
www.F
irs

tR
an

ke
r.c

om

1

OPERATING SYSTEMS (UNIT-I)

Operating system concepts

Definition of an operating system:-An Operating System (OS) is an interface between a computer

user and computer hardware. An operating system is a software which performs all the basic tasks like

file management, memory management, process management, handling input and output, and controlling

peripheral devices such as disk drives and printers. Some popular Operating Systems include UNIX, MS-
DOS, MS-Windows - 98/XP/Vista, Windows-NT/2000, OS/2 and Mac OS..

It is software that works as an interface between a user and the computer hardware. The primary

objective of an operating system is to make computer system convenient to use and to utilize computer

hardware in an efficient manner. The operating system performs the basic tasks such as receiving input

from the keyboard, processing instructions and sending output to the screen. It controls the execution of

all kinds of programs.

 A computer system can be roughly divided into four components.

1. Hardware

2. Operating system

3. Application programs

4. Users

 The abstract view of the components of a computer system is shown in following figure.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2

Functions of an operating system:-Following are some of important functions of an operating

System.

1. Memory Management

2. Processor Management

3. Device Management

4. File Management

5. Security

6. Control over system performance

7. Job accounting

8. Error detecting aids

9. Coordination between other software and users

1. Memory Management:-Memory management refers to management of Primary Memory or Main

Memory. Main memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a program to be

executed, it must in the main memory. An Operating System does the following activities for memory

management .

• Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part is not in use.

• In multiprogramming, the OS decides which process will get memory when and how much.

• Allocates the memory when a process requests it to do so.

• De-allocates the memory when a process no longer needs it or has been terminated.

2. Processor Management:-In multiprogramming environment, the OS decides which process gets the

processor when and for how much time. This function is called process scheduling. An Operating

System does the following activities for processor management.

• Keeps tracks of processor and status of process. The program responsible for this task is known

as traffic controller.

• Allocates the processor (CPU) to a process.

• De-allocates processor when a process is no longer required.

3. Device Management:-An Operating System manages device communication via their respective

drivers. It does the following activities for device management.

• Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.

• Decides which process gets the device when and for how much time.

• Allocates the device in the efficient way.

• De-allocates devices.

4. File Management:-A file system is normally organized into directories for easy navigation and usage.

These directories may contain files and other directions. An Operating System does the following

activities for file management.

• Keeps track of information, location, uses, status etc. The collective facilities are often known as

file system.

• Decides who gets the resources.

• Allocates the resources.

• De-allocates the resources.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3

5. Security:-By means of password and similar other techniques, it prevents unauthorized access to

programs and data.

6. Control over system performance:- Recording delays between request for a service and response

from the system.

7. Job accounting:-Keeping track of time and resources used by various jobs and users.

8. Error detecting aids:-Production of dumps, traces, error messages, and other debugging and error

detecting aids.

9. Coordination between other software’s and users:-Coordination and assignment of compilers,

interpreters, assemblers and other software to the various users of the computer systems.

TYPES OF OPERATING SYSTEMS;-Operating systems are there from the very first computer

generation and they keep evolving with time. In this chapter, we will discuss some of the important types

of operating systems which are most commonly used.

1. Batch operating system:-The users of a batch operating system do not interact with the computer

directly. Each user prepares his job on an off-line device like punch cards and submits it to the computer

operator. To speed up processing, jobs with similar needs are batched together and run as a group. The

programmers leave their programs with the operator and the operator then sorts the programs with similar

requirements into batches. The problems with Batch Systems are as follows.

• Lack of interaction between the user and the job.

• CPU is often idle, because the speed of the mechanical I/O devices is slower than the CPU.

• Difficult to provide the desired priority.

2. Time-sharing systems:-operating Time-sharing is a technique which enables many people, located at

various terminals, to use a particular computer system at the same time. Time-sharing or multitasking is a

logical extension of multiprogramming. Processor's time which is shared among multiple users

simultaneously is termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems is that in case

of Multiprogrammed batch systems, the objective is to maximize processor use, whereas in Time-Sharing

Systems, the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the switches occur so frequently.

Thus, the user can receive an immediate response. For example, in a transaction processing, the processor

executes each user program in a short burst or quantum of computation. That is, if n users are present,

then each user can get a time quantum. When the user submits the command, the response time is in few

seconds at most.

The operating system uses CPU scheduling and multiprogramming to provide each user with a small

portion of a time. Computer systems that were designed primarily as batch systems have been modified to

time-sharing systems.

Advantages of Timesharing operating systems are as follows.

• Provides the advantage of quick response.

• Avoids duplication of software.

• Reduces CPU idle time.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4

Disadvantages of Time-sharing operating systems are as follows.

• Problem of reliability.

• Question of security and integrity of user programs and data.

• Problem of data communication.

3. Distributed operating System:-Distributed systems use multiple central processors to serve multiple

real-time applications and multiple users. Data processing jobs are distributed among the processors

accordingly.

The processors communicate with one another through various communication lines (such as high-speed

buses or telephone lines). These are referred as loosely coupled systems or distributed systems.

Processors in a distributed system may vary in size and function. These processors are referred as sites,

nodes, computers, and so on.

The advantages of distributed systems are as follows.

• With resource sharing facility, a user at one site may be able to use the resources available at

another.

• Speedup the exchange of data with one another via electronic mail.

• If one site fails in a distributed system, the remaining sites can potentially continue operating.

• Better service to the customers.

• Reduction of the load on the host computer.

• Reduction of delays in data processing.

4. Network operating System:-A Network Operating System runs on a server and provides the server

the capability to manage data, users, groups, security, applications, and other networking functions. The

primary purpose of the network operating system is to allow shared file and printer access among multiple

computers in a network, typically a local area network (LAN), a private network or to other networks.

Examples of network operating systems include Microsoft Windows Server 2003, Microsoft Windows

Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows −

• Centralized servers are highly stable.

• Security is server managed.

• Upgrades to new technologies and hardware can be easily integrated into the system.

• Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are as follows.

• High cost of buying and running a server.

• Dependency on a central location for most operations.

• Regular maintenance and updates are required.

5. Real Time operating System:-A real-time system is defined as a data processing system in which the

time interval required to process and respond to inputs is so small that it controls the environment. The

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5

time taken by the system to respond to an input and display of required updated information is termed as

the response time. So in this method, the response time is very less as compared to online processing.

Real-time systems are used when there are rigid time requirements on the operation of a processor or the

flow of data and real-time systems can be used as a control device in a dedicated application. A real-time

operating system must have well-defined, fixed time constraints, otherwise the system will fail. For

example, scientific experiments, medical image systems, industrial control systems, weapon systems,

robots, air traffic control systems, etc.

There are two types of real-time operating systems.

1. Hard real-time systems:-Hard real-time systems guarantee that critical tasks complete on time. In

hard real-time systems, secondary storage is limited or missing and the data is stored in ROM. In

these systems, virtual memory is almost never found.

2. Soft real-time systems:-Soft real-time systems are less restrictive. A critical real-time task gets

priority over other tasks and retains the priority until it completes. Soft real-time systems have

limited utility than hard real-time systems. For example, multimedia virtual reality, Advanced

Scientific Projects like undersea exploration and planetary rovers, etc.

OPERATING SYSTEM SERVICES:-An Operating System provides services to both the users and to the

programs.

• It provides programs an environment to execute.

• It provides users the services to execute the programs in a convenient manner.

Following are a few common services provided by an operating system.

1. Program execution

2. I/O operations

3. File System manipulation

4. Communication

5. Error Detection

6. Resource Allocation

7. Protection

1. Program execution:-Operating systems handle many kinds of activities from user programs to system

programs like printer spooler, name servers, file server, etc. Each of these activities is encapsulated as a

process.

A process includes the complete execution context (code to execute, data to manipulate, registers, OS

resources in use). Following are the major activities of an operating system with respect to program

management −

• Loads a program into memory.

• Executes the program.

• Handles program's execution.

• Provides a mechanism for process synchronization.

• Provides a mechanism for process communication.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6

• Provides a mechanism for deadlock handling.

2. I/O Operation:-An I/O subsystem comprises of I/O devices and their corresponding driver software.

Drivers hide the peculiarities of specific hardware devices from the users.

An Operating System manages the communication between user and device drivers.

• I/O operation means read or write operation with any file or any specific I/O device.

• Operating system provides the access to the required I/O device when required.

3. File system manipulation:-A file represents a collection of related information. Computers can store

files on the disk (secondary storage), for long-term storage purpose. Examples of storage media include

magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of these media has its own

properties like speed, capacity, data transfer rate and data access methods.

A file system is normally organized into directories for easy navigation and usage. These directories may

contain files and other directions. Following are the major activities of an operating system with respect

to file management −

• Program needs to read a file or write a file.

• The operating system gives the permission to the program for operation on file.

• Permission varies from read-only, read-write, denied and so on.

• Operating System provides an interface to the user to create/delete files.

• Operating System provides an interface to the user to create/delete directories.

• Operating System provides an interface to create the backup of file system.

4. Communication:-In case of distributed systems which are a collection of processors that do not share

memory, peripheral devices, or a clock, the operating system manages communications between all the

processes. Multiple processes communicate with one another through communication lines in the

network.

The OS handles routing and connection strategies, and the problems of contention and security.

Following are the major activities of an operating system with respect to communication −

• Two processes often require data to be transferred between them

• Both the processes can be on one computer or on different computers, but are connected through

a computer network.

• Communication may be implemented by two methods, either by Shared Memory or by Message

Passing.

5. Error handling:-Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices

or in the memory hardware. Following are the major activities of an operating system with respect to error

handling −

• The OS constantly checks for possible errors.

• The OS takes an appropriate action to ensure correct and consistent computing.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

7

6. Resource Management:-In case of multi-user or multi-tasking environment, resources such as main

memory, CPU cycles and files storage are to be allocated to each user or job. Following are the major

activities of an operating system with respect to resource management −

• The OS manages all kinds of resources using schedulers.

• CPU scheduling algorithms are used for better utilization of CPU.

7. Protection:-Considering a computer system having multiple users and concurrent execution of

multiple processes, the various processes must be protected from each other's activities.

Protection refers to a mechanism or a way to control the access of programs, processes, or users to the

resources defined by a computer system. Following are the major activities of an operating system with

respect to protection.

• The OS ensures that all access to system resources is controlled.

• The OS ensures that external I/O devices are protected from invalid access attempts.

• The OS provides authentication features for each user by means of passwords.

SYSTEM CALLS:-A system call is the programmatic way in which a computer program requests a

service from the kernel of the operating system it is executed on. A system call is a way for programs to

interact with the operating system. A computer program makes a system call when it makes a request

to the operating system’s kernel. System call provides the services of the operating system to the user

programs via Application Program Interface (API). It provides an interface between a process and

operating system to allow user-level processes to request services of the operating system. System calls

are the only entry points into the kernel system. All programs needing resources must use system calls.

Services Provided by System Calls:

1. Process creation and management

2. Main memory management

3. File Access, Directory and File system management

4. Device handling(I/O)

5. Protection

6. Networking, etc.

Types of System Calls:- There are 5 different categories of system calls.

1. Process control: end, abort, create, terminate, allocate and free memory.

2. File management: create, open, close, delete, read file etc.

3. Device management

4. Information maintenance

5. Communication

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

8

Examples of Windows and UNIX System Calls are

 Types Windows Unix

Process Control CreateProcess() ExitProcess() WaitForSingleObject() fork() exit() wait()

File Manipulation CreateFile() ReadFile() WriteFile() CloseHandle()
open() read()

write() close()

Device Manipulation SetConsoleMode() ReadConsole() WriteConsole()
ioctl() read()

write()

Information

Maintenance
GetCurrentProcessID() SetTimer() Sleeo()

getpid() alarm()

sleep()

Communication CreatePipe() CreateFileMapping() MapViewOfFile()
pipe() shmget()

mmap()

Protection
SetFileSecurity() InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

chmod() umask()

chown()

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

9

UNIT-II

Process concept: -A process is basically a program in execution. The execution of a process must

progress in a sequential fashion. A process is defined as an entity which represents the basic unit of

work to be implemented in the system.

To put it in simple terms, we write our computer programs in a text file and when we execute this

program, it becomes a process which performs all the tasks mentioned in the program.

When a program is loaded into the memory and it becomes a process, it can be divided into four

sections stack, heap, text and data. The following image shows a simplified layout of a process inside

main memory.

Components and description of a process:-

1. Stack:-The process Stack contains the temporary data such as method/function parameters, return

address and local variables.

2. Heap:-This is dynamically allocated memory to a process during its run time.

3. Text:-This includes the current activity represented by the value of Program Counter and the

contents of the processor's registers.

4. Data:-This section contains the global and static variables.

Program:-A program is a piece of code which may be a single line or millions of lines. A computer

program is usually written by a computer programmer in a programming language. For example, here is

a simple program written in C programming language.

#include <stdio.h>

int main() {

 printf("Hello, World! \n");

 return 0;

}

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

10

A computer program is a collection of instructions that performs a specific task when executed by a

computer. When we compare a program with a process, we can conclude that a process is a dynamic

instance of a computer program.

A part of a computer program that performs a well-defined task is known as an algorithm. A collection

of computer programs, libraries and related data are referred to as software.

Process Life Cycle (or) process state diagram:-When a process executes, it passes through

different states. These stages may differ in different operating systems, and the names of these states

are also not standardized. In general, a process can have one of the following five states at a time.

State & Description

1. Start:-This is the initial state when a process is first started/created.

2. Ready:-The process is waiting to be assigned to a processor. Ready processes are waiting to

have the processor allocated to them by the operating system so that they can run. Process may

come into this state after Start state or while running it by but interrupted by the scheduler to

assign CPU to some other process.

3. Running:-Once the process has been assigned to a processor by the OS scheduler, the process

state is set to running and the processor executes its instructions.

4. Waiting:-Process moves into the waiting state if it needs to wait for a resource, such as waiting

for user input, or waiting for a file to become available.

5. Terminated or Exit:-Once the process finishes its execution, or it is terminated by the operating

system, it is moved to the terminated state where it waits to be removed from main memory.

Process Control Block (PCB):-A Process Control Block is a data structure maintained by the

Operating System for every process. The PCB is identified by an integer process ID (PID). A PCB keeps all

the information needed to keep track of a process as listed below in the table.The architecture of a PCB

is completely dependent on Operating System and may contain different information in different

operating systems. Here is a simplified diagram of a PCB.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

11

Information & Description:-

1. Process State:-The current state of the process i.e., whether it is ready, running, waiting, or

whatever.

2. Process privileges:-This is required to allow/disallow access to system resources.

3. Process ID:-Unique identification for each of the process in the operating system.

4. Pointer:-A pointer to parent process.

5. Program Counter:-Program Counter is a pointer to the address of the next instruction to be

executed for this process.

6. CPU registers:-Various CPU registers where process need to be stored for execution for running

state.

7. CPU Scheduling Information:-Process priority and other scheduling information which is

required to schedule the process.

8. Memory management information:-This includes the information of page table, memory limits,

Segment table depending on memory used by the operating system.

9.Accounting information:-This includes the amount of CPU used for process execution, time

limits, execution ID etc.

10. IO status information:-This includes a list of I/O devices allocated to the process.

The architecture of a PCB is completely dependent on Operating System and may contain different

information in different operating systems. Here is a simplified diagram of a PCB.The PCB is maintained

for a process throughout its lifetime, and is deleted once the process terminates.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

12

 Process Scheduling

Definition:-The process scheduling is the activity of the process manager that handles the removal of

the running process from the CPU and the selection of another process on the basis of a particular

strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating

systems allow more than one process to be loaded into the executable memory at a time and the loaded

process shares the CPU using time multiplexing.

Process Scheduling Queues:-The OS maintains all PCBs in Process Scheduling Queues. The OS

maintains a separate queue for each of the process states and PCBs of all processes in the same

execution state are placed in the same queue. When the state of a process is changed, its PCB is

unlinked from its current queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues.

• Job queue: - This queue keeps all the processes in the system.

• Ready queue:-This queue keeps a set of all processes residing in main memory, ready and

waiting to execute. A new process is always put in this queue.

• Device queues: - The processes which are blocked due to unavailability of an I/O device

constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The OS

scheduler determines how to move processes between the ready and run queues which can only have

one entry per processor core on the system; in the above diagram, it has been merged with the CPU.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scheduling Queues:-

1. All processes, upon entering into the system, are stored in the

2. Processes in the Ready state are placed in the

3. Processes waiting for a device to become available are placed in

unique device queues available for each I/O device.

A new process is initially put in the

execution (or dispatched). Once the process is assigned to the CPU and is executing, one of the following

several events can occur:

1. The process could issue an I/O request, and then be placed in the

2. The process could create a new sub process and wait for i

3. The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back

in the ready queue.

Process Schedulers:-Schedulers are special system software which handle process scheduling in

various ways. Their main task is to select the jobs to be submitted into the system and to decide which

process to run. Schedulers are of three types

1. Long-Term Scheduler

2. Short-Term Scheduler

3. Medium-Term Scheduler

1. Long Term Scheduler:-It is also called a

programs are admitted to the system for processing. It selects processes from the queue and loads them

into memory for execution. Process loads into the memory for CPU scheduling.

All processes, upon entering into the system, are stored in the Job Queue.

state are placed in the Ready Queue.

Processes waiting for a device to become available are placed in Device Queues

unique device queues available for each I/O device.

A new process is initially put in the Ready queue. It waits in the ready queue until it is selected for

(or dispatched). Once the process is assigned to the CPU and is executing, one of the following

The process could issue an I/O request, and then be placed in the I/O queue.

The process could create a new sub process and wait for its termination.

The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back

Schedulers are special system software which handle process scheduling in

sk is to select the jobs to be submitted into the system and to decide which

process to run. Schedulers are of three types.

Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which

programs are admitted to the system for processing. It selects processes from the queue and loads them

into memory for execution. Process loads into the memory for CPU scheduling.

13

Device Queues. There are

. It waits in the ready queue until it is selected for

(or dispatched). Once the process is assigned to the CPU and is executing, one of the following

The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back

Schedulers are special system software which handle process scheduling in

sk is to select the jobs to be submitted into the system and to decide which

term scheduler determines which

programs are admitted to the system for processing. It selects processes from the queue and loads them

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

14

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O bound and

processor bound. It also controls the degree of multiprogramming. If the degree of multiprogramming is

stable, then the average rate of process creation must be equal to the average departure rate of

processes leaving the system.On some systems, the long-term scheduler may not be available or

minimal. Time-sharing operating systems have no long term scheduler. When a process changes the

state from new to ready, then there is use of long-term scheduler.

2. Short Term Scheduler:-It is also called as CPU scheduler. Its main objective is to increase system

performance in accordance with the chosen set of criteria. It is the change of ready state to running

state of the process. CPU scheduler selects a process among the processes that are ready to execute and

allocates CPU to one of them.Short-term schedulers, also known as dispatchers, make the decision of

which process to execute next. Short-term schedulers are faster than long-term schedulers.

3. Medium Term Scheduler:-Medium-term scheduling is a part of swapping. It removes the processes

from the memory. It reduces the degree of multiprogramming. The medium-term scheduler is in-charge

of handling the swapped out-processes. A running process may become suspended if it makes an I/O

request. Suspended processes cannot make any progress towards completion. In this condition, to

remove the process from memory and make space for other processes, the suspended process is moved

to the secondary storage. This process is called swapping, and the process is said to be swapped out or

rolled out. Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

1 It is a job scheduler It is a CPU scheduler It is a process swapping scheduler.

2
Speed is lesser than short term

scheduler

Speed is fastest among other

two

Speed is in between both short

and long term scheduler.

3
It controls the degree of

multiprogramming

It provides lesser control over

degree of multiprogramming

It reduces the degree of

multiprogramming.

4
It is almost absent or minimal in

time sharing system

It is also minimal in time

sharing system

It is a part of Time sharing

systems.

5

It selects processes from pool

and loads them into memory for

execution

It selects those processes

which are ready to execute

It can re-introduce the process

into memory and execution can

be continued.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

15

Context Switch: - A context switch is the mechanism to store and restore the state or context of a

CPU in Process Control block so that a process execution can be resumed from the same point at a later

time. Using this technique, a context switcher enables multiple processes to share a single CPU. Context

switching is an essential part of a multitasking operating system features.

When the scheduler switches the CPU from executing one process to execute another, the state from

the current running process is stored into the process control block. After this, the state for the process

to run next is loaded from its own PCB and used to set the PC, registers, etc. At that point, the second

process can start executing.

Context switches are computationally intensive since register and memory state must be saved and

restored. To avoid the amount of context switching time, some hardware systems employ two or more

sets of processor registers. When the process is switched, the following information is stored for later

use.

• Program Counter

• Scheduling information

• Base and limit register value

• Currently used register

• Changed State

• I/O State information

• Accounting information

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

16

Scheduling algorithms

A Process Scheduler schedules different processes to be assigned to the CPU based on particular

scheduling algorithms. There are six popular process scheduling algorithms.

1. First-Come, First-Served (FCFS) Scheduling

2. Shortest-Job-Next (SJN) Scheduling

3. Priority Scheduling

4. Shortest Remaining Time

5. Round Robin(RR) Scheduling

6. Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are designed

so that once a process enters the running state; it cannot be preempted until it completes its allotted

time, whereas the preemptive scheduling is based on priority where a scheduler may preempt a low

priority running process anytime when a high priority process enters into a ready state.

1. First Come First Serve (FCFS):-

• Jobs are executed on first come, first serve basis.

• It is a non-preemptive, pre-emptive scheduling algorithm.

• Easy to understand and implement.

• Its implementation is based on FIFO queue.

• Poor in performance as average wait time is high.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

17

Wait time of each process is as follows.

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

2. Shortest Job Next (SJN):-

• This is also known as shortest job first, or SJF

• This is a non-preemptive, pre-emptive scheduling algorithm.

• Best approach to minimize waiting time.

• Easy to implement in Batch systems where required CPU time is known in advance.

• Impossible to implement in interactive systems where required CPU time is not known.

• The processer should know in advance how much time process will take.

Wait time of each process is as follows.

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

18

3. Priority Based Scheduling:-

• Priority scheduling is a non-preemptive algorithm and one of the most common scheduling

algorithms in batch systems.

• Each process is assigned a priority. Process with highest priority is to be executed first and so on.

• Processes with same priority are executed on first come first served basis.

• Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Wait time of each process is as follows.

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

4. Shortest Remaining Time:-

• Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

• The processor is allocated to the job closest to completion but it can be preempted by a newer

ready job with shorter time to completion.

• Impossible to implement in interactive systems where required CPU time is not known.

• It is often used in batch environments where short jobs need to give preference.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

19

5. Round Robin Scheduling:-

• Round Robin is the preemptive process scheduling algorithm.

• Each process is provided a fix time to execute, it is called a quantum.

• Once a process is executed for a given time period, it is preempted and other process executes

for a given time period.

• Context switching is used to save states of preempted processes.

Wait time of each process is as follows.

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

6. Multiple-Level Queues Scheduling:-

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing

algorithms to group and schedule jobs with common characteristics.

• Multiple queues are maintained for processes with common characteristics.

• Each queue can have its own scheduling algorithms.

• Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue.

The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based

on the algorithm assigned to the queue.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

20

Multi-Threading

 Thread:-A thread is a flow of execution through the process code, with its own program counter that

keeps track of which instruction to execute next, system registers which hold its current working

variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and open files.

When one thread alters a code segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to improve application performance

through parallelism. Threads represent a software approach to improving performance of operating

system by reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each thread

represents a separate flow of control. Threads have been successfully used in implementing network

servers and web server. They also provide a suitable foundation for parallel execution of applications on

shared memory multiprocessors. The following figure shows the working of a single-threaded and a

multithreaded process.

Types of Thread:-Threads are implemented in following two ways.

1. User Level Threads: - User managed threads.

2. Kernel Level Threads:-Operating System managed threads acting on kernel, an operating system

core.

User Level Threads:-In this case, the thread management kernel is not aware of the existence of

threads. The thread library contains code for creating and destroying threads, for passing message and

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

21

data between threads, for scheduling thread execution and for saving and restoring thread contexts.

The application starts with a single thread.

Advantages

• Thread switching does not require Kernel mode privileges.

• User level thread can run on any operating system.

• Scheduling can be application specific in the user level thread.

• User level threads are fast to create and manage.

Disadvantages

• In a typical operating system, most system calls are blocking.

• Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads:-In this case, thread management is done by the Kernel. There is no thread

management code in the application area. Kernel threads are supported directly by the operating

system. Any application can be programmed to be multithreaded. All of the threads within an

application are supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals threads within

the process. Scheduling by the Kernel is done on a thread basis. The Kernel performs thread creation,

scheduling and management in Kernel space. Kernel threads are generally slower to create and manage

than the user threads.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

22

Advantages

• Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

• If one thread in a process is blocked, the Kernel can schedule another thread of the same

process.

• Kernel routines themselves can be multithreaded.

Disadvantages

• Kernel threads are generally slower to create and manage than the user threads.

• Transfer of control from one thread to another within the same process requires a mode switch

to the Kernel.

Multithreading Models:-Some operating system provides a combined user level thread and Kernel level

thread facility. Solaris is a good example of this combined approach. In a combined system, multiple

threads within the same application can run in parallel on multiple processors and a blocking system call

need not block the entire process. Multithreading models are three types

1. Many to many relationship.

2. Many to one relationship.

3. One to one relationship.

1. Many to Many Models:-The many-to-many model multiplexes any number of user threads onto an

equal or smaller number of kernel threads.

The following diagram shows the many-to-many threading model where 6 user level threads are

multiplexing with 6 kernel level threads. In this model, developers can create as many user threads as

necessary and the corresponding Kernel threads can run in parallel on a multiprocessor machine. This

model provides the best accuracy on concurrency and when a thread performs a blocking system call,

the kernel can schedule another thread for execution.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

23

2. Many to One Model:-Many-to-one model maps many user level threads to one Kernel-level thread.

Thread management is done in user space by the thread library. When thread makes a blocking system

call, the entire process will be blocked. Only one thread can access the Kernel at a time, so multiple

threads are unable to run in parallel on multiprocessors.

If the user-level thread libraries are implemented in the operating system in such a way that the system

does not support them, then the Kernel threads use the many-to-one relationship modes.

4.One to One Model:-There is one-to-one relationship of user-level thread to the kernel-level thread.

This model provides more concurrency than the many-to-one model. It also allows another thread to

run when a thread makes a blocking system call. It supports multiple threads to execute in parallel on

microprocessors. Disadvantage of this model is that creating user thread requires the corresponding

Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship model.

Difference between User-Level & Kernel-Level Thread

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

24

s.no User-Level Threads Kernel-Level Thread

1
User-level threads are faster to create and

manage.

Kernel-level threads are slower to create and

manage.

2
Implementation is by a thread library at the user

level.

Operating system supports creation of Kernel

threads.

3
User-level thread is generic and can run on any

operating system.

Kernel-level thread is specific to the operating

system.

4
Multi-threaded applications cannot take

advantage of multiprocessing.

Kernel routines themselves can be

multithreaded.

Interprocess Communication

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other processes, including sharing data

• Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• Cooperating processes need inter process communication (IPC)

• Two models of IPC

• Shared memory

• Message passing

Communications Models

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

25

Cooperating Processes

• Independent process cannot affect or be affected by the execution of another process

• Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

• Convenience

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process produces information that is consumed

by a consumer process

• unbounded-buffer places no practical limit on the size of the buffer

• bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

Shared data

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

 while (true) {

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

26

 in = (in + 1) % BUFFER SIZE;

 }

Bounded Buffer – Consumer

while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

Interprocess Communication – Message Passing

• Mechanism for processes to communicate and to synchronize their actions

• Message system – processes communicate with each other without resorting to shared

variables

• IPC facility provides two operations:

• send(message) – message size fixed or variable

• receive(message)

• If P and Q wish to communicate, they need to:

• establish a communication link between them

• exchange messages via send/receive

• Implementation of communication link

• physical (e.g., shared memory, hardware bus)

• logical (e.g., logical properties)

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

27

Indirect Communication

• Messages are directed and received from mailboxes (also referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bi-directional

• Operations

• create a new mailbox

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

• send(A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• Blocking send has the sender block until the message is received

• Blocking receive has the receiver block until a message is available

• Non-blocking is considered asynchronous

• Non-blocking send has the sender send the message and continue

• Non-blocking receive has the receiver receive a valid message or null

Buffering

Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

28

3. Unbounded capacity – infinite length

Sender never waits

Examples of IPC systems

1. Posix : uses shared memory method.

2. Mach : uses message passing

3. Windows XP : uses message passing using local procedural calls

Scheduling Criteria:-There are many different criteria’s to check when considering

the "best" scheduling algorithm, they are:

1. CPU Utilization: - To make out the best use of CPU and not to waste any CPU cycle, CPU would be

working most of the time (Ideally 100% of the time). Considering a real system, CPU usage should range

from 40% (lightly loaded) to 90% (heavily loaded.)

2. Throughput:-It is the total number of processes completed per unit time or rather say total amount of

work done in a unit of time. This may range from 10/second to 1/hour depending on the specific

processes.

3. Turnaround Time:-It is the amount of time taken to execute a particular process, i.e. The interval from

time of submission of the process to the time of completion of the process (Wall clock time).

4. Waiting Time:-The sum of the periods spent waiting in the ready queue amount of time a process has

been waiting in the ready queue to acquire get control on the CPU.

5. Load Average:-It is the average number of processes residing in the ready queue waiting for their turn

to get into the CPU.

6. Response Time:- Amount of time it takes from when a request was submitted until the first response is

produced. Remember, it is the time till the first response and not the completion of process execution

(final response).

In general CPU utilization and Throughput are maximized and other factors are reduced for proper

optimization.

Operations on Process:-Below we have discussed the two major operations Process

Creation and Process Termination.

1.Process Creation:-

• Parent process create children processes, which, in turn create other processes, forming a tree

of processes

• Generally, process identified and managed via a process identifier (pid)

• Resource sharing

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

• Execution

• Parent and children execute concurrently

• Parent waits until children terminate

• Address space

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

29

• Child duplicate of parent

• Child has a program loaded into it

• UNIX examples

• fork system call creates new process

• exec system call used after a fork to replace the process’ memory space with a new program

Process Creation:-

C Program Forking Separate Process

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

30

 exit(0);

 }

}

A tree of processes on a typical Solaris

2. Process Termination:-

• Process executes last statement and asks the operating system to delete it (exit)

• Output data from child to parent (via wait)

• Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort)

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• If parent is exiting

Some operating system do not allow child to continue if its parent terminates

All children terminated - cascading termination

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

31

Multithreading Issues: The following are few issues related to multithreading.

1. Thread Cancellation:-Thread cancellation means terminating a thread before it has finished

working. There can be two approaches for this; one is Asynchronous cancellation, which terminates

the target thread immediately. The other is Deferred cancellation allows the target thread to

periodically check if it should be cancelled.

2. Signal Handling:-Signals are used in UNIX systems to notify a process that a particular event has

occurred. Now in when a multithreaded process receives a signal, to which thread it must be

delivered? It can be delivered to all, or a single thread.

3.fork() System Call:-fork() is a system call executed in the kernel through which a process creates a

copy of itself. Now the problem in Multithreaded process is, if one thread forks, will the entire process

be copied or not?

4. Security Issues:-Yes, there can be security issues because of extensive sharing of resources between

multiple threads.

There are many other issues that you might face in a multithreaded process, but there are appropriate

solutions available for them. Pointing out some issues here was just to study both sides of the coin.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

32

Unit-III

Memory Management

• To provide a detailed description of various ways of organizing memory hardware

• To discuss various memory-management techniques, including paging and segmentation

• To provide a detailed description of the Intel Pentium, which supports both pure segmentation

and segmentation with paging

• Program must be brought (from disk) into memory and placed within a process for it to be run

• Main memory and registers are only storage CPU can access directly

• Register access in one CPU clock (or less)

• Main memory can take many cycles

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation

Base and Limit Registers:-

A pair of base and limit registers define the logical address space

Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses can happen at three different

stages

• Compile time: If memory location known a priori, absolute code can be generated; must

recompile code if starting location changes

• Load time: Must generate relocatable code if memory location is not known at compile time

• Execution time: Binding delayed until run time if the process can be moved during its execution

from one memory segment to another. Need hardware support for address maps (e.g., base

and limit registers)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

33

Multistep Processing of a User Program

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a separate physical address space is

central to proper memory management

• Logical address – generated by the CPU; also referred to as virtual address

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-time address-binding

schemes; logical (virtual) and physical addresses differ in execution-time address-binding

scheme

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address

• In MMU scheme, the value in the relocation register is added to every address generated by a

user process at the time it is sent to memory

• The user program deals with logical addresses; it never sees the real physical addresses

Dynamic relocation using a relocation register

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

34

Dynamic Loading

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded

• Useful when large amounts of code are needed to handle infrequently occurring cases

• No special support from the operating system is required implemented through program design

Dynamic Linking

• Linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory-resident library routine

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system needed to check if routine is in processes’ memory address

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

Swapping:-

• A process can be swapped temporarily out of memory to a backing store, and then brought back

into memory for continued execution .

• Backing store – fast disk large enough to accommodate copies of all memory images for all

users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority

process is swapped out so higher-priority process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly proportional to the

amount of memory swapped

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

• System maintains a ready queue of ready-to-run processes which have memory images on disk

Schematic View of Swapping

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

35

Contiguous memory Allocation:-

• Main memory usually into two partitions:

• Resident operating system, usually held in low memory with interrupt vector

• User processes then held in high memory

• Relocation registers used to protect user processes from each other, and from changing

operating-system code and data

• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each logical address must be less than the

limit register

• MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

• Multiple-partition allocation

• Hole – block of available memory; holes of various size are scattered throughout memory

• When a process arrives, it is allocated memory from a hole large enough to accommodate it

• Operating system maintains information about:

• a) allocated partitions b) free partitions (hole)

•

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

36

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by

size Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

• Produces the largest leftover hole

• First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Fragmentation:-

• External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly larger than requested memory; this

size difference is memory internal to a partition, but not being used

• Reduce external fragmentation by compaction

• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if relocation is dynamic, and is done at execution time.

• I/O problem

Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

PAGING

• Logical address space of a process can be noncontiguous; process is allocated physical memory

whenever the latter is available

• Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512

bytes and 8,192 bytes)

• Divide logical memory into blocks of same size called pages N Keep track of all free frames

• To run a program of size n pages, need to find n free frames and load program

• Set up a page table to translate logical to physical addresses

• Internal fragmentation

Address Translation Scheme:-

• Address generated by CPU is divided into

• Page number (p) – used as an index into a page table which contains base address of each page

in physical memory

• Page offset (d) – combined with base address to define the physical memory address that is

sent to the memory unit

• For given logical address space 2m and page size 2n

Paging Hardware

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

37

Paging Model of Logical and Physical Memory

Paging Example

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

38

32-byte memory and 4-byte pages

Free Frames

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PRLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses. One for the page

table and one for the data/instruction.

• The two memory access problem can be solved by the use of a special fast-lookup hardware

cache called associative memory or translation look-aside buffers (TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each

process to provide address-space protection for that process

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

39

Paging Hardware With TLB

Effective Access Time

• Associative Lookup = e time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page number is found in the associative registers; ratio

related to number of associative registers

• Hit ratio = an Effective Access Time (EAT)

 EAT = (1 + e) a + (2 + e)(1 – a)

 = 2 + e – a

Memory Protection

• Memory protection implemented by associating protection bit with each frame

• Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process’ logical address space, and is thus a

legal page

• “invalid” indicates that the page is not in the process’ logical address space

• Valid (v) or Invalid (i) Bit In A Page Table

Shared Pages

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

40

Shared code

• One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers,

window systems).

• Shared code must appear in same location in the logical address space of all processes

Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in the logical address space

Shared Pages Example

Structure of the Page Table

1. Hierarchical Paging

2. Hashed Page Tables

3. Inverted Page Tables

1.Hierarchical Page Tables:-

• Break up the logical address space into multiple page tables

• A simple technique is a two-level page table

Two-Level Page-Table Scheme

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

41

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

• a 12-bit page number

• a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page of the

outer page table

Address-Translation Scheme

Three-level Paging Scheme

page number page offset

pi p2 d

12 10 10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

42

2.Hashed Page Tables:-

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Virtual page numbers are compared in this chain searching for a match

• If a match is found, the corresponding physical frame is extracted

Hashed Page Table

3. Inverted Page Table:-

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns that page

• Decreases memory needed to store each page table, but increases time needed to search the

table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-table entries

Inverted Page Table Architecture

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

43

Segmentation

Memory-management scheme that supports user view of memory

• A program is a collection of segments

• A segment is a logical unit such as:

• main program

• procedure function

• method

• object

• local variables, global variables

• common block

• stack

• symbol table

• arrays

User’s View of a Program

Logical View of Segmentation

1

3

2

4

1

4

2

3
User space

Physical memory space

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

44

Segmentation Architecture

• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table entry has:

• base – contains the starting physical address where the segments reside in memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s location in memory

• Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR

• Protection

• With each entry in segment table associate:

• validation bit = 0 Þ illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at segment level

• Since segments vary in length, memory allocation is a dynamic storage-allocation problem

• A segmentation example is shown in the following diagram

Segmentation Hardware

Example of Segmentation

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

45

Example: The Intel Pentium

• Supports both segmentation and segmentation with paging

• CPU generates logical address

• Given to segmentation unit

Which produces linear addresses

• Linear address given to paging unit

Which generates physical address in main memory

Paging units form equivalent of MMU

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

Pentium Paging Architecture

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

46

Linear Address in Linux

Three-level Paging in Linux

Virtual memory:-A computer can address more memory than the amount physically installed on

the system. This extra memory is actually called virtual memory and it is a section of a hard disk that's

set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical memory. Virtual

memory serves two purposes. First, it allows us to extend the use of physical memory by using disk.

Second, it allows us to have memory protection, because each virtual address is translated to a physical

address.

Following are the situations, when entire program is not required to be loaded fully in main memory.

• User written error handling routines are used only when an error occurred in the data or

computation.

• Certain options and features of a program may be used rarely.

• Many tables are assigned a fixed amount of address space even though only a small amount of

the table is actually used.

• The ability to execute a program that is only partially in memory would counter many benefits.

• Less number of I/O would be needed to load or swap each user program into memory.

• A program would no longer be constrained by the amount of physical memory that is available.

• Each user program could take less physical memory, more programs could be run the same

time, with a corresponding increase in CPU utilization and throughput.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

47

Modern microprocessors intended for general-purpose use, a memory management unit, or MMU, is

built into the hardware. The MMU's job is to translate virtual addresses into physical addresses. A basic

example is given below.

Virtual memory is commonly implemented by demand paging. It can also be implemented in a

segmentation system. Demand segmentation can also be used to provide virtual memory.

Demand Paging:-A demand paging system is quite similar to a paging system with swapping where

processes reside in secondary memory and pages are loaded only on demand, not in advance. When a

context switch occurs, the operating system does not copy any of the old program’s pages out to the

disk or any of the new program’s pages into the main memory Instead, it just begins executing the new

program after loading the first page and fetches that program’s pages as they are referenced.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

48

While executing a program, if the program references a page which is not available in the main memory

because it was swapped out a little ago, the processor treats this invalid memory reference as a page

fault and transfers control from the program to the operating system to demand the page back into the

memory.

Advantages:-Following are the advantages of Demand Paging.

• Large virtual memory.

• More efficient use of memory.

• There is no limit on degree of multiprogramming.

Disadvantages:-

• Number of tables and the amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System decides which

memory pages to swap out, write to disk when a page of memory needs to be allocated. Paging happens

whenever a page fault occurs and a free page cannot be used for allocation purpose accounting to

reason that pages are not available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced again, it has to read

in from disk, and this requires for I/O completion. This process determines the quality of the page

replacement algorithm: the lesser the time waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the pages provided by

hardware, and tries to select which pages should be replaced to minimize the total number of page

misses, while balancing it with the costs of primary storage and processor time of the algorithm itself.

There are many different page replacement algorithms. We evaluate an algorithm by running it on a

particular string of memory reference and computing the number of page faults,

Reference String:-

The string of memory references is called reference string. Reference strings are generated artificially or

by tracing a given system and recording the address of each memory reference. The latter choice

produces a large number of data, where we note two things.

• For a given page size, we need to consider only the page number, not the entire address.

• If we have a reference to a page p, then any immediately following references to page p will

never cause a page fault. Page p will be in memory after the first reference; the immediately

following references will not fault.

• For example, consider the following sequence of addresses − 123,215,600,1234,76,96

• If page size is 100, then the reference string is 1,2,6,12,0,0

1. First In First Out (FIFO) algorithm:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

49

• Oldest page in main memory is the one which will be selected for replacement.

• Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

2. Optimal Page algorithm:-

• An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An

optimal page-replacement algorithm exists, and has been called OPT or MIN.

• Replace the page that will not be used for the longest period of time. Use the time when a page

is to be used.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

50

3. Least Recently Used (LRU) algorithm:-

• Page which has not been used for the longest time in main memory is the one which will be

selected for replacement.

• Easy to implement, keep a list, replace pages by looking back into time.

4. Page Buffering algorithm:-

• To get a process start quickly, keep a pool of free frames.

• On page fault, select a page to be replaced.

• Write the new page in the frame of free pool, mark the page table and restart the process.

• Now write the dirty page out of disk and place the frame holding replaced page in free pool.

5. Least frequently Used (LFU) algorithm:-

• The page with the smallest count is the one which will be selected for replacement.

• This algorithm suffers from the situation in which a page is used heavily during the initial phase

of a process, but then is never used again.

6. Most frequently Used (MFU) algorithm:-

• This algorithm is based on the argument that the page with the smallest count was probably just

brought in and has yet to be used.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

51

Thrashing:-A process that is spending more time paging than executing is said to be thrashing. In

other words it means, that the process doesn't have enough frames to hold all the pages for its

execution, so it is swapping pages in and out very frequently to keep executing. Sometimes, the pages

which will be required in the near future have to be swapped out.

Initially when the CPU utilization is low, the process scheduling mechanism, to increase the level

of multiprogramming loads multiple processes into the memory at the same time, allocating a limited

amount of frames to each process. As the memory fills up, process starts to spend a lot of time for the

required pages to be swapped in, again leading to low CPU utilization because most of the processes are

waiting for pages. Hence the scheduler loads more processes to increase CPU utilization, as this

continues at a point of time the complete system comes to a stop

To prevent thrashing we must provide processes with as many frames as they really need right now.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT-IV
SYLLABUS

Concurrency: Process Synchronization, The Critical- Section Problem, Synchronization
Hardware, Semaphores, Classic Problems of Synchronization, Monitors,
Synchronization examples
Principles of deadlock – System Model, Deadlock Characterization, Deadlock
Prevention, Detection and Avoidance, Recovery form Deadlock

Process Synchronization

Process Synchronization means sharing system resources by processes in a such a way that,

Concurrent access to shared data is handled thereby minimizing the chance of inconsistent data.

Maintaining data consistency demands mechanisms to ensure synchronized execution of

cooperating processes.

Critical Section Problem

A Critical Section is a code segment that accesses shared variables and has to be executed as an

atomic action. It means that in a group of cooperating processes, at a given point of time, only

one process must be executing its critical section. If any other process also wants to execute its

critical section, it must wait until the first one finishes.

Solution to Critical Section Problem

A solution to the critical section problem must satisfy the following three conditions:

1. Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section at a
given point of time.

2. Progress

If no process is in its critical section, and if one or more threads want to execute their critical

section then any one of these threads must be allowed to get into its critical section.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3. Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit for how many

other processes can get into their critical section, before this process's request is granted. So after

the limit is reached, system must grant the process permission to get into its critical section.

Synchronization Hardware

Many systems provide hardware support for critical section code. The critical section problem

could be solved easily in a single-processor environment if we could disallow interrupts to occur

while a shared variable or resource is being modified.

In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without pre-emption. Unfortunately, this solution is not feasible in a

multiprocessor environment.

Disabling interrupt on a multiprocessor environment can be time consuming as the message is

passed to all the processors.

This message transmission lag, delays entry of threads into critical section and the system

efficiency decreases.

Introduction to Semaphores

In 1965, Dijkstra proposed a new and very significant technique for managing concurrent

processes by using the value of a simple integer variable to synchronize the progress of

interacting processes. This integer variable is called semaphore. So it is basically a

synchronizing tool and is accessed only through two low standard atomic

operations, wait and signal designated by P(S) and V(S)respectively.

In very simple words, semaphore is a variable which can hold only a non-negative Integer

value, shared between all the threads, with operations wait and signal, which work as follow:

P(S): if S ≥ 1 then S := S - 1

 else <block and enqueue the process>;

V(S): if <some process is blocked on the queue> then <unblock a process>

 else S := S + 1;

The classical definitions of wait and signal are:

• Wait: Decrements the value of its argument S, as soon as it would become non-

negative(greater than or equal to 1).

• Signal: Increments the value of its argument S, as there is no more process blocked

on the queue.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Properties of Semaphores

1. It's simple and always have a non-negative Integer value.
2. Works with many processes.
3. Can have many different critical sections with different semaphores.
4. Each critical section has unique access semaphores.
5. Can permit multiple processes into the critical section at once, if desirable.

Types of Semaphores

Semaphores are mainly of two types:

1. Binary Semaphore:

It is a special form of semaphore used for implementing mutual exclusion, hence it is
often called a Mutex. A binary semaphore is initialized to 1 and only takes the
values 0 and 1 during execution of a program.

2. Counting Semaphores:

These are used to implement bounded concurrency.

Example of Use

Here is a simple step wise implementation involving declaration and usage of semaphore.

Shared var mutex: semaphore = 1;

Process i

 begin

 .

 .

 P(mutex);

 execute CS;

 V(mutex);

 .

 .

 End;

Limitations of Semaphores

1. Priority Inversion is a big limitation of semaphores.

2. Their use is not enforced, but is by convention only.

3. With improper use, a process may block indefinitely.

Classical Problems of Synchronization:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Classical problems used to test newly-proposed synchronization schemes o

Bounded-Buffer Problem

o Readers and Writers Problem

o Dining-Philosophers Problem

Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value N

The structure of the producer process

do {

 produce an item in nextp

wait (empty);

wait (mutex);

 add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

 The structure of the consumer process

do {

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

wait (full);

wait (mutex);

// remove an item from buffer to nextc

signal (mutex);

signal (empty);

 consume the item in nextc

} while (TRUE);

Readers-Writers Problem:

 A data set is shared among a number of concurrent processes

o Readers – only read the data set; they do not perform any updates

o Writers – can both read and write

Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are treated – all involve priorities

Shared Data

 Data set

 Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer readcount initialized to 0

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The structure of a writer process

do {

wait (wrt) ;

 writing is performed

signal (wrt) ;

} while (TRUE);

 The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

 reading is performed

wait (mutex) ; readcount

- - ;

if (readcount == 0)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

Dining-Philosophers Problem

Philosophers spend their lives thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a

time) to eat from bowl

 Need both to eat, then release both when done

In the case of 5 philosophers

 Shared data

 Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1

The structure of Philosopher i:

do {

it (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 think

} while (TRUE);

Monitors

A high-level abstraction that provides a convenient and effective mechanism for process

synchronization

Abstract data type, internal variables only accessible by code within the procedure

Only one process may be active within the monitor at a time

But not powerful enough to model some synchronization schemes

monitor monitor-name

{

 shared variable declarations

procedure P1 (…) { …. }

procedurePn (…) {……}

Initialization code (…) { … }

}

}

Classical Problems of Synchronization

Semaphore can be used in other synchronization problems besides Mutual Exclusion.

Below are some of the classical problem depicting flaws of process synchronaization in systems

where cooperating processes are present.

We will discuss the following three problems:

1. Bounded Buffer (Producer-Consumer) Problem

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2. The Readers Writers Problem

3. Dining Philosophers Problem

Bounded Buffer Problem

• This problem is generalised in terms of the Producer Consumer problem, where

a finite buffer pool is used to exchange messages between producer and consumer

processes.

Because the buffer pool has a maximum size, this problem is often called the Bounded
buffer problem.

• Solution to this problem is, creating two counting semaphores "full" and "empty" to

keep track of the current number of full and empty buffers respectively.

The Readers Writers Problem

• In this problem there are some processes(called readers) that only read the shared

data, and never change it, and there are other processes(called writers) who may

change the data in addition to reading, or instead of reading it.

• There are various type of readers-writers problem, most centred on relative priorities

of readers and writers.

Dining Philosophers Problem

• The dining philosopher's problem involves the allocation of limited resources to a

group of processes in a deadlock-free and starvation-free manner.

• There are five philosophers sitting around a table, in which there are five

chopsticks/forks kept beside them and a bowl of rice in the centre, When a philosopher

wants to eat, he uses two chopsticks - one from their left and one from their right. When

a philosopher wants to think, he keeps down both chopsticks at their original place.

PRINCIPLES OF DEAD LOCKS:-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

What is a Deadlock?

Deadlocks are a set of blocked processes each holding a resource and waiting to acquire a
resource held by another process.

How to avoid Deadlocks

Deadlocks can be avoided by avoiding at least one of the four conditions, because all this
four conditions are required simultaneously to cause deadlock.

1. Mutual Exclusion

Resources shared such as read-only files do not lead to deadlocks but resources, such
as printers and tape drives, requires exclusive access by a single process.

2. Hold and Wait

In this condition processes must be prevented from holding one or more resources while
simultaneously waiting for one or more others.

3. No Preemption

Preemption of process resource allocations can avoid the condition of deadlocks, where ever

possible.

4. Circular Wait

Circular wait can be avoided if we number all resources, and require that processes request

resources only in strictly increasing(or decreasing) order.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Handling Deadlock

The above points focus on preventing deadlocks. But what to do once a deadlock has occured.

Following three strategies can be used to remove deadlock after its occurrence.

1. Preemption

We can take a resource from one process and give it to other. This will resolve the deadlock

situation, but sometimes it does causes problems.

2. Rollback

In situations where deadlock is a real possibility, the system can periodically make a record

of the state of each process and when deadlock occurs, roll everything back to the last

checkpoint, and restart, but allocating resources differently so that deadlock does not occur.

3. Kill one or more processes

This is the simplest way, but it works.

Deadlock avoidance

As you saw already, most prevention algorithms have poor resource utilization, and hence result

in reduced throughputs. Instead, we can try to avoid deadlocks by making use prior knowledge

about the usage of resources by processes including resources available, resources allocated,

future requests and future releases by processes. Most deadlock avoidance algorithms need every

process to tell in advance the maximum number of resources of each type that it may need.

Based on all these info we may decide if a process should wait for a resource or not, and thus

avoid chances for circular wait.

If a system is already in a safe state, we can try to stay away from an unsafe state and avoid

deadlock. Deadlocks cannot be avoided in an unsafe state. A system can be considered to be in

safe state if it is not in a state of deadlock and can allocate resources upto the maximum

available. A safe sequence of processes and allocation of resources ensures a safe state. Deadlock

avoidance algorithms try not to allocate resources to a process if it will make the system in an

unsafe state. Since resource allocation is not done right away in some cases, deadlock

avoidance algorithms also suffer from low resource utilization problem.

A resource allocation graph is generally used to avoid deadlocks. If there are no cycles in the

resource allocation graph, then there are no deadlocks. If there are cycles, there may be a

deadlock. If there is only one instance of every resource, then a cycle implies a deadlock.

Vertices of the resource allocation graph are resources and processes. The resource allocation

graph has request edges and assignment edges. An edge from a process to resource is a request

edge and an edge from a resource to process is an allocation edge. A calm edge denotes that a

request may be made in future and is represented as a dashed line. Based on calm edges we can

see if there is a chance for a cycle and then grant requests if the system will again be in a safe

state.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Consider the image with calm edges as below:

If R2 is allocated to p2 and if P1 request for R2, there will be a deadlock.

The resource allocation graph is not much useful if there are multiple instances for a resource. In

such a case, we can use Banker’s algorithm. In this algorithm, every process must tell upfront the

maximum resource of each type it need, subject to the maximum available instances for each

type. Allocation of resources is made only, if the allocation ensures a safe state; else the

processes need to wait. The Banker’s algorithm can be divided into two parts: Safety algorithm if

a system is in a safe state or not. The resource request algorithm make an assumption of

allocation and see if the system will be in a safe state. If the new state is unsafe, the resources are

not allocated and the data structures are restored to their previous state; in this case the processes

must wait for the resource.

Deadlock Detection

If deadlock prevention and avoidance are not done properly, as deadlock may occur and only

things left to do is to detect the recover from the deadlock.

If all resource types has only single instance, then we can use a graph called wait-for-graph,

which is a variant of resource allocation graph. Here, vertices represent processes and a directed

edge from P1 to P2 indicate that P1 is waiting for a resource held by P2. Like in the case of

 resource allocation graph, a cycle in a wait-for-graph indicate a deadlock. So the system can

maintain a wait-for-graph and check for cycles periodically to detect any deadlocks.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The wait-for-graph is not much useful if there are multiple instances for a resource, as a cycle

may not imply a deadlock. In such a case, we can use an algorithm similar to Banker’s algorithm

to detect deadlock. We can see if further allocations can be made on not based on current

allocations. You can refer to any operating system text books for details of these algorithms.

 Deadlock Recovery

Once a deadlock is detected, you will have to break the deadlock. It can be done through

different ways, including, aborting one or more processes to break the circular wait condition

causing the deadlock and preempting resources from one or more processes which are

deadlocked.

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire additional

resources held by other processes

No preemption: a resource can be released only voluntarily by the process holding it,

after that process has completed its task

Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that P0 is

waiting for a resource that is held by P1, P1 is waiting for a resource that is held by

P2, …,Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting for a

resource that is held by P0.

Deadlock Prevention

Restrain the ways request can be made

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

utual Exclusion – not required for sharable resources; must hold for nonsharable

resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not

hold any other resources

 Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process has none

 Low resource utilization; starvation possible

No Preemption –

 If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released

 Preempted resources are added to the list of resources for which the process is
waiting

 Process will be restarted only when it can regain its old resources, as well as the
new ones that it is requesting

Circular Wait – impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional a priori information available

Simplest and most useful model requires that each process declare the maximum number of

resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation state to

ensure that there can never be a circular-wait condition

Resource-allocation state is defined by the number of available and allocated resources,

and the maximum demands of the processes

Safe State

When a process requests an available resource, system must decide if immediate

allocation leaves the system in a safe state

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes in

the systems such that for each Pi, the resources that Pi can still request can be satisfied

by currently available resources + resources held by all the Pj, with j <I

That is:

 If Pi resource needs are not immediately available, then Pi can wait until

all Pjhave finished

 When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate

 then Pi terminates, Pi +1 can obtain its needed resources, and so on

If a system is in safe state no deadlocks

If a system is in unsafe state possibility of deadlock

Avoidance ensure that a system will never enter an unsafe state

Avoidance algorithms

Single instance of a resource type

 Use a resource-allocation graph

Multiple instances of a resource type

 Use the banker’s algorithm

Resource-Allocation Graph Scheme

Claim edgePiÆRj indicated that process Pj may request resource Rj; represented by a

dashed line

Claim edge converts to request edge when a process requests a resource

Request edge converted to an assignment edge when the resource is allocated to the

process

When a resource is released by a process, assignment edge reconverts to a claim edge

Resources must be claimed a priori in the system

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite amount of time

Let n = number of processes, and m = number of resources types.

Available: Vector of length m. If available [j] = k, there are k instances of resource type

Rjavailable

Max: n x m matrix. If Max [i,j] = k, then process Pimay request at most k instances of

resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances

of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rjto complete

its task

Need [i,j] = Max[i,j] – Allocation [i,j]

safety Algorithm

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 Let Work and Finish be vectors of length m and n, respectively.

Initialize: Work = Available

Finish [i] = false fori = 0, 1, …,n- 1

 Find an isuch that both:

 Finish [i] = false

 Needi£Work

If no such iexists, go to step 4

 Work = Work +

Allocationi Finish[i] = true

go to step 2

4.IfFinish [i] == true for all i, then the system is in a safe

state Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti[j] = k then process Pi wants k

instances of resource type Rj

 If Requesti£Needigo to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim

 If Requesti£Available, go to step 3. Otherwise Pi must wait, since resources are not

available

 Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available –

Request; Allocationi=

Allocationi + Requesti;

Needi=Needi – Requesti;

o If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state is

restored

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Example of Banker’s Algorithm

5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence <P1, P3, P4, P2, P0> satisfies

safety criteria

P1 Request (1,0,2)

Check that Request £ Available (that is, (1,0,2) £ (3,3,2) true

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

Recovery from Deadlock:

Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer to completion

 Resources the process has used

 Resources process needs to complete

 How many processes will need to be terminated

 Is process interactive or batch?

Resource Preemption

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, include number of rollback

in cost factor

UNIT-V

SYLLABUS

File system Interface- the concept of a file, Access Methods, Directory structure, File

system mounting, file sharing, protection.

File System implementation- File system structure, allocation methods, free-space

management

Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device

drivers.

The concept of a file

File

A file is a named collection of related information that is recorded on secondary storage

such as magnetic disks, magnetic tapes and optical disks. In general, a file is a sequence of

bits, bytes, lines or records whose meaning is defined by the files creator and user.

File Structure

A File Structure should be according to a required format that the operating system can

understand.

• A file has a certain defined structure according to its type.

• A text file is a sequence of characters organized into lines.

• A source file is a sequence of procedures and functions.

• An object file is a sequence of bytes organized into blocks that are understandable by

the machine.

• When operating system defines different file structures, it also contains the code to

support these file structure. Unix, MS-DOS support minimum number of file

structure.

File Type

File type refers to the ability of the operating system to distinguish different types of file

such as text files source files and binary files etc. Many operating systems support many

types of files. Operating system like MS-DOS and UNIX have the following types of files −

Ordinary files

• These are the files that contain user information.

• These may have text, databases or executable program.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

• The user can apply various operations on such files like add, modify, delete or even remove the

entire file.

Directory files

• These files contain list of file names and other information related to these files.

Special files

• These files are also known as device files.

• These files represent physical device like disks, terminals, printers, networks, tape drive etc.

These files are of two types −

• Character special files − data is handled character by character as in case of terminals or

printers.

• Block special files − data is handled in blocks as in the case of disks and tapes.

File Access Methods
File access mechanism refers to the manner in which the records of a file may be accessed.

There are several ways to access files −

• Sequential access

• Direct/Random access

• Indexed sequential access

Sequential access

A sequential access is that in which the records are accessed in some sequence, i.e., the

information in the file is processed in order, one record after the other. This access method is

the most primitive one. Example: Compilers usually access files in this fashion.

Direct/Random access

• Random access file organization provides, accessing the records directly.

• Each record has its own address on the file with by the help of which it can be

directly accessed for reading or writing.

• The records need not be in any sequence within the file and they need not be in

adjacent locations on the storage medium.

Indexed sequential access

• This mechanism is built up on base of sequential access.

• An index is created for each file which contains pointers to various blocks.

• Index is searched sequentially and its pointer is used to access the file directly.

Space Allocation

Files are allocated disk spaces by operating system. Operating systems deploy following

three main ways to allocate disk space to files.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

• Contiguous Allocation

• Linked Allocation

• Indexed Allocation

Contiguous Allocation

• Each file occupies a contiguous address space on disk.

• Assigned disk address is in linear order.

• Easy to implement.

• External fragmentation is a major issue with this type of allocation technique.

Linked Allocation

• Each file carries a list of links to disk blocks.

• Directory contains link / pointer to first block of a file.

• No external fragmentation

• Effectively used in sequential access file.

• Inefficient in case of direct access file.

Indexed Allocation

• Provides solutions to problems of contiguous and linked allocation.

• A index block is created having all pointers to files.

• Each file has its own index block which stores the addresses of disk space occupied by the file.

• Directory contains the addresses of index blocks of files.

Directory structure

Directory is a symbol table of files that stores all the related information about the file it hold

with the contents. Directory is a list of files. Each entry of a directory define a file

information like a file name, type, its version number, size ,owner of file, access rights, date

of creation and date of last backup.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Unit-VI

Components of Linux System

Linux Operating System has primarily three components

• Kernel − Kernel is the core part of Linux. It is responsible for all major activities of

this operating system. It consists of various modules and it interacts directly with the

underlying hardware. Kernel provides the required abstraction to hide low level

hardware details to system or application programs.

• System Library − System libraries are special functions or programs using which

application programs or system utilities accesses Kernel's features. These libraries

implement most of the functionalities of the operating system and do not requires

kernel module's code access rights.

• System Utility − System Utility programs are responsible to do specialized,

individual level tasks.

Kernel Mode vs User Mode

Kernel component code executes in a special privileged mode called kernel mode with full

access to all resources of the computer. This code represents a single process, executes in

single address space and do not require any context switch and hence is very efficient and

fast. Kernel runs each processes and provides system services to processes, provides

protected access to hardware to processes.

Support code which is not required to run in kernel mode is in System Library. User

programs and other system programs works in User Mode which has no access to system

hardware and kernel code. User programs/ utilities use System libraries to access Kernel

functions to get system's low level tasks.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Basic Features

Following are some of the important features of Linux Operating System.

• Portable − Portability means software can works on different types of hardware in

same way. Linux kernel and application programs supports their installation on any

kind of hardware platform.

• Open Source − Linux source code is freely available and it is community based

development project. Multiple teams work in collaboration to enhance the capability

of Linux operating system and it is continuously evolving.

• Multi-User − Linux is a multiuser system means multiple users can access system

resources like memory/ ram/ application programs at same time.

• Multiprogramming − Linux is a multiprogramming system means multiple

applications can run at same time.

• Hierarchical File System − Linux provides a standard file structure in which system

files/ user files are arranged.

• Shell − Linux provides a special interpreter program which can be used to execute

commands of the operating system. It can be used to do various types of operations,

call application programs. etc.

• Security − Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

Architecture

The following illustration shows the architecture of a Linux system −

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The architecture of a Linux System consists of the following layers −

• Hardware layer − Hardware consists of all peripheral devices (RAM/ HDD/ CPU

etc).

• Kernel − It is the core component of Operating System, interacts directly with

hardware, provides low level services to upper layer components.

• Shell − An interface to kernel, hiding complexity of kernel's functions from users.

The shell takes commands from the user and executes kernel's functions.

• Utilities − Utility programs that provide the user most of the functionalities of an

operating systems.

Interprocess Communication

Processes communicate with each other and with the kernel to coordinate their activities.

Linux supports a number of Inter-Process Communication (IPC) mechanisms. Signals and

pipes are two of them but Linux also supports the System V IPC mechanisms named after the

Unix release in which they first appeared.

1 Signals:-

Signals are one of the oldest inter-process communication methods used by Unix TM systems.

They are used to signal asynchronous events to one or more processes. A signal could be

generated by a keyboard interrupt or an error condition such as the process attempting to

access a non-existent location in its virtual memory. Signals are also used by the shells to

signal job control commands to their child processes.

There are a set of defined signals that the kernel can generate or that can be generated by

other processes in the system, provided that they have the correct privileges. You can list a

system's set of signals using the kill command (kill -l), on my Intel Linux box this gives:

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE

 9) SIGKILL10) SIGUSR111) SIGSEGV12) SIGUSR2

13) SIGPIPE14) SIGALRM15) SIGTERM17) SIGCHLD

18) SIGCONT19) SIGSTOP20) SIGTSTP21) SIGTTIN

22) SIGTTOU23) SIGURG24) SIGXCPU25) SIGXFSZ

26) SIGVTALRM27) SIGPROF28) SIGWINCH29) SIGIO

30) SIGPWR

The numbers are different for an Alpha AXP Linux box. Processes can choose to ignore most

of the signals that are generated, with two notable exceptions: neither the SIGSTOP signal

which causes a process to halt its execution nor the SIGKILL signal which causes a process to

exit can be ignored. Otherwise though, a process can choose just how it wants to handle the

various signals. Processes can block the signals and, if they do not block them, they can

either choose to handle them themselves or allow the kernel to handle them. If the kernel

handles the signals, it will do the default actions required for this signal. For example, the

default action when a process receives the SIGFPE (floating point exception) signal is to core

dump and then exit. Signals have no inherent relative priorities. If two signals are generated

for a process at the same time then they may be presented to the process or handled in any

order. Also there is no mechanism for handling multiple signals of the same kind. There is no

way that a process can tell if it received 1 or 42 SIGCONT signals.

Linux implements signals using information stored in the task_struct for the process. The

number of supported signals is limited to the word size of the processor. Processes with a

word size of 32 bits can have 32 signals whereas 64 bit processors like the Alpha AXP may

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

have up to 64 signals. The currently pending signals are kept in the signal field with a mask

of blocked signals held in blocked. With the exception of SIGSTOP and SIGKILL, all signals

can be blocked. If a blocked signal is generated, it remains pending until it is unblocked.

Linux also holds information about how each process handles every possible signal and this

is held in an array of sigaction data structures pointed at by the task_struct for each

process. Amongst other things it contains either the address of a routine that will handle the

signal or a flag which tells Linux that the process either wishes to ignore this signal or let the

kernel handle the signal for it. The process modifies the default signal handling by making

system calls and these calls alter the sigaction for the appropriate signal as well as the

blocked mask.

Not every process in the system can send signals to every other process, the kernel can and

super users can. Normal processes can only send signals to processes with the same uid and

gid or to processes in the same process group
1
. Signals are generated by setting the

appropriate bit in the task_struct's signal field. If the process has not blocked the signal

and is waiting but interruptible (in state Interruptible) then it is woken up by changing its

state to Running and making sure that it is in the run queue. That way the scheduler will

consider it a candidate for running when the system next schedules. If the default handling is

needed, then Linux can optimize the handling of the signal. For example if the signal

SIGWINCH (the X window changed focus) and the default handler is being used then there is

nothing to be done.

Signals are not presented to the process immediately they are generated., they must wait until

the process is running again. Every time a process exits from a system call its signal and

blocked fields are checked and, if there are any unblocked signals, they can now be

delivered. This might seem a very unreliable method but every process in the system is

making system calls, for example to write a character to the terminal, all of the time.

Processes can elect to wait for signals if they wish, they are suspended in state Interruptible

until a signal is presented. The Linux signal processing code looks at the sigaction structure

for each of the current unblocked signals.

If a signal's handler is set to the default action then the kernel will handle it. The SIGSTOP

signal's default handler will change the current process's state to Stopped and then run the

scheduler to select a new process to run. The default action for the SIGFPE signal will core

dump the process and then cause it to exit. Alternatively, the process may have specfied its

own signal handler. This is a routine which will be called whenever the signal is generated

and the sigaction structure holds the address of this routine. The kernel must call the

process's signal handling routine and how this happens is processor specific but all CPUs

must cope with the fact that the current process is running in kernel mode and is just about to

return to the process that called the kernel or system routine in user mode. The problem is

solved by manipulating the stack and registers of the process. The process's program counter

is set to the address of its signal handling routine and the parameters to the routine are added

to the call frame or passed in registers. When the process resumes operation it appears as if

the signal handling routine were called normally.

Linux is POSIX compatible and so the process can specify which signals are blocked when a

particular signal handling routine is called. This means changing the blocked mask during

the call to the processes signal handler. The blocked mask must be returned to its original

value when the signal handling routine has finished. Therefore Linux adds a call to a tidy up

routine which will restore the original blocked mask onto the call stack of the signalled

process. Linux also optimizes the case where several signal handling routines need to be

called by stacking them so that each time one handling routine exits, the next one is called

until the tidy up routine is called.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.Pipes:-

The common Linux shells all allow redirection. For example

$ ls | pr | lpr

pipes the output from the ls command listing the directory's files into the standard input of

the pr command which paginates them. Finally the standard output from the pr command is

piped into the standard input of the lpr command which prints the results on the default

printer. Pipes then are unidirectional byte streams which connect the standard output from

one process into the standard input of another process. Neither process is aware of this

redirection and behaves just as it would normally. It is the shell which sets up these

temporary pipes between the processes.

Figure 5.1: Pipes

In Linux, a pipe is implemented using two file data structures which both point at the same

temporary VFS inode which itself points at a physical page within memory. Figure 5.1

shows that each file data structure contains pointers to different file operation routine

vectors; one for writing to the pipe, the other for reading from the pipe.

This hides the underlying differences from the generic system calls which read and write to

ordinary files. As the writing process writes to the pipe, bytes are copied into the shared data

page and when the reading process reads from the pipe, bytes are copied from the shared data

page. Linux must synchronize access to the pipe. It must make sure that the reader and the

writer of the pipe are in step and to do this it uses locks, wait queues and signals.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

When the writer wants to write to the pipe it uses the standard write library functions. These

all pass file descriptors that are indices into the process's set of file data structures, each one

representing an open file or, as in this case, an open pipe. The Linux system call uses the

write routine pointed at by the file data structure describing this pipe. That write routine

uses information held in the VFS inode representing the pipe to manage the write request.

If there is enough room to write all of the bytes into the pipe and, so long as the pipe is not

locked by its reader, Linux locks it for the writer and copies the bytes to be written from the

process's address space into the shared data page. If the pipe is locked by the reader or if there

is not enough room for the data then the current process is made to sleep on the pipe inode's

wait queue and the scheduler is called so that another process can run. It is interruptible, so it

can receive signals and it will be woken by the reader when there is enough room for the

write data or when the pipe is unlocked. When the data has been written, the pipe's VFS

inode is unlocked and any waiting readers sleeping on the inode's wait queue will themselves

be woken up.

Reading data from the pipe is a very similar process to writing to it.

Processes are allowed to do non-blocking reads (it depends on the mode in which they

opened the file or pipe) and, in this case, if there is no data to be read or if the pipe is locked,

an error will be returned. This means that the process can continue to run. The alternative is

to wait on the pipe inode's wait queue until the write process has finished. When both

processes have finished with the pipe, the pipe inode is discarded along with the shared data

page.

Linux also supports named pipes, also known as FIFOs because pipes operate on a First In,

First Out principle. The first data written into the pipe is the first data read from the pipe.

Unlike pipes, FIFOs are not temporary objects, they are entities in the file system and can be

created using the mkfifo command. Processes are free to use a FIFO so long as they have

appropriate access rights to it. The way that FIFOs are opened is a little different from pipes.

A pipe (its two file data structures, its VFS inode and the shared data page) is created in one

go whereas a FIFO already exists and is opened and closed by its users. Linux must handle

readers opening the FIFO before writers open it as well as readers reading before any writers

have written to it. That aside, FIFOs are handled almost exactly the same way as pipes and

they use the same data structures and operations.

 Synchronization

In a shared memory application, developers must ensure that shared resources are protected

from concurrent access. The kernel is no exception. Shared resources require protection from

concurrent access because if multiple threads of execution access and manipulate the data at

the same time, the threads may overwrite each other's changes or access data while it is in an

inconsistent state. Concurrent access of shared data often results in instability is hard to track

down and debug.

The term threads of execution implies any instance of executing code. For example, this

includes any of the following:

• A task in the kernel

• An interrupt handler

• A bottom half

• A kernel thread

This chapter may shorten threads of execution to simply threads. Keep in mind that this term

describes any executing code.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Symmetrical multiprocessing support was introduced in the 2.0 kernel. Multiprocessing

support implies that kernel code can simultaneously run on two or more processors.

Consequently, without protection, code in the kernel, running on two different processors,

can simultaneously access shared data at exactly the same time. With the introduction of the

2.6 kernel, the Linux kernel is preemptive. This implies that (in the absence of protection) the

scheduler can preempt kernel code at virtually any point and reschedule another task. Today,

a number of scenarios enable for concurrency inside the kernel, and they all require

protection.

This chapter discusses the issues of concurrency and synchronization in the abstract, as they

exist in any operating system kernel.

Critical Regions and Race Conditions:-

• Code paths that access and manipulate shared data are called critical regions (also called

critical sections). It is usually unsafe for multiple threads of execution to access the same

resource simultaneously.

• To prevent concurrent access during critical regions, the programmer must ensure that code

executes atomically, which means that operations complete without interruption as if the

entire critical region were one indivisible instruction.

• It is a bug if it is possible for two threads of execution to be simultaneously executing within

the same critical region. When this occurs, it is called a race condition, so-named because

the threads raced to get there first. Debugging race conditions is often difficult because they

are not easily reproducible.

• Ensuring that unsafe concurrency is prevented and that race conditions do not occur is

called synchronization.

Android - Architecture

Android operating system is a stack of software components which is roughly divided into

five sections and four main layers as shown below in the architecture diagram.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linux kernel

At the bottom of the layers is Linux - Linux 3.6 with approximately 115 patches. This

provides a level of abstraction between the device hardware and it contains all the essential

hardware drivers like camera, keypad, display etc. Also, the kernel handles all the things that

Linux is really good at such as networking and a vast array of device drivers, which take the

pain out of interfacing to peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web browser engine

WebKit, well known library libc, SQLite database which is a useful repository for storage

and sharing of application data, libraries to play and record audio and video, SSL libraries

responsible for Internet security etc.

Android Libraries

This category encompasses those Java-based libraries that are specific to Android

development. Examples of libraries in this category include the application framework

libraries in addition to those that facilitate user interface building, graphics drawing and

database access. A summary of some key core Android libraries available to the Android

developer is as follows −

• android.app − Provides access to the application model and is the cornerstone of all

Android applications.

• android.content − Facilitates content access, publishing and messaging between

applications and application components.

• android.database − Used to access data published by content providers and includes

SQLite database management classes.

• android.opengl − A Java interface to the OpenGL ES 3D graphics rendering API.

• android.os − Provides applications with access to standard operating system services

including messages, system services and inter-process communication.

• android.text − Used to render and manipulate text on a device display.

• android.view − The fundamental building blocks of application user interfaces.

• android.widget − A rich collection of pre-built user interface components such as

buttons, labels, list views, layout managers, radio buttons etc.

• android.webkit − A set of classes intended to allow web-browsing capabilities to be

built into applications.

Having covered the Java-based core libraries in the Android runtime, it is now time to turn

our attention to the C/C++ based libraries contained in this layer of the Android software

stack.

Android Runtime

This is the third section of the architecture and available on the second layer from the bottom.

This section provides a key component called Dalvik Virtual Machine which is a kind of

Java Virtual Machine specially designed and optimized for Android.

The Dalvik VM makes use of Linux core features like memory management and multi-

threading, which is intrinsic in the Java language. The Dalvik VM enables every Android

application to run in its own process, with its own instance of the Dalvik virtual machine.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The Android runtime also provides a set of core libraries which enable Android application

developers to write Android applications using standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to applications in the

form of Java classes. Application developers are allowed to make use of these services in

their applications.

The Android framework includes the following key services −

• Activity Manager − Controls all aspects of the application lifecycle and activity

stack.

• Content Providers − Allows applications to publish and share data with other

applications.

• Resource Manager − Provides access to non-code embedded resources such as

strings, color settings and user interface layouts.

• Notifications Manager − Allows applications to display alerts and notifications to

the user.

• View System − An extensible set of views used to create application user interfaces.

Android Services

Android service is a component that is used to perform operations on the background such

as playing music, handle network transactions, interacting content providers etc. It doesn't has

any UI (user interface).

The service runs in the background indefinitely even if application is destroyed.

Moreover, service can be bounded by a component to perform interactivity and inter process

communication (IPC).

The android.app.Service is subclass of ContextWrapper class.

Note: Android service is not a thread or separate process.

Life Cycle of Android Service

There can be two forms of a service.The lifecycle of service can follow two different paths:

started or bound.

1. Started

2. Bound

1) Started Service

A service is started when component (like activity) calls startService() method, now it runs

in the background indefinitely. It is stopped by stopService() method. The service can stop

itself by calling the stopSelf() method.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2) Bound Service

A service is bound when another component (e.g. client) calls bindService() method. The

client can unbind the service by calling the unbindService() method.

The service cannot be stopped until all clients unbind the service.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

