
www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Scanned by CamScanner

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

UNIT-6

Synchronous and Asynchronous Sequential Circuits

 6.1 BASIC DESIGN STEPS

 The circuit has one input, w, and one output, z.

 All changes in the circuit occur on the positive edge of a clock signal.

 The output z is equal to 1 if during two immediately preceding clock

cycles the input w was equal to 1. Otherwise, the value of z is equal to 0.

Thus, the circuit detects if two or more consecutive 1s occur on its input

w. Circuits that detect the occurrence of a particular pattern on its input(s) are

referred to as sequence detectors.

From this specification it is apparent that the output z cannot depend
solely on the present value of w. To illustrate this, consider the sequence of
values of the w and z signals during 11 clock cycles, as shown in Figure 8.2.
The values of w are assumed arbitrarily; the values of z correspond to our
specification. These sequences of input and output values indicate that for a
given input value the output may be either 0 or 1. For example, w = 0 during
clock cycles t2 and t5, but z = 0 during t2 and z = 1 during t5. Similarly, w = 1
during t1 and t8, but z = 0 during t1 and z = 1 during t8. This means that z is
not determined only by the present value of w, so there must exist different
states in the circuit that determine the value of z.

6.2 STATE DIAGRAM

The first step in designing a finite state machine is to determine how

many states are needed and which transitions are possible from one state to

another. There is no set procedure for this task. The designer must think

carefully about what the machine has to accomplish. A good way to begin is

to select one particular state as a starting state; this is the state that the circuit

should enter when power is first turned on or when a reset signal is applied.

For our example let us assume that the starting state is called state A. As long

as the input w is 0, the circuit need not do anything, and so each active clock

edge should result in the circuit remaining in state A. When w becomes equal

to 1, the machine should recognize this, and move to a different state, which

we will call state B. This transition takes place on the next active clock edge

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

after w has become equal to 1. In state B, as in state A, the circuit should

keep the value of output z at 0, because it has not yet seen w = 1 for two

consecutive clock cycles. When in state B, if w is 0 at the next active clock

edge, the circuit should move back to state A. However, if w = 1 when in

state B, the circuit should change to a third state, called C, and it should then

generate an output z = 1. The circuit should remain in

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
t
10

w: 0 1 0 1 1 0 1 1 1 0 1

z: 0 0 0 0 0 1 0 0 1 1 0

Figure 6.2 Sequences of input and output signals.

state C as long as w = 1 and should continue to maintain z = 1. When w becomes 0, the

machine should move back to state A. Since the preceding description handles all

possible values of input w that the machine can encounter in its various states, we can

conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between

states, we will describe a more formal procedure that can be used to design the

corresponding sequential circuit. Behavior of a sequential circuit can be described in

several different ways. The conceptually simplest method is to use a pictorial

representation in the form of a state diagram, which is a graph that depicts states of the

circuit as nodes (circles) and transitions between states as directed arcs. The state diagram

in Figure 8.3 defines the behavior that corresponds to our specification. States A, B, and

C appear as nodes in the diagram. Node A represents the starting state, and it is also the

state that the circuit will reach after an input w = 0 is applied. In this state the output z

should be 0, which is indicated as A/z=0 in the node. The circuit should remain in state A

as long as w = 0, which is indicated by an arc with a label w = 0 that originates and

terminates at this node. The first occurrence of w = 1 (following the condition w = 0) is

recorded by moving from state A to state B. This transition is indicated on the graph by an

arc originating at A and terminating at B. The label w = 1 on this arc denotes the input

value that causes the transition. In state B the output remains at 0, which is indicated as

B/z=0 in the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the next active
clock edge. In state C the output z becomes equal to 1. If w stays at 1 during subsequent clock

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

cycles, the circuit will remain in state C maintaining z = 1. However, if w becomes 0 when the
circuit is either in state B or in state C, the next active clock edge will cause a transition to state A
to take place.

In the diagram we indicated that the Reset input is used to force the circuit into state A, which is

possible regardless of what state the circuit happens to be in. We could treat

 Reset

w = 1

w = 0 A ⁄ z = 0

B ⁄ z = 0

w = 0

w = 0

w = 1

C ⁄ z = 1

w = 1

Figure 6.3State diagram of a simple sequential circuit

Reset as just another input to the circuit, and show a transition from each state to

the starting state A under control of the input Reset. This would complicate the diagram

unnecessarily. States in a finite state machine are implemented using flip-flops.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6.3 STATE TABLE

Although the state diagram provides a description of the behavior of

a sequential circuit that is easy to understand, to proceed with the

implementation of the circuit, it is convenient to translate the information

contained in the state diagram into a tabular form. Figure 8.4 shows the

state table for our sequential circuit. The table indicates all transitions from

each present state to the next state for different values of the input signal.

Note that the output z is specified with respect to the present state, namely,

the state that the circuit is in at present time. Note also that we did not

include the Reset input; instead, we made an implicit assumption that the

first state in the table is the starting state.

We now show the design steps that will produce the final circuit.

To explain the basic design concepts, we first go through a traditional

process of manually performing each design step. This is followed by a

discussion of automated design techniques that use modern computer
aided design (CAD) tools.

6.4 STATE ASSIGNMENT

The state table in Figure 8.4 defines the three states in terms of letters
A, B, and C. When implemented in a logic circuit, each state is represented
by a particular valuation (combi-nation of values) of state variables. Each
state variable may be implemented in the form of a flip-flop. Since three
states have to be realized, it is sufficient to use two state variables. Let
these variables be y1 and y2.

Now we can adapt the general block diagram in Figure to our example

as shown in Figure 6.5, to indicate the structure of the circuit that

implements the required finite state machine. Two flip-flops represent the

state variables. In the figure we have not specified the type of flip-flops to

be used; this issue is addressed in the next subsection.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Present

Next state

Output

state

w = 0 w = 1

Z

A A B 0

B A C 0

C A C 1

Figure 6.4 State table for the sequential circuit

W

 Y1 y1

Combinational

Combinational

z

Circuit

y2

circuit

 Y2

Clock

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The signals y1 and y2 are also fed back to the combinational circuit that
determines the next state of the FSM. This circuit also uses the primary
input signal w. Its outputs are two signals, Y1 and Y2, which are used to set
the state of the flip-flops. Each active edge of the clock will cause the flip-
flops to change their state to the values of Y1 and Y2 at that time.
Therefore, Y1 and Y2 are called the next-state variables, and y1 and y2 are
called the present-state variables. We need to design a combinational
circuit with inputs w, y1, and y2, such that for all valuations of these inputs
the outputs Y1 and Y2 will cause the machine to move to the next state that
satisfies our specification. The next step in the design process is to create
a truth table that defines this circuit, as well as the circuit that generates z.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6.5CHOICE OF FLIP-FLOPS AND DERIVATION OF

NEXT-STATE AND OUTPUT EXPRESSIONS

From the state-assigned table in Figure 8.6, we can derive the logic
expressions for the next-state and output functions. But first we have to decide
on the type of flip-flops that will be used in the circuit. The most straightforward

choice is to use D-type flip-flops, because in this case the values of Y1 and Y2 are

simply clocked into the flip-flops to become the new values of y1 and y2. In other

words, if the inputs to the flip-flops are called D1 and D2, then these signals are

the same as Y1 and Y2. Note that the diagram in Figure 8.5 corresponds exactly to
this use of D-type flip-flops. For other types of flip-flops, such as JK type, the
relationship between the next-state variable and inputs to a flip-flop is not as
straightforward; we will consider this situation in section 8.7.

The required logic expressions can be derived as shown in Figure 8.7.

We use Karnaugh maps to make it easy for the reader to verify the validity

of the expressions. Recall that in Figure 8.6 we needed only three of the

four possible binary valuations to represent the states. The fourth

valuation, y2y1 = 11, should never occur in the circuit because the circuit is

constrained to move only within states A, B, and C; therefore, we may

choose to treat this valuation as a don’t-care condition. The resulting

don’t-care squares in the Karnaugh maps are denoted by d’s. Using the

don’t cares to simplify the expressions, we obtain

Y1 = wy
1

y
2

Y2 = w(y1 + y2)

z = y2

Since D1 = Y1 and D2 = Y2, the logic circuit that corresponds to the

preceding expressions is implemented as shown in Figure 8.8. Observe

that a clock signal is included, and the circuit is provided with an active-

low reset capability. Connecting the clear input on the flip-flops to an

external Resetn signal, as shown in the figure, provides a simple means

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

for forcing the circuit into a known state. If we apply the signal Resetn = 0 to the

circuit, then both flip-flops will be cleared to 0, placing the FSM into the state y2y1 =

00.

 6.6 TIMING DIAGRAM

 we are using positive-edge-triggered flip-flops, all changes in the signals

occur shortly after the positive edge of the clock. The amount of delay from the clock

edge depends on the propagation delays through the flip-flops. Note that the input

signal w is also shown to change slightly after the active edge of the clock. This is a

good assumption because in a typical digital system an input such as w would be just

an output of another circuit that is synchronized by the same clock.

t
0

t
1 t

2 t
3 t

4 t
5 t

6 t
7 t

8 t
9

t
10

1

Clock

0

1

w

0

1

8.2 STATE-ASSIGNMENT PROBLEM

The basic concepts involved in the design of sequential circuits, we

should revisit some details where alternative choices are possible. In section

6.1 we suggested that some state assignments may be better than others. To

illustrate this we can reconsider the example in Figure 8.4. We already know

that the state assignment in Figure 6.6 leads to a simple-looking circuit in

Figure 8.8. But can the FSM of Figure 6.4 be implemented with an even

simpler circuit by using a different state assignment.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

In general, circuits are much larger than our example, and different state

assignments can have a substantial effect on the cost of the final

implementation. While highly desirable, it is often impossible to find the best

state assignment for a large circuit. The exhaustive approach of trying all

possible state assignments is not practical because the number of available

state assignments is huge. CAD tools usually perform the state assignment

using heuristic techniques. These techniques are usually proprietary, and their

details are seldom published.

6.8 ONE-HOT ENCODING

Another interesting possibility is to use as many state variables as there are states in a

sequential circuit. In this method, for each state all but one of the state variables are equal to 0.

The variable whose value is 1 is deemed to be “hot.” The approach is known as the one-hot

encoding method.

6.9 VHDL CODE FOR MOORE-TYPE FSMS

VHDL does not define a standard way of describing a finite state machine.

Hence while adhering to the required VHDL syntax, there is more than one way to

describe a given FSM. An example of VHDL code for the FSM of Figure 8.3 is given

in Figure 8.29. For the convenience of discussion, the lines of code are numbered on

the left side. Lines 1 to 6 declare an entity named simple, which has input ports Clock,

Resetn, and w, and output port z. In line 7 we have used the name Behavior for the

architecture body, but of course, any valid VHDL name could be used instead.

The TYPE keyword, which is a feature of VHDL that we have not used

previously. The TYPE keyword allows us to create a user-defined signal type. The new

signal type is named State_type, and the code specifies that a signal of this type can

have three possible values: A, B, or C. Line 9 defines a signal named y that is of the

State_type type. The y signal is used in the architecture body to represent the outputs of

the flip-flops that implement the states in the FSM. The code does not specify the

number of bits represented by y. Instead, it specifies that y can have the three symbolic

values A, B, and C. This means that we have not specified the number of state flip-flops

that should be used for the FSM. As we will see below, the VHDL compiler

automatically chooses an appropriate number of state flip-flops when synthesizing a

circuit to implement the machine. It also chooses the state assignment for states A, B,

and C. Some CAD systems, such as Quartus II, assume that the first state listed in the

TYPE statement (line 8) is the reset state for the machine. The state assignment that has

all flip-flop outputs equal to 0 is used for this state. Later in this section, we will show

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 509

 LIBRARY ieee ;

 USE ieee.std logic 1164.all ;

 ENTITY simple IS

4
PORT (Clock, Resetn,
w : IN STD LOGIC ;

5 Z : OUT
STD LOGIC)
;

 END simple ;

 ARCHITECTURE Behavior OF simple IS

 TYPE State type IS (A, B, C) ;

 SIGNAL y : State type ;

 BEGIN

 PROCESS (Resetn, Clock)

 BEGIN

 IF Resetn ’0’ THEN

14 y < A ;

15
ELSIF (Clock’EVENT AND Clock ’1’)
THEN

16 CASE y IS

17 WHEN A >

18 IF w ’0’ THEN

19 y < A ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

20 ELSE

21 y < B ;

22 END IF ;

23 WHEN B >

24 IF w ’0’ THEN

25 y < A ;

26 ELSE

27 y < C ;

28 END IF ;

29 WHEN C >

30 IF w ’0’ THEN

31 y < A ;

32 ELSE

33 y < C ;

34 END IF ;

35 END CASE ;

 END IF ;

 END PROCESS ;

 z < ’1’ WHEN y C ELSE ’0’ ;

 END Behavior ;

6.9 SPECIFYING THE STATE ASSIGNMENT IN VHDL CODE

That the state assignment may have an impact on the complexity of the designed circuit. An

obvious objective of the state-assignment process is to minimize the cost of implementation. The

cost function that should be optimized may be simply the number of gates and flip-flops. But it

could also be based on other considerations that may be representative of the structure of PLD

chips used to implement the design. For example, the CAD software may try to find state

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

encodings that minimize the total number of AND terms needed in the resulting circuit when the

target chip is a CPLD.

In VHDL code it is possible to specify the state assignment that should be used, but

there is no standardized way of doing so. Hence while adhering to VHDL syntax, each

CAD system permits a slightly different method of specifying the state assignment. The

Quartus II system recommends that state assignment be done by using the attribute

feature of VHDL. An attribute refers to some type of information about an object in

VHDL code. All signals automatically have a number of associated predefined attributes.

An example is the EVENT attribute that we use to specify a clock edge, as in

Clock’EVENT.

In addition to the predefined attributes, it is possible to create a user-defined attribute.

The user-defined attribute can be used to associate some desired type of information with

an object in VHDL code. In Quartus II manual state assignment can be done by creating a

user-defined attribute associated with the State_type type. This is illustrated in Figure

8.34, which shows the first few lines of the architecture from Figure 8.33 with the

addition of a user-defined attribute. We first define the new attribute called

ENUM_ENCODING, which has the type STRING. The next line associates

ENUM_ENCODING with the State_type type and specifies that the attribute has the

value ”00 01 11”. When translating the VHDL code, the Quartus II compiler uses the

value of ENUM_ENCODING to make the state assignment A = 00, B = 01, and C = 11.

ARCHITECTURE Behavior OF simple IS

TYPE State TYPE IS (A, B, C) ;

ATTRIBUTE ENUM ENCODING : STRING ;

ATTRIBUTE ENUM ENCODING OF State type : TYPE IS ”00 01 11” ;

SIGNAL y present, y next : State type ;

BEGIN

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 8.34 A user-defined attribute for manual state assignment.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 LIBRARY ieee ;

USE ieee.std logic 1164.all
;

 ENTITY simple IS

PORT (Clock, Resetn,
w : INSTD LOGIC ;

 Z
: OUT STD LOGIC)
;

 END simple ;

ARCHITECTURE Behavior OF simple IS

SIGNAL y presentz, y next : STD LOGIC VECTOR(1 DOWNTO
0);

CONSTANT A : STD LOGIC VECTOR(1 DOWNTO 0) : ”00” ;

CONSTANT B : STD LOGIC VECTOR(1 DOWNTO 0) : ”01” ;

CONSTANT C : STD LOGIC VECTOR(1 DOWNTO 0) : ”11” ;

BEGIN

PROCESS (w, y present)

BEGIN

CASE y present IS

WHEN A >

IF w ’0’ THEN y next < A ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ELSE y next < B ;

END IF ;

WHEN B >

IF w ’0’ THEN y next < A ;

ELSE y next < C ;

END IF ;

WHEN C >

IF w ’0’ THEN y next < A ;

ELSE y next < C ;

END IF ;

WHEN OTHERS >

 next < A ;

END CASE ;

END PROCESS ;

PROCESS (Clock, Resetn)

BEGIN

IF Resetn ’0’

THEN

y present < A ;

ELSIF (Clock’EVENT AND Clock ’1’) THEN

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

y present < y next ;

END IF ;

END PROCESS ;

z < ’1’ WHEN y present C ELSE ’0’ ;

END Behavior ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6.10 SPECIFICATION OF MEALY FSMS USING VHDL

A Mealy-type FSM can be specified in a similar manner as a Moore-type FSM. Figure

8.36 gives complete VHDL code for the FSM in Figure 8.23. The state transitions are

described in the same way as in our original VHDL example in Figure 8.29. The signal y

represents the state flip-flops, and State_type specifies that y can have the values A and

B. Compared to the code in Figure 8.29, the major difference in the case of a Mealy-type

FSM is the way in which the code for the output is written. In Figure 8.36 the output z is

defined using a CASE statement. It states that when the FSM is in state A, z should be 0,

but when in state B, z should take the value of w. This CASE statement properly

describes the logic needed for z, but it may not be obvious why we have used a second

CASE statement in the code, rather than specify the value of z inside the CASE

statement that defines the state transitions. The reason is that the CASE statement for the

state transitions is nested inside the IF statement that waits for a clock edge to occur.

Hence if we placed the code for z inside this CASE statement, then the value of z could

change only as a result of a clock edge. This does not meet the requirements of the

Mealy-type FSM, because the value of z must depend not only on the state of the

machine but also on the input w.

Implementing the FSM specified in Figure 8.36 in a CPLD chip yields the same

equa-tions as we derived manually in section 8.3. Simulation results for the synthesized

circuit appear in Figure 8.37. The input waveform for w is the same as the one we used

for the Moore-type machine in Figure 8.32. Our Mealy-type machine behaves correctly,

with z becoming 1 just after the start of the second consecutive clock cycle in which w is

1.

In the simulation results we have given in this section, all changes in the input w

occur immediately following a positive clock edge. This is based on the assumption

stated in section 8.1.5 that in a real circuit w would be synchronized with respect to the

clock that controls the FSM. In Figure 8.38 we illustrate a problem that may arise if w

does not meet this specification. In this case we have assumed that the changes in w take

place at the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 LIBRARY ieee ;

USE ieee.std logic 1164.all
;

 ENTITY mealy IS

PORT (Clock, Resetn,
w : INSTD LOGIC ;

 Z
: OUT STD LOGIC)
;

 END mealy ;

ARCHITECTURE Behavior OF mealy IS

TYPE State type IS (A, B) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn ’0’ THEN

y < A ;

ELSIF (Clock’EVENT AND Clock ’1’)
THEN CASE y IS

WHEN A >

IF w ’0’ THEN y < A ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ELSE y < B ;

END IF ;

WHEN B >

IF w ’0’ THEN y < A ;

ELSE y < B ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

PROCESS (y, w)

BEGIN

CASE y IS

WHEN A >

z < ’0’ ;

WHEN B >

z < w ;

END CASE ;

END PROCESS ;

END Behavior ;

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

