
www.F
irs

tR
an

ke
r.c

om

III/I (R16)

DATABASE MANAGEMENT SYSTEMS

UNIT -1

SYLLABUS

UNIT-I: An Overview of Database Management,

 Introduction

 What is Database System

 What is Database

 Why Database

 Data Independence

 Relation Systems and Others Summary

Database system architecture, Introduction

 The Three Levels of Architecture

 The External Level

 The Conceptual Level

 The Internal Level

 Mapping

 The Database Administrator

 The Database Management Systems

 Client/Server Architecture.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

INTRODUCTION:-

Evolution of databases

Databases have evolved since their inception in the 1960s, beginning with

hierarchical and network databases, through the 1980s with object-oriented

databases, and today with SQL and NoSQL databases and cloud databases.

In one view, databases can be classified according to content type: bibliographic,

full text, numeric and images. In computing, databases are sometimes classified

according to their organizational approach. There are many different kinds of

databases, ranging from the most prevalent approach, the relational database, to

a distributed database, cloud database or NoSQL database

A database is a collection of information that is organized so that it can be easily

accessed, managed and updated.

Data is organized into rows, columns and tables, and it is indexed to make it

easier to find relevant information. Data gets updated, expanded and deleted as

new information is added. Databases process workloads to create and update

themselves, querying the data they contain and running applications against it.

What is Database System?

Database System in short refers to the technology of storing and retrieving

users’ data with utmost efficiency along with appropriate security measures. l

What is Data?

In simple words data can be facts related to any object in consideration.
For example your name, age, height, weight, etc are some data related to you.

A picture , image , file , pdf etc can also be considered data.

What is a Database?

Database is a systematic collection of data. Databases support storage and

 manipulation of data. Databases make data management easy. Let's discuss

few examples.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

An online telephone directory would definitely use database to store data

pertaining to people, phone numbers, other contact details, etc.

Your electricity service provider is obviously using a database to manage billing ,

client related issues, to handle fault data, etc.

Let's also consider the facebook. It needs to store, manipulate and present data

related to members, their friends, member activities, messages, advertisements

and lot more.

Why Database?

A database is an organized collection of various forms of data. It is also known as a

structured set of data that is accessible in many ways through your computer.

The various reasons for which we require databases are:

 To manage large chunks of data: Yes, you can store data into a spreadsheet,

but if you add large chunks of data into the sheet, it will simply not work. For

instance: if your size of data increases into thousands of records, it will simply

create a problem of speed.

 Accuracy: When doing data entry files in a spreadsheet, it becomes difficult

to manage the accuracy as there are no validations present in it.

 Ease of updating data: With the database, you can flexibly update the data

according to your convenience. Moreover, multiple people can also edit data at

same time.

 Security of data: There is no denying the fact that your data is less secure in

spreadsheets. Anyone can easily get access to file and can make changes to it.

With databases you have security groups and privileges you set to restrict

access.

 Data integrity: Data integrity also becomes a question when storing data in

spreadsheets. In databases, you can be assured of accuracy and consistency of

data due to the built in integrity checks and access controls.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Data Independence
A database system normally contains a lot of data in addition to users’ data.

For example, it stores data about data, known as metadata, to locate and

retrieve data easily. It is rather difficult to modify or update a set of

metadata once it is stored in the database. But as a DBMS expands, it

needs to change over time to satisfy the requirements of the users. If the

entire data is dependent, it would become a tedious and highly complex

job.

Metadata itself follows a layered architecture, so that when we change data

at one layer, it does not affect the data at another level. This data is

independent but mapped to each other.

Logical Data Independence

Logical data is data about database, that is, it stores information about how

data is managed inside. For example, a table (relation) stored in the

database and all its constraints, applied on that relation.

Logical data independence is a kind of mechanism, which liberalizes itself

from actual data stored on the disk. If we do some changes on table

format, it should not change the data residing on the disk.

Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on

the disk. Physical data independence is the power to change the physical

data without impacting the schema or logical data.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

For example, in case we want to change or upgrade the storage system

itself − suppose we want to replace hard-disks with SSD − it should not

have any impact on the logical data or schemas.

REALTIONAL SYSTEMS AND OTHERS:

Relational data model is the primary data model in the Relational Systems,

which is used widely around the world for data storage and processing. This

model is simple and it has all the properties and capabilities required to process

data with storage efficiency.

Concepts
Tables − In relational data model, relations are saved in the format of

Tables. This format stores the relation among entities. A table has rows and

columns, where rows represents records and columns represent the

attributes.

Tuple − A single row of a table, which contains a single record for that

relation is called a tuple.

Relation instance − A finite set of tuples in the relational database system

represents relation instance. Relation instances do not have duplicate

tuples.

Relation schema − A relation schema describes the relation name (table

name), attributes, and their names.

Relation key − Each row has one or more attributes, known as relation

key, which can identify the row in the relation (table) uniquely.

Attribute domain − Every attribute has some pre-defined value scope,

known as attribute domain.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

DATABASE SYSTEM ARCHITECTURE:-

The design of a DBMS depends on its architecture. It can be centralized or

decentralized or hierarchical. The architecture of a DBMS can be seen as

either single tier or multi-tier. An n-tier architecture divides the whole

system into related but independent n modules, which can be

independently modified, altered, changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly

sits on the DBMS and uses it. Any changes done here will directly be done

on the DBMS itself. It does not provide handy tools for end-users. Database

designers and programmers normally prefer to use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application

through which the DBMS can be accessed. Programmers use 2-tier

architecture where they access the DBMS by means of an application. Here

the application tier is entirely independent of the database in terms of

operation, design, and programming.

3-tier Architecture

3-tier architecture separates its tiers from each other based on the

complexity of the users and how they use the data present in the database.

It is the most widely used architecture to design a DBMS.

 Database (Data) Tier − At this tier, the database resides along with its query

processing languages. We also have the relations that define the data and their

constraints at this level.

 Application (Middle) Tier − At this tier reside the application server and the

programs that access the database. For a user, this application tier presents an

abstracted view of the database. End-users are unaware of any existence of the

database beyond the application. At the other end, the database tier is not

aware of any other user beyond the application tier. Hence, the application layer

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

sits in the middle and acts as a mediator between the end-user and the

database.

 User (Presentation) Tier − End-users operate on this tier and they know

nothing about any existence of the database beyond this layer. At this layer,

multiple views of the database can be provided by the application. All views are

generated by applications that reside in the application tier.

The Three Levels of Architecture:-

Following are the three levels of database architecture,

1. Physical Level

2. Conceptual Level

3. External Level

In the above diagram,

It shows the architecture of DBMS.

Mapping is the process of transforming request response between various

database levels of architecture.

Mapping is not good for small database, because it takes more time.

In External / Conceptual mapping, DBMS transforms a request on an external

schema against the conceptual schema.

In Conceptual / Internal mapping, it is necessary to transform the request from

the conceptual to internal levels.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1. Physical Level

Physical level describes the physical storage structure of data in database.

It is also known as Internal Level.

This level is very close to physical storage of data.

At lowest level, it is stored in the form of bits with the physical addresses on

the secondary storage device.

At highest level, it can be viewed in the form of files.

The internal schema defines the various stored data types. It uses a physical

data model.

2. Conceptual Level

Conceptual level describes the structure of the whole database for a group of

users.

It is also called as the data model.

Conceptual schema is a representation of the entire content of the database.

These schema contains all the information to build relevant external records.

It hides the internal details of physical storage.

3. External Level

External level is related to the data which is viewed by individual end users.

This level includes a no. of user views or external schemas.

This level is closest to the user.

External view describes the segment of the database that is required for a

particular user group and hides the rest of the database from that user group.

DATABASE ADMINISTRATOR:-

A database administrator (DBA) directs or performs all activities related to
maintaining a successful databaseenvironment. Responsibilities include
designing, implementing, and maintaining the database system; establishing
policies and procedures pertaining to the management, security, maintenance,
and use of thedatabase management system; and training employees in
database management and use.
ROLE OF DBA:-

 Actively participates in planning the installation of new organization-wide systems and

applications. He also assists during the installation as per specific functions.

 Implements the work plan for the Department. He meets the staff to identify any

problems, take measures, and resolves it.

 Monitors the efficiency and effectiveness of all database resources and thus, keep the

flow of work uninterrupted owing to technology.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Ensures maximum service through identification of opportunities for improvement and

make new recommendations.

 Continuous review and evaluation of the software, hardware, service delivery, and

updates as and when required.

 Troubleshoot the problems [if any]. It includes a quick understanding of the problem and

its resolution, restoration of the data, rectify the issue and minimize the damage.

The Database Management Systems:-

A database management system stores data in such a way that it

becomes easier to retrieve, manipulate, and produce information.

Characteristics:-

Traditionally, data was organized in file formats. DBMS was a new concept

then, and all the research was done to make it overcome the deficiencies in

traditional style of data management. A modern DBMS has the following

characteristics −

 Real-world entity − A modern DBMS is more realistic and uses real-world

entities to design its architecture. It uses the behavior and attributes too. For

example, a school database may use students as an entity and their age as an

attribute.

 Relation-based tables − DBMS allows entities and relations among them to

form tables. A user can understand the architecture of a database just by

looking at the table names.

 Isolation of data and application − A database system is entirely different

than its data. A database is an active entity, whereas data is said to be passive,

on which the database works and organizes. DBMS also stores metadata, which

is data about data, to ease its own process.

 Less redundancy − DBMS follows the rules of normalization, which splits a

relation when any of its attributes is having redundancy in values. Normalization

is a mathematically rich and scientific process that reduces data redundancy.

 Consistency − Consistency is a state where every relation in a database

remains consistent. There exist methods and techniques, which can detect

attempt of leaving database in inconsistent state. A DBMS can provide greater

consistency as compared to earlier forms of data storing applications like file-

processing systems.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Query Language − DBMS is equipped with query language, which makes it

more efficient to retrieve and manipulate data. A user can apply as many and as

different filtering options as required to retrieve a set of data. Traditionally it

was not possible where file-processing system was used.

 ACID Properties − DBMS follows the concepts of

Atomicity, Consistency, Isolation, and Durability (normally shortened as ACID).

These concepts are applied on transactions, which manipulate data in a

database. ACID properties help the database stay healthy in multi-transactional

environments and in case of failure.

 Multiuser and Concurrent Access − DBMS supports multi-user environment

and allows them to access and manipulate data in parallel. Though there are

restrictions on transactions when users attempt to handle the same data item,

but users are always unaware of them.

 Multiple views − DBMS offers multiple views for different users. A user who is

in the Sales department will have a different view of database than a person

working in the Production department. This feature enables the users to have a

concentrate view of the database according to their requirements.

 Security − Features like multiple views offer security to some extent where

users are unable to access data of other users and departments. DBMS offers

methods to impose constraints while entering data into the database and

retrieving the same at a later stage. DBMS offers many different levels of

security features, which enables multiple users to have different views with

different features. For example, a user in the Sales department cannot see the

data that belongs to the Purchase department. Additionally, it can also be

managed how much data of the Sales department should be displayed to the

user. Since a DBMS is not saved on the disk as traditional file systems, it is very

hard for miscreants to break the code.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Client/Server Architecture:-

Client-server architecture (client/server) is a network architecture in which each computer or

process on the network is either a client or a server. Servers are powerful computers or

processes dedicated to managing disk drives (file servers), printers (print servers), or network

traffic (network servers).

In client/server architecture, the database application and the database are separated into two

parts: a front-end or client portion, and a back-end or server portion. The client executes the

database application that accesses database information and interacts with a user through the

keyboard, screen, and pointing device such as a mouse. The server executes the Oracle software

and handles the functions required for concurrent, shared data access to an Oracle database.

Although the client application and Oracle can be executed on the same computer, it may be

more efficient and effective when the client portion(s) and server portion are executed by

different computers connected via a network.

The below figure shows the interaction between Client and |Server:-

 Figure:- The Client/Server Architecture and Distributed Processing

Benefits of the Oracle client/server architecture in a distributed processing environment

include the following:

 Client applications are not responsible for performing any data processing.

Client applications can concentrate on requesting input from users, requesting

desired data from the server, and then analyzing and presenting this data using

the display capabilities of the client workstation or the terminal (for example,

using graphics or spreadsheets).

 Client applications can be designed with no dependence on the physical

location of the data. If the data is moved or distributed to other database

servers, the application continues to function with little or no modification.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Oracle exploits the multitasking and shared-memory facilities of its underlying

operating system. As a result, it delivers the highest possible degree of

concurrency, data integrity, and performance to its client applications.

 Client workstations or terminals can be optimized for the presentation of data

(for example, by providing graphics and mouse support) and the server can be

optimized for the processing and storage of data (for example, by having large

amounts of memory and disk space).

 If necessary, Oracle can be scaled. As your system grows, you can add multiple

servers to distribute the database processing load throughout the network

(horizontally scaled). Alternatively, you can replace Oracle on a less powerful

computer, such as a microcomputer, with Oracle running on a minicomputer or

mainframe, to take advantage of a larger system's performance (vertically

scaled). In either case, all data and applications are maintained with little or no

modification, since Oracle is portable between systems.

 In networked environments, shared data is stored on the servers, rather than on

all computers in the system. This makes it easier and more efficient to manage

concurrent access.

 In networked environments, inexpensive, low-end client workstations can be

used to access the remote data of the server effectively.

 In networked environments, client applications submit database requests to the

server using SQL statements. Once received, the SQL statement is processed

by the server, and the results are returned to the client application. Network

traffic is kept to a minimum because only the requests and the results are

shipped over the network.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT -2

SYLLABUS

UNIT-II:
 The E/R Models

 The Relational Model

 Relational Calculus

 Introduction to Database Design

 Database Design and E/R Diagrams

 Entities Attributes and Entity Sets-Relationship and Relationship Sets

 Conceptual Design with the E/R Models

 The Relational Model Integrity

 Constraints over Relations

 Key Constraints

 Foreign Key Constraints

 General Constraints

 Relational Algebra and Calculus

 Relational Algebra

 Selection and Projection

 Set Operation

 Renaming

 Joins

 Division

 More Examples of Queries

 Relational Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ER Model - Basic Concepts:-

The ER model defines the conceptual view of a database. It works around

real-world entities and the associations among them. At view level, the ER

model is considered a good option for designing databases.

Entity

An entity can be a real-world object, either animate or inanimate, that can

be easily identifiable. For example, in a school database, students,

teachers, classes, and courses offered can be considered as entities. All

these entities have some attributes or properties that give them their

identity.

An entity set is a collection of similar types of entities. An entity set may

contain entities with attribute sharing similar values. For example, a

Students set may contain all the students of a school; likewise a Teachers

set may contain all the teachers of a school from all faculties. Entity sets

need not be disjoint.

Attributes
Entities are represented by means of their properties, called attributes. All

attributes have values. For example, a student entity may have name,

class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes.

For example, a student's name cannot be a numeric value. It has to be

alphabetic. A student's age cannot be negative, etc.

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be

divided further. For example, a student's phone number is an atomic value of

10 digits.

 Composite attribute − Composite attributes are made of more than one

simple attribute. For example, a student's complete name may have first_name

and last_name.

 Derived attribute − Derived attributes are the attributes that do not exist in

the physical database, but their values are derived from other attributes present

in the database. For example, average_salary in a department should not be

saved directly in the database, instead it can be derived. For another example,

age can be derived from data_of_birth.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Single-value attribute − Single-value attributes contain single value. For

example − Social_Security_Number.

 Multi-value attribute − Multi-value attributes may contain more than one

values. For example, a person can have more than one phone number,

email_address, etc.

These attribute types can come together in a way like −

 simple single-valued attributes

 simple multi-valued attributes

 composite single-valued attributes

 composite multi-valued attributes

Entity-Set and Keys

Key is an attribute or collection of attributes that uniquely identifies an

entity among entity set.

For example, the roll_number of a student makes him/her identifiable

among students.

 Super Key − A set of attributes (one or more) that collectively identifies an

entity in an entity set.

 Candidate Key − A minimal super key is called a candidate key. An entity set

may have more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the

database designer to uniquely identify the entity set.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Relationship

The association among entities is called a relationship. For example, an

employee works_at a department, a studentenrolls in a course. Here,

Works_at and Enrolls are called relationships.

Relationship Set

A set of relationships of similar type is called a relationship set. Like

entities, a relationship too can have attributes. These attributes are

called descriptive attributes.

Degree of Relationship

The number of participating entities in a relationship defines the degree of

the relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be

associated with the number of entities of other set via relationship set.

 One-to-one − One entity from entity set A can be associated with at most one

entity of entity set B and vice versa.

 One-to-many − One entity from entity set A can be associated with more than

one entities of entity set B however an entity from entity set B, can be

associated with at most one entity.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Many-to-one − More than one entities from entity set A can be associated with

at most one entity of entity set B, however an entity from entity set B can be

associated with more than one entity from entity set A.

 Many-to-many − One entity from A can be associated with more than one

entity from B and vice versa.

Relational Model:-
The most popular data model in DBMS is the Relational Model. It is more

scientific a model than others. This model is based on first-order predicate logic

and defines a table as an n-ary relation.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The main highlights of this model are −

 Data is stored in tables called relations.

 Relations can be normalized.

 In normalized relations, values saved are atomic values.

 Each row in a relation contains a unique value.

 Each column in a relation contains values from a same domain.

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural

query language, that is, it tells what to do but never explains how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.

For example −

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written article

on 'database'.

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers

(∀).

For example −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The above query will yield the same result as the previous one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire

tuple values (as done in TRC, mentioned above).

Notation −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Where a1, a2 are attributes and P stands for formulae built by inner

attributes.

For example −

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TutorialsPoint,

where subject is database.

Just like TRC, DRC can also be written using existential and universal

quantifiers. DRC also involves relational operators.

The expression power of Tuple Relation Calculus and Domain Relation

Calculus is equivalent to Relational Algebra.

Database Design:

Introduction to Database Design:-

Database design is the design of the database structure that will be used to store and

manage data rather than the design of the DBMS software. Once the database design is

completed, the DBMS handles all the complicated activities required to translate the

designer's view of the structures into structures that are usable to the computer.

A poorly designed database tends to generate errors that are likely to lead to bad

decisions. A bad database design eventually can be self correcting: organizations using

poorly designed databases often fail because their managers do not have access to timely

(or even correct) information, thereby dominating the bad database design.

The availability of a DBMS makes it possible to tackle far more sophisticated uses of the

data resources, if the database is designed to make use of that available power. The kinds

of data structures created within the database and the extent of the relationships among

them play a powerful role in determining how effective the DBMS is. Therefore,

database design become a crucial activity in the database environment.

Database design is made much simpler when we use models. A Database model is a

collection of a logical constructs used to represent the data structure and the data

relationships found within the database i.e. simplified abstractions of real-world events or

conditions. If the models are not logically sound, the database designs derived from them

will not deliver the database system's promise to effective information drawn from an

efficient database. "Good models yield good database design that are the basis for good

applications".

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Goals of Database Design :

Database Design normally involves defining the logical attributes of the database

designing the layout of the database file structure.

The main objectives of database design is

1. To satisfy the information content requirement of the specified user and application.

2. To provide a natural and easy way to understand structuring of the information.

3. To support processing requirements and any performance objectives such as

i. Response time

ii. Processing time

iii. Storage space

The main objective of the database design is to ensure that the database meets the

reporting and information requirements of the users efficiently. The database should be

designed in such a way that :

i. It eliminates or minimizes data redundancy.

ii. Maintains the integrity and independence of the data.

Phases in Database Design :

First phase: The overall purpose of the database initial study is to

a. analyze the organization/system situation

b. define problem and constraints

c. define objectives

d. define scope and boundaries.

Second phase : The second phase focuses on the design of the database model that will support

organization operations and objectives.

In this phase, we can identify six main phases of the database design :

I. Requirements collection and analysis

II. Conceptual database design

III. Choice of DBMS

IV. Data model mapping

V. Physical database design

VI. Database system implement

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

E-R Diagrams:-

ER Diagram Representation

Let us now learn how the ER Model is represented by means of an ER

diagram. Any object, for example, entities, attributes of an entity,

relationship sets, and attributes of relationship sets, can be represented

with the help of an ER diagram.

Entity

Entities are represented by means of rectangles. Rectangles are named with

the entity set they represent.

Attributes
Attributes are the properties of entities. Attributes are represented by

means of ellipses. Every ellipse represents one attribute and is directly

connected to its entity (rectangle).

If the attributes are composite, they are further divided in a tree like structure.

Every node is then connected to its attribute. That is, composite attributes are

represented by ellipses that are connected with an ellipse.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Multivalued attributes are depicted by double ellipse.

Derived attributes are depicted by dashed ellipse.

Relationship
Relationships are represented by diamond-shaped box. Name of the

relationship is written inside the diamond-box. All the entities (rectangles)

participating in a relationship, are connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called abinary

relationship. Cardinality is the number of instance of an entity from a

relation that can be associated with the relation.

 One-to-one − When only one instance of an entity is associated with the

relationship, it is marked as '1:1'. The following image reflects that only one

instance of each entity should be associated with the relationship. It depicts

one-to-one relationship.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 One-to-many − When more than one instance of an entity is associated with a

relationship, it is marked as '1:N'. The following image reflects that only one

instance of entity on the left and more than one instance of an entity on the

right can be associated with the relationship. It depicts one-to-many

relationship.

 Many-to-one − When more than one instance of entity is associated with the

relationship, it is marked as 'N:1'. The following image reflects that more than

one instance of an entity on the left and only one instance of an entity on the

right can be associated with the relationship. It depicts many-to-one

relationship.

 Many-to-many − The following image reflects that more than one instance of

an entity on the left and more than one instance of an entity on the right can be

associated with the relationship. It depicts many-to-many relationship.

Participation Constraints

 Total Participation − Each entity is involved in the relationship. Total

participation is represented by double lines.

 Partial participation − Not all entities are involved in the relationship. Partial

participation is represented by single lines.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The ER Model has the power of expressing database entities in a conceptual

hierarchical manner. As the hierarchy goes up, it generalizes the view of

entities, and as we go deep in the hierarchy, it gives us the detail of every

entity included.

Going up in this structure is called generalization, where entities are

clubbed together to represent a more generalized view. For example, a

particular student named Mira can be generalized along with all the

students. The entity shall be a student, and further, the student is a person.

The reverse is called specialization where a person is a student, and that

student is Mira.

Generalization
As mentioned above, the process of generalizing entities, where the

generalized entities contain the properties of all the generalized entities, is

called generalization. In generalization, a number of entities are brought

together into one generalized entity based on their similar characteristics.

For example, pigeon, house sparrow, crow and dove can all be generalized

as Birds.

Specialization
Specialization is the opposite of generalization. In specialization, a group of

entities is divided into sub-groups based on their characteristics. Take a

group ‘Person’ for example. A person has name, date of birth, gender, etc.

These properties are common in all persons, human beings. But in a

company, persons can be identified as employee, employer, customer, or

vendor, based on what role they play in the company.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Similarly, in a school database, persons can be specialized as teacher, student,

or a staff, based on what role they play in school as entities.

Conceptual Design with E-R Model:-

v Requirement analysis

– Data to be stored

– Applications to be built

– Operations (most frequent) subject to performance requirement

v Conceptual db design

– Description of the data (including constraints)

– By high level model such as ER

v Logical db design

– Choose DBMS to implement

– Convert conceptual db design into database schema

Issues to consider: (ER Model is used at this stage.)

– What are the entities and relationships in the enterprise?

– What information about these entities and relationships should we store in the

database (i.e., attributes)?

– What are the integrity constraints or business rules that hold?

Solution:

– A database `schema’ in the ER Model can be represented pictorially (ER

diagrams).

– Can map an ER diagram into a relational schema.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The Relational Model Integrity: Constraints Over Relations

Constraints:-
Every relation has some conditions that must hold for it to be a valid

relation. These conditions are called Relational Integrity Constraints.

There are three main integrity constraints −

 Key constraints

 Domain constraints

 Referential integrity constraints

Key Constraints:-

There must be at least one minimal subset of attributes in the relation,

which can identify a tuple uniquely. This minimal subset of attributes is

called key for that relation. If there are more than one such minimal

subsets, these are called candidate keys.

Key constraints force that −

 in a relation with a key attribute, no two tuples can have identical values for key

attributes.

 a key attribute can not have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints:-

Attributes have specific values in real-world scenario. For example, age can

only be a positive integer. The same constraints have been tried to employ

on the attributes of a relation. Every attribute is bound to have a specific

range of values. For example, age cannot be less than zero and telephone

numbers cannot contain a digit outside 0-9.

Referential integrity Constraints:-

Referential integrity constraints work on the concept of Foreign Keys. A

foreign key is a key attribute of a relation that can be referred in other

relation.

Referential integrity constraint states that if a relation refers to a key

attribute of a different or same relation, then that key element must exist.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

FOREIGN KEY Constraint:-

A FOREIGN KEY is a key used to link two tables together.

A FOREIGN KEY is a field (or collection of fields) in one table that refers to the

PRIMARY KEY in another table.

The table containing the foreign key is called the child table, and the table

containing the candidate key is called the referenced or parent table.

Look at the following two tables:

Look at the following two tables:

"Persons" table:

PersonID LastName FirstName Age

1 Hansen Ola 30

2 Svendson Tove 23

3 Pettersen Kari 20

"Orders" table:

OrderID OrderNumber PersonID

1 77895 3

2 44678 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3 22456 2

4 24562 1

Notice that the "PersonID" column in the "Orders" table points to the "PersonID"

column in the "Persons" table.

The "PersonID" column in the "Persons" table is the PRIMARY KEY in the

"Persons" table.

The "PersonID" column in the "Orders" table is a FOREIGN KEY in the "Orders"

table.

The FOREIGN KEY constraint is used to prevent actions that would destroy links

between tables.

The FOREIGN KEY constraint also prevents invalid data from being inserted into

the foreign key column, because it has to be one of the values contained in the

table it points to.

FOREIGN KEY on CREATE TABLE:-

The following SQL creates a FOREIGN KEY on the "PersonID" column when the

"Orders" table is created:

MySQL:

CREATE TABLE Orders (

 OrderID int NOT NULL,

 OrderNumber int NOT NULL,

 PersonID int,

 PRIMARY KEY (OrderID),

 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Relational Algebra and Calculus:-

Introduction:-

Relational database systems are expected to be equipped with a query language
that can assist its users to query the database instances. There are two kinds of
query languages − relational algebra and relational calculus.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of

relations as input and yields instances of relations as output. It uses

operators to perform queries. An operator can be either unary or binary.

They accept relations as their input and yield relations as their output.

Relational algebra is performed recursively on a relation and intermediate

results are also considered relations.

The fundamental operations of relational algebra are as follows −

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

We will discuss all these operations in the following sections.

Select Operation (σ)
It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. pis

prepositional logic formula which may use connectors like and, or, and not.

These terms may use relational operators like − =, ≠, ≥, < , >, ≤.

For example −

σsubject = "database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Output − Selects tuples from books where subject is 'database' and 'price'

is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price'

is 450 or those books published after 2010.

Project Operation (∏)
It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

For example −

∏subject, author (Books)

Selects and projects columns named as subject and author from the

relation Books.

Union Operation (∪)
It performs binary union between two given relations and is defined as −

r ∪ s = { t | t ∈ r or t ∈ s}

Notation − r U s

Where r and s are either database relations or relation result set

(temporary relation).

For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)

Output − Projects the names of the authors who have either written a book

or an article or both.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Set Difference (−)
The result of set difference operation is tuples, which are present in one

relation but are not in the second relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not

articles.

Cartesian Product (Χ)
Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

σauthor = 'tutorialspoint'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles written

by tutorialspoint.

Rename Operation (ρ)
The results of relational algebra are also relations but without any name.

The rename operation allows us to rename the output relation. 'rename'

operation is denoted with small Greek letter rhoρ.

Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

 Set intersection

 Assignment

 Natural join

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Joins:-

Join is a combination of a Cartesian product followed by a selection process. A

Join operation pairs two tuples from different relations, if and only if a given

join condition is satisfied.

Theta (θ) Join
Theta join combines tuples from different relations provided they satisfy the

theta condition. The join condition is denoted by the symbol θ.

Notation

R1 ⋈θ R2

R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,..

,Bn) such that the attributes don’t have anything in common, that is R1 ∩

R2 = Φ.

Theta join can use all kinds of comparison operators.

Student

SID Name Std

101 Alex 10

102 Maria 11

Subjects

Class Subject

10 Math

10 English

11 Music

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

11 Sports

Student_Detail −

STUDENT ⋈Student.Std = Subject.Class SUBJECT

Student_detail

SID Name Std Class Subject

101 Alex 10 10 Math

101 Alex 10 10 English

102 Maria 11 11 Music

102 Maria 11 11 Sports

Equijoin
When Theta join uses only equality comparison operator, it is said to be

equijoin. The above example corresponds to equijoin.

Natural Join (⋈)

Natural join does not use any comparison operator. It does not concatenate

the way a Cartesian product does. We can perform a Natural Join only if

there is at least one common attribute that exists between two relations. In

addition, the attributes must have the same name and domain.

Natural join acts on those matching attributes where the values of

attributes in both the relations are same.

Courses

CID Course Dept

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

CS01 Database CS

ME01 Mechanics ME

EE01 Electronics EE

HoD

Dept Head

CS Alex

ME Maya

EE Mira

Courses ⋈ HoD

Dept CID Course Head

CS CS01 Database Alex

ME ME01 Mechanics Maya

EE EE01 Electronics Mira

Outer Joins
Theta Join, Equijoin, and Natural Join are called inner joins. An inner join

includes only those tuples with matching attributes and the rest are

discarded in the resulting relation. Therefore, we need to use outer joins to

include all the tuples from the participating relations in the resulting

relation. There are three kinds of outer joins − left outer join, right outer

join, and full outer join.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Left Outer Join(R S)
All the tuples from the Left relation, R, are included in the resulting relation.

If there are tuples in R without any matching tuple in the Right relation S,

then the S-attributes of the resulting relation are made NULL.

Left

A B

100 Database

101 Mechanics

102 Electronics

Right

A B

100 Alex

102 Maya

104 Mira

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

102 Electronics 102 Maya

Right Outer Join: (R S)
All the tuples from the Right relation, S, are included in the resulting

relation. If there are tuples in S without any matching tuple in R, then the

R-attributes of resulting relation are made NULL.

Courses HoD

A B C D

100 Database 100 Alex

102 Electronics 102 Maya

--- --- 104 Mira

Full Outer Join: (R S)
All the tuples from both participating relations are included in the resulting

relation. If there are no matching tuples for both relations, their respective

unmatched attributes are made NULL.

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

--- --- 104 Mira

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

DIVISION:-

Division is typically required when you want to find out entities that are interacting with all

entities of a set of different type entities.

Some instances where division operator is used are:
 Which person has account in all the banks of a particular city?
 Which students have taken all the courses required to graduate?

In all these queries, the description after the keyword ‘all’ defines a set which contains
some elements and the final result contains those units who satisfy these requirements.

Important: Division is not supported by SQL implementations. However, it can be
represented using other operations.(like cross join, Except, In)SQL Implementation
of Division.

Given two relations(tables): R(x,y) , S(y).
R and S : tables
x and y : column of R
y : column of S

R(x,y) div S(y) means gives all distinct values of x from R that are associated with all

values of y in S.

Computation of Division: R(x,y) div S(y)
Steps:
 Find out all possible combinations of S(y) with R(x) by computing R(x) x(cross join) S(y), say r1
 Subtract actual R(x,y) from r1, say r2
 x in r2 are those that are not associated with every value in S(y); therefore R(x)-r2(x) gives us x

that are associated with all values in S

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural

query language, that is, it tells what to do but never explains how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.

For example −

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written article

on 'database'.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers

(∀).

For example −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The above query will yield the same result as the previous one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire

tuple values (as done in TRC, mentioned above).

Notation −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where a1, a2 are attributes and P stands for formulae built by inner

attributes.

For example −

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TutorialsPoint,

where subject is database.

Just like TRC, DRC can also be written using existential and universal

quantifiers. DRC also involves relational operators.

The expression power of Tuple Relation Calculus and Domain Relation Calculus is

equivalent to Relational Algebra.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT -3

Queries, Constraints, Triggers

SYLLABUS

UNIT-III

 The Form of Basic SQL Query

 Union

 Intersect and Except

 Nested Queries

 Aggregate Operators

 Null Values

 Complex Integrity Constraints in SQL

 Triggers and Active Database.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The Form of Basic SQL Query:-

Introduction to SQL:-

SQL is a database computer language designed for the retrieval and
management of data in a relational database. SQL stands for Structured Query
Language. This tutorial will give you a quick start to SQL. It covers most of the
topics required for a basic understanding of SQL and to get a feel of how it

works.

SQL is a language to operate databases; it includes database creation,

deletion, fetching rows, modifying rows, etc. SQL is anANSI (American

National Standards Institute) standard language, but there are many

different versions of the SQL language.

What is SQL?

SQL is Structured Query Language, which is a computer language for

storing, manipulating and retrieving data stored in a relational database.

SQL is the standard language for Relational Database System. All the

Relational Database Management Systems (RDMS) like MySQL, MS Access,

Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their

standard database language.

Also, they are using different dialects, such as −

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET SQL (native format) etc.

Why SQL?

SQL is widely popular because it offers the following advantages −

 Allows users to access data in the relational database management systems.

 Allows users to describe the data.

 Allows users to define the data in a database and manipulate that data.

 Allows to embed within other languages using SQL modules, libraries & pre-

compilers.

 Allows users to create and drop databases and tables.

 Allows users to create view, stored procedure, functions in a database.

 Allows users to set permissions on tables, procedures and views.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

A Brief History of SQL

 1970 − Dr. Edgar F. "Ted" Codd of IBM is known as the father of relational

databases. He described a relational model for databases.

 1974 − Structured Query Language appeared.

 1978 − IBM worked to develop Codd's ideas and released a product named

System/R.

 1986 − IBM developed the first prototype of relational database and

standardized by ANSI. The first relational database was released by Relational

Software which later came to be known as Oracle.

SQL Process
When you are executing an SQL command for any RDBMS, the system

determines the best way to carry out your request and SQL engine figures

out how to interpret the task.

There are various components included in this process.

These components are −

 Query Dispatcher

 Optimization Engines

 Classic Query Engine

 SQL Query Engine, etc.

A classic query engine handles all the non-SQL queries, but a SQL query

engine won't handle logical files.

Following is a simple diagram showing the SQL Architecture −

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

SQL Commands
The standard SQL commands to interact with relational databases are

CREATE, SELECT, INSERT, UPDATE, DELETE and DROP. These commands

can be classified into the following groups based on their nature −

DDL - Data Definition Language

Sr.No. Command & Description

1

CREATE

Creates a new table, a view of a table, or other object in the database.

2
ALTER

Modifies an existing database object, such as a table.

3
DROP

Deletes an entire table, a view of a table or other objects in the database.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

DML - Data Manipulation Language

Sr.No. Command & Description

1
SELECT

Retrieves certain records from one or more tables.

2
INSERT

Creates a record.

3
UPDATE

Modifies records.

4
DELETE

Deletes records.

DCL - Data Control Language

Sr.No. Command & Description

1
GRANT

Gives a privilege to user.

2
REVOKE

Takes back privileges granted from user.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The SQL UNION clause/operator is used to combine the results of two or

more SELECT statements without returning any duplicate rows.

To use this UNION clause, each SELECT statement must have

 The same number of columns selected

 The same number of column expressions

 The same data type and

 Have them in the same order

But they need not have to be in the same length.

Syntax
The basic syntax of a UNION clause is as follows −

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here, the given condition could be any given expression based on your

requirement.

Example
Consider the following two tables.

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS Table is as follows.

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as follows −

SQL> SELECT ID, NAME, AMOUNT, DATE

 FROM CUSTOMERS

 LEFT JOIN ORDERS

 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION

 SELECT ID, NAME, AMOUNT, DATE

 FROM CUSTOMERS

 RIGHT JOIN ORDERS

 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result −

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

+------+----------+--------+---------------------+

The UNION ALL Clause
The UNION ALL operator is used to combine the results of two SELECT

statements including duplicate rows.

The same rules that apply to the UNION clause will apply to the UNION ALL

operator.

Syntax

The basic syntax of the UNION ALL is as follows.

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION ALL

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here, the given condition could be any given expression based on your

requirement.

Example

Consider the following two tables,

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS table is as follows.

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as follows −

SQL> SELECT ID, NAME, AMOUNT, DATE

 FROM CUSTOMERS

 LEFT JOIN ORDERS

 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION ALL

 SELECT ID, NAME, AMOUNT, DATE

 FROM CUSTOMERS

 RIGHT JOIN ORDERS

 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result −

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+------+----------+--------+---------------------+

There are two other clauses (i.e., operators), which are like the UNION

clause.

 SQL INTERSECT Clause − This is used to combine two SELECT statements, but

returns rows only from the first SELECT statement that are identical to a row in

the second SELECT statement.

 SQL EXCEPT Clause − This combines two SELECT statements and returns rows

from the first SELECT statement that are not returned by the second SELECT

statement.

INTERSECT OPERATION:-

Description

The SQL INTERSECT operator is used to return the results of 2 or more SELECT

statements. However, it only returns the rows selected by all queries or data sets. If a

record exists in one query and not in the other, it will be omitted from the INTERSECT

results.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Explanation: The INTERSECT query will return the records in the blue shaded area.

These are the records that exist in both Dataset1 and Dataset2.

Each SQL statement within the SQL INTERSECT must have the same number of fields

in the result sets with similar data types.

Syntax

The syntax for the INTERSECT operator in SQL is:

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions]

INTERSECT

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions];

Parameters or Arguments

expression1, expression2, expression_n

The columns or calculations that you wish to retrieve.

tables

The tables that you wish to retrieve records from. There must be at least one table listed

in the FROM clause.

WHERE conditions

Optional. These are conditions that must be met for the records to be selected.

Note

 There must be same number of expressions in both SELECT statements.

 The corresponding expressions must have the same data type in the SELECT

statements. For example: expression1 must be the same data type in both the first and

second SELECT statement.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Except Operator:-

Description

The SQL Server (Transact-SQL) EXCEPT operator is used to return all rows in the first

SELECT statement that are not returned by the second SELECT statement. Each

SELECT statement will define a dataset. The EXCEPT operator will retrieve all records

from the first dataset and then remove from the results all records from the second

dataset.

Except Query:-

Explanation: The EXCEPT query will return the records in the blue shaded area. These

are the records that exist in Dataset1 and not in Dataset2.

Each SELECT statement within the EXCEPT query must have the same number of

fields in the result sets with similar data types.

Syntax

The syntax for the EXCEPT operator in SQL Server (Transact-SQL) is:

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions]

EXCEPT

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions];

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Parameters or Arguments

expressions

The columns or calculations that you wish to compare between the two SELECT

statements. They do not have to be the same fields in each of the SELECT statements,

but the corresponding columns must be similar data types.

tables

The tables that you wish to retrieve records from. There must be at least one table listed

in the FROM clause.

WHERE conditions

Optional. The conditions that must be met for the records to be selected.

Note

 There must be same number of expressions in both SELECT statements.

 The corresponding columns in each of the SELECT statements must have similar data

types.

 The EXCEPT operator returns all records from the first SELECT statement that are not

in the second SELECT statement.

 The EXCEPT operator in SQL Server is equivalent to the MINUS operator in Oracle.

Nested Queries:-

A Subquery or Inner query or a Nested query is a query within another SQL

query and embedded within the WHERE clause.

A subquery is used to return data that will be used in the main query as a

condition to further restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE

statements along with the operators like =, <, >, >=, <=, IN, BETWEEN,

etc.

There are a few rules that subqueries must follow −

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple

columns are in the main query for the subquery to compare its selected

columns.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 An ORDER BY command cannot be used in a subquery, although the main query

can use an ORDER BY. The GROUP BY command can be used to perform the

same function as the ORDER BY in a subquery.

 Subqueries that return more than one row can only be used with multiple value

operators such as the IN operator.

 The SELECT list cannot include any references to values that evaluate to a

BLOB, ARRAY, CLOB, or NCLOB.

 A subquery cannot be immediately enclosed in a set function.

 The BETWEEN operator cannot be used with a subquery. However, the

BETWEEN operator can be used within the subquery.

Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic

syntax is as follows −

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Now, let us check the following subquery with a SELECT statement.

SQL> SELECT *

 FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS

 WHERE SALARY > 4500) ;

This would produce the following result.

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

Subqueries with the INSERT Statement
Subqueries also can be used with INSERT statements. The INSERT

statement uses the data returned from the subquery to insert into another

table. The selected data in the subquery can be modified with any of the

character, date or number functions.

The basic syntax is as follows.

INSERT INTO table_name [(column1 [, column2])]

 SELECT [*|column1 [, column2]

 FROM table1 [, table2]

 [WHERE VALUE OPERATOR]

Example

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS

table. Now to copy the complete CUSTOMERS table into the

CUSTOMERS_BKP table, you can use the following syntax.

SQL> INSERT INTO CUSTOMERS_BKP

 SELECT * FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS) ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Subqueries with the UPDATE Statement:-

The subquery can be used in conjunction with the UPDATE statement.

Either single or multiple columns in a table can be updated when using a

subquery with the UPDATE statement.

The basic syntax is as follows.

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have CUSTOMERS_BKP table available which is backup of

CUSTOMERS table. The following example updates SALARY by 0.25 times in

the CUSTOMERS table for all the customers whose AGE is greater than or

equal to 27.

SQL> UPDATE CUSTOMERS

 SET SALARY = SALARY * 0.25

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have the

following records.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 125.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 2125.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Subqueries with the DELETE Statement:-

The subquery can be used in conjunction with the DELETE statement like

with any other statements mentioned above.

The basic syntax is as follows.

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have a CUSTOMERS_BKP table available which is a backup of

the CUSTOMERS table. The following example deletes the records from the

CUSTOMERS table for all the customers whose AGE is greater than or equal

to 27.

SQL> DELETE FROM CUSTOMERS

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

This would impact two rows and finally the CUSTOMERS table would have

the following records.

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Aggregate Operators:-

An aggregate function allows you to perform a calculation on a set of values to return a single scalar

value. We often use aggregate functions with theGROUP BY and HAVING clauses of

the SELECTstatement.

The following are the most commonly used SQL aggregate functions:

 AVG – calculates the average of a set of values.
 COUNT – counts rows in a specified table or view.
 MIN – gets the minimum value in a set of values.
 MAX – gets the maximum value in a set of values.

 SUM – calculates the sum of values.

Notice that all aggregate functions above ignore NULL values except for the COUNT function.

SQL aggregate functions syntax

To call an aggregate function, you use the following syntax:

1 aggregate_function (DISTINCT | ALL expression)

Let’s examine the syntax above in greater detail:

 First, specify an aggregate function that you want to use e.g., MIN, MAX, AVG, SUM orCOUNT.

 Second, put DISTINCT or ALL modifier followed by an expression inside parentheses. If you

explicitly use DISTINCT modifier, the aggregate function ignores duplicate values and only

consider the unique values. If you use the ALL modifier, the aggregate function uses all

values for calculation or evaluation. The ALL modifier is used by default if you do not specify

any modifier explicitly.

SQL aggregate function examples

Let’s take a look some examples of using SQL aggregate functions.

COUNT function example

To get the number of the products in the products table, you use the COUNT function as follows:

1

2

3

4

SELECT

 COUNT(*)

FROM

 products;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

More information on the COUNT function.

AVG function example

To calculate the average units in stock of the products, you use the AVG function as follows:

1

2

3

4

SELECT

 AVG(unitsinstock)

FROM

 products;

To calculate units in stock by product category, you use the AVG function with the GROUP BYclause

as follows:

1

2

3

4

5

SELECT

 categoryid, AVG(unitsinstock)

FROM

 products

GROUP BY categoryid;

More information on AVG function.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

SUM function example

To calculate the sum of units in stock by product category, you use the SUM function with the GROUP

BY clause as the following query:

1

2

3

4

5

SELECT

 categoryid, SUM(unitsinstock)

FROM

 products

GROUP BY categoryid;

Check it out the SUM function tutorial for more information on how to use the SUM function.

MIN function example

To get the minimum units in stock of products in the products table, you use the MIN function as

follows:

1

2

3

4

SELECT

 MIN(unitsinstock)

FROM

 products;

More information on the MIN function.

MAX function example

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To get the maximum units in stock of products in the products table, you use the MAX function as

shown in the following query:

1

2

3

4

SELECT

 MAX(unitsinstock)

FROM

 products;

Check it out the MAX function tutorial for more information.

In this tutorial, we have introduced you to the SQL aggregate functions including the most commonly

used functions: AVG, COUNT, MIN, MAX, and SUM.

NULL VALUES:-

The SQL NULL is the term used to represent a missing value. A NULL value

in a table is a value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to

understand that a NULL value is different than a zero value or a field that

contains spaces.

Syntax
The basic syntax of NULL while creating a table.

SQL> CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit

value of the given data type. There are two columns where we did not use

NOT NULL, which means these columns could be NULL.

A field with a NULL value is the one that has been left blank during the

record creation.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Example
The NULL value can cause problems when selecting data. However, because

when comparing an unknown value to any other value, the result is always

unknown and not included in the results. You must use the IS NULL or IS

NOT NULL operators to check for a NULL value.

Consider the following CUSTOMERS table having the records as shown

below.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | |

| 7 | Muffy | 24 | Indore | |

+----+----------+-----+-----------+----------+

Now, following is the usage of the IS NOT NULLoperator.

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM CUSTOMERS

 WHERE SALARY IS NOT NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

+----+----------+-----+-----------+----------+

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Now, following is the usage of the IS NULL operator.

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM CUSTOMERS

 WHERE SALARY IS NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 6 | Komal | 22 | MP | |

| 7 | Muffy | 24 | Indore | |

+----+----------+-----+-----------+----------+

Complex Integrity Constraints in SQL:-

Integrity Constraints are used to apply business rules for the database tables.

The constraints available in SQL are Foreign Key,Not Null, Unique, Check.

Constraints can be defined in two ways

1) The constraints can be specified immediately after the column definition. This is

called column-level definition.

2) The constraints can be specified after all the columns are defined. This is called

table-level definition.

1) SQL Primary key:

This constraint defines a column or combination of columns which uniquely

identifies each row in the table.

Syntax to define a Primary key at column level:

column name datatype [CONSTRAINT constraint_name] PRIMARY KEY

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Syntax to define a Primary key at table level:

[CONSTRAINT constraint_name] PRIMARY KEY

(column_name1,column_name2,..)

 column_name1, column_name2 are the names of the columns which

define the primary Key.

 The syntax within the bracket i.e. [CONSTRAINT constraint_name] is

optional.

 For Example: To create an employee table with Primary Key constraint, the

query would be like.

 Primary Key at column level:

 CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10)

);

 or

 CREATE TABLE employee

(id number(5) CONSTRAINT emp_id_pk PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10)

);

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Primary Key at column level:

 CREATE TABLE employee

(id number(5),

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

CONSTRAINT emp_id_pk PRIMARY KEY (id)

);

Primary Key at table level:

CREATE TABLE employee

(id number(5), NOT NULL,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

ALTER TABLE employee ADD CONSTRAINT PK_EMPLOYEE_ID PRIMARY

KEY (id)

);

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Foreign key:-

A FOREIGN KEY is a key used to link two tables together.

A FOREIGN KEY is a field (or collection of fields) in one table that refers to the

PRIMARY KEY in another table.

The table containing the foreign key is called the child table, and the table

containing the candidate key is called the referenced or parent table.

Look at the following two tables:

"Persons" table:

PersonID LastName FirstName Age

1 Hansen Ola 30

2 Svendson Tove 23

3 Pettersen Kari 20

"Orders" table:

OrderID OrderNumber PersonID

1 77895 3

2 44678 3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3 22456 2

4 24562 1

Notice that the "PersonID" column in the "Orders" table points to the "PersonID"

column in the "Persons" table.

The "PersonID" column in the "Persons" table is the PRIMARY KEY in the

"Persons" table.

The "PersonID" column in the "Orders" table is a FOREIGN KEY in the "Orders"

table.

The FOREIGN KEY constraint is used to prevent actions that would destroy links

between tables.

The FOREIGN KEY constraint also prevents invalid data from being inserted into

the foreign key column, because it has to be one of the values contained in the

table it points to.

Active Database Concepts and Triggers:-

 Rules that specify actions that are automatically triggered by certain

events have been considered important enhancements to database

systems for quite some time. In fact, the concept of triggers—a

technique for specifying certain types of active rules—has existed in

early versions of the SQL specification for relational databases and

triggers are now part of the SQL-99 and later standards.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Generalized Model for Active Databases and Oracle Triggers:-

 The model that has been used to specify active database rules is referred to

as the Event-Condition-Action (ECA) model. A rule in the ECA model has

three components:

 1. The event(s) that triggers the rule: These events are usually database

update operations that are explicitly applied to the database. However, in the

general model, they could also be temporal events2 or other kinds of external

events.

 2. The condition that determines whether the rule action should be

executed: Once the triggering event has occurred, an optional condition may

be evaluated. If no condition is specified, the action will be executed once

the event occurs. If a condition is specified, it is first evaluated, and only if it

evaluates to true will the rule action be executed.

 3. The action to be taken: The action is usually a sequence of SQL

statements, but it could also be a database transaction or an external program

that will be automatically executed.

SYNTAX:-

-- Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML

Trigger)

A syntax summary for specifying triggers in the Oracle system (main options only).

<trigger> ::= CREATE TRIGGER <trigger name>

 (AFTER I BEFORE) <triggering events> ON <table name>

 [FOR EACH ROW]

 [WHEN <condition>]

 <trigger actions> ;

<triggering events> ::= <trigger event> {OR <trigger event> }

<trigger event> ::= INSERT I DELETE I UPDATE [OF <column name> { ,

<column name> }]

<trigger action> ::= <PL/SQL block>

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Advantages

Followings are the advantages of using MySQL triggers:

1. Integrity of data: With the help of MySQL trigger we can check the integrity of data in the

table. In other words, MySQL triggers are the alternative way to check the integrity of data.

2. Useful for catching errors: MySQL triggers can catch errors in business logic in the

database layer.

3. Alternative way to run scheduled tasks: Actually by using MySQL triggers we do not have

to wait to run the scheduled tasks because the triggers are invoked automatically ‘before’ or

‘after’ a modification is done to the data in the table.

4. Auditing: Actually MySQL triggers are very much useful for the purpose of auditing of the

changes made in the table.

5. Prevention of invalid transactions: MySQL triggers are very useful in the prevention of

invalid transactions.

6. Logging of event: MySQL triggers can log an event and can also store the information on

the access of table.

Disadvantages

Followings are the disadvantages of using MySQL triggers:

1. Cannot replace all validations: Actually, MySQL triggers cannot replace all the validations

and can only provide an extended validation.

2. Invisible from client applications: Basically MySQL triggers are invoked and executed

invisible from the client applications hence it is very much difficult to figure out what happens

in the database layer.

3. Impose load on server: Triggers can impose a high load on the database server.

4. Not recommended for high velocity of data: Triggers are not beneficial for use with high-

velocity data i.e. the data when a number of events per second are high. It is because in

case of high-velocity data the triggers get triggered all the time.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT-IV

Syllabus:

Schema Refinement (Normalization) : Purpose of Normalization or schema refinement,

concept of functional dependency, normal forms based on functional dependency(1NF, 2NF

and 3 NF), concept of surrogate key, Boyce-codd normal form(BCNF), Lossless join and

dependency preserving decomposition, Fourth normal form(4NF).

Introduction
When designing a database, you have to make decisions regarding how best to take some system

in the real world and model it in a database. This consists of deciding which tables to create, what

columns they will contain, as well as the relationships between the tables. While it would be nice

if this process was totally intuitive and obvious, or even better automated, this is simply not the

case. A well-designed database takes time and effort to conceive, build and refine.

The benefits of a database that has been designed according to the relational model are numerous.

Some of them are:

• Data entry, updates and deletions will be efficient.

• Data retrieval, summarization and reporting will also be efficient.

• Since the database follows a well-formulated model, it behaves predictably.

• Since much of the information is stored in the database rather than in the application, the

database is somewhat self-documenting.

• Changes to the database schema are easy to make.

Purpose of Normalization:-

If a database design is not perfect, it may contain anomalies, which are like a bad dream for

any database administrator. Managing a database with anomalies is next to impossible.

 Update anomalies − If data items are scattered and are not linked to each other

properly, then it could lead to strange situations. For example, when we try to update

one data item having its copies scattered over several places, a few instances get

updated properly while a few others are left with old values. Such instances leave the

database in an inconsistent state.

 Deletion anomalies − We tried to delete a record, but parts of it was left undeleted

because of unawareness, the data is also saved somewhere else.

 Insert anomalies − We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a

consistent state.

Concept of Functional Dependency:-

Functional dependency (FD) is a set of constraints between two attributes in a relation.

Functional dependency says that if two tuples have same values for attributes A1, A2,..., An,

then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y, where X

functionally determines Y. The left-hand side attributes determine the values of attributes on

the right-hand side.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Normal Forms based on Functional Dependencies(1NF,2NF and 3 NF):-

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself.

This rule defines that all the attributes in a relation must have atomic

domains. The values in an atomic domain are indivisible units.

We re-arrange the relation (table) as below, to convert it to First Normal

Form.

Each attribute must contain only a single value from its pre-defined

domain.

Second Normal Form

Before we learn about the second normal form, we need to understand

the following −

 Prime attribute − An attribute, which is a part of the candidate-key, is

known as a prime attribute.

 Non-prime attribute − An attribute, which is not a part of the prime-key, is

said to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should

be fully functionally dependent on prime key attribute. That is, if X → A

holds, then there should not be any proper subset Y of X, for which Y →

A also holds true.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

We see here in Student_Project relation that the prime key attributes are

Stu_ID and Proj_ID. According to the rule, non-key attributes, i.e.

Stu_Name and Proj_Name must be dependent upon both and not on any

of the prime key attribute individually. But we find that Stu_Name can be

identified by Stu_ID and Proj_Name can be identified by Proj_ID

independently. This is called partial dependency, which is not allowed

in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there

exists no partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal

form and the following must satisfy −

 No non-prime attribute is transitively dependent on prime key attribute.

 For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,

o A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and

only prime key attribute. We find that City can be identified by Stu_ID as

well as Zip itself. Neither Zip is a superkey nor is City a prime attribute.

Additionally, Stu_ID → Zip → City, so there exists transitive

dependency.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To bring this relation into third normal form, we break the relation into

two relations as follows −

 Concept of a surrogate key in DBMS:-

A surrogate key is any column or set of columns that can be declared as the primary

key instead of a "real" or natural key. Sometimes there can be several natural keys that could

be declared as the primary key, and these are all called candidate keys. So a surrogate is

a candidate key.

A candidate key is a column, or set of columns, in a table that can uniquely identify

any database record without referring to any other data. Each table may have one or

more candidate keys, but one candidate key is unique, and it is called the primary key.

Boyce-Codd normal form(BCNF):-

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form

on strict terms. BCNF states that −

 For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation

Student_Detail and Zip is the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Lossless join and dependency preserving decomposition:-

What is decomposition?

 Decomposition is the process of breaking down in parts or elements.

 It replaces a relation with a collection of smaller relations.

 It breaks the table into multiple tables in a database.

 It should always be lossless, because it confirms that the information

in the original relation can be accurately reconstructed based on the

decomposed relations.

 If there is no proper decomposition of the relation, then it may lead to

problems like loss of information.

Properties of Decomposition

Following are the properties of Decomposition,

1. Lossless Decomposition

2. Dependency Preservation

3. Lack of Data Redundancy.

1. Lossless Decomposition

 Decomposition must be lossless. It means that the information should

not get lost from the relation that is decomposed.

 It gives a guarantee that the join will result in the same relation as it

was decomposed.

Example:
Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed
into: E1, E2, E3, En; With instance: e1, e2, e3, en, If e1 ⋈ e2 ⋈

e3 ⋈ en, then it is called as 'Lossless Join Decomposition'.

 In the above example, it means that, if natural joins of all the

decomposition give the original relation, then it is said to be lossless join

decomposition.

Example: <Employee_Department> Table

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

E005 STU 32 Bangalore 25000 D005 Human Resource

 Decompose the above relation into two relations to check whether a

decomposition is lossless or lossy.

 Now, we have decomposed the relation that is Employee and

Department.

Relation 1 : <Employee> Table

Eid Ename Age City Salary

E001 ABC 29 Pune 20000

E002 PQR 30 Pune 30000

E003 LMN 25 Mumbai 5000

E004 XYZ 24 Mumbai 4000

E005 STU 32 Bangalore 25000

 Employee Schema contains (Eid, Ename, Age, City, Salary).

Relation 2 : <Department> Table

Deptid Eid DeptName

D001 E001 Finance

D002 E002 Production

D003 E003 Sales

D004 E004 Marketing

D005 E005 Human Resource

 Department Schema contains (Deptid, Eid, DeptName).

 So, the above decomposition is a Lossless Join Decomposition,

because the two relations contains one common field that is 'Eid' and

therefore join is possible.

 Now apply natural join on the decomposed relations.

Employee ⋈ Department

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

E005 STU 32 Bangalore 25000 D005 Human Resource

Hence, the decomposition is Lossless Join Decomposition.

 If the <Employee> table contains (Eid, Ename, Age, City, Salary) and <Department>

table contains (Deptid and DeptName), then it is not possible to join the two tables or

relations, because there is no common column between them. And it becomes Lossy Join

Decomposition.

 Dependency Preservation

Dependency is an important constraint on the database.

 Every dependency must be satisfied by at least one decomposed table.

 If {A → B} holds, then two sets are functional dependent. And, it becomes more

useful for checking the dependency easily if both sets in a same relation.

 This decomposition property can only be done by maintaining the

functional dependency.

 In this property, it allows to check the updates without computing the

natural join of the database structure.

Fourth Normal Form(4NF):-

Fourth Normal Form comes into picture when Multi-valued Dependency occur in any

relation. In this tutorial we will learn about Multi-valued Dependency, how to remove it and

how to make any table satisfy the fourth normal form.

Rules for 4th Normal Form

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

1. It should be in the Boyce-Codd Normal Form.

2. And, the table should not have any Multi-valued Dependency.

What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then

the table may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B,

then B and C should be independent of each other.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

If all these conditions are true for any relation(table), it is said to have multi-valued
dependency.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Example

Below we have a college enrolment table with columns s_id, course and hobby.

s_id course hobby

1 Science Cricket

1 Maths Hockey

2 C# Cricket

2 Php Hockey

As you can see in the table above, student with s_id 1 has opted for two
courses, Science and Maths, and has two hobbies, Cricket and Hockey.

You must be thinking what problem this can lead to, right?

Well the two records for student with s_id 1, will give rise to two more records, as shown
below, because for one student, two hobbies exists, hence along with both the courses,
these hobbies should be specified.

s_id course hobby

1 Science Cricket

1 Maths Hockey

1 Science Hockey

1 Maths Cricket

And, in the table above, there is no relationship between the columns course and hobby.
They are independent of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and
other anomalies as well.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

How to satisfy 4th Normal Form?

To make the above relation satify the 4th normal form, we can decompose the table into
2 tables.

CourseOpted Table

s_id course

1 Science

1 Maths

2 C#

2 Php

And, Hobbies Table,

s_id hobby

1 Cricket

1 Hockey

2 Cricket

2 Hockey

Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that

case, the functionally dependent columns are moved in a separate table and the multi-valued

dependent columns are moved to separate tables.

If you design your database carefully, you can easily avoid these issues.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT – V

SYLLABUS

Transaction Management and Concurrency Control:

Transaction, properties of transactions, transaction log, and transaction management with

SQL using commit rollback and save point. Concurrency control for lost updates,

uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with

locking methods : lock granularity, lock types, two phase locking for ensuring serializability,

deadlocks, Concurrency control with time stamp ordering : Wait/Die and Wound/Wait

Schemes, Database Recovery management : Transaction recovery.

Transaction:-

A transaction can be defined as a group of tasks. A single task is the minimum processing

unit which cannot be divided further.

Let’s take an example of a simple transaction. Suppose a bank employee transfers Rs 500

from A's account to B's account. This very simple and small transaction involves several

low-level tasks.

A’s Account

Open_Account(A)
Old_Balance = A.balance
New_Balance = Old_Balance - 500
A.balance = New_Balance
Close_Account(A)

B’s Account

Open_Account(B)
Old_Balance = B.balance
New_Balance = Old_Balance + 500
B.balance = New_Balance
Close_Account(B)

Properties of Transactions:-

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A

transaction in a database system must maintain Atomicity, Consistency, Isolation,

and Durability − commonly known as ACID properties − in order to ensure accuracy,

completeness, and data integrity.

 Atomicity − This property states that a transaction must be treated as an atomic unit,

that is, either all of its operations are executed or none. There must be no state in a

database where a transaction is left partially completed. States should be defined

either before the execution of the transaction or after the execution/abortion/failure

of the transaction.

 Consistency − The database must remain in a consistent state after any transaction.

No transaction should have any adverse effect on the data residing in the database. If

the database was in a consistent state before the execution of a transaction, it must

remain consistent after the execution of the transaction as well.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Durability − The database should be durable enough to hold all its latest updates

even if the system fails or restarts. If a transaction updates a chunk of data in a

database and commits, then the database will hold the modified data. If a transaction

commits but the system fails before the data could be written on to the disk, then that

data will be updated once the system springs back into action.

 Isolation − In a database system where more than one transaction are being executed

simultaneously and in parallel, the property of isolation states that all the transactions

will be carried out and executed as if it is the only transaction in the system. No

transaction will affect the existence of any other transaction.

Transaction Log:-

A transaction log (also transaction journal, database log, binary log or audit

trail) is a history of actions executed by a database management system used to

guarantee ACID properties over crashes or hardware failures. Physically, a log is

a file listing changes to the database, stored in a stable storage format.

If, after a start, the database is found in an inconsistent state or not been shut down

properly, the database management system reviews the database logs

for uncommittedtransactions and rolls back the changes made by these transactions.

Additionally, all transactions that are already committed but whose changes were not

yet materialized in the database are re-applied. Both are done to

ensure atomicity and durability of transactions.

This term is not to be confused with other, human-readable logs that a database

management system usually provides.

Transaction Management with SQL Commit, Rollback and Savepoint :-

Transaction Control Language(TCL) commands are used to manage transactions in the

database. These are used to manage the changes made to the data in a table by DML

statements. It also allows statements to be grouped together into logical transactions.

COMMIT command:-

COMMIT command is used to permanently save any transaction into the database.

When we use any DML command like INSERT, UPDATE or DELETE, the changes made by

these commands are not permanent, until the current session is closed, the changes
made by these commands can be rolled back.

To avoid that, we use the COMMIT command to mark the changes as permanent.

Following is commit command's syntax,

COMMIT;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ROLLBACK command:-

This command restores the database to last commited state. It is also used

with SAVEPOINT command to jump to a savepoint in an ongoing transaction.

If we have used the UPDATE command to make some changes into the database, and realise

that those changes were not required, then we can use the ROLLBACK command to rollback

those changes, if they were not commited using the COMMIT command.

Following is rollback command's syntax,

ROLLBACK TO savepoint_name;

SAVEPOINT command:-

SAVEPOINT command is used to temporarily save a transaction so that you can rollback to

that point whenever required.

Following is savepoint command's syntax,

SAVEPOINT savepoint_name;

Concurrency Control:-
In a multiprogramming environment where multiple transactions can be executed

simultaneously, it is highly important to control the concurrency of transactions. We have

concurrency control protocols to ensure atomicity, isolation, and serializability of concurrent

transactions. Concurrency control protocols can be broadly divided into two categories

 Lock based protocols

 Time stamp based protocols

Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any

transaction cannot read or write data until it acquires an appropriate lock on it. Locks are of

two kinds −

 Binary Locks − A lock on a data item can be in two states; it is either locked or

unlocked.

 Shared/exclusive − This type of locking mechanism differentiates the locks based on

their uses. If a lock is acquired on a data item to perform a write operation, it is an

exclusive lock. Allowing more than one transaction to write on the same data item

would lead the database into an inconsistent state. Read locks are shared because no

data value is being changed.

There are four types of lock protocols available −

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Simplistic Lock Protocol

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a

'write' operation is performed. Transactions may unlock the data item after completing the

‘write’ operation.

Pre-claiming Lock Protocol

Pre-claiming protocols evaluate their operations and create a list of data items on which they

need locks. Before initiating an execution, the transaction requests the system for all the

locks it needs beforehand. If all the locks are granted, the transaction executes and releases

all the locks when all its operations are over. If all the locks are not granted, the transaction

rolls back and waits until all the locks are granted.

Two-Phase Locking 2PL

This locking protocol divides the execution phase of a transaction into three parts. In the

first part, when the transaction starts executing, it seeks permission for the locks it requires.

The second part is where the transaction acquires all the locks. As soon as the transaction

releases its first lock, the third phase starts. In this phase, the transaction cannot demand any

new locks; it only releases the acquired locks.

Two-phase locking has two phases, one is growing, where all the locks are being acquired

by the transaction; and the second phase is shrinking, where the locks held by the transaction

are being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and

then upgrade it to an exclusive lock.

Strict Two-Phase Locking

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase,

the transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not

release a lock after using it. Strict-2PL holds all the locks until the commit point

and releases all the locks at a time.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Strict-2PL does not have cascading abort as 2PL does.

Timestamp-based Protocols

The most commonly used concurrency protocol is the timestamp based protocol. This

protocol uses either system time or logical counter as a timestamp.

Lock-based protocols manage the order between the conflicting pairs among transactions at

the time of execution, whereas timestamp-based protocols start working as soon as a

transaction is created.

Every transaction has a timestamp associated with it, and the ordering is determined by the

age of the transaction. A transaction created at 0002 clock time would be older than all other

transactions that come after it. For example, any transaction 'y' entering the system at 0004

is two seconds younger and the priority would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This lets the system

know when the last ‘read and write’ operation was performed on the data item.

Timestamp Ordering Protocol

The timestamp-ordering protocol ensures serializability among transactions in their

conflicting read and write operations. This is the responsibility of the protocol system that

the conflicting pair of tasks should be executed according to the timestamp values of the

transactions.

 The timestamp of transaction Ti is denoted as TS(Ti).

 Read time-stamp of data-item X is denoted by R-timestamp(X).

 Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows −

 If a transaction Ti issues a read(X) operation −

o If TS(Ti) < W-timestamp(X)

 Operation rejected.

o If TS(Ti) >= W-timestamp(X)

 Operation executed.

o All data-item timestamps updated.

 If a transaction Ti issues a write(X) operation −

o If TS(Ti) < R-timestamp(X)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Operation rejected.

o If TS(Ti) < W-timestamp(X)

 Operation rejected and Ti rolled back.

o Otherwise, operation executed.

Serializability

When multiple transactions are being executed by the operating system in a

multiprogramming environment, there are possibilities that instructions of one transactions

are interleaved with some other transaction.

 Schedule − A chronological execution sequence of a transaction is called a schedule.

A schedule can have many transactions in it, each comprising of a number of

instructions/tasks.

 Serial Schedule − It is a schedule in which transactions are aligned in such a way

that one transaction is executed first. When the first transaction completes its cycle,

then the next transaction is executed. Transactions are ordered one after the other.

This type of schedule is called a serial schedule, as transactions are executed in a

serial manner.

In a multi-transaction environment, serial schedules are considered as a benchmark. The

execution sequence of an instruction in a transaction cannot be changed, but two

transactions can have their instructions executed in a random fashion. This execution does

no harm if two transactions are mutually independent and working on different segments of

data; but in case these two transactions are working on the same data, then the results may

vary. This ever-varying result may bring the database to an inconsistent state.

To resolve this problem, we allow parallel execution of a transaction schedule, if its

transactions are either serializable or have some equivalence relation among them.

Equivalence Schedules

An equivalence schedule can be of the following types −

Result Equivalence

If two schedules produce the same result after execution, they are said to be result

equivalent. They may yield the same result for some value and different results for another

set of values. That's why this equivalence is not generally considered significant.

View Equivalence

Two schedules would be view equivalence if the transactions in both the schedules perform

similar actions in a similar manner.

For example −

 If T reads the initial data in S1, then it also reads the initial data in S2.

 If T reads the value written by J in S1, then it also reads the value written by J in S2.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 If T performs the final write on the data value in S1, then it also performs the final write on the

data value in S2.

Conflict Equivalence

Two schedules would be conflicting if they have the following properties

 Both belong to separate transactions.

 Both accesses the same data item.

 At least one of them is "write" operation.

Two schedules having multiple transactions with conflicting operations are said to be

conflict equivalent if and only if −

 Both the schedules contain the same set of Transactions.

 The order of conflicting pairs of operation is maintained in both the schedules.

Note − View equivalent schedules are view serializable and conflict equivalent schedules

are conflict serializable. All conflict serializable schedules are view serializable too.

Concurrency control with time stamp ordering : Wait/Die and Wound/Wait Schemes:-

In a multi-process system, deadlock is an unwanted situation that arises in a shared resource

environment, where a process indefinitely waits for a resource that is held by another

process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to

complete its task. Resource X is held by T1, and T1 is waiting for a resource Y, which is held

by T2. T2 is waiting for resource Z, which is held by T0. Thus, all the processes wait for each

other to release resources. In this situation, none of the processes can finish their task. This

situation is known as a deadlock.

Deadlocks are not healthy for a system. In case a system is stuck in a deadlock, the

transactions involved in the deadlock are either rolled back or restarted.

Deadlock Prevention

To prevent any deadlock situation in the system, the DBMS aggressively inspects all the

operations, where transactions are about to execute. The DBMS inspects the operations and

analyzes if they can create a deadlock situation. If it finds that a deadlock situation might

occur, then that transaction is never allowed to be executed.

There are deadlock prevention schemes that use timestamp ordering mechanism of

transactions in order to predetermine a deadlock situation.

Wait-Die Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held

with a conflicting lock by another transaction, then one of the two possibilities may occur −

 If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than

Tj − then Ti is allowed to wait until the data-item is available.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 If TS(Ti) > TS(tj) − that is Ti is younger than Tj − then Ti dies. Ti is restarted later

with a random delay but with the same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

Wound-Wait Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held

with conflicting lock by some another transaction, one of the two possibilities may occur −

 If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Tiwounds Tj. Tj is

restarted later with a random delay but with the same timestamp.

 If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is available.

This scheme, allows the younger transaction to wait; but when an older transaction requests

an item held by a younger one, the older transaction forces the younger one to abort and

release the item.

In both the cases, the transaction that enters the system at a later stage is aborted.

Transaction recovery:-

Crash Recovery

DBMS is a highly complex system with hundreds of transactions being executed every

second. The durability and robustness of a DBMS depends on its complex architecture and

its underlying hardware and system software. If it fails or crashes amid transactions, it is

expected that the system would follow some sort of algorithm or techniques to recover lost

data.

Failure Classification

To see where the problem has occurred, we generalize a failure into various categories, as

follows −

Transaction failure

A transaction has to abort when it fails to execute or when it reaches a point from where it

can’t go any further. This is called transaction failure where only a few transactions or

processes are hurt.

Reasons for a transaction failure could be −

 Logical errors − Where a transaction cannot complete because it has some code

error or any internal error condition.

 System errors − Where the database system itself terminates an active transaction

because the DBMS is not able to execute it, or it has to stop because of some system

condition. For example, in case of deadlock or resource unavailability, the system

aborts an active transaction.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

System Crash

There are problems − external to the system − that may cause the system to stop abruptly

and cause the system to crash. For example, interruptions in power supply may cause the

failure of underlying hardware or software failure.

Examples may include operating system errors.

Disk Failure

In early days of technology evolution, it was a common problem where hard-disk drives or

storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash or

any other failure, which destroys all or a part of disk storage.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT-VI

SYLLABUS

Overview of Storages and Indexing, Data on External Storage- File Organization and

Indexing –Clustered Indexing – Primary and Secondary Indexes, Index Data Structures,

Hash-Based Indexing – Tree-Based Indexing, Comparison of File Organization.

Overview of Storages and Indexing:-

Databases are stored in file formats, which contain records. At physical level, the actual data

is stored in electromagnetic format on some device. These storage devices can be broadly

categorized into three types −

 Primary Storage − The memory storage that is directly accessible to the CPU comes under

this category. CPU's internal memory (registers), fast memory (cache), and main memory (RAM)

are directly accessible to the CPU, as they are all placed on the motherboard or CPU chipset.

This storage is typically very small, ultra-fast, and volatile. Primary storage requires continuous

power supply in order to maintain its state. In case of a power failure, all its data is lost.

 Secondary Storage − Secondary storage devices are used to store data for future

use or as backup. Secondary storage includes memory devices that are not a part of

the CPU chipset or motherboard, for example, magnetic disks, optical disks (DVD,

CD, etc.), hard disks, flash drives, and magnetic tapes.

 Tertiary Storage − Tertiary storage is used to store huge volumes of data. Since

such storage devices are external to the computer system, they are the slowest in

speed. These storage devices are mostly used to take the back up of an entire system.

Optical disks and magnetic tapes are widely used as tertiary storage.

Primary and Secondary Indexes:-

We know that data is stored in the form of records. Every record has a key field, which helps

it to be recognized uniquely.

Indexing is a data structure technique to efficiently retrieve records from the database files

based on some attributes on which the indexing has been done. Indexing in database systems

is similar to what we see in books.

Indexing is defined based on its indexing attributes. Indexing can be of the following types −

 Primary Index − Primary index is defined on an ordered data file. The data file is

ordered on a key field. The key field is generally the primary key of the relation.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Secondary Index − Secondary index may be generated from a field which is a

candidate key and has a unique value in every record, or a non-key with duplicate

values.

 Clustering Index − Clustering index is defined on an ordered data file. The data

file is ordered on a non-key field.

Ordered Indexing is of two types −

 Dense Index

 Sparse Index

Dense Index

In dense index, there is an index record for every search key value in the database. This

makes searching faster but requires more space to store index records itself. Index records

contain search key value and a pointer to the actual record on the disk.

Sparse Index

In sparse index, index records are not created for every search key. An index record here

contains a search key and an actual pointer to the data on the disk. To search a record, we

first proceed by index record and reach at the actual location of the data. If the data we are

looking for is not where we directly reach by following the index, then the system starts

sequential search until the desired data is found.

Multilevel Index

Index records comprise search-key values and data pointers. Multilevel index is stored on

the disk along with the actual database files. As the size of the database grows, so does the

size of the indices. There is an immense need to keep the index records in the main memory

so as to speed up the search operations. If single-level index is used, then a large size index

cannot be kept in memory which leads to multiple disk accesses.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Multi-level Index helps in breaking down the index into several smaller indices in order to

make the outermost level so small that it can be saved in a single disk block, which can

easily be accommodated anywhere in the main memory.

Hash-Based Indexing:-

For a huge database structure, it can be almost next to impossible to search all the index

values through all its level and then reach the destination data block to retrieve the desired

data. Hashing is an effective technique to calculate the direct location of a data record on the

disk without using index structure.

Hashing uses hash functions with search keys as parameters to generate the address of a data

record.

Hash Organization

 Bucket − A hash file stores data in bucket format. Bucket is considered a unit of

storage. A bucket typically stores one complete disk block, which in turn can store

one or more records.

 Hash Function − A hash function, h, is a mapping function that maps all the set of

search-keys K to the address where actual records are placed. It is a function from

search keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function always computes

the same address. For example, if mod-4 hash function is used, then it shall generate only 5

values. The output address shall always be same for that function. The number of buckets

provided remains unchanged at all times.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash function can be used to retrieve

the address of the bucket where the data is stored.

 Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any static

hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is allocated for the

same hash result and is linked after the previous one. This mechanism is

called Closed Hashing.

 Linear Probing − When a hash function generates an address at which data is

already stored, the next free bucket is allocated to it. This mechanism is called Open

Hashing.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Dynamic Hashing

The problem with static hashing is that it does not expand or shrink dynamically as the size

of the database grows or shrinks. Dynamic hashing provides a mechanism in which data

buckets are added and removed dynamically and on-demand. Dynamic hashing is also

known as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only a

few are used initially.

Tree-based Indexing:-

B+ Tree

A B+ tree is a balanced binary search tree that follows a multi-level index format. The leaf

nodes of a B+ tree denote actual data pointers. B+ tree ensures that all leaf nodes remain at

the same height, thus balanced. Additionally, the leaf nodes are linked using a link list;

therefore, a B+ tree can support random access as well as sequential access.

Structure of B+ Tree

Every leaf node is at equal distance from the root node. A B+ tree is of the order n where n is

fixed for every B+ tree.

Internal nodes −

 Internal (non-leaf) nodes contain at least ⌈n/2⌉ pointers, except the root node.

 At most, an internal node can contain n pointers.

Leaf nodes −

 Leaf nodes contain at least ⌈n/2⌉ record pointers and ⌈n/2⌉ key values.

 At most, a leaf node can contain n record pointers and n key values.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Every leaf node contains one block pointer P to point to next leaf node and forms a

linked list.

B+ Tree Insertion

 B+ trees are filled from bottom and each entry is done at the leaf node.

 If a leaf node overflows −

o Split node into two parts.

o Partition at i = ⌊(m+1)/2⌋.

o First i entries are stored in one node.

o Rest of the entries (i+1 onwards) are moved to a new node.

o ith key is duplicated at the parent of the leaf.

 If a non-leaf node overflows −

o Split node into two parts.

o Partition the node at i = ⌈(m+1)/2⌉.

o Entries up to i are kept in one node.

o Rest of the entries are moved to a new node.

B+ Tree Deletion

 B+ tree entries are deleted at the leaf nodes.

 The target entry is searched and deleted.

o If it is an internal node, delete and replace with the entry from the left

position.

 After deletion, underflow is tested,

o If underflow occurs, distribute the entries from the nodes left to it.

 If distribution is not possible from left, then

o Distribute from the nodes right to it.

 If distribution is not possible from left or from right, then

o Merge the node with left and right to it.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Comparison of File Organization:-

Relative data and information is stored collectively in file formats. A file is a sequence of

records stored in binary format. A disk drive is formatted into several blocks that can store

records. File records are mapped onto those disk blocks.

File Organization defines how file records are mapped onto disk blocks. We have four types

of File Organization to organize file records −

Heap File Organization

When a file is created using Heap File Organization, the Operating System allocates

memory area to that file without any further accounting details. File records can be placed

anywhere in that memory area. It is the responsibility of the software to manage the records.

Heap File does not support any ordering, sequencing, or indexing on its own.

Sequential File Organization

Every file record contains a data field (attribute) to uniquely identify that record. In

sequential file organization, records are placed in the file in some sequential order based on

the unique key field or search key. Practically, it is not possible to store all the records

sequentially in physical form.

Hash File Organization

Hash File Organization uses Hash function computation on some fields of the records. The

output of the hash function determines the location of disk block where the records are to be

placed.

Clustered File Organization

Clustered file organization is not considered good for large databases. In this mechanism,

related records from one or more relations are kept in the same disk block, that is, the

ordering of records is not based on primary key or search key.

File Operations

Operations on database files can be broadly classified into two categories

 Update Operations

 Retrieval Operations

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Update operations change the data values by insertion, deletion, or update. Retrieval

operations, on the other hand, do not alter the data but retrieve them after optional

conditional filtering. In both types of operations, selection plays a significant role. Other

than creation and deletion of a file, there could be several operations, which can be done on

files.

 Open − A file can be opened in one of the two modes, read mode or write mode.

In read mode, the operating system does not allow anyone to alter data. In other

words, data is read only. Files opened in read mode can be shared among several

entities. Write mode allows data modification. Files opened in write mode can be

read but cannot be shared.

 Locate − Every file has a file pointer, which tells the current position where the

data is to be read or written. This pointer can be adjusted accordingly. Using find

(seek) operation, it can be moved forward or backward.

 Read − By default, when files are opened in read mode, the file pointer points to the

beginning of the file. There are options where the user can tell the operating system

where to locate the file pointer at the time of opening a file. The very next data to the

file pointer is read.

 Write − User can select to open a file in write mode, which enables them to edit its

contents. It can be deletion, insertion, or modification. The file pointer can be located

at the time of opening or can be dynamically changed if the operating system allows

to do so.

 Close − This is the most important operation from the operating system’s point of

view. When a request to close a file is generated, the operating system

o removes all the locks (if in shared mode),

o saves the data (if altered) to the secondary storage media, and

o releases all the buffers and file handlers associated with the file.

The organization of data inside a file plays a major role here. The process to locate the file

pointer to a desired record inside a file various based on whether the records are arranged

sequentially or clustered.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

VSM COLLEGE OF ENGINEERING

DEPARTMENT OF CSE

III/IV B.TECH – I SEM (R16)

DATABASE MANAGEMENT SYSTEMS

FREQUENTLY ASKED QUESTIONS

UNIT -I

1. Define DBMS? Explain in detail about DBMS architecture with a neat

sketch.

2. Define Data Independence? Explain about two types of data independence

with a relevant examples.

3. Define Mapping? Discuss Three Level Schema Archictecture with relevant

examples.

4. Explain the significance of DBA in Database Environment?

5. Explain the concept of Client/Server Interaction in Client/Server

Architecture.

UNIT -II

1. Define Relation? Explain in detail about Relational model and its related

terms with examples?

2. Explain various steps to design a good database?

3. Draw E-R diagram for an employee database? Explain about the key terms

involved in E-R diagram with relevant examples?

4. Define Constraint? Explain various integrity constraints with suitable

examples?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5. Differentiate Tuple Relational Calculus with Domain Relational Calculus

with examples?

6. Define Relational Algebra? Explain in detail about various operations in

relational algebra with suitable examples?

UNIT -III

1. Define Query? Explain various forms that are present in SQL?

2. Discuss in detail the operators SELECT, PROJECT, UNION with suitable

examples.

 3. Explain the importance of Null values in Relational Model.

 4. Discuss various Aggregate operators with suitable example?

 5. Explain the concept of triggers with relevant example?

 6. Differentiate between independent and correlated nested queries.

UNIT –IV

1) Illustrate redundancy and the problems that it can cause?

2) Define decomposition and how does it address redundancy? Discuss the problem s that

may be caused by the use of decompositions?

3) Define functional dependencies. How are primary keys related to FD’s?

4) Define normalization? Explain 1NF, 2NF, 3NF Normal forms?

5) Compare and contrast BCNF with 3NF?

6) Describe properties of decompositions?

7) Explain about Schema refinement in Database design?

8) Illustrate Multivalued dependencies and Fourth normal form with example?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT –V

1) Explain ACID properties and Illustrate them through examples?

2) Discuss How do you implement Atomicity and Durability?

3) Illustrate Concurrent execution of transaction with examples?

4) Discuss Serializability in detail?

5) Discuss two phase locking protocol and strict two phase locking protocols?

6) Describe Timestamp based locking protocols?

7) Explain in detail Storage structure?

8) Discuss how do you recover from Concurrent transactions?

UNIT –VI

1) Write in detail about Hash based Indexing and Tree based Indexing?

2) Compare various File Organizations ?

3) Explain B+ trees? Discuss about this Dynamic Index Structure?

4) Demonstrate searching a given element in B+ trees? Explain with example?

5) Illustrate insertion and deletion of an element in B+ trees with example?

6) Write in detail about Static Hashing?

7) Explain in detail about Extendible Hashing?

8) Explain in detail about Linear Hashing?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

