 by using a state feedback control at u=-Kx determine necessary feedback gain matrix K and Control signal U. **[6M]**

www.FirstRanker.com

www.FirstRanker.com

5. A) What is ackermann's formula [4M]B) Prove ackermann's formula for determination of state feedback gain [6M]

www.firstRanker.com

www.FirstRanker.com