FirstRanker.com DESIGN-I
Firstranker's choice
A Combinational logic. circuit is one whose Off depend ouly on its curract ilpis.

A combinational cixceit inare coutain an arbitrary no.i logic gates and inverters but no feedback loops.

In combinationd ciorvit. ANALYSLS we Start sith a logic diapram a proceed to a formart description of the functim perforuned be thes cirait, Such as a trueth table or a logic Expression.
fu sunthesis we do the renserse,

- Starting witu a formal description \& proceediy to a logic diagrain.
- Decoder

A decoder is a multiple-i/p, multiple-olp lagic circuit thut canverts coded ilp into coded olps, where the ilp \& 18 coders are different.

The ifp code generally has fevor bits thom the of code. \& there is a one-to-ove quapping from ifp code wordy into of code words

In a one - to-one arapping exech ilp code word produces a differant of Gde word.
feroed struetore of decoser.

The amost col...moly used ilp cads is ar a-bit binary code, whe an u-bit coord sepresers one of $\varepsilon^{\prime \prime}$ differat catel solves. normally twe integers from 0 to $2^{2}-1$.

The mort commorly used olp code is a 1 ort of ma Code which Coutains in bits, where ane bit is asserted at arretime.

E to Le Decoder

A	B	r_{3}	τ_{2}	1_{1}	τ_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

logic - Sy cubol.
Itaterval structue

$\left.\begin{array}{cc|cccccc}c & A & 1 & \psi_{2} & \psi_{2} & \varphi_{1} & t_{0} \\ 0 & x & x & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
byic secmbol.

3tos decoder witu Enalice i/p

$$
\begin{array}{cccccccccccc}
E N & A & B & C & \tau_{7} & \varphi_{6} & Y_{5} & \tau_{a} & \tau_{3} & \varphi_{2} & \varphi_{1} & \varphi_{0} \\
0 & K & x & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$\begin{array}{llllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

1	1	1	0	0	1	0	0	0	0
1	1	0	0	1	0	0	0	0	0
1	0								
1	1	0	0	0	0	0	0	0	0

Desig 3 to 8 decotor s si'y 2 theww.ersthanker.com

C	B	A	φ_{z}	φ_{t}	φ_{5}	φ_{4}	φ_{B}	φ_{2}	φ_{1}	φ_{0}
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	

MSI DECOPER
74×139 Dual eto L vecodas

FirstRanker.com
Firstranker's choice

$G-L$	A	1	www.FirstRanker.com $P_{1}-L$	ww. wirstR	
1	\times	x	01	1	1
0	0	0	1	1	1
0	0	1	1	1	0
0	1	0	1	0	1
0	1	1	0	1	1

Interval structre of 74×139.

Two identical of indegendent 2 to L decody are contained in a bingle MSI part, the 74×139. The iuternil structue sthows that the ofs at the enable ils of the. II are active bo Koft risi eucibas were origivally desifued witu actime-low oliss. Since ITL inverty gater are geverelly fustertham noninvelly ones.

Like tha $74 \times 13^{\circ}$ c thee $74 k 138$ cool ackiu-liow of 0 6 it has tireo emable ilpe (G,Gza-2,
(aze-1), all of ustacin nesif be, ataertal for the setergev olp to be arsentel.

The logic fywlin of 138^{\prime} is straight brosos - an of is ancaled if θ oule it

Firstrankertschoices is wwiwiFirstRanker.com oly is celenes www.FirstRanker.com
Thus, we Gu Ensty wive logie कutpork
for an inpermet oforgel seel as Ceim teons of twe woonel ir ciged.

$$
\begin{aligned}
& P_{5}=\frac{G_{1} \cdot G 2 A \cdot G Q B}{c \cdot c \cdot A \cdot A} \\
& G 2 A=G 2 A-L \\
& G e r=G D \text { is }-L \\
& \varphi_{5}=\varphi_{5} . L \\
& T_{5-L}=\overline{Y_{5}}=\left(G_{1} \cdot \overline{G_{2 A-L}} \cdot \overline{G_{2 B-2}} \cdot C \cdot \bar{B} \cdot A\right) \\
& =\overline{G_{1}}+G_{2} A-L+G_{B}-L+\bar{C}+B+\bar{A}
\end{aligned}
$$

- cascadr og indare decodeds Desige 4 to 16 semerter osy $7 \% \times 130$ decodor

 www.FirstRanker.com

- ENCODERS

It in a combinational logic, circuit. It hos $e^{\text {nilps }}$ \& x olpr It performs Exact oposite function of decoder: If perfouns Some Codiy operations.

φ_{s}	$d p s$	
	A	13
φ_{0}	0	0
φ_{1}	0	1
φ_{2}	1	0
φ_{3}	1	1

wrong Rapreseidation of-Tructatoble
$\left.\begin{array}{cccccc}\varphi_{3} & \varphi_{2} & \varphi_{1} & \varphi_{0} & A & B \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & \cdots & 0 & 0 & 1 & 0\end{array}\right]$

100011 Esact Repr asuar tion of Troctu table.

Truct Table

$$
\begin{array}{ccccccccccc}
\varphi_{7} & \varphi_{0} & \varphi_{5} & \varphi_{4} & \varphi_{3} & \varphi_{2} & \varphi_{1} & \varphi_{0} & A & B & C \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \phi & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}
$$

Suberal structure

$\varphi_{0} \rightarrow$ heghest priority
v is valid ilp

for B

$$
B=\varphi_{1} \varphi_{3}+\overline{\varphi_{0}} \varphi_{3} \overline{\varphi_{2}}
$$

Firstranker's choice

www.FirstRanker.com

C-bit priosity encoder
74×148 is a 8 bit priority En coder

The $1 \& 8$ has a GS.L olv that is assertal when the device is emobled of one of more of the request ilss are asserted. The EOLL signt is an anable ols detiflued to be comectad to the EI-L i/f of andrer 148 that handtes lower-priority requetts.
but no requert ip is okertge, Thus Ea
lower priotity 148 misu be endel.
Truet Table
IlDS

MULTIPKEXERS SDEMOLTIPCEXERS
rox: ft is a comminationl logic circent which has stectiv if al Dotaip a.onhe one output.
x selectin ilos af ε^{2} sata inputs d oule one opp.
rox is also aller of data Selecos((B)) digital scoitch.

$\tan p$ F: 保

'rovele '10820

$$
D e s i g, c_{0}!r \cos
$$

$$
\begin{aligned}
& \text { c-datailim } \\
& 2 \text {-setection ilps } \\
& 61-0 / 8
\end{aligned}
$$

Trudte Ti.ble

S_{1}	S_{0}	Y
0	0	D_{0}
0	1	D_{1}
1	0	D_{2}
1	1	D_{3}

$$
S(A, i, C i u)=\sum_{k}\left(1,2, t_{c}, 7\right)
$$

$$
i
$$

rsi rultipexers

\qquad www.FirstRanker.com
01 PA

$S \mu \rightarrow$ Active low selectur itpline
Gr, \rightarrow Aefrie low gate palte

Comporlo is a Bubriufined logic ckT
costact Gougaces two trane Gupul of Gayy Laugta $\&$ givas the mersrosule seselt iie.
 tomanes.

F

Hf $A \in i \leq$ are represe be alc ane bit leyt
theo.
$\left[\begin{array}{ccccc}A & B & A>B & A<B & A=0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1\end{array}\right.$
the obove tructu thelle has four rowos.

$$
2^{e x u}=e^{2 \times 8 \mid}=c^{\text {rows }} \text {. }
$$

where ' n ' is vo.if bites per ils. Botue tiors rupt be equal leyth.

Frou the Troctu tasle

$$
\begin{aligned}
(A>B) & =A \bar{B} \\
(A(B) & =\bar{A} B \\
(A=B) & =\bar{A} \bar{B}+A B \\
& =\overline{A \oplus B}=A \Theta B
\end{aligned}
$$

Fown BIt Comportit
kusis usue con prontied to Designe bue usig the

 defermine ha Gmolitions geeater, less al

$$
\begin{aligned}
& A=A_{3} A_{1} A, A_{0} \\
& E \quad \text { Br } B_{0} \mathbb{B}_{0}
\end{aligned}
$$

if $A_{3} A_{1}$, if $B_{3}=0$ the $A_{3}>B_{3}$, if

If the S_{x}. 5 oner orfer if $\mathrm{A}_{3}=\mathrm{B}_{3}, \mathrm{~A}_{2} \rightarrow$ B2
$A_{y}=15$ the oly we have to fompre A_{0} bibe the belult is it

$$
\begin{aligned}
A B \Rightarrow & A_{3}>B_{2}+x_{3}\left(A_{2}>B_{2}\right)+ \\
& x_{3} x_{2}\left(A_{1}>B_{1}\right)+x_{3} x_{2} x_{1}\left(A_{0}>B_{0}\right) \\
& >A_{3} B_{1}+x_{3} A_{2} B_{2}+x_{3} x_{2} A_{1} \bar{B}_{1}+x_{3} x_{2} x_{A_{0} B_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& (A-B) \Rightarrow x_{3} y+\quad y_{2} \\
& \text { where } \begin{array}{cc}
\\
W_{3} O D & D_{3}
\end{array} \\
& y_{2}-A_{2} \rightarrow 18 \\
& x_{1}: A_{1}, 1,1, \\
& x_{0}=A_{0} O B_{0}
\end{aligned}
$$

Itsi Comparatol

To Gergre dangle isit.

To Conpore 5bits

$2\left(D_{1}\right) 8 S$

$$
\begin{aligned}
& \text { HAlf Aders } \\
& \text { Foll Adiens. }
\end{aligned}
$$

Haif adden is wied to add two single bibs of it jewerkes Sme of any oles.

Foll ander is pa Gambrontand citcuit
arich is used to add two theree eingle sits do itu generates sume of adry olos.

Malfadter

A	is	Som	Cozrup
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
\begin{aligned}
\text { Som } & =\overline{A B}+A \bar{B} \\
& =A \Phi B
\end{aligned}
$$

Goves

$$
\text { Cont }=B \operatorname{cin}+A B+A \operatorname{cin}
$$

Sum = 4θ B $A C=$

$$
\begin{aligned}
C_{\text {QuT }} & =\bar{A} B C_{i n}+A \bar{B} C_{i n}+A \overline{C_{m}}+A B G_{n} \\
& =C_{i n}(\bar{X} B+A \bar{B})+A B\left(\overline{C_{i n}}+C_{\text {an }}\right)
\end{aligned}
$$

$B_{0}{ }^{\circ}=\operatorname{Cin}(A B B)+A B$

4-bit povalid a dider (Ripple crrue todel)

BASIC Bistable Elements
The simplest Serpvential circuit Comets of a pair of inverters forming a feed Beck loop, as show in fig 1. It has no imputes \&l two cutouts, Q and $Q_{\text {L }} L$.

Analyses. The circuit of fig I is oftem-called a bistable, since a strictly digital Analysis shows that it was has two stable stater. If Q is artigh, then the bottom inverter has a HIGH il \&l a Low of s, which forces the top inverters op HigH as we ass uned in the first place. Bot if Q is how, then the bottom inverter has a Low il \& a HIGH off. which forces Q Low, another stable situation, we could use a Single state variask, the state of signal. Q, to decribe the state of the circuit, there are two possible states, $Q=0$ od $Q=1$.

The bistable element is so simple
 that it has n_{0} inputs d therefore no way. of Controlling or changing its state. When Power is first applied to the circuit, it rondomay comes up in one state a the other
Fig l: A priv of inverters forming a bistable element.
and stays there forever. Still, it serves our illustrative purpose very well, and wets will actually show a coupleof afar.

LAICHE \& FLIP FLOPS
Latches el Flip flops are the basic bvildiy blacks of most sequential circuits. Typical digital syptemy use catches al Flip $=10$ pes that are prepackaged functionally specified devicesin a stanelarl IC. In ASIC design exvisoumates, latches \& flisplopt are tpipialle Predefined calls specifial b 4 the AS IC vend.

- Pi. FinstRainkerigcomuse the wame flip- flop it a op orly at timer determined by a clocking signal.

On the other hand, most digital designers use the nave lakh for a Sequential device that catches all of its ifs continuosly and changes its opts at any time, independent of a clocking Signal.

The Nor gate S-R Latch

Truk table
The analysis of the operation of the active HIGH NOIR batch Gin be sommarided as follows.

1. SET $=0$, RESET $=0$. This is the normal resting/ state of the Nor latch awe it has no effect on the off state. Q and Q coll remain in whatever state tue were prior to the occuramee of this input Condition.
2. SET $=$ I, RESE $T=0$: This will always set $Q=1$, where it will yemen even after SET returns to 0 .
3. $S_{E T}=0$, RESET $=$ 1: This will along reset $Q=0$, where it will remain even after RESE returns to O.
\&. SET $=1$, RESET = 1: This Conalition tries to SET \& RESET the latch at the Same, d it p soduces $Q=\bar{Q}=0 ;$ if the if pare returned to zero simultamioulle, the re jolting of s rate is erratic of unpredictable. Rus of condition

Logic Dragram.

J	K	S	R	$Q u$	$Q u+1$	stabe
0	0	0	0	0	0	nochaure
0	0	0	0	1	1	
0	1	0	0	0	0	Reset (0)
0	1	0	1	1	0	
1	0	1	0	0	1	$\operatorname{set}(1)$
1	0	0	0	1	1	
1	1	1	0	0	1	Compleme
1	1	0	1	1	0	(Qu)

Trutu Table
D latea

logic diagrem

D	Q_{n}	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Trota table

T-latch

$\log _{i c}$ diafern

T	Q_{u}	Q_{u+1}
0	0	0
0	1	1
1	0	1
1	1	0

Truta table
SR Flip Flop

Q_{u}	Q_{u+1}	S	R
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

D Flip Flop

Q_{n}	$Q_{u}+1$	D
0	0	0
0	1	1
1	0	0
1	1	1

SK Flip F Cop		
Qu. Qu+1 δ $1<$ 0 0 0 x 0 1 1 x 1 0 x 1 1 1 x 0		

T- Flip Flop

Q_{n}	Q_{n+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

For the design of Servenkial circuity we should know the excitation tables of Flip Flops. The Excitation table of a flip flop Can be obtained from its truth table. It indicates the inputs required to be appliceal to the flip-flop to take it from the present stake to the next state. The truth tables of excitation tables of Various fla, flaps are given above

To comvert one trape of fiy flop into anotuer tepie, a Combinational circuit is designed such that if the iuputs of the required fliaflop (along with the ofps of the actual Elip. Flos it seavired) are fed as ips to the combinational circuit and the output of the combinationd ciscrit is commected to the iuputs of the actual flip-flop, then the of of the acotad flip P los is tie of if the required flip-flap. In oture words, it meaus that, to comvat one thipe of flip-flys into anstuer thepe, we have to obtain twe expressions for the ips \& the exisky flip-flop in terms of the ifs of the reavirel flip.flion d the iresent thate variableaz the existiy flip-flap ol implemit tham. The arrangenent is shown in fig 1 .

S-R Flif Flop to J-K FlipFlop:-
Here the Externed ils to the already avaikeble S-R Flip. Flop will be Jthand k. I and R are the olps of the Coublinatiowal circuit, which are also the actual ilis to the S-R Rlis-flog. we write, a truch table with IK, Q_{n}, Q_{n+1}, S and R, where Qu irs the preput stape of the floplop of Qut1 is the nect lfore obtainel when twe porticutar $J k \theta$ kilps are applied, i.e, Q_{n} denotes the stute of the flip-plop bepore the appliction of the ilis \& Q Quti refers to the state oblaind de the flio-tles affer the

5 D. FirstRanker.comhave eight combinations. For
Geirstranker's choice the w wow.Fristroankeftcom.

Quai, ie determine to which next fete (Outs) the Jo Flip flor will go from the present stake Qu if the present ipa. Is \&l k are applied. Now Complete the table dep writs ing the values os S \& R required to get each Rut from the Correspondiy Q, ice. write what values of S \& R are requt vise to change the state of the erip-flop \&rom Qu to Out.

The conversion table, the k raps for S d $i \in$ in torus of δ, k of Q_{n} ail the logic diagorem showing the Conversion frow S-i to J-k are shown in Eig-2

External inputs	Present State	Next State	Flip-Flop inputs		
J	K	Qu	Quai	S	R
0	0	0	0	0	x
0	0	1	1	x	0
0	1	0	0	0	x
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	x	0
1	1	0	1	1	0
1	1	1	0	0	1

Conversion table

$S=J Q u$

$R=k Q_{u}$

$$
k-\operatorname{raps} \text { for } S Q R
$$

Firstalnkes's dboiptes flop:
www.FirstRanker.com
Here s-ip fippflop is availalle el we wout the aperation of the D flipflop from it. so D is the external ifs \& the olpes of the Combinational circuit are the ips to the a veilable Sir flip-ffor Express the inss of the existing flip-flop 3 er in termis is the Exctermal input D ol the prescent sfate Qu.

The conversion toble, the k-maps for $s \in R$ interns of D \& Q_{11}, and the logic diagram showing the conversion from S-ir to D are show below figs.

$S=1$

$R=\bar{D}$
k-maps fors \& R
fig -3
T-K fliwflos to Tfliw-flop:
Here J-k flipflop is available of we waut flip-flop oporetron fromit. So T is the Esterual i 18 \& \mathbb{I} of k are the achol inptse to the Existicy Fliep-Flop. T if Ou wake fowr combi: hations. Express Ialk interns of T ard Q_{n}.

The conversian table, the k-mppl for $\delta d k$ interins of T Qu, to and the begic diagrem showiy two conversi- Prom ik to T are shom in fighe.

Firstranker's choice

External input	Present State	werct state	Flip-Floys itputs.	
T	$Q u$	Qut1	J	k
0	0	0	0	\times
0	1	1	\times	0
1	0	1	1	\times
1	1	0	x	1

$J=T$

$k=T$

K-mapsfor $J Q K$
Fig 4: Connersin of k flio flos to i flis flop

SSI Latches el Fliptlops:

Several types of discrete latches of Flipflars are Quailable af SSI ports. SSI Latches auel Elip Flons have been elimituoted to a lagge Extent in modern dejigus as their function are cubbedded in BLDs Q FPGds.

Fig-5 shows the pinouts for several SSI sequalial devires. The only latch in the figure is the 74×375, which coutaing fovr D latchos, Similar in fouction to the "generic" DCatches. Becans of pin limitation, the latches are aramized in paixs with a Common ¿ control line for each paix.
 is the $74 \times 7 \times$. Which Conlaing two independat positive-dege triggerced D-Flis elcos witurreset al clear iupots.

The 74×102 is a positive-edge-lfiggercol $z-\bar{c}$ plicpflog with ain active low ilg (named \bar{K} arK-L). Another JK Flip Flor is the 74×112, which has an artiver low doct ilp.

Figs: Poinouts for SSI latches Q elip Rlops

Ring Coutar: This is the iinplest Shift Ragiter Cowsoa. The basic bily coutad ubry D fers is show Fif 6 . The realidatim of this Comed osiy $J-K ~ F F \&$ is shou-
in ing 7. Its grube diafren \& the sergwence table sham in piftes. Its timing diagrem is fromin pig-9. The flipefors are arranged as in a normal shift register, i, e, the Q ols of each stage is cemmerked to the D ilp of the nert stage, bot the Q olp of twe last FE is commertel back to the Dilp of the fixty Flipflop such that the array of Flipprops is arranged in a sing of there fode, the wame "ring Couter"

figi. 6 Logk diagrom of a he-bit king conter using D- fipploys

fige: Logic diagram of a \&-bit diug Counter usy J-kflip Flops

State dragrom

Q_{1}	Q_{2}	Q_{3}	Q_{4}	Afferclock
1	0	0	0	0
0	1	0	0	1
0	0	1	0	2
0	0	0	1	3
1	0	0	0	4
0	1	0	0	5
0	0	1	0	6
0	0	0	1	7

Fits q : Timing diagram of a Le-bit ring Counter.
St most instances, one a single 1 is in the register and is unde to circulate around the register as long as clock Pulses are applied. Juitially, the first $F F$ is present to a 1 . So, the initial state is 1000 , i.e, $Q_{0}=1, Q_{2}=0, Q_{3}=0, \varepsilon^{0} Q_{6}=0$, After each clock pulse, the caters of the register are shifted to the right be one bit and Q_{4} is shifted sack to Q_{1}. The sequence repeats after fourclak incises. The nowt distinct states in the ring Counter, ike; the mos of the ring conner is equal to the nonce FRs used in the counter. An on-bit ring Govnarer Gen count only a bits, whore os pu-bit ripple Coulter Cam count 2^{n} bits. So, the ring comer er coat deity, is un economical Compared to a ripple Copter, but hat the advantage of requiting no deader. Since we bum read the bout be simply noting which FF is set. Since it is entirely a Sienchronous perdu- al rewires no gates exchamal to FFs, it hus the Further advantage or being very fast. Johnson counter: (Twisted \%ing cortex)

This counter is oftaintal from a serial in. Serial-out shift register be providing feed back fran the inverted output of the cost $F F$ to the D ingot of the First FFF. The Q op of each stage is Coumectal to the sill of the hat stage; bot the $\overline{\text { co old of the la pt }}$ stage is comestal to the Dip if first grate, there fore, the (?

FirstRankerncom tor. This feal bock arrame mest
Firstranker'schoice
Produrel a unigue seg www. FirstRankergam
The logic diogran if a Lebit Johnsom Counter osiy DFis is shom in fig to. The sealizortim ofthe Some Ubing JKFEs is - Sham in efll. The frupe diaper of the seaverne table dibe ghow in fifl2. The timing chagem of a Eohnsom Coviter is ghout i. Gig is.

Fig 10: logic diagram of a 4-dit twitted ring counher ussy D FFs

Fis II: logic diaftan of a E-bit twitteal king coumber viry TK. FFs

Q_{1}	Q_{2}	Q_{3}	Q_{4}	referclock
0	0	0	0	0
1	0	0	0	1
1	1	0	0	2
1	1	1	0	3
1	1	1	1	4
0	1	1	1	5
0	0	1	1	6
0	0	0	1	7
0	0	0	0	8
1	0	0	0	9
Crequence table				

Fif12: state diagen el seavine talce of a foitter sing larter
Let initially all the FFi de ceset, e; the state of tue coucer be 0000. Affar each clock putse, twe level of Q_{1} is thipteal to Q_{2}, the level of Q_{2} to Q_{3}, Q_{3} to Q_{4} and the level of Q_{4} to Q_{1} anel the segnere given in figlequs obfaind. Thir sequanee is repental aftar everup

Fig 13: Timing diagram of a L-dit twisted ring Conner
An n FF bohmbon counter Gan have in vuique fates al Can Count up to in pulses. So it is a mod $-2 n$ comber. It is more economical them the nosinal ring counter, bot less economical than the ripple courter. If requires two ils gates for decoding regardless of the Sike of the cower. Thus, it revises more decoding circuitry them that by the normal ring counter, but lass twin that be the ripple counter. It repreputs a middle ground betroeen the ring counter al the ripple Counter.

Basic Sequential logic Design Steps

The procedure for designing Synchronous sequential circuits Combe Summarized be a list of recommended steps.

1. From the word description al specifications of the desired operation, derive a state diagnoses for the circuit.
2. Reduce the number of fates if wecesseryy.
3. Assign binary values to the states.
4. Obtain the binaty-coded State table.
5. Choose the tripe if-elip-flops to be table.
G. Derive the simplified flis-flas input euvatius of ola equation 7. Draw the logic diagram.

Degian of Counters Uswa Dhaital ISs,
\rightarrow ic 7490 (Decade Bimarre Countar)

Fig: Counection diagram for 7490

Fis: Basic interinal sfructure of 7$\} 90$

IC 7490 is a decade binaty counter. It consitts of four master-Slave flip-floos \&f additional gating to provide a divide by two Cometer ol a turee stage binary connter forcollich the count length is druide -be-five.

Since the of from the divide by two section is not internally. Connected to the succeeding stages, the devical anay be operated in various couting modes.

1. BCD Decade (842i) Cownter: The σ ilp witt be Extarnally connectal to twe Q_{A} of $\& \in A$ ilp receives the in cominy conct.
2. Symmetrical Bi-quinary Divide-be-Ten Covnter: the Q_{D} olp muff be Exfernally connectal to the A if. The ilp conct is then applied to the B ilf Q a $\div 10$ squire wave is obtainel at O1P QAA.
3. $\div 2 \theta \div 5$ conster: No Extermal inter conmechy ore requirel. The first $F F$ is used of a bimasy element for the $\alpha \% 2$ forchim. the isif is used to obtain binare diside by five operatime at the Q_{s} olp.
(8)

$C o u t$	Q_{S}	Q_{C}	Q_{B}	Q_{A}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Table 1: BCD count Sequence

0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4				
5	L	H	L	L
6	H	L	L	L
7	H	L	L	H
8	H	L	H	L
9	H	L	H	H
G	H	L	L	

Table 2: BCD Bi-Quivare (5-2)

Table Reset (count function table

Divide be so Counter untidy ic 7490

Fig: Logic Diagram Ex 7490

The 7492 el 7493 are high speed Le-bit ripple type Counters Partitioned into two sections. Each Counter has a divide-by-two Section el either a divide -by- six (7492) on divide-by-eifht (7493) Seefinm ablich are triggered be a High to low tran Sition on the clock lips. Each Section Combe used Separately or tied together to form divide-be-twelve of divide-be-sixteen counters.
$7492 \rightarrow \div 12$ counter Bach device Consists of four master scale $z^{t}+3 \rightarrow \div 16$ cover $F t y$ flops which are internally connected to Provide $a \div 8$ section.

7492

Modes of 7892

1. Mos-12: The is its mort be Externally connects to the Q_{A} of . The A its receivestre in coming count ℓ QD produces a symmetrical $\div 12$ square wave of 2. $\div 2$ el $\div 6$. No External intergol-Conue comus are requital, The frt ff if vied as abimere element For the $\frac{P}{\circ} 2$ fin. The is grip is Usoal to obtain the - 3 operate fat the $Q_{i} \in Q Q \subset O$ (os. al dividefy six operation of the Q_{0} of:

7893

EirstRanker. Conase of 7 दas:-
1.WWWFikstRanker comor: Thw ww. FirstRanker.com extorwally
comected to ip 8 . The ilp count polses are applied to the ilp A. Simul taniously divisious of $8,4,8$ d 16
are perfociowad at the $Q_{A}, Q_{A S}, Q_{c}(\theta) Q$ op ar shown in ture troth tafle.
2. 3-lit Ripple Conster: The ilp cout putses are agpliael to tha A. Simultanioustepoency divisions of $2, c, d, 8$ are availabse at the $Q_{B} O C Q Q_{0}$ with respent to of the 3 birit ripple through coouber.

7492 \& 7893
Reset ill
obs

| R_{1} | d_{2} | Q_{A} | Q_{B} | Q_{C} |
| :---: | :---: | :---: | :---: | :---: |Q_{D}

7492
7493

UNIT-6

Synchronous and Asynchronous Sequential Circuits

6.1 BASIC DESIGN STEPS

The circuit has one input, w, and one output, z.
All changes in the circuit occur on the positive edge of a clock signal.
The output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1 . Otherwise, the value of z is equal to 0 .

Thus, the circuit detects if two or more consecutive 1s occur on its input w. Circuits that detect the occurrence of a particular pattern on its input(s) are referred to as sequence detectors.

From this specification it is apparent that the output z cannot depend solely on the present value of w. To illustrate this, consider the sequence of values of the w and z signals during 11 clock cycles, as shown in Figure 8.2. The values of w are assumed arbitrarily; the values of z correspond to our specification. These sequences of input and output values indicate that for a given input value the output may be either 0 or 1 . For example, $w=0$ during clock cycles t_{2} and t_{5}, but $z=0$ during t_{2} and $z=1$ during t_{5}. Similarly, $w=1$ during t_{1} and t_{8}, but $z=0$ during t_{1} and $z=1$ during t_{8}. This means that z is not determined only by the present value of w, so there must exist different states in the circuit that determine the value of z.

6.2 STATE DIAGRAM

The first step in designing a finite state machine is to determine how many states are needed and which transitions are possible from one state to another. There is no set procedure for this task. The designer must think carefully about what the machine has to accomplish. A good way to begin is to select one particular state as a starting state; this is the state that the circuit should enter when power is first turned on or when a reset signal is applied. For our example let us assume that the starting state is called state A. As long as the input w is 0 , the circuit need not do anything, and so each active clock edge should result in the circuit remaining in state A. When w becomes equal
after w has become equal to 1 . In state B, as in state A, the circuit should keep the value of output z at 0 , because it has not yet seen $w=1$ for two consecutive clock cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move back to state A. However, if $w=1$ when in state B, the circuit should change to a third state, called C, and it should then generate an output $z=1$. The circuit should remain in

Clock cycle:	t 0	t 1	t 2	t 3	t 4	t 5	t 6	t 7	t 8	t 9	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	0	1	0	0	1	1	0

Figure 6.2 Sequences of input and output signals.
state C as long as $w=1$ and should continue to maintain $z=1$. When w becomes 0 , the machine should move back to state A. Since the preceding description handles all possible values of input w that the machine can encounter in its various states, we can conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between states, we will describe a more formal procedure that can be used to design the corresponding sequential circuit. Behavior of a sequential circuit can be described in several different ways. The conceptually simplest method is to use a pictorial representation in the form of a state diagram, which is a graph that depicts states of the circuit as nodes (circles) and transitions between states as directed arcs. The state diagram in Figure 8.3 defines the behavior that corresponds to our specification. States A, B, and C appear as nodes in the diagram. Node A represents the starting state, and it is also the state that the circuit will reach after an input $w=0$ is applied. In this state the output z should be 0 , which is indicated as $A / z=0$ in the node. The circuit should remain in state A as long as $w=0$, which is indicated by an arc with a label $w=0$ that originates and terminates at this node. The first occurrence of $w=1$ (following the condition $w=0$) is recorded by moving from state A to state B. This transition is indicated on the graph by an arc originating at A and terminating at B. The label $w=1$ on this arc denotes the input value that causes the transition. In state B the output remains at 0 , which is indicated as $B / z=0$ in the node.
cycles, the circuit will remain in state C maintaining $z=1$. However, if w becomes 0 when the circuit is either in state B or in state C, the next active clock edge will cause a transition to state A to take place.

In the diagram we indicated that the Reset input is used to force the circuit into state A, which is possible regardless of what state the circuit happens to be in. We could treat

Figure 6.3State diagram of a simple sequential circuit

Reset as just another input to the circuit, and show a transition from each state to the starting state A under control of the input Reset. This would complicate the diagram unnecessarily. States in a finite state machine are implemented using flip-flops.

6.3 STATE TABLE

Although the state diagram provides a description of the behavior of a sequential circuit that is easy to understand, to proceed with the implementation of the circuit, it is convenient to translate the information contained in the state diagram into a tabular form. Figure 8.4 shows the state table for our sequential circuit. The table indicates all transitions from each present state to the next state for different values of the input signal. Note that the output z is specified with respect to the present state, namely, the state that the circuit is in at present time. Note also that we did not include the Reset input; instead, we made an implicit assumption that the first state in the table is the starting state.

We now show the design steps that will produce the final circuit. To explain the basic design concepts, we first go through a traditional process of manually performing each design step. This is followed by a discussion of automated design techniques that use modern computer aided design (CAD) tools.

6.4 STATE ASSIGNMENT

The state table in Figure 8.4 defines the three states in terms of letters A, B, and C. When implemented in a logic circuit, each state is represented by a particular valuation (combi-nation of values) of state variables. Each state variable may be implemented in the form of a flip-flop. Since three states have to be realized, it is sufficient to use two state variables. Let these variables be y_{1} and y_{2}.

Now we can adapt the general block diagram in Figure to our example as shown in Figure 6.5, to indicate the structure of the circuit that implements the required finite state machine. Two flip-flops represent the state variables. In the figure we have not specified the type of flip-flops to be used; this issue is addressed in the next subsection.

Present state	Next state		
	Output		
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Figure 6.4 State table for the sequential circuit

The signals y_{1} and y_{2} are also fed back to the combinational circuit that determines the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are two signals, Y_{1} and Y_{2}, which are used to set the state of the flip-flops. Each active edge of the clock will cause the flipflops to change their state to the values of Y_{1} and Y_{2} at that time. Therefore, Y_{1} and Y_{2} are called the next-state variables, and y_{1} and y_{2} are called the present-state variables. We need to design a combinational circuit with inputs w, y_{1}, and y_{2}, such that for all valuations of these inputs the outputs Y_{1} and Y_{2} will cause the machine to move to the next state that satisfies our specification. The next step in the design process is to create a truth table that defines this circuit, as well as the circuit that generates z.

6.5CHOICE OF FLIP-FLOPS AND DERIVATION OF NEXT-STATE AND OUTPUT EXPRESSIONS

From the state-assigned table in Figure 8.6, we can derive the logic expressions for the next-state and output functions. But first we have to decide on the type of flip-flops that will be used in the circuit. The most straightforward choice is to use D-type flip-flops, because in this case the values of Y_{1} and Y_{2} are simply clocked into the flip-flops to become the new values of y_{1} and y_{2}. In other words, if the inputs to the flip-flops are called D_{1} and D_{2}, then these signals are the same as Y_{1} and Y_{2}. Note that the diagram in Figure 8.5 corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as JK type, the relationship between the next-state variable and inputs to a flip-flop is not as straightforward; we will consider this situation in section 8.7.

The required logic expressions can be derived as shown in Figure 8.7. We use Karnaugh maps to make it easy for the reader to verify the validity of the expressions. Recall that in Figure 8.6 we needed only three of the four possible binary valuations to represent the states. The fourth valuation, $y_{2} y_{1}=11$, should never occur in the circuit because the circuit is constrained to move only within states A, B, and C; therefore, we may choose to treat this valuation as a don't-care condition. The resulting don't-care squares in the Karnaugh maps are denoted by d's. Using the don't cares to simplify the expressions, we obtain

$$
\begin{aligned}
& Y_{1}=w y_{4} y_{2} \\
& Y_{2}=w\left(y_{1}+y_{2}\right) \\
& z=y_{2}
\end{aligned}
$$

Since $D_{1}=Y_{1}$ and $D_{2}=Y_{2}$, the logic circuit that corresponds to the preceding expressions is implemented as shown in Figure 8.8. Observe that a clock signal is included, and the circuit is provided with an activelow reset capability. Connecting the clear input on the flip-flops to an external Resetn signal, as shown in the figure, provides a simple means
for forcing the circuit into a known state. If we apply the signal Resetn $=0$ to the circuit, then both flip-flops will be cleared to 0 , placing the FSM into the state $y_{2} y_{1}=$ 00.

6.6 TIMING DIAGRAM

we are using positive-edge-triggered flip-flops, all changes in the signals occur shortly after the positive edge of the clock. The amount of delay from the clock edge depends on the propagation delays through the flip-flops. Note that the input signal w is also shown to change slightly after the active edge of the clock. This is a good assumption because in a typical digital system an input such as w would be just an output of another circuit that is synchronized by the same clock.

8.2 STATE-ASSIGNMENT PROBLEM

The basic concepts involved in the design of sequential circuits, we should revisit some details where alternative choices are possible. In section 6.1 we suggested that some state assignments may be better than others. To illustrate this we can reconsider the example in Figure 8.4. We already know that the state assignment in Figure 6.6 leads to a simple-looking circuit in Figure 8.8. But can the FSM of Figure 6.4 be implemented with an even simpler circuit by using a different state assignment.

In general, circuits are much larger than our example, and different state assignments can have a substantial effect on the cost of the final implementation. While highly desirable, it is often impossible to find the best state assignment for a large circuit. The exhaustive approach of trying all possible state assignments is not practical because the number of available state assignments is huge. CAD tools usually perform the state assignment using heuristic techniques. These techniques are usually proprietary, and their details are seldom published.

6.8 ONE-HOT ENCODING

Another interesting possibility is to use as many state variables as there are states in a sequential circuit. In this method, for each state all but one of the state variables are equal to 0 . The variable whose value is 1 is deemed to be "hot." The approach is known as the one-hot encoding method.

6.9 VHDL CODE FOR MOORE-TYPE FSMS

VHDL does not define a standard way of describing a finite state machine. Hence while adhering to the required VHDL syntax, there is more than one way to describe a given FSM. An example of VHDL code for the FSM of Figure 8.3 is given in Figure 8.29. For the convenience of discussion, the lines of code are numbered on the left side. Lines 1 to 6 declare an entity named simple, which has input ports Clock, Resetn, and w, and output port z. In line 7we have used the name Behavior for the architecture body, but of course, any valid VHDL name could be used instead.

The TYPE keyword, which is a feature of VHDL that we have not used previously. The TYPE keyword allows us to create a user-defined signal type. The new signal type is named State type, and the code specifies that a signal of this type can have three possible values: A, B, or C. Line 9 defines a signal named y that is of the State_type type. The y signal is used in the architecture body to represent the outputs of the flip-flops that implement the states in the FSM. The code does not specify the number of bits represented by y. Instead, it specifies that y can have the three symbolic values A, B, and C. This means that we have not specified the number of state flip-flops that should be used for the FSM. As we will see below, the VHDL compiler automatically chooses an appropriate number of state flip-flops when synthesizing a circuit to implement the machine. It also chooses the state assignment for states A, B, and C. Some CAD systems, such as Quartus II, assume that the first state listed in the TYPE statement (line 8) is the reset state for the machine. The state assignment that has all flip-flop outputs equal to 0 is used for this state. Later in this section, we will show

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY simple IS
PORT (Clock, Resetn,

4

5

W
: IN STD LOGIC; STD LOGIC)

END simple ;

ARCHITECTURE Behavior OF simple IS
TYPE State type IS (A, B, C)
SIGNAL y : State type ;
BEGIN
PROCESS (Resetn, Clock)
BEGIN
IF Resetn '0' THEN

ELSIF (Clock'EVENT AND Clock '1') THEN

CASE y IS

IF w ' 0 ' THEN
$\mathrm{y}<\mathrm{A}$;

ELSE $y<B ;$
END IF ;
WHEN B >
IF w '0' THEN

$$
\mathrm{y}<\mathrm{A} ;
$$

ELSE

$$
y<C
$$

END IF;
WHEN C >
IF w '0' THEN

$$
\mathrm{y}<\mathrm{A} ;
$$

ELSE

$\mathrm{y}<\mathrm{C} ;$

END IF
END CASE:
END IF
END PROCESS ;
z < '1' WHEN y C ELSE '0' ;

END Behavior ;

6.9 SPECIFYING THE STATE ASSIGNMENT IN VHDL CODE

That the state assignment may have an impact on the complexity of the designed circuit. An obvious objective of the state-assignment process is to minimize the cost of implementation. The cost function that should be optimized may be simply the number of gates and flip-flops. But it could also be based on other considerations that may be representative of the structure of PLD chips used to implement the design. For example, the CAD software may try to find state
encodings that minimize the total number of AND terms needed in the resulting circuit when the target chip is a CPLD.

In VHDL code it is possible to specify the state assignment that should be used, but there is no standardized way of doing so. Hence while adhering to VHDL syntax, each CAD system permits a slightly different method of specifying the state assignment. The Quartus II system recommends that state assignment be done by using the attribute feature of VHDL. An attribute refers to some type of information about an object in VHDL code. All signals automatically have a number of associated predefined attributes. An example is the EVENT attribute that we use to specify a clock edge, as in Clock'EVENT.

In addition to the predefined attributes, it is possible to create a user-defined attribute. The user-defined attribute can be used to associate some desired type of information with an object in VHDL code. In Quartus II manual state assignment can be done by creating a user-defined attribute associated with the State_type type. This is illustrated in Figure 8.34, which shows the first few lines of the architecture from Figure 8.33 with the addition of a user-defined attribute. We first define the new attribute called ENUM_ENCODING, which has the type STRING. The next line associates ENUM_ENCODING with the State_type type and specifies that the attribute has the value " 000111 ". When translating the VHDL code, the Quartus II compiler uses the value of ENUM_ENCODING to make the state assignment $A=00, B=01$, and $C=11$.

ARCHITECTURE Behavior OF simple IS

TYPE State TYPE IS (A, B, C) ;

ATTRIBUTE ENUM ENCODING : STRING;

ATTRIBUTE ENUM ENCODING OF State type : TYPE IS "00 01 11";

SIGNAL y present, y next : State type ;

BEGIN

Figure 8.34 A user-defined attribute for manual state assignment.

```
LIBRARY ieee ;
USE ieee.std logic 1164.all
;
ENTITY simple IS
PORT ( Clock, Resetn,
w : INSTD LOGIC ;
: OUT STD LOGIC )
Z ;
END simple ;
```

ARCHITECTURE Behavior OF simple IS

SIGNAL y presentz, y next : STD LOGIC VECTOR(1 DOWNTO 0);

CONSTANT A : STD LOGIC VECTOR(1 DOWNTO 0) : "00";

CONSTANT B : STD LOGIC VECTOR(1 DOWNTO 0) : "01";

CONSTANT C : STD LOGIC VECTOR(1 DOWNTO 0) : "11";

BEGIN

PROCESS (w, y present)

BEGIN

CASE y present IS

WHEN A >
ELSE y next $<$ B;END IF ;WHEN B >
IF w '0' THEN y next $<\mathrm{A}$;ELSE y next $<\mathrm{C}$;END IF ;
WHEN C >
IF w '0' THEN y next < A;
ELSE y next < C ;
END IF ;
WHEN OTHERS >
next $<\mathrm{A}$;
END CASE ;
END PROCESS ;
PROCESS (Clock, Resetn)
BEGIN'0'THEN
IF Resetn

y present $<$ y next ;
END IF ;
END PROCESS ;
$\mathrm{z}<{ }^{\prime} 1$ ' WHEN y present C ELSE '0';

END Behavior ;

6.10 SPECIFICATION OF MEALY FSMS USING VHDL

A Mealy-type FSM can be specified in a similar manner as a Moore-type FSM. Figure 8.36 gives complete VHDL code for the FSM in Figure 8.23. The state transitions are described in the same way as in our original VHDL example in Figure 8.29. The signal y represents the state flip-flops, and State_type specifies that y can have the values A and B. Compared to the code in Figure 8.29, the major difference in the case of a Mealy-type FSM is the way in which the code for the output is written. In Figure 8.36 the output z is defined using a CASE statement. It states that when the FSM is in state A, z should be 0 , but when in state B, z should take the value of w. This CASE statement properly describes the logic needed for z, but it may not be obvious why we have used a second CASE statement in the code, rather than specify the value of z inside the CASE statement that defines the state transitions. The reason is that the CASE statement for the state transitions is nested inside the IF statement that waits for a clock edge to occur. Hence if we placed the code for z inside this CASE statement, then the value of z could change only as a result of a clock edge. This does not meet the requirements of the Mealy-type FSM, because the value of z must depend not only on the state of the machine but also on the input w.

Implementing the FSM specified in Figure 8.36 in a CPLD chip yields the same equa-tions as we derived manually in section 8.3. Simulation results for the synthesized circuit appear in Figure 8.37. The input waveform for w is the same as the one we used for the Moore-type machine in Figure 8.32. Our Mealy-type machine behaves correctly, with z becoming 1 just after the start of the second consecutive clock cycle in which w is 1.

In the simulation results we have given in this section, all changes in the input w occur immediately following a positive clock edge. This is based on the assumption stated in section 8.1.5 that in a real circuit w would be synchronized with respect to the clock that controls the FSM. In Figure 8.38 we illustrate a problem that may arise if w does not meet this specification. In this case we have assumed that the changes in w take place at the

LIBRARY ieee ;
USE ieee.std logic 1164.all
;

ENTITY mealy IS
PORT (Clock, Resetn,
w : INSTD LOGIC ;
: OUT STD LOGIC)

END mealy ;

ARCHITECTURE Behavior OF mealy IS

TYPE State type IS (A, B) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn '0' THEN
$\mathrm{y}<\mathrm{A}$;

ELSIF (Clock'EVENT AND Clock '1')
THEN CASE y IS

WHEN A >

```
    ELSE y < B ;
    END IF ;
WHEN B >
    IF w '0' THEN y < A;
    ELSE y < B;
    END IF ;
    END CASE ;
```

END IF ;
END PROCESS ;
PROCESS (y , w)
BEGIN

CASE y IS
WHEN A >
z < '0';
z <
w;

END CASE ;

END PROCESS ;

